2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
37 #include "transaction.h"
38 #include "btrfs_inode.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
47 static struct extent_io_ops btree_extent_io_ops
;
48 static void end_workqueue_fn(struct btrfs_work
*work
);
49 static void free_fs_root(struct btrfs_root
*root
);
50 static void btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
52 static int btrfs_destroy_ordered_operations(struct btrfs_root
*root
);
53 static int btrfs_destroy_ordered_extents(struct btrfs_root
*root
);
54 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
55 struct btrfs_root
*root
);
56 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction
*t
);
57 static int btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
);
58 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
59 struct extent_io_tree
*dirty_pages
,
61 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
62 struct extent_io_tree
*pinned_extents
);
63 static int btrfs_cleanup_transaction(struct btrfs_root
*root
);
66 * end_io_wq structs are used to do processing in task context when an IO is
67 * complete. This is used during reads to verify checksums, and it is used
68 * by writes to insert metadata for new file extents after IO is complete.
74 struct btrfs_fs_info
*info
;
77 struct list_head list
;
78 struct btrfs_work work
;
82 * async submit bios are used to offload expensive checksumming
83 * onto the worker threads. They checksum file and metadata bios
84 * just before they are sent down the IO stack.
86 struct async_submit_bio
{
89 struct list_head list
;
90 extent_submit_bio_hook_t
*submit_bio_start
;
91 extent_submit_bio_hook_t
*submit_bio_done
;
94 unsigned long bio_flags
;
96 * bio_offset is optional, can be used if the pages in the bio
97 * can't tell us where in the file the bio should go
100 struct btrfs_work work
;
103 /* These are used to set the lockdep class on the extent buffer locks.
104 * The class is set by the readpage_end_io_hook after the buffer has
105 * passed csum validation but before the pages are unlocked.
107 * The lockdep class is also set by btrfs_init_new_buffer on freshly
110 * The class is based on the level in the tree block, which allows lockdep
111 * to know that lower nodes nest inside the locks of higher nodes.
113 * We also add a check to make sure the highest level of the tree is
114 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
115 * code needs update as well.
117 #ifdef CONFIG_DEBUG_LOCK_ALLOC
118 # if BTRFS_MAX_LEVEL != 8
121 static struct lock_class_key btrfs_eb_class
[BTRFS_MAX_LEVEL
+ 1];
122 static const char *btrfs_eb_name
[BTRFS_MAX_LEVEL
+ 1] = {
132 /* highest possible level */
138 * extents on the btree inode are pretty simple, there's one extent
139 * that covers the entire device
141 static struct extent_map
*btree_get_extent(struct inode
*inode
,
142 struct page
*page
, size_t pg_offset
, u64 start
, u64 len
,
145 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
146 struct extent_map
*em
;
149 read_lock(&em_tree
->lock
);
150 em
= lookup_extent_mapping(em_tree
, start
, len
);
153 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
154 read_unlock(&em_tree
->lock
);
157 read_unlock(&em_tree
->lock
);
159 em
= alloc_extent_map();
161 em
= ERR_PTR(-ENOMEM
);
166 em
->block_len
= (u64
)-1;
168 em
->bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
170 write_lock(&em_tree
->lock
);
171 ret
= add_extent_mapping(em_tree
, em
);
172 if (ret
== -EEXIST
) {
173 u64 failed_start
= em
->start
;
174 u64 failed_len
= em
->len
;
177 em
= lookup_extent_mapping(em_tree
, start
, len
);
181 em
= lookup_extent_mapping(em_tree
, failed_start
,
189 write_unlock(&em_tree
->lock
);
197 u32
btrfs_csum_data(struct btrfs_root
*root
, char *data
, u32 seed
, size_t len
)
199 return crc32c(seed
, data
, len
);
202 void btrfs_csum_final(u32 crc
, char *result
)
204 put_unaligned_le32(~crc
, result
);
208 * compute the csum for a btree block, and either verify it or write it
209 * into the csum field of the block.
211 static int csum_tree_block(struct btrfs_root
*root
, struct extent_buffer
*buf
,
215 btrfs_super_csum_size(&root
->fs_info
->super_copy
);
218 unsigned long cur_len
;
219 unsigned long offset
= BTRFS_CSUM_SIZE
;
220 char *map_token
= NULL
;
222 unsigned long map_start
;
223 unsigned long map_len
;
226 unsigned long inline_result
;
228 len
= buf
->len
- offset
;
230 err
= map_private_extent_buffer(buf
, offset
, 32,
232 &map_start
, &map_len
, KM_USER0
);
235 cur_len
= min(len
, map_len
- (offset
- map_start
));
236 crc
= btrfs_csum_data(root
, kaddr
+ offset
- map_start
,
240 unmap_extent_buffer(buf
, map_token
, KM_USER0
);
242 if (csum_size
> sizeof(inline_result
)) {
243 result
= kzalloc(csum_size
* sizeof(char), GFP_NOFS
);
247 result
= (char *)&inline_result
;
250 btrfs_csum_final(crc
, result
);
253 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
256 memcpy(&found
, result
, csum_size
);
258 read_extent_buffer(buf
, &val
, 0, csum_size
);
259 printk_ratelimited(KERN_INFO
"btrfs: %s checksum verify "
260 "failed on %llu wanted %X found %X "
262 root
->fs_info
->sb
->s_id
,
263 (unsigned long long)buf
->start
, val
, found
,
264 btrfs_header_level(buf
));
265 if (result
!= (char *)&inline_result
)
270 write_extent_buffer(buf
, result
, 0, csum_size
);
272 if (result
!= (char *)&inline_result
)
278 * we can't consider a given block up to date unless the transid of the
279 * block matches the transid in the parent node's pointer. This is how we
280 * detect blocks that either didn't get written at all or got written
281 * in the wrong place.
283 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
284 struct extent_buffer
*eb
, u64 parent_transid
)
286 struct extent_state
*cached_state
= NULL
;
289 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
292 lock_extent_bits(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
293 0, &cached_state
, GFP_NOFS
);
294 if (extent_buffer_uptodate(io_tree
, eb
, cached_state
) &&
295 btrfs_header_generation(eb
) == parent_transid
) {
299 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
301 (unsigned long long)eb
->start
,
302 (unsigned long long)parent_transid
,
303 (unsigned long long)btrfs_header_generation(eb
));
305 clear_extent_buffer_uptodate(io_tree
, eb
, &cached_state
);
307 unlock_extent_cached(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
308 &cached_state
, GFP_NOFS
);
313 * helper to read a given tree block, doing retries as required when
314 * the checksums don't match and we have alternate mirrors to try.
316 static int btree_read_extent_buffer_pages(struct btrfs_root
*root
,
317 struct extent_buffer
*eb
,
318 u64 start
, u64 parent_transid
)
320 struct extent_io_tree
*io_tree
;
325 clear_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
326 io_tree
= &BTRFS_I(root
->fs_info
->btree_inode
)->io_tree
;
328 ret
= read_extent_buffer_pages(io_tree
, eb
, start
, 1,
329 btree_get_extent
, mirror_num
);
331 !verify_parent_transid(io_tree
, eb
, parent_transid
))
335 * This buffer's crc is fine, but its contents are corrupted, so
336 * there is no reason to read the other copies, they won't be
339 if (test_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
))
342 num_copies
= btrfs_num_copies(&root
->fs_info
->mapping_tree
,
348 if (mirror_num
> num_copies
)
355 * checksum a dirty tree block before IO. This has extra checks to make sure
356 * we only fill in the checksum field in the first page of a multi-page block
359 static int csum_dirty_buffer(struct btrfs_root
*root
, struct page
*page
)
361 struct extent_io_tree
*tree
;
362 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
365 struct extent_buffer
*eb
;
368 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
370 if (page
->private == EXTENT_PAGE_PRIVATE
) {
374 if (!page
->private) {
378 len
= page
->private >> 2;
381 eb
= alloc_extent_buffer(tree
, start
, len
, page
);
386 ret
= btree_read_extent_buffer_pages(root
, eb
, start
+ PAGE_CACHE_SIZE
,
387 btrfs_header_generation(eb
));
389 WARN_ON(!btrfs_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
));
391 found_start
= btrfs_header_bytenr(eb
);
392 if (found_start
!= start
) {
396 if (eb
->first_page
!= page
) {
400 if (!PageUptodate(page
)) {
404 csum_tree_block(root
, eb
, 0);
406 free_extent_buffer(eb
);
411 static int check_tree_block_fsid(struct btrfs_root
*root
,
412 struct extent_buffer
*eb
)
414 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
415 u8 fsid
[BTRFS_UUID_SIZE
];
418 read_extent_buffer(eb
, fsid
, (unsigned long)btrfs_header_fsid(eb
),
421 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
425 fs_devices
= fs_devices
->seed
;
430 #define CORRUPT(reason, eb, root, slot) \
431 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
432 "root=%llu, slot=%d\n", reason, \
433 (unsigned long long)btrfs_header_bytenr(eb), \
434 (unsigned long long)root->objectid, slot)
436 static noinline
int check_leaf(struct btrfs_root
*root
,
437 struct extent_buffer
*leaf
)
439 struct btrfs_key key
;
440 struct btrfs_key leaf_key
;
441 u32 nritems
= btrfs_header_nritems(leaf
);
447 /* Check the 0 item */
448 if (btrfs_item_offset_nr(leaf
, 0) + btrfs_item_size_nr(leaf
, 0) !=
449 BTRFS_LEAF_DATA_SIZE(root
)) {
450 CORRUPT("invalid item offset size pair", leaf
, root
, 0);
455 * Check to make sure each items keys are in the correct order and their
456 * offsets make sense. We only have to loop through nritems-1 because
457 * we check the current slot against the next slot, which verifies the
458 * next slot's offset+size makes sense and that the current's slot
461 for (slot
= 0; slot
< nritems
- 1; slot
++) {
462 btrfs_item_key_to_cpu(leaf
, &leaf_key
, slot
);
463 btrfs_item_key_to_cpu(leaf
, &key
, slot
+ 1);
465 /* Make sure the keys are in the right order */
466 if (btrfs_comp_cpu_keys(&leaf_key
, &key
) >= 0) {
467 CORRUPT("bad key order", leaf
, root
, slot
);
472 * Make sure the offset and ends are right, remember that the
473 * item data starts at the end of the leaf and grows towards the
476 if (btrfs_item_offset_nr(leaf
, slot
) !=
477 btrfs_item_end_nr(leaf
, slot
+ 1)) {
478 CORRUPT("slot offset bad", leaf
, root
, slot
);
483 * Check to make sure that we don't point outside of the leaf,
484 * just incase all the items are consistent to eachother, but
485 * all point outside of the leaf.
