4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
65 char core_pattern
[CORENAME_MAX_SIZE
] = "core";
66 unsigned int core_pipe_limit
;
67 int suid_dumpable
= 0;
73 static atomic_t call_count
= ATOMIC_INIT(1);
75 /* The maximal length of core_pattern is also specified in sysctl.c */
77 static LIST_HEAD(formats
);
78 static DEFINE_RWLOCK(binfmt_lock
);
80 int __register_binfmt(struct linux_binfmt
* fmt
, int insert
)
84 write_lock(&binfmt_lock
);
85 insert
? list_add(&fmt
->lh
, &formats
) :
86 list_add_tail(&fmt
->lh
, &formats
);
87 write_unlock(&binfmt_lock
);
91 EXPORT_SYMBOL(__register_binfmt
);
93 void unregister_binfmt(struct linux_binfmt
* fmt
)
95 write_lock(&binfmt_lock
);
97 write_unlock(&binfmt_lock
);
100 EXPORT_SYMBOL(unregister_binfmt
);
102 static inline void put_binfmt(struct linux_binfmt
* fmt
)
104 module_put(fmt
->module
);
108 * Note that a shared library must be both readable and executable due to
111 * Also note that we take the address to load from from the file itself.
113 SYSCALL_DEFINE1(uselib
, const char __user
*, library
)
116 char *tmp
= getname(library
);
117 int error
= PTR_ERR(tmp
);
118 static const struct open_flags uselib_flags
= {
119 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
120 .acc_mode
= MAY_READ
| MAY_EXEC
| MAY_OPEN
,
121 .intent
= LOOKUP_OPEN
127 file
= do_filp_open(AT_FDCWD
, tmp
, &uselib_flags
, LOOKUP_FOLLOW
);
129 error
= PTR_ERR(file
);
134 if (!S_ISREG(file
->f_path
.dentry
->d_inode
->i_mode
))
138 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)
145 struct linux_binfmt
* fmt
;
147 read_lock(&binfmt_lock
);
148 list_for_each_entry(fmt
, &formats
, lh
) {
149 if (!fmt
->load_shlib
)
151 if (!try_module_get(fmt
->module
))
153 read_unlock(&binfmt_lock
);
154 error
= fmt
->load_shlib(file
);
155 read_lock(&binfmt_lock
);
157 if (error
!= -ENOEXEC
)
160 read_unlock(&binfmt_lock
);
170 void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
172 struct mm_struct
*mm
= current
->mm
;
173 long diff
= (long)(pages
- bprm
->vma_pages
);
178 bprm
->vma_pages
= pages
;
180 #ifdef SPLIT_RSS_COUNTING
181 add_mm_counter(mm
, MM_ANONPAGES
, diff
);
183 spin_lock(&mm
->page_table_lock
);
184 add_mm_counter(mm
, MM_ANONPAGES
, diff
);
185 spin_unlock(&mm
->page_table_lock
);
189 struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
195 #ifdef CONFIG_STACK_GROWSUP
197 ret
= expand_stack_downwards(bprm
->vma
, pos
);
202 ret
= get_user_pages(current
, bprm
->mm
, pos
,
203 1, write
, 1, &page
, NULL
);
208 unsigned long size
= bprm
->vma
->vm_end
- bprm
->vma
->vm_start
;
211 acct_arg_size(bprm
, size
/ PAGE_SIZE
);
214 * We've historically supported up to 32 pages (ARG_MAX)
215 * of argument strings even with small stacks
221 * Limit to 1/4-th the stack size for the argv+env strings.
223 * - the remaining binfmt code will not run out of stack space,
224 * - the program will have a reasonable amount of stack left
227 rlim
= current
->signal
->rlim
;
228 if (size
> ACCESS_ONCE(rlim
[RLIMIT_STACK
].rlim_cur
) / 4) {
237 static void put_arg_page(struct page
*page
)
242 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
246 static void free_arg_pages(struct linux_binprm
*bprm
)
250 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
253 flush_cache_page(bprm
->vma
, pos
, page_to_pfn(page
));
256 static int __bprm_mm_init(struct linux_binprm
*bprm
)
259 struct vm_area_struct
*vma
= NULL
;
260 struct mm_struct
*mm
= bprm
->mm
;
262 bprm
->vma
= vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
266 down_write(&mm
->mmap_sem
);
270 * Place the stack at the largest stack address the architecture
271 * supports. Later, we'll move this to an appropriate place. We don't
272 * use STACK_TOP because that can depend on attributes which aren't
275 BUG_ON(VM_STACK_FLAGS
& VM_STACK_INCOMPLETE_SETUP
);
276 vma
->vm_end
= STACK_TOP_MAX
;
277 vma
->vm_start
= vma
->vm_end
- PAGE_SIZE
;
278 vma
->vm_flags
= VM_STACK_FLAGS
| VM_STACK_INCOMPLETE_SETUP
;
279 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
280 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
282 err
= security_file_mmap(NULL
, 0, 0, 0, vma
->vm_start
, 1);
286 err
= insert_vm_struct(mm
, vma
);
290 mm
->stack_vm
= mm
->total_vm
= 1;
291 up_write(&mm
->mmap_sem
);
292 bprm
->p
= vma
->vm_end
- sizeof(void *);
295 up_write(&mm
->mmap_sem
);
297 kmem_cache_free(vm_area_cachep
, vma
);
301 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
303 return len
<= MAX_ARG_STRLEN
;
308 void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
312 struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
317 page
= bprm
->page
[pos
/ PAGE_SIZE
];
318 if (!page
&& write
) {
319 page
= alloc_page(GFP_HIGHUSER
|__GFP_ZERO
);
322 bprm
->page
[pos
/ PAGE_SIZE
] = page
;
328 static void put_arg_page(struct page
*page
)
332 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
335 __free_page(bprm
->page
[i
]);
336 bprm
->page
[i
] = NULL
;
340 static void free_arg_pages(struct linux_binprm
*bprm
)
344 for (i
= 0; i
< MAX_ARG_PAGES
; i
++)
345 free_arg_page(bprm
, i
);
348 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
353 static int __bprm_mm_init(struct linux_binprm
*bprm
)
355 bprm
->p
= PAGE_SIZE
* MAX_ARG_PAGES
- sizeof(void *);
359 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
361 return len
<= bprm
->p
;
364 #endif /* CONFIG_MMU */
367 * Create a new mm_struct and populate it with a temporary stack
368 * vm_area_struct. We don't have enough context at this point to set the stack
369 * flags, permissions, and offset, so we use temporary values. We'll update
370 * them later in setup_arg_pages().
372 int bprm_mm_init(struct linux_binprm
*bprm
)
375 struct mm_struct
*mm
= NULL
;
377 bprm
->mm
= mm
= mm_alloc();
382 err
= init_new_context(current
, mm
);
386 err
= __bprm_mm_init(bprm
);
402 * count() counts the number of strings in array ARGV.
404 static int count(const char __user
* const __user
* argv
, int max
)
410 const char __user
* p
;
412 if (get_user(p
, argv
))
420 if (fatal_signal_pending(current
))
421 return -ERESTARTNOHAND
;
429 * 'copy_strings()' copies argument/environment strings from the old
430 * processes's memory to the new process's stack. The call to get_user_pages()
431 * ensures the destination page is created and not swapped out.
433 static int copy_strings(int argc
, const char __user
*const __user
*argv
,
434 struct linux_binprm
*bprm
)
436 struct page
*kmapped_page
= NULL
;
438 unsigned long kpos
= 0;
442 const char __user
*str
;
446 if (get_user(str
, argv
+argc
) ||
447 !(len
= strnlen_user(str
, MAX_ARG_STRLEN
))) {
452 if (!valid_arg_len(bprm
, len
)) {
457 /* We're going to work our way backwords. */
463 int offset
, bytes_to_copy
;
465 if (fatal_signal_pending(current
)) {
466 ret
= -ERESTARTNOHAND
;
471 offset
= pos
% PAGE_SIZE
;
475 bytes_to_copy
= offset
;
476 if (bytes_to_copy
> len
)
479 offset
-= bytes_to_copy
;
480 pos
-= bytes_to_copy
;
481 str
-= bytes_to_copy
;
482 len
-= bytes_to_copy
;
484 if (!kmapped_page
|| kpos
!= (pos
& PAGE_MASK
)) {
487 page
= get_arg_page(bprm
, pos
, 1);
494 flush_kernel_dcache_page(kmapped_page
);
495 kunmap(kmapped_page
);
496 put_arg_page(kmapped_page
);
499 kaddr
= kmap(kmapped_page
);
500 kpos
= pos
& PAGE_MASK
;
501 flush_arg_page(bprm
, kpos
, kmapped_page
);
503 if (copy_from_user(kaddr
+offset
, str
, bytes_to_copy
)) {
512 flush_kernel_dcache_page(kmapped_page
);
513 kunmap(kmapped_page
);
514 put_arg_page(kmapped_page
);
520 * Like copy_strings, but get argv and its values from kernel memory.
522 int copy_strings_kernel(int argc
, const char *const *argv
,
523 struct linux_binprm
*bprm
)
526 mm_segment_t oldfs
= get_fs();
528 r
= copy_strings(argc
, (const char __user
*const __user
*)argv
, bprm
);
532 EXPORT_SYMBOL(copy_strings_kernel
);
537 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
538 * the binfmt code determines where the new stack should reside, we shift it to
539 * its final location. The process proceeds as follows:
541 * 1) Use shift to calculate the new vma endpoints.
542 * 2) Extend vma to cover both the old and new ranges. This ensures the
543 * arguments passed to subsequent functions are consistent.
544 * 3) Move vma's page tables to the new range.
545 * 4) Free up any cleared pgd range.
546 * 5) Shrink the vma to cover only the new range.
548 static int shift_arg_pages(struct vm_area_struct
*vma
, unsigned long shift
)
550 struct mm_struct
*mm
= vma
->vm_mm
;
551 unsigned long old_start
= vma
->vm_start
;
552 unsigned long old_end
= vma
->vm_end
;
553 unsigned long length
= old_end
- old_start
;
554 unsigned long new_start
= old_start
- shift
;
555 unsigned long new_end
= old_end
- shift
;
556 struct mmu_gather
*tlb
;
558 BUG_ON(new_start
> new_end
);
561 * ensure there are no vmas between where we want to go
564 if (vma
!= find_vma(mm
, new_start
))
568 * cover the whole range: [new_start, old_end)
570 if (vma_adjust(vma
, new_start
, old_end
, vma
->vm_pgoff
, NULL
))
574 * move the page tables downwards, on failure we rely on
575 * process cleanup to remove whatever mess we made.
577 if (length
!= move_page_tables(vma
, old_start
,
578 vma
, new_start
, length
))
582 tlb
= tlb_gather_mmu(mm
, 0);
583 if (new_end
> old_start
) {
585 * when the old and new regions overlap clear from new_end.
587 free_pgd_range(tlb
, new_end
, old_end
, new_end
,
588 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
591 * otherwise, clean from old_start; this is done to not touch
592 * the address space in [new_end, old_start) some architectures
593 * have constraints on va-space that make this illegal (IA64) -
594 * for the others its just a little faster.
596 free_pgd_range(tlb
, old_start
, old_end
, new_end
,
597 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
599 tlb_finish_mmu(tlb
, new_end
, old_end
);
602 * Shrink the vma to just the new range. Always succeeds.
604 vma_adjust(vma
, new_start
, new_end
, vma
->vm_pgoff
, NULL
);
610 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
611 * the stack is optionally relocated, and some extra space is added.