487 if (btrfs_item_end_nr(leaf
, slot
) >
488 BTRFS_LEAF_DATA_SIZE(root
)) {
489 CORRUPT("slot end outside of leaf", leaf
, root
, slot
);
497 #ifdef CONFIG_DEBUG_LOCK_ALLOC
498 void btrfs_set_buffer_lockdep_class(struct extent_buffer
*eb
, int level
)
500 lockdep_set_class_and_name(&eb
->lock
,
501 &btrfs_eb_class
[level
],
502 btrfs_eb_name
[level
]);
506 static int btree_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
507 struct extent_state
*state
)
509 struct extent_io_tree
*tree
;
513 struct extent_buffer
*eb
;
514 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
517 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
518 if (page
->private == EXTENT_PAGE_PRIVATE
)
523 len
= page
->private >> 2;
526 eb
= alloc_extent_buffer(tree
, start
, len
, page
);
532 found_start
= btrfs_header_bytenr(eb
);
533 if (found_start
!= start
) {
534 printk_ratelimited(KERN_INFO
"btrfs bad tree block start "
536 (unsigned long long)found_start
,
537 (unsigned long long)eb
->start
);
541 if (eb
->first_page
!= page
) {
542 printk(KERN_INFO
"btrfs bad first page %lu %lu\n",
543 eb
->first_page
->index
, page
->index
);
548 if (check_tree_block_fsid(root
, eb
)) {
549 printk_ratelimited(KERN_INFO
"btrfs bad fsid on block %llu\n",
550 (unsigned long long)eb
->start
);
554 found_level
= btrfs_header_level(eb
);
556 btrfs_set_buffer_lockdep_class(eb
, found_level
);
558 ret
= csum_tree_block(root
, eb
, 1);
565 * If this is a leaf block and it is corrupt, set the corrupt bit so
566 * that we don't try and read the other copies of this block, just
569 if (found_level
== 0 && check_leaf(root
, eb
)) {
570 set_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
574 end
= min_t(u64
, eb
->len
, PAGE_CACHE_SIZE
);
575 end
= eb
->start
+ end
- 1;
577 free_extent_buffer(eb
);
582 static void end_workqueue_bio(struct bio
*bio
, int err
)
584 struct end_io_wq
*end_io_wq
= bio
->bi_private
;
585 struct btrfs_fs_info
*fs_info
;
587 fs_info
= end_io_wq
->info
;
588 end_io_wq
->error
= err
;
589 end_io_wq
->work
.func
= end_workqueue_fn
;
590 end_io_wq
->work
.flags
= 0;
592 if (bio
->bi_rw
& REQ_WRITE
) {
593 if (end_io_wq
->metadata
== 1)
594 btrfs_queue_worker(&fs_info
->endio_meta_write_workers
,
596 else if (end_io_wq
->metadata
== 2)
597 btrfs_queue_worker(&fs_info
->endio_freespace_worker
,
600 btrfs_queue_worker(&fs_info
->endio_write_workers
,
603 if (end_io_wq
->metadata
)
604 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
607 btrfs_queue_worker(&fs_info
->endio_workers
,
613 * For the metadata arg you want
616 * 1 - if normal metadta
617 * 2 - if writing to the free space cache area
619 int btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
622 struct end_io_wq
*end_io_wq
;
623 end_io_wq
= kmalloc(sizeof(*end_io_wq
), GFP_NOFS
);
627 end_io_wq
->private = bio
->bi_private
;
628 end_io_wq
->end_io
= bio
->bi_end_io
;
629 end_io_wq
->info
= info
;
630 end_io_wq
->error
= 0;
631 end_io_wq
->bio
= bio
;
632 end_io_wq
->metadata
= metadata
;
634 bio
->bi_private
= end_io_wq
;
635 bio
->bi_end_io
= end_workqueue_bio
;
639 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info
*info
)
641 unsigned long limit
= min_t(unsigned long,
642 info
->workers
.max_workers
,
643 info
->fs_devices
->open_devices
);
647 static void run_one_async_start(struct btrfs_work
*work
)
649 struct async_submit_bio
*async
;
651 async
= container_of(work
, struct async_submit_bio
, work
);
652 async
->submit_bio_start(async
->inode
, async
->rw
, async
->bio
,
653 async
->mirror_num
, async
->bio_flags
,
657 static void run_one_async_done(struct btrfs_work
*work
)
659 struct btrfs_fs_info
*fs_info
;
660 struct async_submit_bio
*async
;
663 async
= container_of(work
, struct async_submit_bio
, work
);
664 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
666 limit
= btrfs_async_submit_limit(fs_info
);
667 limit
= limit
* 2 / 3;
669 atomic_dec(&fs_info
->nr_async_submits
);
671 if (atomic_read(&fs_info
->nr_async_submits
) < limit
&&
672 waitqueue_active(&fs_info
->async_submit_wait
))
673 wake_up(&fs_info
->async_submit_wait
);
675 async
->submit_bio_done(async
->inode
, async
->rw
, async
->bio
,
676 async
->mirror_num
, async
->bio_flags
,
680 static void run_one_async_free(struct btrfs_work
*work
)
682 struct async_submit_bio
*async
;
684 async
= container_of(work
, struct async_submit_bio
, work
);
688 int btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct inode
*inode
,
689 int rw
, struct bio
*bio
, int mirror_num
,
690 unsigned long bio_flags
,
692 extent_submit_bio_hook_t
*submit_bio_start
,
693 extent_submit_bio_hook_t
*submit_bio_done
)
695 struct async_submit_bio
*async
;
697 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
701 async
->inode
= inode
;
704 async
->mirror_num
= mirror_num
;
705 async
->submit_bio_start
= submit_bio_start
;
706 async
->submit_bio_done
= submit_bio_done
;
708 async
->work
.func
= run_one_async_start
;
709 async
->work
.ordered_func
= run_one_async_done
;
710 async
->work
.ordered_free
= run_one_async_free
;
712 async
->work
.flags
= 0;
713 async
->bio_flags
= bio_flags
;
714 async
->bio_offset
= bio_offset
;
716 atomic_inc(&fs_info
->nr_async_submits
);
719 btrfs_set_work_high_prio(&async
->work
);
721 btrfs_queue_worker(&fs_info
->workers
, &async
->work
);
723 while (atomic_read(&fs_info
->async_submit_draining
) &&
724 atomic_read(&fs_info
->nr_async_submits
)) {
725 wait_event(fs_info
->async_submit_wait
,
726 (atomic_read(&fs_info
->nr_async_submits
) == 0));
732 static int btree_csum_one_bio(struct bio
*bio
)
734 struct bio_vec
*bvec
= bio
->bi_io_vec
;
736 struct btrfs_root
*root
;
738 WARN_ON(bio
->bi_vcnt
<= 0);
739 while (bio_index
< bio
->bi_vcnt
) {
740 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
741 csum_dirty_buffer(root
, bvec
->bv_page
);
748 static int __btree_submit_bio_start(struct inode
*inode
, int rw
,
749 struct bio
*bio
, int mirror_num
,
750 unsigned long bio_flags
,
754 * when we're called for a write, we're already in the async
755 * submission context. Just jump into btrfs_map_bio
757 btree_csum_one_bio(bio
);
761 static int __btree_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
762 int mirror_num
, unsigned long bio_flags
,
766 * when we're called for a write, we're already in the async
767 * submission context. Just jump into btrfs_map_bio
769 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
, mirror_num
, 1);
772 static int btree_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
773 int mirror_num
, unsigned long bio_flags
,
778 ret
= btrfs_bio_wq_end_io(BTRFS_I(inode
)->root
->fs_info
,
782 if (!(rw
& REQ_WRITE
)) {
784 * called for a read, do the setup so that checksum validation
785 * can happen in the async kernel threads
787 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
,
792 * kthread helpers are used to submit writes so that checksumming
793 * can happen in parallel across all CPUs
795 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
796 inode
, rw
, bio
, mirror_num
, 0,
798 __btree_submit_bio_start
,
799 __btree_submit_bio_done
);
802 #ifdef CONFIG_MIGRATION
803 static int btree_migratepage(struct address_space
*mapping
,
804 struct page
*newpage
, struct page
*page
)
807 * we can't safely write a btree page from here,
808 * we haven't done the locking hook
813 * Buffers may be managed in a filesystem specific way.
814 * We must have no buffers or drop them.