613 int setup_arg_pages(struct linux_binprm
*bprm
,
614 unsigned long stack_top
,
615 int executable_stack
)
618 unsigned long stack_shift
;
619 struct mm_struct
*mm
= current
->mm
;
620 struct vm_area_struct
*vma
= bprm
->vma
;
621 struct vm_area_struct
*prev
= NULL
;
622 unsigned long vm_flags
;
623 unsigned long stack_base
;
624 unsigned long stack_size
;
625 unsigned long stack_expand
;
626 unsigned long rlim_stack
;
628 #ifdef CONFIG_STACK_GROWSUP
629 /* Limit stack size to 1GB */
630 stack_base
= rlimit_max(RLIMIT_STACK
);
631 if (stack_base
> (1 << 30))
632 stack_base
= 1 << 30;
634 /* Make sure we didn't let the argument array grow too large. */
635 if (vma
->vm_end
- vma
->vm_start
> stack_base
)
638 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
640 stack_shift
= vma
->vm_start
- stack_base
;
641 mm
->arg_start
= bprm
->p
- stack_shift
;
642 bprm
->p
= vma
->vm_end
- stack_shift
;
644 stack_top
= arch_align_stack(stack_top
);
645 stack_top
= PAGE_ALIGN(stack_top
);
647 if (unlikely(stack_top
< mmap_min_addr
) ||
648 unlikely(vma
->vm_end
- vma
->vm_start
>= stack_top
- mmap_min_addr
))
651 stack_shift
= vma
->vm_end
- stack_top
;
653 bprm
->p
-= stack_shift
;
654 mm
->arg_start
= bprm
->p
;
658 bprm
->loader
-= stack_shift
;
659 bprm
->exec
-= stack_shift
;
661 down_write(&mm
->mmap_sem
);
662 vm_flags
= VM_STACK_FLAGS
;
665 * Adjust stack execute permissions; explicitly enable for
666 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
667 * (arch default) otherwise.
669 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
671 else if (executable_stack
== EXSTACK_DISABLE_X
)
672 vm_flags
&= ~VM_EXEC
;
673 vm_flags
|= mm
->def_flags
;
674 vm_flags
|= VM_STACK_INCOMPLETE_SETUP
;
676 ret
= mprotect_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
,
682 /* Move stack pages down in memory. */
684 ret
= shift_arg_pages(vma
, stack_shift
);
689 /* mprotect_fixup is overkill to remove the temporary stack flags */
690 vma
->vm_flags
&= ~VM_STACK_INCOMPLETE_SETUP
;
692 stack_expand
= 131072UL; /* randomly 32*4k (or 2*64k) pages */
693 stack_size
= vma
->vm_end
- vma
->vm_start
;
695 * Align this down to a page boundary as expand_stack
698 rlim_stack
= rlimit(RLIMIT_STACK
) & PAGE_MASK
;
699 #ifdef CONFIG_STACK_GROWSUP
700 if (stack_size
+ stack_expand
> rlim_stack
)
701 stack_base
= vma
->vm_start
+ rlim_stack
;
703 stack_base
= vma
->vm_end
+ stack_expand
;
705 if (stack_size
+ stack_expand
> rlim_stack
)
706 stack_base
= vma
->vm_end
- rlim_stack
;
708 stack_base
= vma
->vm_start
- stack_expand
;
710 current
->mm
->start_stack
= bprm
->p
;
711 ret
= expand_stack(vma
, stack_base
);
716 up_write(&mm
->mmap_sem
);
719 EXPORT_SYMBOL(setup_arg_pages
);
721 #endif /* CONFIG_MMU */
723 struct file
*open_exec(const char *name
)
727 static const struct open_flags open_exec_flags
= {
728 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
729 .acc_mode
= MAY_EXEC
| MAY_OPEN
,
730 .intent
= LOOKUP_OPEN
733 file
= do_filp_open(AT_FDCWD
, name
, &open_exec_flags
, LOOKUP_FOLLOW
);
738 if (!S_ISREG(file
->f_path
.dentry
->d_inode
->i_mode
))
741 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)
746 err
= deny_write_access(file
);
757 EXPORT_SYMBOL(open_exec
);
759 int kernel_read(struct file
*file
, loff_t offset
,
760 char *addr
, unsigned long count
)
768 /* The cast to a user pointer is valid due to the set_fs() */
769 result
= vfs_read(file
, (void __user
*)addr
, count
, &pos
);
774 EXPORT_SYMBOL(kernel_read
);
776 static int exec_mmap(struct mm_struct
*mm
)
778 struct task_struct
*tsk
;
779 struct mm_struct
* old_mm
, *active_mm
;
781 /* Notify parent that we're no longer interested in the old VM */
783 old_mm
= current
->mm
;
784 sync_mm_rss(tsk
, old_mm
);
785 mm_release(tsk
, old_mm
);
789 * Make sure that if there is a core dump in progress
790 * for the old mm, we get out and die instead of going
791 * through with the exec. We must hold mmap_sem around
792 * checking core_state and changing tsk->mm.
794 down_read(&old_mm
->mmap_sem
);
795 if (unlikely(old_mm
->core_state
)) {
796 up_read(&old_mm
->mmap_sem
);
801 active_mm
= tsk
->active_mm
;
804 activate_mm(active_mm
, mm
);
805 if (old_mm
&& tsk
->signal
->oom_score_adj
== OOM_SCORE_ADJ_MIN
) {
806 atomic_dec(&old_mm
->oom_disable_count
);
807 atomic_inc(&tsk
->mm
->oom_disable_count
);
810 arch_pick_mmap_layout(mm
);
812 up_read(&old_mm
->mmap_sem
);
813 BUG_ON(active_mm
!= old_mm
);
814 mm_update_next_owner(old_mm
);
823 * This function makes sure the current process has its own signal table,
824 * so that flush_signal_handlers can later reset the handlers without
825 * disturbing other processes. (Other processes might share the signal
826 * table via the CLONE_SIGHAND option to clone().)
828 static int de_thread(struct task_struct
*tsk
)
830 struct signal_struct
*sig
= tsk
->signal
;
831 struct sighand_struct
*oldsighand
= tsk
->sighand
;
832 spinlock_t
*lock
= &oldsighand
->siglock
;
834 if (thread_group_empty(tsk
))
835 goto no_thread_group
;
838 * Kill all other threads in the thread group.
841 if (signal_group_exit(sig
)) {
843 * Another group action in progress, just
844 * return so that the signal is processed.
846 spin_unlock_irq(lock
);
850 sig
->group_exit_task
= tsk
;
851 sig
->notify_count
= zap_other_threads(tsk
);
852 if (!thread_group_leader(tsk
))
855 while (sig
->notify_count
) {
856 __set_current_state(TASK_UNINTERRUPTIBLE
);
857 spin_unlock_irq(lock
);
861 spin_unlock_irq(lock
);
864 * At this point all other threads have exited, all we have to
865 * do is to wait for the thread group leader to become inactive,
866 * and to assume its PID:
868 if (!thread_group_leader(tsk
)) {
869 struct task_struct
*leader
= tsk
->group_leader
;
871 sig
->notify_count
= -1; /* for exit_notify() */
873 write_lock_irq(&tasklist_lock
);
874 if (likely(leader
->exit_state
))
876 __set_current_state(TASK_UNINTERRUPTIBLE
);
877 write_unlock_irq(&tasklist_lock
);
882 * The only record we have of the real-time age of a
883 * process, regardless of execs it's done, is start_time.
884 * All the past CPU time is accumulated in signal_struct
885 * from sister threads now dead. But in this non-leader
886 * exec, nothing survives from the original leader thread,
887 * whose birth marks the true age of this process now.
888 * When we take on its identity by switching to its PID, we
889 * also take its birthdate (always earlier than our own).
891 tsk
->start_time
= leader
->start_time
;
893 BUG_ON(!same_thread_group(leader
, tsk
));
894 BUG_ON(has_group_leader_pid(tsk
));
896 * An exec() starts a new thread group with the
897 * TGID of the previous thread group. Rehash the
898 * two threads with a switched PID, and release
899 * the former thread group leader:
902 /* Become a process group leader with the old leader's pid.
903 * The old leader becomes a thread of the this thread group.
904 * Note: The old leader also uses this pid until release_task
905 * is called. Odd but simple and correct.
907 detach_pid(tsk
, PIDTYPE_PID
);
908 tsk
->pid
= leader
->pid
;
909 attach_pid(tsk
, PIDTYPE_PID
, task_pid(leader
));
910 transfer_pid(leader
, tsk
, PIDTYPE_PGID
);
911 transfer_pid(leader
, tsk
, PIDTYPE_SID
);
913 list_replace_rcu(&leader
->tasks
, &tsk
->tasks
);
914 list_replace_init(&leader
->sibling
, &tsk
->sibling
);
916 tsk
->group_leader
= tsk
;
917 leader
->group_leader
= tsk
;
919 tsk
->exit_signal
= SIGCHLD
;
921 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
922 leader
->exit_state
= EXIT_DEAD
;
923 write_unlock_irq(&tasklist_lock
);
925 release_task(leader
);
928 sig
->group_exit_task
= NULL
;
929 sig
->notify_count
= 0;
933 setmax_mm_hiwater_rss(&sig
->maxrss
, current
->mm
);
936 flush_itimer_signals();
938 if (atomic_read(&oldsighand
->count
) != 1) {
939 struct sighand_struct
*newsighand
;
941 * This ->sighand is shared with the CLONE_SIGHAND
942 * but not CLONE_THREAD task, switch to the new one.
944 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
948 atomic_set(&newsighand
->count
, 1);
949 memcpy(newsighand
->action
, oldsighand
->action
,
950 sizeof(newsighand
->action
));
952 write_lock_irq(&tasklist_lock
);
953 spin_lock(&oldsighand
->siglock
);
954 rcu_assign_pointer(tsk
->sighand
, newsighand
);
955 spin_unlock(&oldsighand
->siglock
);
956 write_unlock_irq(&tasklist_lock
);
958 __cleanup_sighand(oldsighand
);
961 BUG_ON(!thread_group_leader(tsk
));
966 * These functions flushes out all traces of the currently running executable
967 * so that a new one can be started
969 static void flush_old_files(struct files_struct
* files
)
974 spin_lock(&files
->file_lock
);
976 unsigned long set
, i
;
980 fdt
= files_fdtable(files
);
981 if (i
>= fdt
->max_fds
)
983 set
= fdt
->close_on_exec
->fds_bits
[j
];
986 fdt
->close_on_exec
->fds_bits
[j
] = 0;
987 spin_unlock(&files
->file_lock
);
988 for ( ; set
; i
++,set
>>= 1) {
993 spin_lock(&files
->file_lock
);
996 spin_unlock(&files
->file_lock
);
999 char *get_task_comm(char *buf
, struct task_struct
*tsk
)
1001 /* buf must be at least sizeof(tsk->comm) in size */
1003 strncpy(buf
, tsk
->comm
, sizeof(tsk
->comm
));
1008 void set_task_comm(struct task_struct
*tsk
, char *buf
)
1013 * Threads may access current->comm without holding
1014 * the task lock, so write the string carefully.
1015 * Readers without a lock may see incomplete new
1016 * names but are safe from non-terminating string reads.
1018 memset(tsk
->comm
, 0, TASK_COMM_LEN
);
1020 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
1022 perf_event_comm(tsk
);
1025 int flush_old_exec(struct linux_binprm
* bprm
)
1030 * Make sure we have a private signal table and that
1031 * we are unassociated from the previous thread group.
1033 retval
= de_thread(current
);
1037 set_mm_exe_file(bprm
->mm
, bprm
->file
);
1040 * Release all of the old mmap stuff
1042 acct_arg_size(bprm
, 0);
1043 retval
= exec_mmap(bprm
->mm
);
1047 bprm
->mm
= NULL
; /* We're using it now */
1049 current
->flags
&= ~(PF_RANDOMIZE
| PF_KTHREAD
);
1051 current
->personality
&= ~bprm
->per_clear
;
1058 EXPORT_SYMBOL(flush_old_exec
);
1060 void setup_new_exec(struct linux_binprm
* bprm
)
1064 char tcomm
[sizeof(current
->comm
)];
1066 arch_pick_mmap_layout(current
->mm
);
1068 /* This is the point of no return */
1069 current
->sas_ss_sp
= current
->sas_ss_size
= 0;
1071 if (current_euid() == current_uid() && current_egid() == current_gid())
1072 set_dumpable(current
->mm
, 1);
1074 set_dumpable(current
->mm
, suid_dumpable
);
1076 name
= bprm
->filename
;
1078 /* Copies the binary name from after last slash */
1079 for (i
=0; (ch
= *(name
++)) != '\0';) {
1081 i
= 0; /* overwrite what we wrote */
1083 if (i
< (sizeof(tcomm
) - 1))
1087 set_task_comm(current
, tcomm
);
1089 /* Set the new mm task size. We have to do that late because it may
1090 * depend on TIF_32BIT which is only updated in flush_thread() on
1091 * some architectures like powerpc
1093 current
->mm
->task_size
= TASK_SIZE
;
1095 /* install the new credentials */
1096 if (bprm
->cred
->uid
!= current_euid() ||
1097 bprm
->cred
->gid
!= current_egid()) {
1098 current
->pdeath_signal
= 0;
1099 } else if (file_permission(bprm
->file
, MAY_READ
) ||
1100 bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
) {
1101 set_dumpable(current
->mm
, suid_dumpable
);
1105 * Flush performance counters when crossing a
1108 if (!get_dumpable(current
->mm
))
1109 perf_event_exit_task(current
);
1111 /* An exec changes our domain. We are no longer part of the thread
1114 current
->self_exec_id
++;
1116 flush_signal_handlers(current
, 0);
1117 flush_old_files(current
->files
);
1119 EXPORT_SYMBOL(setup_new_exec
);
1122 * Prepare credentials and lock ->cred_guard_mutex.