816 if (page_has_private(page
) &&
817 !try_to_release_page(page
, GFP_KERNEL
))
819 return migrate_page(mapping
, newpage
, page
);
823 static int btree_writepage(struct page
*page
, struct writeback_control
*wbc
)
825 struct extent_io_tree
*tree
;
826 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
827 struct extent_buffer
*eb
;
830 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
831 if (!(current
->flags
& PF_MEMALLOC
)) {
832 return extent_write_full_page(tree
, page
,
833 btree_get_extent
, wbc
);
836 redirty_page_for_writepage(wbc
, page
);
837 eb
= btrfs_find_tree_block(root
, page_offset(page
), PAGE_CACHE_SIZE
);
840 was_dirty
= test_and_set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
842 spin_lock(&root
->fs_info
->delalloc_lock
);
843 root
->fs_info
->dirty_metadata_bytes
+= PAGE_CACHE_SIZE
;
844 spin_unlock(&root
->fs_info
->delalloc_lock
);
846 free_extent_buffer(eb
);
852 static int btree_writepages(struct address_space
*mapping
,
853 struct writeback_control
*wbc
)
855 struct extent_io_tree
*tree
;
856 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
857 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
858 struct btrfs_root
*root
= BTRFS_I(mapping
->host
)->root
;
860 unsigned long thresh
= 32 * 1024 * 1024;
862 if (wbc
->for_kupdate
)
865 /* this is a bit racy, but that's ok */
866 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
867 if (num_dirty
< thresh
)
870 return extent_writepages(tree
, mapping
, btree_get_extent
, wbc
);
873 static int btree_readpage(struct file
*file
, struct page
*page
)
875 struct extent_io_tree
*tree
;
876 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
877 return extent_read_full_page(tree
, page
, btree_get_extent
);
880 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
882 struct extent_io_tree
*tree
;
883 struct extent_map_tree
*map
;
886 if (PageWriteback(page
) || PageDirty(page
))
889 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
890 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
892 ret
= try_release_extent_state(map
, tree
, page
, gfp_flags
);
896 ret
= try_release_extent_buffer(tree
, page
);
898 ClearPagePrivate(page
);
899 set_page_private(page
, 0);
900 page_cache_release(page
);
906 static void btree_invalidatepage(struct page
*page
, unsigned long offset
)
908 struct extent_io_tree
*tree
;
909 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
910 extent_invalidatepage(tree
, page
, offset
);
911 btree_releasepage(page
, GFP_NOFS
);
912 if (PagePrivate(page
)) {
913 printk(KERN_WARNING
"btrfs warning page private not zero "
914 "on page %llu\n", (unsigned long long)page_offset(page
));
915 ClearPagePrivate(page
);
916 set_page_private(page
, 0);
917 page_cache_release(page
);
921 static const struct address_space_operations btree_aops
= {
922 .readpage
= btree_readpage
,
923 .writepage
= btree_writepage
,
924 .writepages
= btree_writepages
,
925 .releasepage
= btree_releasepage
,
926 .invalidatepage
= btree_invalidatepage
,
927 #ifdef CONFIG_MIGRATION
928 .migratepage
= btree_migratepage
,
932 int readahead_tree_block(struct btrfs_root
*root
, u64 bytenr
, u32 blocksize
,
935 struct extent_buffer
*buf
= NULL
;
936 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
939 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
942 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
943 buf
, 0, 0, btree_get_extent
, 0);
944 free_extent_buffer(buf
);
948 struct extent_buffer
*btrfs_find_tree_block(struct btrfs_root
*root
,
949 u64 bytenr
, u32 blocksize
)
951 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
952 struct extent_buffer
*eb
;
953 eb
= find_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
958 struct extent_buffer
*btrfs_find_create_tree_block(struct btrfs_root
*root
,
959 u64 bytenr
, u32 blocksize
)
961 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
962 struct extent_buffer
*eb
;
964 eb
= alloc_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
965 bytenr
, blocksize
, NULL
);
970 int btrfs_write_tree_block(struct extent_buffer
*buf
)
972 return filemap_fdatawrite_range(buf
->first_page
->mapping
, buf
->start
,
973 buf
->start
+ buf
->len
- 1);
976 int btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
978 return filemap_fdatawait_range(buf
->first_page
->mapping
,
979 buf
->start
, buf
->start
+ buf
->len
- 1);
982 struct extent_buffer
*read_tree_block(struct btrfs_root
*root
, u64 bytenr
,
983 u32 blocksize
, u64 parent_transid
)
985 struct extent_buffer
*buf
= NULL
;
988 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
992 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
995 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
1000 int clean_tree_block(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
1001 struct extent_buffer
*buf
)
1003 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1004 if (btrfs_header_generation(buf
) ==
1005 root
->fs_info
->running_transaction
->transid
) {
1006 btrfs_assert_tree_locked(buf
);
1008 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
1009 spin_lock(&root
->fs_info
->delalloc_lock
);
1010 if (root
->fs_info
->dirty_metadata_bytes
>= buf
->len
)
1011 root
->fs_info
->dirty_metadata_bytes
-= buf
->len
;
1014 spin_unlock(&root
->fs_info
->delalloc_lock
);
1017 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1018 btrfs_set_lock_blocking(buf
);
1019 clear_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
1025 static int __setup_root(u32 nodesize
, u32 leafsize
, u32 sectorsize
,
1026 u32 stripesize
, struct btrfs_root
*root
,
1027 struct btrfs_fs_info
*fs_info
,
1031 root
->commit_root
= NULL
;
1032 root
->sectorsize
= sectorsize
;
1033 root
->nodesize
= nodesize
;
1034 root
->leafsize
= leafsize
;
1035 root
->stripesize
= stripesize
;
1037 root
->track_dirty
= 0;
1039 root
->orphan_item_inserted
= 0;
1040 root
->orphan_cleanup_state
= 0;
1042 root
->fs_info
= fs_info
;
1043 root
->objectid
= objectid
;
1044 root
->last_trans
= 0;
1045 root
->highest_objectid
= 0;
1048 root
->inode_tree
= RB_ROOT
;
1049 INIT_RADIX_TREE(&root
->delayed_nodes_tree
, GFP_ATOMIC
);
1050 root
->block_rsv
= NULL
;
1051 root
->orphan_block_rsv
= NULL
;
1053 INIT_LIST_HEAD(&root
->dirty_list
);
1054 INIT_LIST_HEAD(&root
->orphan_list
);
1055 INIT_LIST_HEAD(&root
->root_list
);
1056 spin_lock_init(&root
->orphan_lock
);
1057 spin_lock_init(&root
->inode_lock
);
1058 spin_lock_init(&root
->accounting_lock
);
1059 mutex_init(&root
->objectid_mutex
);
1060 mutex_init(&root
->log_mutex
);
1061 init_waitqueue_head(&root
->log_writer_wait
);
1062 init_waitqueue_head(&root
->log_commit_wait
[0]);
1063 init_waitqueue_head(&root
->log_commit_wait
[1]);
1064 atomic_set(&root
->log_commit
[0], 0);
1065 atomic_set(&root
->log_commit
[1], 0);
1066 atomic_set(&root
->log_writers
, 0);
1067 root
->log_batch
= 0;
1068 root
->log_transid
= 0;
1069 root
->last_log_commit
= 0;
1070 extent_io_tree_init(&root
->dirty_log_pages
,
1071 fs_info
->btree_inode
->i_mapping
);
1073 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
1074 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
1075 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
1076 memset(&root
->root_kobj
, 0, sizeof(root
->root_kobj
));
1077 root
->defrag_trans_start
= fs_info
->generation
;
1078 init_completion(&root
->kobj_unregister
);
1079 root
->defrag_running
= 0;
1080 root
->root_key
.objectid
= objectid
;
1081 root
->anon_super
.s_root
= NULL
;
1082 root
->anon_super
.s_dev
= 0;
1083 INIT_LIST_HEAD(&root
->anon_super
.s_list
);
1084 INIT_LIST_HEAD(&root
->anon_super
.s_instances
);
1085 init_rwsem(&root
->anon_super
.s_umount
);
1090 static int find_and_setup_root(struct btrfs_root
*tree_root
,
1091 struct btrfs_fs_info
*fs_info
,
1093 struct btrfs_root
*root
)
1099 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1100 tree_root
->sectorsize
, tree_root
->stripesize
,
1101 root
, fs_info
, objectid
);
1102 ret
= btrfs_find_last_root(tree_root
, objectid
,
1103 &root
->root_item
, &root
->root_key
);
1108 generation
= btrfs_root_generation(&root
->root_item
);
1109 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1110 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1111 blocksize
, generation
);
1112 if (!root
->node
|| !btrfs_buffer_uptodate(root
->node
, generation
)) {
1113 free_extent_buffer(root
->node
);
1116 root
->commit_root
= btrfs_root_node(root
);
1120 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1121 struct btrfs_fs_info
*fs_info
)
1123 struct btrfs_root
*root
;
1124 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1125 struct extent_buffer
*leaf
;
1127 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1129 return ERR_PTR(-ENOMEM
);
1131 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1132 tree_root
->sectorsize
, tree_root
->stripesize
,
1133 root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1135 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1136 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1137 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1139 * log trees do not get reference counted because they go away
1140 * before a real commit is actually done. They do store pointers
1141 * to file data extents, and those reference counts still get
1142 * updated (along with back refs to the log tree).
1146 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
, 0,
1147 BTRFS_TREE_LOG_OBJECTID
, NULL
, 0, 0, 0);
1150 return ERR_CAST(leaf
);
1153 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
1154 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1155 btrfs_set_header_generation(leaf
, trans
->transid
);
1156 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1157 btrfs_set_header_owner(leaf
, BTRFS_TREE_LOG_OBJECTID
);
1160 write_extent_buffer(root
->node
, root
->fs_info
->fsid
,
1161 (unsigned long)btrfs_header_fsid(root
->node
),
1163 btrfs_mark_buffer_dirty(root
->node
);
1164 btrfs_tree_unlock(root
->node
);
1168 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1169 struct btrfs_fs_info
*fs_info
)
1171 struct btrfs_root
*log_root
;
1173 log_root
= alloc_log_tree(trans
, fs_info
);
1174 if (IS_ERR(log_root
))
1175 return PTR_ERR(log_root
);
1176 WARN_ON(fs_info
->log_root_tree
);
1177 fs_info
->log_root_tree
= log_root
;
1181 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1182 struct btrfs_root
*root
)
1184 struct btrfs_root
*log_root
;
1185 struct btrfs_inode_item
*inode_item
;
1187 log_root
= alloc_log_tree(trans
, root
->fs_info
);
1188 if (IS_ERR(log_root
))
1189 return PTR_ERR(log_root
);
1191 log_root
->last_trans
= trans
->transid
;
1192 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1194 inode_item
= &log_root
->root_item
.inode
;
1195 inode_item
->generation
= cpu_to_le64(1);
1196 inode_item
->size
= cpu_to_le64(3);
1197 inode_item
->nlink
= cpu_to_le32(1);
1198 inode_item
->nbytes
= cpu_to_le64(root
->leafsize
);
1199 inode_item
->mode
= cpu_to_le32(S_IFDIR
| 0755);
1201 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1203 WARN_ON(root
->log_root
);
1204 root
->log_root
= log_root
;
1205 root
->log_transid
= 0;
1206 root
->last_log_commit
= 0;
1210 struct btrfs_root
*btrfs_read_fs_root_no_radix(struct btrfs_root
*tree_root
,
1211 struct btrfs_key
*location
)
1213 struct btrfs_root
*root
;
1214 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1215 struct btrfs_path
*path
;
1216 struct extent_buffer
*l
;
1221 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1223 return ERR_PTR(-ENOMEM