1123 * install_exec_creds() commits the new creds and drops the lock.
1124 * Or, if exec fails before, free_bprm() should release ->cred and
1127 int prepare_bprm_creds(struct linux_binprm
*bprm
)
1129 if (mutex_lock_interruptible(¤t
->signal
->cred_guard_mutex
))
1130 return -ERESTARTNOINTR
;
1132 bprm
->cred
= prepare_exec_creds();
1133 if (likely(bprm
->cred
))
1136 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1140 void free_bprm(struct linux_binprm
*bprm
)
1142 free_arg_pages(bprm
);
1144 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1145 abort_creds(bprm
->cred
);
1151 * install the new credentials for this executable
1153 void install_exec_creds(struct linux_binprm
*bprm
)
1155 security_bprm_committing_creds(bprm
);
1157 commit_creds(bprm
->cred
);
1160 * cred_guard_mutex must be held at least to this point to prevent
1161 * ptrace_attach() from altering our determination of the task's
1162 * credentials; any time after this it may be unlocked.
1164 security_bprm_committed_creds(bprm
);
1165 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1167 EXPORT_SYMBOL(install_exec_creds
);
1170 * determine how safe it is to execute the proposed program
1171 * - the caller must hold ->cred_guard_mutex to protect against
1174 int check_unsafe_exec(struct linux_binprm
*bprm
)
1176 struct task_struct
*p
= current
, *t
;
1180 bprm
->unsafe
= tracehook_unsafe_exec(p
);
1183 spin_lock(&p
->fs
->lock
);
1185 for (t
= next_thread(p
); t
!= p
; t
= next_thread(t
)) {
1191 if (p
->fs
->users
> n_fs
) {
1192 bprm
->unsafe
|= LSM_UNSAFE_SHARE
;
1195 if (!p
->fs
->in_exec
) {
1200 spin_unlock(&p
->fs
->lock
);
1206 * Fill the binprm structure from the inode.
1207 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1209 * This may be called multiple times for binary chains (scripts for example).
1211 int prepare_binprm(struct linux_binprm
*bprm
)
1214 struct inode
* inode
= bprm
->file
->f_path
.dentry
->d_inode
;
1217 mode
= inode
->i_mode
;
1218 if (bprm
->file
->f_op
== NULL
)
1221 /* clear any previous set[ug]id data from a previous binary */
1222 bprm
->cred
->euid
= current_euid();
1223 bprm
->cred
->egid
= current_egid();
1225 if (!(bprm
->file
->f_path
.mnt
->mnt_flags
& MNT_NOSUID
)) {
1227 if (mode
& S_ISUID
) {
1228 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1229 bprm
->cred
->euid
= inode
->i_uid
;
1234 * If setgid is set but no group execute bit then this
1235 * is a candidate for mandatory locking, not a setgid
1238 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
1239 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1240 bprm
->cred
->egid
= inode
->i_gid
;
1244 /* fill in binprm security blob */
1245 retval
= security_bprm_set_creds(bprm
);
1248 bprm
->cred_prepared
= 1;
1250 memset(bprm
->buf
, 0, BINPRM_BUF_SIZE
);
1251 return kernel_read(bprm
->file
, 0, bprm
->buf
, BINPRM_BUF_SIZE
);
1254 EXPORT_SYMBOL(prepare_binprm
);
1257 * Arguments are '\0' separated strings found at the location bprm->p
1258 * points to; chop off the first by relocating brpm->p to right after
1259 * the first '\0' encountered.
1261 int remove_arg_zero(struct linux_binprm
*bprm
)
1264 unsigned long offset
;
1272 offset
= bprm
->p
& ~PAGE_MASK
;
1273 page
= get_arg_page(bprm
, bprm
->p
, 0);
1278 kaddr
= kmap_atomic(page
, KM_USER0
);
1280 for (; offset
< PAGE_SIZE
&& kaddr
[offset
];
1281 offset
++, bprm
->p
++)
1284 kunmap_atomic(kaddr
, KM_USER0
);
1287 if (offset
== PAGE_SIZE
)
1288 free_arg_page(bprm
, (bprm
->p
>> PAGE_SHIFT
) - 1);
1289 } while (offset
== PAGE_SIZE
);
1298 EXPORT_SYMBOL(remove_arg_zero
);
1301 * cycle the list of binary formats handler, until one recognizes the image
1303 int search_binary_handler(struct linux_binprm
*bprm
,struct pt_regs
*regs
)
1305 unsigned int depth
= bprm
->recursion_depth
;
1307 struct linux_binfmt
*fmt
;
1309 retval
= security_bprm_check(bprm
);
1313 /* kernel module loader fixup */
1314 /* so we don't try to load run modprobe in kernel space. */
1317 retval
= audit_bprm(bprm
);
1322 for (try=0; try<2; try++) {
1323 read_lock(&binfmt_lock
);
1324 list_for_each_entry(fmt
, &formats
, lh
) {
1325 int (*fn
)(struct linux_binprm
*, struct pt_regs
*) = fmt
->load_binary
;
1328 if (!try_module_get(fmt
->module
))
1330 read_unlock(&binfmt_lock
);
1331 retval
= fn(bprm
, regs
);
1333 * Restore the depth counter to its starting value
1334 * in this call, so we don't have to rely on every
1335 * load_binary function to restore it on return.
1337 bprm
->recursion_depth
= depth
;
1340 tracehook_report_exec(fmt
, bprm
, regs
);
1342 allow_write_access(bprm
->file
);
1346 current
->did_exec
= 1;
1347 proc_exec_connector(current
);
1350 read_lock(&binfmt_lock
);
1352 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
)
1355 read_unlock(&binfmt_lock
);
1359 read_unlock(&binfmt_lock
);
1360 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
) {
1362 #ifdef CONFIG_MODULES
1364 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1365 if (printable(bprm
->buf
[0]) &&
1366 printable(bprm
->buf
[1]) &&
1367 printable(bprm
->buf
[2]) &&
1368 printable(bprm
->buf
[3]))
1369 break; /* -ENOEXEC */
1370 request_module("binfmt-%04x", *(unsigned short *)(&bprm
->buf
[2]));
1377 EXPORT_SYMBOL(search_binary_handler
);
1380 * sys_execve() executes a new program.
1382 int do_execve(const char * filename
,
1383 const char __user
*const __user
*argv
,
1384 const char __user
*const __user
*envp
,
1385 struct pt_regs
* regs
)
1387 struct linux_binprm
*bprm
;
1389 struct files_struct
*displaced
;
1393 retval
= unshare_files(&displaced
);
1398 bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1402 retval
= prepare_bprm_creds(bprm
);
1406 retval
= check_unsafe_exec(bprm
);
1409 clear_in_exec
= retval
;
1410 current
->in_execve
= 1;
1412 file
= open_exec(filename
);
1413 retval
= PTR_ERR(file
);
1420 bprm
->filename
= filename
;
1421 bprm
->interp
= filename
;
1423 retval
= bprm_mm_init(bprm
);
1427 bprm
->argc
= count(argv
, MAX_ARG_STRINGS
);
1428 if ((retval
= bprm
->argc
) < 0)
1431 bprm
->envc
= count(envp
, MAX_ARG_STRINGS
);
1432 if ((retval
= bprm
->envc
) < 0)
1435 retval
= prepare_binprm(bprm
);
1439 retval
= copy_strings_kernel(1, &bprm
->filename
, bprm
);
1443 bprm
->exec
= bprm
->p
;
1444 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1448 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1452 retval
= search_binary_handler(bprm
,regs
);
1456 /* execve succeeded */
1457 current
->fs
->in_exec
= 0;
1458 current
->in_execve
= 0;
1459 acct_update_integrals(current
);
1462 put_files_struct(displaced
);
1467 acct_arg_size(bprm
, 0);
1473 allow_write_access(bprm
->file
);
1479 current
->fs
->in_exec
= 0;
1480 current
->in_execve
= 0;
1487 reset_files_struct(displaced
);
1492 void set_binfmt(struct linux_binfmt
*new)
1494 struct mm_struct
*mm
= current
->mm
;
1497 module_put(mm
->binfmt
->module
);
1501 __module_get(new->module
);
1504 EXPORT_SYMBOL(set_binfmt
);
1506 static int expand_corename(struct core_name
*cn
)
1508 char *old_corename
= cn
->corename
;
1510 cn
->size
= CORENAME_MAX_SIZE
* atomic_inc_return(&call_count
);
1511 cn
->corename
= krealloc(old_corename
, cn
->size
, GFP_KERNEL
);
1513 if (!cn
->corename
) {
1514 kfree(old_corename
);
1521 static int cn_printf(struct core_name
*cn
, const char *fmt
, ...)
1529 need
= vsnprintf(NULL
, 0, fmt
, arg
);
1532 if (likely(need
< cn
->size
- cn
->used
- 1))
1535 ret
= expand_corename(cn
);
1540 cur
= cn
->corename
+ cn
->used
;
1542 vsnprintf(cur
, need
+ 1, fmt
, arg
);
1551 /* format_corename will inspect the pattern parameter, and output a
1552 * name into corename, which must have space for at least
1553 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1555 static int format_corename(struct core_name
*cn
, long signr
)
1557 const struct cred
*cred
= current_cred();
1558 const char *pat_ptr
= core_pattern
;
1559 int ispipe
= (*pat_ptr
== '|');
1560 int pid_in_pattern
= 0;
1563 cn
->size
= CORENAME_MAX_SIZE
* atomic_read(&call_count
);
1564 cn
->corename
= kmalloc(cn
->size
, GFP_KERNEL
);
1570 /* Repeat as long as we have more pattern to process and more output
1573 if (*pat_ptr
!= '%') {
1576 err
= cn_printf(cn
, "%c", *pat_ptr
++);
1578 switch (*++pat_ptr
) {
1579 /* single % at the end, drop that */
1582 /* Double percent, output one percent */
1584 err
= cn_printf(cn
, "%c", '%');
1589 err
= cn_printf(cn
, "%d",
1590 task_tgid_vnr(current
));
1594 err
= cn_printf(cn
, "%d", cred
->uid
);
1598 err
= cn_printf(cn
, "%d", cred
->gid
);
1600 /* signal that caused the coredump */
1602 err
= cn_printf(cn
, "%ld", signr
);
1604 /* UNIX time of coredump */
1607 do_gettimeofday(&tv
);
1608 err
= cn_printf(cn
, "%lu", tv
.tv_sec
);
1613 down_read(&uts_sem
);
1614 err
= cn_printf(cn
, "%s",
1615 utsname()->nodename
);
1620 err
= cn_printf(cn
, "%s", current
->comm
);
1622 /* core limit size */
1624 err
= cn_printf(cn
, "%lu",
1625 rlimit(RLIMIT_CORE
));
1637 /* Backward compatibility with core_uses_pid:
1639 * If core_pattern does not include a %p (as is the default)
1640 * and core_uses_pid is set, then .%pid will be appended to
1641 * the filename. Do not do this for piped commands. */
1642 if (!ispipe
&& !pid_in_pattern
&& core_uses_pid
) {
1643 err
= cn_printf(cn
, ".%d", task_tgid_vnr(current
));
1651 static int zap_process(struct task_struct
*start
, int exit_code
)
1653 struct task_struct
*t
;
1656 start
->signal
->flags
= SIGNAL_GROUP_EXIT
;
1657 start
->signal
->group_exit_code
= exit_code
;
1658 start
->signal
->group_stop_count
= 0;
1662 if (t
!= current
&& t
->mm
) {
1663 sigaddset(&t
->pending
.signal
, SIGKILL
);
1664 signal_wake_up(t
, 1);
1667 } while_each_thread(start
, t
);
1672 static inline int zap_threads(struct task_struct
*tsk
, struct mm_struct
*mm
,
1673 struct core_state
*core_state
, int exit_code
)
1675 struct task_struct
*g
, *p
;
1676 unsigned long flags
;
1679 spin_lock_irq(&tsk
->sighand
->siglock
);
1680 if (!signal_group_exit(tsk
->signal
)) {
1681 mm
->core_state
= core_state
;
1682 nr
= zap_process(tsk
, exit_code
);
1684 spin_unlock_irq(&tsk
->sighand
->siglock
);
1685 if (unlikely(nr
< 0))
1688 if (atomic_read(&mm
->mm_users
) == nr
+ 1)
1691 * We should find and kill all tasks which use this mm, and we should
1692 * count them correctly into ->nr_threads. We don't take tasklist
1693 * lock, but this is safe wrt:
1696 * None of sub-threads can fork after zap_process(leader). All
1697 * processes which were created before this point should be
1698 * visible to zap_threads() because copy_process() adds the new
1699 * process to the tail of init_task.tasks list, and lock/unlock
1700 * of ->siglock provides a memory barrier.