);
1224 if (location
->offset
== (u64
)-1) {
1225 ret
= find_and_setup_root(tree_root
, fs_info
,
1226 location
->objectid
, root
);
1229 return ERR_PTR(ret
);
1234 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1235 tree_root
->sectorsize
, tree_root
->stripesize
,
1236 root
, fs_info
, location
->objectid
);
1238 path
= btrfs_alloc_path();
1241 return ERR_PTR(-ENOMEM
);
1243 ret
= btrfs_search_slot(NULL
, tree_root
, location
, path
, 0, 0);
1246 read_extent_buffer(l
, &root
->root_item
,
1247 btrfs_item_ptr_offset(l
, path
->slots
[0]),
1248 sizeof(root
->root_item
));
1249 memcpy(&root
->root_key
, location
, sizeof(*location
));
1251 btrfs_free_path(path
);
1256 return ERR_PTR(ret
);
1259 generation
= btrfs_root_generation(&root
->root_item
);
1260 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1261 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1262 blocksize
, generation
);
1263 root
->commit_root
= btrfs_root_node(root
);
1264 BUG_ON(!root
->node
);
1266 if (location
->objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
1268 btrfs_check_and_init_root_item(&root
->root_item
);
1274 struct btrfs_root
*btrfs_read_fs_root_no_name(struct btrfs_fs_info
*fs_info
,
1275 struct btrfs_key
*location
)
1277 struct btrfs_root
*root
;
1280 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1281 return fs_info
->tree_root
;
1282 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1283 return fs_info
->extent_root
;
1284 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1285 return fs_info
->chunk_root
;
1286 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1287 return fs_info
->dev_root
;
1288 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1289 return fs_info
->csum_root
;
1291 spin_lock(&fs_info
->fs_roots_radix_lock
);
1292 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1293 (unsigned long)location
->objectid
);
1294 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1298 root
= btrfs_read_fs_root_no_radix(fs_info
->tree_root
, location
);
1302 root
->free_ino_ctl
= kzalloc(sizeof(*root
->free_ino_ctl
), GFP_NOFS
);
1303 if (!root
->free_ino_ctl
)
1305 root
->free_ino_pinned
= kzalloc(sizeof(*root
->free_ino_pinned
),
1307 if (!root
->free_ino_pinned
)
1310 btrfs_init_free_ino_ctl(root
);
1311 mutex_init(&root
->fs_commit_mutex
);
1312 spin_lock_init(&root
->cache_lock
);
1313 init_waitqueue_head(&root
->cache_wait
);
1315 set_anon_super(&root
->anon_super
, NULL
);
1317 if (btrfs_root_refs(&root
->root_item
) == 0) {
1322 ret
= btrfs_find_orphan_item(fs_info
->tree_root
, location
->objectid
);
1326 root
->orphan_item_inserted
= 1;
1328 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
1332 spin_lock(&fs_info
->fs_roots_radix_lock
);
1333 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1334 (unsigned long)root
->root_key
.objectid
,
1339 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1340 radix_tree_preload_end();
1342 if (ret
== -EEXIST
) {
1349 ret
= btrfs_find_dead_roots(fs_info
->tree_root
,
1350 root
->root_key
.objectid
);
1355 return ERR_PTR(ret
);
1358 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1360 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1362 struct btrfs_device
*device
;
1363 struct backing_dev_info
*bdi
;
1366 list_for_each_entry_rcu(device
, &info
->fs_devices
->devices
, dev_list
) {
1369 bdi
= blk_get_backing_dev_info(device
->bdev
);
1370 if (bdi
&& bdi_congested(bdi
, bdi_bits
)) {
1380 * If this fails, caller must call bdi_destroy() to get rid of the
1383 static int setup_bdi(struct btrfs_fs_info
*info
, struct backing_dev_info
*bdi
)
1387 bdi
->capabilities
= BDI_CAP_MAP_COPY
;
1388 err
= bdi_setup_and_register(bdi
, "btrfs", BDI_CAP_MAP_COPY
);
1392 bdi
->ra_pages
= default_backing_dev_info
.ra_pages
;
1393 bdi
->congested_fn
= btrfs_congested_fn
;
1394 bdi
->congested_data
= info
;
1398 static int bio_ready_for_csum(struct bio
*bio
)
1404 struct extent_io_tree
*io_tree
= NULL
;
1405 struct bio_vec
*bvec
;
1409 bio_for_each_segment(bvec
, bio
, i
) {
1410 page
= bvec
->bv_page
;
1411 if (page
->private == EXTENT_PAGE_PRIVATE
) {
1412 length
+= bvec
->bv_len
;
1415 if (!page
->private) {
1416 length
+= bvec
->bv_len
;
1419 length
= bvec
->bv_len
;
1420 buf_len
= page
->private >> 2;
1421 start
= page_offset(page
) + bvec
->bv_offset
;
1422 io_tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1424 /* are we fully contained in this bio? */
1425 if (buf_len
<= length
)
1428 ret
= extent_range_uptodate(io_tree
, start
+ length
,
1429 start
+ buf_len
- 1);
1434 * called by the kthread helper functions to finally call the bio end_io
1435 * functions. This is where read checksum verification actually happens
1437 static void end_workqueue_fn(struct btrfs_work
*work
)
1440 struct end_io_wq
*end_io_wq
;
1441 struct btrfs_fs_info
*fs_info
;
1444 end_io_wq
= container_of(work
, struct end_io_wq
, work
);
1445 bio
= end_io_wq
->bio
;
1446 fs_info
= end_io_wq
->info
;
1448 /* metadata bio reads are special because the whole tree block must
1449 * be checksummed at once. This makes sure the entire block is in
1450 * ram and up to date before trying to verify things. For
1451 * blocksize <= pagesize, it is basically a noop
1453 if (!(bio
->bi_rw
& REQ_WRITE
) && end_io_wq
->metadata
&&
1454 !bio_ready_for_csum(bio
)) {
1455 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
1459 error
= end_io_wq
->error
;
1460 bio
->bi_private
= end_io_wq
->private;
1461 bio
->bi_end_io
= end_io_wq
->end_io
;
1463 bio_endio(bio
, error
);
1466 static int cleaner_kthread(void *arg
)
1468 struct btrfs_root
*root
= arg
;
1471 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1473 if (!(root
->fs_info
->sb
->s_flags
& MS_RDONLY
) &&
1474 mutex_trylock(&root
->fs_info
->cleaner_mutex
)) {
1475 btrfs_run_delayed_iputs(root
);
1476 btrfs_clean_old_snapshots(root
);
1477 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1478 btrfs_run_defrag_inodes(root
->fs_info
);
1481 if (freezing(current
)) {
1484 set_current_state(TASK_INTERRUPTIBLE
);
1485 if (!kthread_should_stop())
1487 __set_current_state(TASK_RUNNING
);
1489 } while (!kthread_should_stop());
1493 static int transaction_kthread(void *arg
)
1495 struct btrfs_root
*root
= arg
;
1496 struct btrfs_trans_handle
*trans
;
1497 struct btrfs_transaction
*cur
;
1500 unsigned long delay
;
1505 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1506 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
1508 spin_lock(&root
->fs_info
->trans_lock
);
1509 cur
= root
->fs_info
->running_transaction
;
1511 spin_unlock(&root
->fs_info
->trans_lock
);
1515 now
= get_seconds();
1516 if (!cur
->blocked
&&
1517 (now
< cur
->start_time
|| now
- cur
->start_time
< 30)) {
1518 spin_unlock(&root
->fs_info
->trans_lock
);
1522 transid
= cur
->transid
;
1523 spin_unlock(&root
->fs_info
->trans_lock
);
1525 trans
= btrfs_join_transaction(root
);
1526 BUG_ON(IS_ERR(trans
));
1527 if (transid
== trans
->transid
) {
1528 ret
= btrfs_commit_transaction(trans
, root
);
1531 btrfs_end_transaction(trans
, root
);
1534 wake_up_process(root
->fs_info
->cleaner_kthread
);
1535 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
1537 if (freezing(current
)) {
1540 set_current_state(TASK_INTERRUPTIBLE
);
1541 if (!kthread_should_stop() &&
1542 !btrfs_transaction_blocked(root
->fs_info
))
1543 schedule_timeout(delay
);
1544 __set_current_state(TASK_RUNNING
);
1546 } while (!kthread_should_stop());
1550 struct btrfs_root
*open_ctree(struct super_block
*sb
,
1551 struct btrfs_fs_devices
*fs_devices
,
1561 struct btrfs_key location
;
1562 struct buffer_head
*bh
;
1563 struct btrfs_root
*extent_root
= kzalloc(sizeof(struct btrfs_root
),
1565 struct btrfs_root
*csum_root
= kzalloc(sizeof(struct btrfs_root
),
1567 struct btrfs_root
*tree_root
= btrfs_sb(sb
);
1568 struct btrfs_fs_info
*fs_info
= NULL
;
1569 struct btrfs_root
*chunk_root
= kzalloc(sizeof(struct btrfs_root
),
1571 struct btrfs_root
*dev_root
= kzalloc(sizeof(struct btrfs_root
),
1573 struct btrfs_root
*log_tree_root
;
1578 struct btrfs_super_block
*disk_super
;
1580 if (!extent_root
|| !tree_root
|| !tree_root
->fs_info
||
1581 !chunk_root
|| !dev_root
|| !csum_root
) {
1585 fs_info
= tree_root
->fs_info
;
1587 ret
= init_srcu_struct(&fs_info
->subvol_srcu
);
1593 ret
= setup_bdi(fs_info
, &fs_info
->bdi
);
1599 fs_info
->btree_inode
= new_inode(sb
);
1600 if (!fs_info
->btree_inode
) {
1605 fs_info
->btree_inode
->i_mapping
->flags
&= ~__GFP_FS
;
1607 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_ATOMIC
);
1608 INIT_LIST_HEAD(&fs_info
->trans_list
);
1609 INIT_LIST_HEAD(&fs_info
->dead_roots
);
1610 INIT_LIST_HEAD(&fs_info
->delayed_iputs
);
1611 INIT_LIST_HEAD(&fs_info
->hashers
);
1612 INIT_LIST_HEAD(&fs_info
->delalloc_inodes
);
1613 INIT_LIST_HEAD(&fs_info
->ordered_operations
);
1614 INIT_LIST_HEAD(&fs_info
->caching_block_groups
);
1615 spin_lock_init(&fs_info
->delalloc_lock
);
1616 spin_lock_init(&fs_info
->trans_lock
);
1617 spin_lock_init(&fs_info
->ref_cache_lock
);
1618 spin_lock_init(&fs_info
->fs_roots_radix_lock
);
1619 spin_lock_init(&fs_info
->delayed_iput_lock
);
1620 spin_lock_init(&fs_info
->defrag_inodes_lock
);
1622 init_completion(&fs_info
->kobj_unregister
);
1623 fs_info
->tree_root
= tree_root
;
1624 fs_info
->extent_root
= extent_root
;
1625 fs_info
->csum_root
= csum_root
;
1626 fs_info
->chunk_root
= chunk_root
;
1627 fs_info
->dev_root
= dev_root
;
1628 fs_info
->fs_devices
= fs_devices
;
1629 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
1630 INIT_LIST_HEAD(&fs_info
->space_info
);
1631 btrfs_mapping_init(&fs_info
->mapping_tree
);
1632 btrfs_init_block_rsv(&fs_info
->global_block_rsv
);
1633 btrfs_init_block_rsv(&fs_info
->delalloc_block_rsv
);
1634 btrfs_init_block_rsv(&fs_info
->trans_block_rsv
);
1635 btrfs_init_block_rsv(&fs_info
->chunk_block_rsv
);
1636 btrfs_init_block_rsv(&fs_info
->empty_block_rsv
);
1637 INIT_LIST_HEAD(&fs_info
->durable_block_rsv_list
);
1638 mutex_init(&fs_info
->durable_block_rsv_mutex
);
1639 atomic_set(&fs_info
->nr_async_submits
, 0);
1640 atomic_set(&fs_info
->async_delalloc_pages
, 0);
1641 atomic_set(&fs_info
->async_submit_draining
, 0);
1642 atomic_set(&fs_info
->nr_async_bios
, 0);
1643 atomic_set(&fs_info
->defrag_running
, 0);
1645 fs_info
->max_inline
= 8192 * 1024;
1646 fs_info
->metadata_ratio
= 0;
1647 fs_info
->defrag_inodes
= RB_ROOT
;
1648 fs_info
->trans_no_join
= 0;
1650 fs_info
->thread_pool_size
= min_t(unsigned long,
1651 num_online_cpus() + 2, 8);
1653 INIT_LIST_HEAD(&fs_info
->ordered_extents
);
1654 spin_lock_init(&fs_info
->ordered_extent_lock
);
1655 fs_info
->delayed_root
= kmalloc(sizeof(struct btrfs_delayed_root
),
1657 if (!fs_info
->delayed_root
) {
1661 btrfs_init_delayed_root(fs_info
->delayed_root
);
1663 mutex_init(&fs_info
->scrub_lock
);
1664 atomic_set(&fs_info
->scrubs_running
, 0);
1665 atomic_set(&fs_info
->scrub_pause_req
, 0);
1666 atomic_set(&fs_info
->scrubs_paused
, 0);
1667 atomic_set(&fs_info
->scrub_cancel_req
, 0);
1668 init_waitqueue_head(&fs_info
->scrub_pause_wait
);
1669 init_rwsem(&fs_info
->scrub_super_lock
);
1670 fs_info
->scrub_workers_refcnt
= 0;
1672 sb
->s_blocksize
= 4096;
1673 sb
->s_blocksize_bits
= blksize_bits(4096);
1674 sb
->s_bdi
= &fs_info
->bdi
;
1676 fs_info
->btree_inode
->i_ino
= BTRFS_BTREE_INODE_OBJECTID
;
1677 fs_info
->btree_inode
->i_nlink
= 1;
1679 * we set the i_size on the btree inode to the max possible int.
1680 * the real end of the address space is determined by all of
1681 * the devices in the system
1683 fs_info
->btree_inode
->i_size
= OFFSET_MAX
;
1684 fs_info
->btree_inode
->i_mapping
->a_ops
= &btree_aops
;
1685 fs_info
->btree_inode
->i_mapping
->backing_dev_info
= &fs_info
->bdi
;
1687 RB_CLEAR_NODE(&BTRFS_I(fs_info
->btree_inode
)->rb_node
);
1688 extent_io_tree_init(&BTRFS_I(fs_info
->btree_inode
)->io_tree
,
1689 fs_info
->btree_inode
->i_mapping
);
1690 extent_map_tree_init(&BTRFS_I(fs_info
->btree_inode
)->extent_tree
);
1692 BTRFS_I(fs_info
->btree_inode
)->io_tree
.ops
= &btree_extent_io_ops
;
1694 BTRFS_I(fs_info
->btree_inode
)->root
= tree_root
;
1695 memset(&BTRFS_I(fs_info
->btree_inode
)->location
, 0,
1696 sizeof(struct btrfs_key
));
1697 BTRFS_I(fs_info
->btree_inode
)->dummy_inode
= 1;
1698 insert_inode_hash(fs_info
->btree_inode
);
1700 spin_lock_init(&fs_info
->block_group_cache_lock
);
1701 fs_info
->block_group_cache_tree
= RB_ROOT
;
1703 extent_io_tree_init(&fs_info
->freed_extents
[0],
1704 fs_info
->btree_inode
->i_mapping
);
1705 extent_io_tree_init(&fs_info
->freed_extents
[1],
1706 fs_info
->btree_inode
->i_mapping
);
1707 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
1708 fs_info
->do_barriers
= 1;
1711 mutex_init(&fs_info
->ordered_operations_mutex
);
1712 mutex_init(&fs_info
->tree_log_mutex
);
1713 mutex_init(&fs_info
->chunk_mutex
);
1714 mutex_init(&fs_info
->transaction_kthread_mutex
);
1715 mutex_init(&fs_info
->cleaner_mutex
);
1716 mutex_init(&fs_info
->volume_mutex
);
1717 init_rwsem(&fs_info
->extent_commit_sem
);
1718 init_rwsem(&fs_info
->cleanup_work_sem
);
1719 init_rwsem(&fs_info
->subvol_sem
);
1721 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
1722 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
1724 init_waitqueue_head(&fs_info
->transaction_throttle
);
1725 init_waitqueue_head(&fs_info
->transaction_wait
);
1726 init_waitqueue_head(&fs_info
->transaction_blocked_wait
);
1727 init_waitqueue_head(&fs_info
->async_submit_wait
);
1729 __setup_root(4096, 4096, 4096, 4096, tree_root
,
1730 fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
1732 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
1738 memcpy(&fs_info
->super_copy
, bh
->b_data
, sizeof(fs_info
->super_copy
));
1739 memcpy(&fs_info
->super_for_commit
, &fs_info
->super_copy
,
1740 sizeof(fs_info
->super_for_commit
));
1743 memcpy(fs_info
->fsid
, fs_info
->super_copy
.fsid
, BTRFS_FSID_SIZE
);
1745 disk_super
= &fs_info
->super_copy
;
1746 if (!btrfs_super_root(disk_super
))
1749 /* check FS state, whether FS is broken. */
1750 fs_info
->fs_state
|= btrfs_super_flags(disk_super
);
1752 btrfs_check_super_valid(fs_info
, sb
->s_flags
& MS_RDONLY
);
1755 * In the long term, we'll store the compression type in the super
1756 * block, and it'll be used for per file compression control.
1758 fs_info
->compress_type
= BTRFS_COMPRESS_ZLIB
;
1760 ret
= btrfs_parse_options(tree_root
, options
);
1766 features
= btrfs_super_incompat_flags(disk_super
) &
1767 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
1769 printk(KERN_ERR
"BTRFS: couldn't mount because of "
1770 "unsupported optional features (%Lx).\n",
1771 (unsigned long long)features
);
1776 features
= btrfs_super_incompat_flags(disk_super
);
1777 features
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
1778 if (tree_root
->fs_info
->compress_type
& BTRFS_COMPRESS_LZO
)
1779 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO
;
1780 btrfs_set_super_incompat_flags(disk_super
, features
);
1782 features
= btrfs_super_compat_ro_flags(disk_super
) &
1783 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
1784 if (!(sb
->s_flags
& MS_RDONLY
) && features
) {
1785 printk(KERN_ERR
"BTRFS: couldn't mount RDWR because of "
1786 "unsupported option features (%Lx).\n",
1787 (unsigned long long)features
);
1792 btrfs_init_workers(&fs_info
->generic_worker
,
1793 "genwork", 1, NULL
);
1795 btrfs_init_workers(&fs_info
->workers
, "worker",
1796 fs_info
->thread_pool_size
,
1797 &fs_info
->generic_worker
);
1799 btrfs_init_workers(&fs_info
->delalloc_workers
, "delalloc",
1800 fs_info
->thread_pool_size
,
1801 &fs_info
->generic_worker
);
1803 btrfs_init_workers(&fs_info
->submit_workers
, "submit",
1804 min_t(u64
, fs_devices
->num_devices
,
1805 fs_info
->thread_pool_size
),
1806 &fs_info
->generic_worker
);
1808 /* a higher idle thresh on the submit workers makes it much more
1809 * likely that bios will be send down in a sane order to the
1812 fs_info
->submit_workers
.idle_thresh
= 64;
1814 fs_info
->workers
.idle_thresh
= 16;
1815 fs_info
->workers
.ordered
= 1;
1817 fs_info
->delalloc_workers
.idle_thresh
= 2;
1818 fs_info
->delalloc_workers
.ordered
= 1;
1820 btrfs_init_workers(&fs_info
->fixup_workers
, "fixup", 1,
1821 &fs_info
->generic_worker
);
1822 btrfs_init_workers(&fs_info
->endio_workers
, "endio",
1823 fs_info
->thread_pool_size
,
1824 &fs_info
->generic_worker
);
1825 btrfs_init_workers(&fs_info
->endio_meta_workers
, "endio-meta",
1826 fs_info
->thread_pool_size
,
1827 &fs_info
->generic_worker
);
1828 btrfs_init_workers(&fs_info
->endio_meta_write_workers
,
1829 "endio-meta-write", fs_info
->thread_pool_size
,
1830 &fs_info
->generic_worker
);
1831 btrfs_init_workers(&fs_info
->endio_write_workers
, "endio-write",
1832 fs_info
->thread_pool_size
,
1833 &fs_info
->generic_worker
);
1834 btrfs_init_workers(&fs_info
->endio_freespace_worker
, "freespace-write",
1835 1, &fs_info
->generic_worker
);
1836 btrfs_init_workers(&fs_info
->delayed_workers
, "delayed-meta",
1837 fs_info
->thread_pool_size
,
1838 &fs_info
->generic_worker
);
1841 * endios are largely parallel and should have a very
1844 fs_info
->endio_workers
.idle_thresh
= 4;
1845 fs_info
->endio_meta_workers
.idle_thresh
= 4;
1847 fs_info
->endio_write_workers
.idle_thresh
= 2;
1848 fs_info
->endio_meta_write_workers
.idle_thresh
= 2;
1850 btrfs_start_workers(&fs_info
->workers
, 1);
1851 btrfs_start_workers(&fs_info
->generic_worker
, 1);
1852 btrfs_start_workers(&fs_info
->submit_workers
, 1);
1853 btrfs_start_workers(&fs_info
->delalloc_workers
, 1);
1854 btrfs_start_workers(&fs_info
->fixup_workers
, 1);
1855 btrfs_start_workers(&fs_info
->endio_workers
, 1);
1856 btrfs_start_workers(&fs_info
->endio_meta_workers
, 1);
1857 btrfs_start_workers(&fs_info
->endio_meta_write_workers
, 1);
1858 btrfs_start_workers(&fs_info
->endio_write_workers
, 1);
1859 btrfs_start_workers(&fs_info
->endio_freespace_worker
, 1);
1860 btrfs_start_workers(&fs_info
->delayed_workers
, 1);
1862 fs_info
->bdi
.ra_pages
*= btrfs_super_num_devices(disk_super
);
1863 fs_info
->bdi
.ra_pages
= max(fs_info
->bdi
.ra_pages
,
1864 4 * 1024 * 1024 / PAGE_CACHE_SIZE
);
1866 nodesize
= btrfs_super_nodesize(disk_super
);
1867 leafsize
= btrfs_super_leafsize(disk_super
);
1868 sectorsize
= btrfs_super_sectorsize(disk_super
);
1869 stripesize
= btrfs_super_stripesize(disk_super
);
1870 tree_root
->nodesize
= nodesize
;
1871 tree_root
->leafsize
= leafsize
;
1872 tree_root
->sectorsize
= sectorsize
;
1873 tree_root
->stripesize
= stripesize
;
1875 sb
->s_blocksize
= sectorsize
;
1876 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
1878 if (strncmp((char *)(&disk_super
->magic
), BTRFS_MAGIC
,
1879 sizeof(disk_super
->magic
))) {
1880 printk(KERN_INFO
"btrfs: valid FS not found on %s\n", sb
->s_id
);
1881 goto fail_sb_buffer
;
1884 mutex_lock(&fs_info
->chunk_mutex
);
1885 ret
= btrfs_read_sys_array(tree_root
);
1886 mutex_unlock(&fs_info
->chunk_mutex
);
1888 printk(KERN_WARNING
"btrfs: failed to read the system "
1889 "array on %s\n", sb
->s_id
);
1890 goto fail_sb_buffer
;
1893 blocksize
= btrfs_level_size(tree_root
,
1894 btrfs_super_chunk_root_level(disk_super
));
1895 generation
= btrfs_super_chunk_root_generation(disk_super
);
1897 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
1898 chunk_root
, fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
1900 chunk_root
->node
= read_tree_block(chunk_root
,
1901 btrfs_super_chunk_root(disk_super
),
1902 blocksize
, generation
);
1903 BUG_ON(!chunk_root