1703 * The caller holds mm->mmap_sem. This means that the task which
1704 * uses this mm can't pass exit_mm(), so it can't exit or clear
1708 * It does list_replace_rcu(&leader->tasks, ¤t->tasks),
1709 * we must see either old or new leader, this does not matter.
1710 * However, it can change p->sighand, so lock_task_sighand(p)
1711 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1714 * Note also that "g" can be the old leader with ->mm == NULL
1715 * and already unhashed and thus removed from ->thread_group.
1716 * This is OK, __unhash_process()->list_del_rcu() does not
1717 * clear the ->next pointer, we will find the new leader via
1721 for_each_process(g
) {
1722 if (g
== tsk
->group_leader
)
1724 if (g
->flags
& PF_KTHREAD
)
1729 if (unlikely(p
->mm
== mm
)) {
1730 lock_task_sighand(p
, &flags
);
1731 nr
+= zap_process(p
, exit_code
);
1732 unlock_task_sighand(p
, &flags
);
1736 } while_each_thread(g
, p
);
1740 atomic_set(&core_state
->nr_threads
, nr
);
1744 static int coredump_wait(int exit_code
, struct core_state
*core_state
)
1746 struct task_struct
*tsk
= current
;
1747 struct mm_struct
*mm
= tsk
->mm
;
1748 struct completion
*vfork_done
;
1749 int core_waiters
= -EBUSY
;
1751 init_completion(&core_state
->startup
);
1752 core_state
->dumper
.task
= tsk
;
1753 core_state
->dumper
.next
= NULL
;
1755 down_write(&mm
->mmap_sem
);
1756 if (!mm
->core_state
)
1757 core_waiters
= zap_threads(tsk
, mm
, core_state
, exit_code
);
1758 up_write(&mm
->mmap_sem
);
1760 if (unlikely(core_waiters
< 0))
1764 * Make sure nobody is waiting for us to release the VM,
1765 * otherwise we can deadlock when we wait on each other
1767 vfork_done
= tsk
->vfork_done
;
1769 tsk
->vfork_done
= NULL
;
1770 complete(vfork_done
);
1774 wait_for_completion(&core_state
->startup
);
1776 return core_waiters
;
1779 static void coredump_finish(struct mm_struct
*mm
)
1781 struct core_thread
*curr
, *next
;
1782 struct task_struct
*task
;
1784 next
= mm
->core_state
->dumper
.next
;
1785 while ((curr
= next
) != NULL
) {
1789 * see exit_mm(), curr->task must not see
1790 * ->task == NULL before we read ->next.
1794 wake_up_process(task
);
1797 mm
->core_state
= NULL
;
1801 * set_dumpable converts traditional three-value dumpable to two flags and
1802 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1803 * these bits are not changed atomically. So get_dumpable can observe the
1804 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1805 * return either old dumpable or new one by paying attention to the order of
1806 * modifying the bits.
1808 * dumpable | mm->flags (binary)
1809 * old new | initial interim final
1810 * ---------+-----------------------
1818 * (*) get_dumpable regards interim value of 10 as 11.
1820 void set_dumpable(struct mm_struct
*mm
, int value
)
1824 clear_bit(MMF_DUMPABLE
, &mm
->flags
);
1826 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1829 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1831 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1834 set_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1836 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1841 static int __get_dumpable(unsigned long mm_flags
)
1845 ret
= mm_flags
& MMF_DUMPABLE_MASK
;
1846 return (ret
>= 2) ? 2 : ret
;
1849 int get_dumpable(struct mm_struct
*mm
)
1851 return __get_dumpable(mm
->flags
);
1854 static void wait_for_dump_helpers(struct file
*file
)
1856 struct pipe_inode_info
*pipe
;
1858 pipe
= file
->f_path
.dentry
->d_inode
->i_pipe
;
1864 while ((pipe
->readers
> 1) && (!signal_pending(current
))) {
1865 wake_up_interruptible_sync(&pipe
->wait
);
1866 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
1879 * helper function to customize the process used
1880 * to collect the core in userspace. Specifically
1881 * it sets up a pipe and installs it as fd 0 (stdin)
1882 * for the process. Returns 0 on success, or
1883 * PTR_ERR on failure.