->node
);
1904 if (!test_bit(EXTENT_BUFFER_UPTODATE
, &chunk_root
->node
->bflags
)) {
1905 printk(KERN_WARNING
"btrfs: failed to read chunk root on %s\n",
1907 goto fail_chunk_root
;
1909 btrfs_set_root_node(&chunk_root
->root_item
, chunk_root
->node
);
1910 chunk_root
->commit_root
= btrfs_root_node(chunk_root
);
1912 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
1913 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root
->node
),
1916 mutex_lock(&fs_info
->chunk_mutex
);
1917 ret
= btrfs_read_chunk_tree(chunk_root
);
1918 mutex_unlock(&fs_info
->chunk_mutex
);
1920 printk(KERN_WARNING
"btrfs: failed to read chunk tree on %s\n",
1922 goto fail_chunk_root
;
1925 btrfs_close_extra_devices(fs_devices
);
1927 blocksize
= btrfs_level_size(tree_root
,
1928 btrfs_super_root_level(disk_super
));
1929 generation
= btrfs_super_generation(disk_super
);
1931 tree_root
->node
= read_tree_block(tree_root
,
1932 btrfs_super_root(disk_super
),
1933 blocksize
, generation
);
1934 if (!tree_root
->node
)
1935 goto fail_chunk_root
;
1936 if (!test_bit(EXTENT_BUFFER_UPTODATE
, &tree_root
->node
->bflags
)) {
1937 printk(KERN_WARNING
"btrfs: failed to read tree root on %s\n",
1939 goto fail_tree_root
;
1941 btrfs_set_root_node(&tree_root
->root_item
, tree_root
->node
);
1942 tree_root
->commit_root
= btrfs_root_node(tree_root
);
1944 ret
= find_and_setup_root(tree_root
, fs_info
,
1945 BTRFS_EXTENT_TREE_OBJECTID
, extent_root
);
1947 goto fail_tree_root
;
1948 extent_root
->track_dirty
= 1;
1950 ret
= find_and_setup_root(tree_root
, fs_info
,
1951 BTRFS_DEV_TREE_OBJECTID
, dev_root
);
1953 goto fail_extent_root
;
1954 dev_root
->track_dirty
= 1;
1956 ret
= find_and_setup_root(tree_root
, fs_info
,
1957 BTRFS_CSUM_TREE_OBJECTID
, csum_root
);
1961 csum_root
->track_dirty
= 1;
1963 fs_info
->generation
= generation
;
1964 fs_info
->last_trans_committed
= generation
;
1965 fs_info
->data_alloc_profile
= (u64
)-1;
1966 fs_info
->metadata_alloc_profile
= (u64
)-1;
1967 fs_info
->system_alloc_profile
= fs_info
->metadata_alloc_profile
;
1969 ret
= btrfs_init_space_info(fs_info
);
1971 printk(KERN_ERR
"Failed to initial space info: %d\n", ret
);
1972 goto fail_block_groups
;
1975 ret
= btrfs_read_block_groups(extent_root
);
1977 printk(KERN_ERR
"Failed to read block groups: %d\n", ret
);
1978 goto fail_block_groups
;
1981 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
1983 if (IS_ERR(fs_info
->cleaner_kthread
))
1984 goto fail_block_groups
;
1986 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
1988 "btrfs-transaction");
1989 if (IS_ERR(fs_info
->transaction_kthread
))
1992 if (!btrfs_test_opt(tree_root
, SSD
) &&
1993 !btrfs_test_opt(tree_root
, NOSSD
) &&
1994 !fs_info
->fs_devices
->rotating
) {
1995 printk(KERN_INFO
"Btrfs detected SSD devices, enabling SSD "
1997 btrfs_set_opt(fs_info
->mount_opt
, SSD
);
2000 /* do not make disk changes in broken FS */
2001 if (btrfs_super_log_root(disk_super
) != 0 &&
2002 !(fs_info
->fs_state
& BTRFS_SUPER_FLAG_ERROR
)) {
2003 u64 bytenr
= btrfs_super_log_root(disk_super
);
2005 if (fs_devices
->rw_devices
== 0) {
2006 printk(KERN_WARNING
"Btrfs log replay required "
2009 goto fail_trans_kthread
;
2012 btrfs_level_size(tree_root
,
2013 btrfs_super_log_root_level(disk_super
));
2015 log_tree_root
= kzalloc(sizeof(struct btrfs_root
), GFP_NOFS
);
2016 if (!log_tree_root
) {
2018 goto fail_trans_kthread
;
2021 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
2022 log_tree_root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
2024 log_tree_root
->node
= read_tree_block(tree_root
, bytenr
,
2027 ret
= btrfs_recover_log_trees(log_tree_root
);
2030 if (sb
->s_flags
& MS_RDONLY
) {
2031 ret
= btrfs_commit_super(tree_root
);
2036 ret
= btrfs_find_orphan_roots(tree_root
);
2039 if (!(sb
->s_flags
& MS_RDONLY
)) {
2040 ret
= btrfs_cleanup_fs_roots(fs_info
);
2043 ret
= btrfs_recover_relocation(tree_root
);
2046 "btrfs: failed to recover relocation\n");
2048 goto fail_trans_kthread
;
2052 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
2053 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2054 location
.offset
= (u64
)-1;
2056 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
2057 if (!fs_info
->fs_root
)
2058 goto fail_trans_kthread
;
2059 if (IS_ERR(fs_info
->fs_root
)) {
2060 err
= PTR_ERR(fs_info
->fs_root
);
2061 goto fail_trans_kthread
;
2064 if (!(sb
->s_flags
& MS_RDONLY
)) {
2065 down_read(&fs_info
->cleanup_work_sem
);
2066 err
= btrfs_orphan_cleanup(fs_info
->fs_root
);
2068 err
= btrfs_orphan_cleanup(fs_info
->tree_root
);
2069 up_read(&fs_info
->cleanup_work_sem
);
2071 close_ctree(tree_root
);
2072 return ERR_PTR(err
);
2079 kthread_stop(fs_info
->transaction_kthread
);
2081 kthread_stop(fs_info
->cleaner_kthread
);
2084 * make sure we're done with the btree inode before we stop our
2087 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
2088 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
2091 btrfs_free_block_groups(fs_info
);
2092 free_extent_buffer(csum_root
->node
);
2093 free_extent_buffer(csum_root
->commit_root
);
2095 free_extent_buffer(dev_root
->node
);
2096 free_extent_buffer(dev_root
->commit_root
);
2098 free_extent_buffer(extent_root
->node
);
2099 free_extent_buffer(extent_root
->commit_root
);
2101 free_extent_buffer(tree_root
->node
);
2102 free_extent_buffer(tree_root
->commit_root
);
2104 free_extent_buffer(chunk_root
->node
);
2105 free_extent_buffer(chunk_root
->commit_root
);
2107 btrfs_stop_workers(&fs_info
->generic_worker
);
2108 btrfs_stop_workers(&fs_info
->fixup_workers
);
2109 btrfs_stop_workers(&fs_info
->delalloc_workers
);
2110 btrfs_stop_workers(&fs_info
->workers
);
2111 btrfs_stop_workers(&fs_info
->endio_workers
);
2112 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
2113 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
2114 btrfs_stop_workers(&fs_info
->endio_write_workers
);
2115 btrfs_stop_workers(&fs_info
->endio_freespace_worker
);
2116 btrfs_stop_workers(&fs_info
->submit_workers
);
2117 btrfs_stop_workers(&fs_info
->delayed_workers
);
2119 kfree(fs_info
->delayed_root
);
2121 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
2122 iput(fs_info
->btree_inode
);
2124 btrfs_close_devices(fs_info
->fs_devices
);
2125 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2127 bdi_destroy(&fs_info
->bdi
);
2129 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
2137 return ERR_PTR(err
);
2140 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
2142 char b
[BDEVNAME_SIZE
];
2145 set_buffer_uptodate(bh
);
2147 printk_ratelimited(KERN_WARNING
"lost page write due to "
2148 "I/O error on %s\n",
2149 bdevname(bh
->b_bdev
, b
));
2150 /* note, we dont' set_buffer_write_io_error because we have
2151 * our own ways of dealing with the IO errors
2153 clear_buffer_uptodate(bh
);
2159 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
2161 struct buffer_head
*bh
;
2162 struct buffer_head
*latest
= NULL
;
2163 struct btrfs_super_block
*super
;
2168 /* we would like to check all the supers, but that would make
2169 * a btrfs mount succeed after a mkfs from a different FS.
2170 * So, we need to add a special mount option to scan for
2171 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2173 for (i
= 0; i
< 1; i
++) {
2174 bytenr
= btrfs_sb_offset(i
);
2175 if (bytenr
+ 4096 >= i_size_read(bdev
->bd_inode
))
2177 bh
= __bread(bdev
, bytenr
/ 4096, 4096);
2181 super
= (struct btrfs_super_block
*)bh
->b_data
;
2182 if (btrfs_super_bytenr(super
) != bytenr
||
2183 strncmp((char *)(&super
->magic
), BTRFS_MAGIC
,
2184 sizeof(super
->magic
))) {
2189 if (!latest
|| btrfs_super_generation(super
) > transid
) {
2192 transid
= btrfs_super_generation(super
);
2201 * this should be called twice, once with wait == 0 and
2202 * once with wait == 1. When wait == 0 is done, all the buffer heads
2203 * we write are pinned.
2205 * They are released when wait == 1 is done.
2206 * max_mirrors must be the same for both runs, and it indicates how
2207 * many supers on this one device should be written.
2209 * max_mirrors == 0 means to write them all.