1884 * Note that it also sets the core limit to 1. This
1885 * is a special value that we use to trap recursive
1888 static int umh_pipe_setup(struct subprocess_info
*info
)
1890 struct file
*rp
, *wp
;
1891 struct fdtable
*fdt
;
1892 struct coredump_params
*cp
= (struct coredump_params
*)info
->data
;
1893 struct files_struct
*cf
= current
->files
;
1895 wp
= create_write_pipe(0);
1899 rp
= create_read_pipe(wp
, 0);
1901 free_write_pipe(wp
);
1909 spin_lock(&cf
->file_lock
);
1910 fdt
= files_fdtable(cf
);
1911 FD_SET(0, fdt
->open_fds
);
1912 FD_CLR(0, fdt
->close_on_exec
);
1913 spin_unlock(&cf
->file_lock
);
1915 /* and disallow core files too */
1916 current
->signal
->rlim
[RLIMIT_CORE
] = (struct rlimit
){1, 1};
1921 void do_coredump(long signr
, int exit_code
, struct pt_regs
*regs
)
1923 struct core_state core_state
;
1924 struct core_name cn
;
1925 struct mm_struct
*mm
= current
->mm
;
1926 struct linux_binfmt
* binfmt
;
1927 const struct cred
*old_cred
;
1932 static atomic_t core_dump_count
= ATOMIC_INIT(0);
1933 struct coredump_params cprm
= {
1936 .limit
= rlimit(RLIMIT_CORE
),
1938 * We must use the same mm->flags while dumping core to avoid
1939 * inconsistency of bit flags, since this flag is not protected
1942 .mm_flags
= mm
->flags
,
1945 audit_core_dumps(signr
);
1947 binfmt
= mm
->binfmt
;
1948 if (!binfmt
|| !binfmt
->core_dump
)
1950 if (!__get_dumpable(cprm
.mm_flags
))
1953 cred
= prepare_creds();
1957 * We cannot trust fsuid as being the "true" uid of the
1958 * process nor do we know its entire history. We only know it
1959 * was tainted so we dump it as root in mode 2.
1961 if (__get_dumpable(cprm
.mm_flags
) == 2) {
1962 /* Setuid core dump mode */
1963 flag
= O_EXCL
; /* Stop rewrite attacks */
1964 cred
->fsuid
= 0; /* Dump root private */
1967 retval
= coredump_wait(exit_code
, &core_state
);
1971 old_cred
= override_creds(cred
);
1974 * Clear any false indication of pending signals that might
1975 * be seen by the filesystem code called to write the core file.
1977 clear_thread_flag(TIF_SIGPENDING
);
1979 ispipe
= format_corename(&cn
, signr
);
1981 if (ispipe
== -ENOMEM
) {
1982 printk(KERN_WARNING
"format_corename failed\n");
1983 printk(KERN_WARNING
"Aborting core\n");
1991 if (cprm
.limit
== 1) {
1993 * Normally core limits are irrelevant to pipes, since
1994 * we're not writing to the file system, but we use
1995 * cprm.limit of 1 here as a speacial value. Any
1996 * non-1 limit gets set to RLIM_INFINITY below, but
1997 * a limit of 0 skips the dump. This is a consistent
1998 * way to catch recursive crashes. We can still crash
1999 * if the core_pattern binary sets RLIM_CORE = !1
2000 * but it runs as root, and can do lots of stupid things
2001 * Note that we use task_tgid_vnr here to grab the pid
2002 * of the process group leader. That way we get the
2003 * right pid if a thread in a multi-threaded
2004 * core_pattern process dies.
2007 "Process %d(%s) has RLIMIT_CORE set to 1\n",
2008 task_tgid_vnr(current
), current
->comm
);
2009 printk(KERN_WARNING
"Aborting core\n");
2012 cprm
.limit
= RLIM_INFINITY
;
2014 dump_count
= atomic_inc_return(&core_dump_count
);
2015 if (core_pipe_limit
&& (core_pipe_limit
< dump_count
)) {
2016 printk(KERN_WARNING
"Pid %d(%s) over core_pipe_limit\n",
2017 task_tgid_vnr(current
), current
->comm
);
2018 printk(KERN_WARNING
"Skipping core dump\n");
2019 goto fail_dropcount
;
2022 helper_argv
= argv_split(GFP_KERNEL
, cn
.corename
+1, NULL
);
2024 printk(KERN_WARNING
"%s failed to allocate memory\n",
2026 goto fail_dropcount
;
2029 retval
= call_usermodehelper_fns(helper_argv
[0], helper_argv
,
2030 NULL
, UMH_WAIT_EXEC
, umh_pipe_setup
,
2032 argv_free(helper_argv
);
2034 printk(KERN_INFO
"Core dump to %s pipe failed\n",
2039 struct inode
*inode
;
2041 if (cprm
.limit
< binfmt
->min_coredump
)
2044 cprm
.file
= filp_open(cn
.corename
,
2045 O_CREAT
| 2 | O_NOFOLLOW
| O_LARGEFILE
| flag
,
2047 if (IS_ERR(cprm
.file
))
2050 inode
= cprm
.file
->f_path
.dentry
->d_inode
;
2051 if (inode
->i_nlink
> 1)
2053 if (d_unhashed(cprm
.file
->f_path
.dentry
))
2056 * AK: actually i see no reason to not allow this for named
2057 * pipes etc, but keep the previous behaviour for now.
2059 if (!S_ISREG(inode
->i_mode
))
2062 * Dont allow local users get cute and trick others to coredump
2063 * into their pre-created files.
2065 if (inode
->i_uid
!= current_fsuid())
2067 if (!cprm
.file
->f_op
|| !cprm
.file
->f_op
->write
)
2069 if (do_truncate(cprm
.file
->f_path
.dentry
, 0, 0, cprm
.file
))
2073 retval
= binfmt
->core_dump(&cprm
);
2075 current
->signal
->group_exit_code
|= 0x80;
2077 if (ispipe
&& core_pipe_limit
)
2078 wait_for_dump_helpers(cprm
.file
);
2081 filp_close(cprm
.file
, NULL
);
2084 atomic_dec(&core_dump_count
);
2088 coredump_finish(mm
);
2089 revert_creds(old_cred
);
2097 * Core dumping helper functions. These are the only things you should
2098 * do on a core-file: use only these functions to write out all the
2101 int dump_write(struct file
*file
, const void *addr
, int nr
)
2103 return access_ok(VERIFY_READ
, addr
, nr
) && file
->f_op
->write(file
, addr
, nr
, &file
->f_pos
) == nr
;
2105 EXPORT_SYMBOL(dump_write
);
2107 int dump_seek(struct file
*file
, loff_t off
)
2111 if (file
->f_op
->llseek
&& file
->f_op
->llseek
!= no_llseek
) {
2112 if (file
->f_op
->llseek(file
, off
, SEEK_CUR
) < 0)
2115 char *buf
= (char *)get_zeroed_page(GFP_KERNEL
);
2120 unsigned long n
= off
;
2124 if (!dump_write(file
, buf
, n
)) {
2130 free_page((unsigned long)buf
);
2134 EXPORT_SYMBOL(dump_seek
);