2211 static int write_dev_supers(struct btrfs_device
*device
,
2212 struct btrfs_super_block
*sb
,
2213 int do_barriers
, int wait
, int max_mirrors
)
2215 struct buffer_head
*bh
;
2221 int last_barrier
= 0;
2223 if (max_mirrors
== 0)
2224 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
2226 /* make sure only the last submit_bh does a barrier */
2228 for (i
= 0; i
< max_mirrors
; i
++) {
2229 bytenr
= btrfs_sb_offset(i
);
2230 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
2231 device
->total_bytes
)
2237 for (i
= 0; i
< max_mirrors
; i
++) {
2238 bytenr
= btrfs_sb_offset(i
);
2239 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= device
->total_bytes
)
2243 bh
= __find_get_block(device
->bdev
, bytenr
/ 4096,
2244 BTRFS_SUPER_INFO_SIZE
);
2247 if (!buffer_uptodate(bh
))
2250 /* drop our reference */
2253 /* drop the reference from the wait == 0 run */
2257 btrfs_set_super_bytenr(sb
, bytenr
);
2260 crc
= btrfs_csum_data(NULL
, (char *)sb
+
2261 BTRFS_CSUM_SIZE
, crc
,
2262 BTRFS_SUPER_INFO_SIZE
-
2264 btrfs_csum_final(crc
, sb
->csum
);
2267 * one reference for us, and we leave it for the
2270 bh
= __getblk(device
->bdev
, bytenr
/ 4096,
2271 BTRFS_SUPER_INFO_SIZE
);
2272 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
2274 /* one reference for submit_bh */
2277 set_buffer_uptodate(bh
);
2279 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
2282 if (i
== last_barrier
&& do_barriers
)
2283 ret
= submit_bh(WRITE_FLUSH_FUA
, bh
);
2285 ret
= submit_bh(WRITE_SYNC
, bh
);
2290 return errors
< i
? 0 : -1;
2293 int write_all_supers(struct btrfs_root
*root
, int max_mirrors
)
2295 struct list_head
*head
;
2296 struct btrfs_device
*dev
;
2297 struct btrfs_super_block
*sb
;
2298 struct btrfs_dev_item
*dev_item
;
2302 int total_errors
= 0;
2305 max_errors
= btrfs_super_num_devices(&root
->fs_info
->super_copy
) - 1;
2306 do_barriers
= !btrfs_test_opt(root
, NOBARRIER
);
2308 sb
= &root
->fs_info
->super_for_commit
;
2309 dev_item
= &sb
->dev_item
;
2311 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2312 head
= &root
->fs_info
->fs_devices
->devices
;
2313 list_for_each_entry_rcu(dev
, head
, dev_list
) {
2318 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2321 btrfs_set_stack_device_generation(dev_item
, 0);
2322 btrfs_set_stack_device_type(dev_item
, dev
->type
);
2323 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
2324 btrfs_set_stack_device_total_bytes(dev_item
, dev
->total_bytes
);
2325 btrfs_set_stack_device_bytes_used(dev_item
, dev
->bytes_used
);
2326 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
2327 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
2328 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
2329 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
2330 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_UUID_SIZE
);
2332 flags
= btrfs_super_flags(sb
);
2333 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
2335 ret
= write_dev_supers(dev
, sb
, do_barriers
, 0, max_mirrors
);
2339 if (total_errors
> max_errors
) {
2340 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2346 list_for_each_entry_rcu(dev
, head
, dev_list
) {
2349 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2352 ret
= write_dev_supers(dev
, sb
, do_barriers
, 1, max_mirrors
);
2356 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2357 if (total_errors
> max_errors
) {
2358 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2365 int write_ctree_super(struct btrfs_trans_handle
*trans
,
2366 struct btrfs_root
*root
, int max_mirrors
)
2370 ret
= write_all_supers(root
, max_mirrors
);
2374 int btrfs_free_fs_root(struct btrfs_fs_info
*fs_info
, struct btrfs_root
*root
)
2376 spin_lock(&fs_info
->fs_roots_radix_lock
);
2377 radix_tree_delete(&fs_info
->fs_roots_radix
,
2378 (unsigned long)root
->root_key
.objectid
);
2379 spin_unlock(&fs_info
->fs_roots_radix_lock
);
2381 if (btrfs_root_refs(&root
->root_item
) == 0)
2382 synchronize_srcu(&fs_info
->subvol_srcu
);
2384 __btrfs_remove_free_space_cache(root
->free_ino_pinned
);
2385 __btrfs_remove_free_space_cache(root
->free_ino_ctl
);
2390 static void free_fs_root(struct btrfs_root
*root
)
2392 iput(root
->cache_inode
);
2393 WARN_ON(!RB_EMPTY_ROOT(&root
->inode_tree
));
2394 if (root
->anon_super
.s_dev
) {
2395 down_write(&root
->anon_super
.s_umount
);
2396 kill_anon_super(&root
->anon_super
);
2398 free_extent_buffer(root
->node
);
2399 free_extent_buffer(root
->commit_root
);
2400 kfree(root
->free_ino_ctl
);
2401 kfree(root
->free_ino_pinned
);
2406 static int del_fs_roots(struct btrfs_fs_info
*fs_info
)
2409 struct btrfs_root
*gang
[8];
2412 while (!list_empty(&fs_info
->dead_roots
)) {
2413 gang
[0] = list_entry(fs_info
->dead_roots
.next
,
2414 struct btrfs_root
, root_list
);
2415 list_del(&gang
[0]->root_list
);
2417 if (gang
[0]->in_radix
) {
2418 btrfs_free_fs_root(fs_info
, gang
[0]);
2420 free_extent_buffer(gang
[0]->node
);
2421 free_extent_buffer(gang
[0]->commit_root
);
2427 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2432 for (i
= 0; i
< ret
; i
++)
2433 btrfs_free_fs_root(fs_info
, gang
[i
]);
2438 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
2440 u64 root_objectid
= 0;
2441 struct btrfs_root
*gang
[8];
2446 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2447 (void **)gang
, root_objectid
,
2452 root_objectid
= gang
[ret
- 1]->root_key
.objectid
+ 1;
2453 for (i
= 0; i
< ret
; i
++) {
2456 root_objectid
= gang
[i
]->root_key
.objectid
;
2457 err
= btrfs_orphan_cleanup(gang
[i
]);
2466 int btrfs_commit_super(struct btrfs_root
*root
)
2468 struct btrfs_trans_handle
*trans
;
2471 mutex_lock(&root
->fs_info
->cleaner_mutex
);
2472 btrfs_run_delayed_iputs(root
);
2473 btrfs_clean_old_snapshots(root
);
2474 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
2476 /* wait until ongoing cleanup work done */
2477 down_write(&root
->fs_info
->cleanup_work_sem
);
2478 up_write(&root
->fs_info
->cleanup_work_sem
);
2480 trans
= btrfs_join_transaction(root
);
2482 return PTR_ERR(trans
);
2483 ret
= btrfs_commit_transaction(trans
, root
);
2485 /* run commit again to drop the original snapshot */
2486 trans
= btrfs_join_transaction(root
);
2488 return PTR_ERR(trans
);
2489 btrfs_commit_transaction(trans
, root
);
2490 ret
= btrfs_write_and_wait_transaction(NULL
, root
);
2493 ret
= write_ctree_super(NULL
, root
, 0);
2497 int close_ctree(struct btrfs_root
*root
)
2499 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2502 fs_info
->closing
= 1;
2505 btrfs_scrub_cancel(root
);
2507 /* wait for any defraggers to finish */
2508 wait_event(fs_info
->transaction_wait
,
2509 (atomic_read(&fs_info
->defrag_running
) == 0));
2511 /* clear out the rbtree of defraggable inodes */
2512 btrfs_run_defrag_inodes(root
->fs_info
);
2514 btrfs_put_block_group_cache(fs_info
);
2517 * Here come 2 situations when btrfs is broken to flip readonly:
2519 * 1. when btrfs flips readonly somewhere else before
2520 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
2521 * and btrfs will skip to write sb directly to keep
2522 * ERROR state on disk.
2524 * 2. when btrfs flips readonly just in btrfs_commit_super,
2525 * and in such case, btrfs cannot write sb via btrfs_commit_super,
2526 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
2527 * btrfs will cleanup all FS resources first and write sb then.
2529 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
2530 ret
= btrfs_commit_super(root
);
2532 printk(KERN_ERR
"btrfs: commit super ret %d\n", ret
);
2535 if (fs_info
->fs_state
& BTRFS_SUPER_FLAG_ERROR
) {
2536 ret
= btrfs_error_commit_super(root
);
2538 printk(KERN_ERR
"btrfs: commit super ret %d\n", ret
);
2541 kthread_stop(root
->fs_info
->transaction_kthread
);
2542 kthread_stop(root
->fs_info
->cleaner_kthread
);
2544 fs_info
->closing
= 2;
2547 if (fs_info
->delalloc_bytes
) {
2548 printk(KERN_INFO
"btrfs: at unmount delalloc count %llu\n",
2549 (unsigned long long)fs_info
->delalloc_bytes
);
2551 if (fs_info
->total_ref_cache_size
) {
2552 printk(KERN_INFO
"btrfs: at umount reference cache size %llu\n",
2553 (unsigned long long)fs_info
->total_ref_cache_size
);
2556 free_extent_buffer(fs_info
->extent_root
->node
);
2557 free_extent_buffer(fs_info
->extent_root
->commit_root
);
2558 free_extent_buffer(fs_info
->tree_root
->node
);
2559 free_extent_buffer(fs_info
->tree_root
->commit_root
);
2560 free_extent_buffer(root
->fs_info
->chunk_root
->node
);
2561 free_extent_buffer(root
->fs_info
->chunk_root
->commit_root
);
2562 free_extent_buffer(root
->fs_info
->dev_root
->node
);
2563 free_extent_buffer(root
->fs_info
->dev_root
->commit_root
);
2564 free_extent_buffer(root
->fs_info
->csum_root
->node
);
2565 free_extent_buffer(root
->fs_info
->csum_root
->commit_root
);
2567 btrfs_free_block_groups(root
->fs_info
);
2569 del_fs_roots(fs_info
);
2571 iput(fs_info
->btree_inode
);
2572 kfree(fs_info
->delayed_root
);
2574 btrfs_stop_workers(&fs_info
->generic_worker
);
2575 btrfs_stop_workers(&fs_info
->fixup_workers
);
2576 btrfs_stop_workers(&fs_info
->delalloc_workers
);
2577 btrfs_stop_workers(&fs_info
->workers
);
2578 btrfs_stop_workers(&fs_info
->endio_workers
);
2579 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
2580 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
2581 btrfs_stop_workers(&fs_info
->endio_write_workers
);
2582 btrfs_stop_workers(&fs_info
->endio_freespace_worker
);
2583 btrfs_stop_workers(&fs_info
->submit_workers
);
2584 btrfs_stop_workers(&fs_info
->delayed_workers
);
2586 btrfs_close_devices(fs_info
->fs_devices
);
2587 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2589 bdi_destroy(&fs_info
->bdi
);
2590 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
2592 kfree(fs_info
->extent_root
);
2593 kfree(fs_info
->tree_root
);
2594 kfree(fs_info
->chunk_root
);
2595 kfree(fs_info
->dev_root
);
2596 kfree(fs_info
->csum_root
);
2602 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
)
2605 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
2607 ret
= extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
, buf
,
2612 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
2617 int btrfs_set_buffer_uptodate(struct extent_buffer
*buf
)
2619 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
2620 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
,
2624 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
2626 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
2627 u64 transid
= btrfs_header_generation(buf
);
2628 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
2631 btrfs_assert_tree_locked(buf
);
2632 if (transid
!= root
->fs_info
->generation
) {
2633 printk(KERN_CRIT
"btrfs transid mismatch buffer %llu, "
2634 "found %llu running %llu\n",
2635 (unsigned long long)buf
->start
,
2636 (unsigned long long)transid
,
2637 (unsigned long long)root
->fs_info
->generation
);
2640 was_dirty
= set_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
2643 spin_lock(&root
->fs_info
->delalloc_lock
);
2644 root
->fs_info
->dirty_metadata_bytes
+= buf
->len
;
2645 spin_unlock(&root
->fs_info
->delalloc_lock
);
2649 void btrfs_btree_balance_dirty(struct btrfs_root
*root
, unsigned long nr
)
2652 * looks as though older kernels can get into trouble with
2653 * this code, they end up stuck in balance_dirty_pages forever
2656 unsigned long thresh
= 32 * 1024 * 1024;
2658 if (current
->flags
& PF_MEMALLOC
)
2661 btrfs_balance_delayed_items(root
);
2663 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
2665 if (num_dirty
> thresh
) {
2666 balance_dirty_pages_ratelimited_nr(
2667 root
->fs_info
->btree_inode
->i_mapping
, 1);
2672 void __btrfs_btree_balance_dirty(struct btrfs_root
*root
, unsigned long nr
)
2675 * looks as though older kernels can get into trouble with
2676 * this code, they end up stuck in balance_dirty_pages forever
2679 unsigned long thresh
= 32 * 1024 * 1024;
2681 if (current
->flags
& PF_MEMALLOC
)
2684 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
2686 if (num_dirty
> thresh
) {
2687 balance_dirty_pages_ratelimited_nr(
2688 root
->fs_info
->btree_inode
->i_mapping
, 1);
2693 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
)
2695 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
2697 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
2699 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
2703 int btree_lock_page_hook(struct page
*page
)
2705 struct inode
*inode
= page
->mapping
->host
;
2706 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2707 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2708 struct extent_buffer
*eb
;
2710 u64 bytenr
= page_offset(page
);
2712 if (page
->private == EXTENT_PAGE_PRIVATE
)
2715 len
= page
->private >> 2;
2716 eb
= find_extent_buffer(io_tree
, bytenr
, len
);
2720 btrfs_tree_lock(eb
);
2721 btrfs_set_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
);
2723 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
)) {
2724 spin_lock(&root
->fs_info
->delalloc_lock
);
2725 if (root
->fs_info
->dirty_metadata_bytes
>= eb
->len
)
2726 root
->fs_info
->dirty_metadata_bytes
-= eb
->len
;
2729 spin_unlock(&root
->fs_info
->delalloc_lock
);
2732 btrfs_tree_unlock(eb
);
2733 free_extent_buffer(eb
);
2739 static void btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
2745 if (fs_info
->fs_state
& BTRFS_SUPER_FLAG_ERROR
)
2746 printk(KERN_WARNING
"warning: mount fs with errors, "
2747 "running btrfsck is recommended\n");
2750 int btrfs_error_commit_super(struct btrfs_root
*root
)
2754 mutex_lock(&root
->fs_info
->cleaner_mutex
);
2755 btrfs_run_delayed_iputs(root
);
2756 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
2758 down_write(&root
->fs_info
->cleanup_work_sem
);
2759 up_write(&root
->fs_info
->cleanup_work_sem
);
2761 /* cleanup FS via transaction */
2762 btrfs_cleanup_transaction(root
);
2764 ret
= write_ctree_super(NULL
, root
, 0);
2769 static int btrfs_destroy_ordered_operations(struct btrfs_root
*root
)
2771 struct btrfs_inode
*btrfs_inode
;
2772 struct list_head splice
;
2774 INIT_LIST_HEAD(&splice
);
2776 mutex_lock(&root
->fs_info
->ordered_operations_mutex
);
2777 spin_lock(&root
->fs_info
->ordered_extent_lock
);
2779 list_splice_init(&root
->fs_info
->ordered_operations
, &splice
);
2780 while (!list_empty(&splice
)) {
2781 btrfs_inode
= list_entry(splice
.next
, struct btrfs_inode
,
2782 ordered_operations
);
2784 list_del_init(&btrfs_inode
->ordered_operations
);
2786 btrfs_invalidate_inodes(btrfs_inode
->root
);
2789 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
2790 mutex_unlock(&root
->fs_info
->ordered_operations_mutex
);
2795 static int btrfs_destroy_ordered_extents(struct btrfs_root
*root
)
2797 struct list_head splice
;
2798 struct btrfs_ordered_extent
*ordered
;
2799 struct inode
*inode
;
2801 INIT_LIST_HEAD(&splice
);
2803 spin_lock(&root
->fs_info
->ordered_extent_lock
);
2805 list_splice_init(&root
->fs_info
->ordered_extents
, &splice
);
2806 while (!list_empty(&splice
)) {
2807 ordered
= list_entry(splice
.next
, struct btrfs_ordered_extent
,
2810 list_del_init(&ordered
->root_extent_list
);
2811 atomic_inc(&ordered
->refs
);
2813 /* the inode may be getting freed (in sys_unlink path). */
2814 inode
= igrab(ordered
->inode
);
2816 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
2820 atomic_set(&ordered
->refs
, 1);
2821 btrfs_put_ordered_extent(ordered
);
2823 spin_lock(&root
->fs_info
->ordered_extent_lock
);
2826 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
2831 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
2832 struct btrfs_root
*root
)
2834 struct rb_node
*node
;
2835 struct btrfs_delayed_ref_root
*delayed_refs
;
2836 struct btrfs_delayed_ref_node
*ref
;
2839 delayed_refs
= &trans
->delayed_refs
;
2841 spin_lock(&delayed_refs
->lock
);
2842 if (delayed_refs
->num_entries
== 0) {
2843 spin_unlock(&delayed_refs
->lock
);
2844 printk(KERN_INFO
"delayed_refs has NO entry\n");
2848 node
= rb_first(&delayed_refs
->root
);
2850 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2851 node
= rb_next(node
);
2854 rb_erase(&ref
->rb_node
, &delayed_refs
->root
);
2855 delayed_refs
->num_entries
--;
2857 atomic_set(&ref
->refs
, 1);
2858 if (btrfs_delayed_ref_is_head(ref
)) {
2859 struct btrfs_delayed_ref_head
*head
;
2861 head
= btrfs_delayed_node_to_head(ref
);
2862 mutex_lock(&head
->mutex
);
2863 kfree(head
->extent_op
);
2864 delayed_refs
->num_heads
--;
2865 if (list_empty(&head
->cluster
))
2866 delayed_refs
->num_heads_ready
--;
2867 list_del_init(&head
->cluster
);
2868 mutex_unlock(&head
->mutex
);
2871 spin_unlock(&delayed_refs
->lock
);
2872 btrfs_put_delayed_ref(ref
);
2875 spin_lock(&delayed_refs
->lock
);
2878 spin_unlock(&delayed_refs
->lock
);
2883 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction
*t
)
2885 struct btrfs_pending_snapshot
*snapshot
;
2886 struct list_head splice
;
2888 INIT_LIST_HEAD(&splice
);
2890 list_splice_init(&t
->pending_snapshots
, &splice
);
2892 while (!list_empty(&splice
)) {
2893 snapshot
= list_entry(splice
.next
,
2894 struct btrfs_pending_snapshot
,
2897 list_del_init(&snapshot
->list
);
2905 static int btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
)
2907 struct btrfs_inode
*btrfs_inode
;
2908 struct list_head splice
;
2910 INIT_LIST_HEAD(&splice
);
2912 spin_lock(&root
->fs_info
->delalloc_lock
);
2913 list_splice_init(&root
->fs_info
->delalloc_inodes
, &splice
);
2915 while (!list_empty(&splice
)) {
2916 btrfs_inode
= list_entry(splice
.next
, struct btrfs_inode
,
2919 list_del_init(&btrfs_inode
->delalloc_inodes
);
2921 btrfs_invalidate_inodes(btrfs_inode
->root
);
2924 spin_unlock(&root
->fs_info
->delalloc_lock
);
2929 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
2930 struct extent_io_tree
*dirty_pages
,
2935 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
2936 struct extent_buffer
*eb
;
2940 unsigned long index
;
2943 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
2948 clear_extent_bits(dirty_pages
, start
, end
, mark
, GFP_NOFS
);
2949 while (start
<= end
) {
2950 index
= start
>> PAGE_CACHE_SHIFT
;
2951 start
= (u64
)(index
+ 1) << PAGE_CACHE_SHIFT
;
2952 page
= find_get_page(btree_inode
->i_mapping
, index
);
2955 offset
= page_offset(page
);
2957 spin_lock(&dirty_pages
->buffer_lock
);
2958 eb
= radix_tree_lookup(
2959 &(&BTRFS_I(page
->mapping
->host
)->io_tree
)->buffer
,
2960 offset
>> PAGE_CACHE_SHIFT
);
2961 spin_unlock(&dirty_pages
->buffer_lock
);
2963 ret
= test_and_clear_bit(EXTENT_BUFFER_DIRTY
,
2965 atomic_set(&eb
->refs
, 1);
2967 if (PageWriteback(page
))
2968 end_page_writeback(page
);
2971 if (PageDirty(page
)) {
2972 clear_page_dirty_for_io(page
);
2973 spin_lock_irq(&page
->mapping
->tree_lock
);
2974 radix_tree_tag_clear(&page
->mapping
->page_tree
,
2976 PAGECACHE_TAG_DIRTY
);
2977 spin_unlock_irq(&page
->mapping
->tree_lock
);
2980 page
->mapping
->a_ops
->invalidatepage(page
, 0);
2988 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
2989 struct extent_io_tree
*pinned_extents
)
2991 struct extent_io_tree
*unpin
;
2996 unpin
= pinned_extents
;
2998 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
3004 if (btrfs_test_opt(root
, DISCARD
))
3005 ret
= btrfs_error_discard_extent(root
, start
,
3009 clear_extent_dirty(unpin
, start
, end
, GFP_NOFS
);
3010 btrfs_error_unpin_extent_range(root
, start
, end
);
3017 static int btrfs_cleanup_transaction(struct btrfs_root
*root
)
3019 struct btrfs_transaction
*t
;
3024 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
3026 spin_lock(&root
->fs_info
->trans_lock
);
3027 list_splice_init(&root
->fs_info
->trans_list
, &list
);
3028 root
->fs_info
->trans_no_join
= 1;
3029 spin_unlock(&root
->fs_info
->trans_lock
);
3031 while (!list_empty(&list
)) {
3032 t
= list_entry(list
.next
, struct btrfs_transaction
, list
);
3036 btrfs_destroy_ordered_operations(root
);
3038 btrfs_destroy_ordered_extents(root
);
3040 btrfs_destroy_delayed_refs(t
, root
);
3042 btrfs_block_rsv_release(root
,
3043 &root
->fs_info
->trans_block_rsv
,
3044 t
->dirty_pages
.dirty_bytes
);
3046 /* FIXME: cleanup wait for commit */
3049 if (waitqueue_active(&root
->fs_info
->transaction_blocked_wait
))
3050 wake_up(&root
->fs_info
->transaction_blocked_wait
);
3053 if (waitqueue_active(&root
->fs_info
->transaction_wait
))
3054 wake_up(&root
->fs_info
->transaction_wait
);
3057 if (waitqueue_active(&t
->commit_wait
))
3058 wake_up(&t
->commit_wait
);
3060 btrfs_destroy_pending_snapshots(t
);
3062 btrfs_destroy_delalloc_inodes(root
);
3064 spin_lock(&root
->fs_info
->trans_lock
);
3065 root
->fs_info
->running_transaction
= NULL
;
3066 spin_unlock(&root
->fs_info
->trans_lock
);
3068 btrfs_destroy_marked_extents(root
, &t
->dirty_pages
,
3071 btrfs_destroy_pinned_extent(root
,
3072 root
->fs_info
->pinned_extents
);
3074 atomic_set(&t
->use_count
, 0);
3075 list_del_init(&t
->list
);
3076 memset(t
, 0, sizeof(*t
));
3077 kmem_cache_free(btrfs_transaction_cachep
, t
);
3080 spin_lock(&root
->fs_info
->trans_lock
);
3081 root
->fs_info
->trans_no_join
= 0;
3082 spin_unlock(&root
->fs_info
->trans_lock
);
3083 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
3088 static struct extent_io_ops btree_extent_io_ops
= {
3089 .write_cache_pages_lock_hook
= btree_lock_page_hook
,
3090 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
3091 .submit_bio_hook
= btree_submit_bio_hook
,
3092 /* note we're sharing with inode.c for the merge bio hook */
3093 .merge_bio_hook
= btrfs_merge_bio_hook
,