iwlwifi: clean up declarations
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / wireless / iwlwifi / iwl-agn-calib.c
blobe2019e756936e2280fa8f1365fe31ca0bb295a51
1 /******************************************************************************
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
6 * GPL LICENSE SUMMARY
8 * Copyright(c) 2008 - 2010 Intel Corporation. All rights reserved.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
27 * Contact Information:
28 * Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31 * BSD LICENSE
33 * Copyright(c) 2005 - 2010 Intel Corporation. All rights reserved.
34 * All rights reserved.
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
45 * distribution.
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *****************************************************************************/
63 #include <linux/slab.h>
64 #include <net/mac80211.h>
66 #include "iwl-dev.h"
67 #include "iwl-core.h"
68 #include "iwl-agn-calib.h"
70 /*****************************************************************************
71 * INIT calibrations framework
72 *****************************************************************************/
74 struct statistics_general_data {
75 u32 beacon_silence_rssi_a;
76 u32 beacon_silence_rssi_b;
77 u32 beacon_silence_rssi_c;
78 u32 beacon_energy_a;
79 u32 beacon_energy_b;
80 u32 beacon_energy_c;
83 int iwl_send_calib_results(struct iwl_priv *priv)
85 int ret = 0;
86 int i = 0;
88 struct iwl_host_cmd hcmd = {
89 .id = REPLY_PHY_CALIBRATION_CMD,
90 .flags = CMD_SIZE_HUGE,
93 for (i = 0; i < IWL_CALIB_MAX; i++) {
94 if ((BIT(i) & priv->hw_params.calib_init_cfg) &&
95 priv->calib_results[i].buf) {
96 hcmd.len = priv->calib_results[i].buf_len;
97 hcmd.data = priv->calib_results[i].buf;
98 ret = iwl_send_cmd_sync(priv, &hcmd);
99 if (ret) {
100 IWL_ERR(priv, "Error %d iteration %d\n",
101 ret, i);
102 break;
107 return ret;
110 int iwl_calib_set(struct iwl_calib_result *res, const u8 *buf, int len)
112 if (res->buf_len != len) {
113 kfree(res->buf);
114 res->buf = kzalloc(len, GFP_ATOMIC);
116 if (unlikely(res->buf == NULL))
117 return -ENOMEM;
119 res->buf_len = len;
120 memcpy(res->buf, buf, len);
121 return 0;
124 void iwl_calib_free_results(struct iwl_priv *priv)
126 int i;
128 for (i = 0; i < IWL_CALIB_MAX; i++) {
129 kfree(priv->calib_results[i].buf);
130 priv->calib_results[i].buf = NULL;
131 priv->calib_results[i].buf_len = 0;
135 /*****************************************************************************
136 * RUNTIME calibrations framework
137 *****************************************************************************/
139 /* "false alarms" are signals that our DSP tries to lock onto,
140 * but then determines that they are either noise, or transmissions
141 * from a distant wireless network (also "noise", really) that get
142 * "stepped on" by stronger transmissions within our own network.
143 * This algorithm attempts to set a sensitivity level that is high
144 * enough to receive all of our own network traffic, but not so
145 * high that our DSP gets too busy trying to lock onto non-network
146 * activity/noise. */
147 static int iwl_sens_energy_cck(struct iwl_priv *priv,
148 u32 norm_fa,
149 u32 rx_enable_time,
150 struct statistics_general_data *rx_info)
152 u32 max_nrg_cck = 0;
153 int i = 0;
154 u8 max_silence_rssi = 0;
155 u32 silence_ref = 0;
156 u8 silence_rssi_a = 0;
157 u8 silence_rssi_b = 0;
158 u8 silence_rssi_c = 0;
159 u32 val;
161 /* "false_alarms" values below are cross-multiplications to assess the
162 * numbers of false alarms within the measured period of actual Rx
163 * (Rx is off when we're txing), vs the min/max expected false alarms
164 * (some should be expected if rx is sensitive enough) in a
165 * hypothetical listening period of 200 time units (TU), 204.8 msec:
167 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
169 * */
170 u32 false_alarms = norm_fa * 200 * 1024;
171 u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
172 u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
173 struct iwl_sensitivity_data *data = NULL;
174 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
176 data = &(priv->sensitivity_data);
178 data->nrg_auto_corr_silence_diff = 0;
180 /* Find max silence rssi among all 3 receivers.
181 * This is background noise, which may include transmissions from other
182 * networks, measured during silence before our network's beacon */
183 silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
184 ALL_BAND_FILTER) >> 8);
185 silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
186 ALL_BAND_FILTER) >> 8);
187 silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
188 ALL_BAND_FILTER) >> 8);
190 val = max(silence_rssi_b, silence_rssi_c);
191 max_silence_rssi = max(silence_rssi_a, (u8) val);
193 /* Store silence rssi in 20-beacon history table */
194 data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
195 data->nrg_silence_idx++;
196 if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
197 data->nrg_silence_idx = 0;
199 /* Find max silence rssi across 20 beacon history */
200 for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
201 val = data->nrg_silence_rssi[i];
202 silence_ref = max(silence_ref, val);
204 IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n",
205 silence_rssi_a, silence_rssi_b, silence_rssi_c,
206 silence_ref);
208 /* Find max rx energy (min value!) among all 3 receivers,
209 * measured during beacon frame.
210 * Save it in 10-beacon history table. */
211 i = data->nrg_energy_idx;
212 val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
213 data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
215 data->nrg_energy_idx++;
216 if (data->nrg_energy_idx >= 10)
217 data->nrg_energy_idx = 0;
219 /* Find min rx energy (max value) across 10 beacon history.
220 * This is the minimum signal level that we want to receive well.
221 * Add backoff (margin so we don't miss slightly lower energy frames).
222 * This establishes an upper bound (min value) for energy threshold. */
223 max_nrg_cck = data->nrg_value[0];
224 for (i = 1; i < 10; i++)
225 max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
226 max_nrg_cck += 6;
228 IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
229 rx_info->beacon_energy_a, rx_info->beacon_energy_b,
230 rx_info->beacon_energy_c, max_nrg_cck - 6);
232 /* Count number of consecutive beacons with fewer-than-desired
233 * false alarms. */
234 if (false_alarms < min_false_alarms)
235 data->num_in_cck_no_fa++;
236 else
237 data->num_in_cck_no_fa = 0;
238 IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n",
239 data->num_in_cck_no_fa);
241 /* If we got too many false alarms this time, reduce sensitivity */
242 if ((false_alarms > max_false_alarms) &&
243 (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
244 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n",
245 false_alarms, max_false_alarms);
246 IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n");
247 data->nrg_curr_state = IWL_FA_TOO_MANY;
248 /* Store for "fewer than desired" on later beacon */
249 data->nrg_silence_ref = silence_ref;
251 /* increase energy threshold (reduce nrg value)
252 * to decrease sensitivity */
253 data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
254 /* Else if we got fewer than desired, increase sensitivity */
255 } else if (false_alarms < min_false_alarms) {
256 data->nrg_curr_state = IWL_FA_TOO_FEW;
258 /* Compare silence level with silence level for most recent
259 * healthy number or too many false alarms */
260 data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
261 (s32)silence_ref;
263 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n",
264 false_alarms, min_false_alarms,
265 data->nrg_auto_corr_silence_diff);
267 /* Increase value to increase sensitivity, but only if:
268 * 1a) previous beacon did *not* have *too many* false alarms
269 * 1b) AND there's a significant difference in Rx levels
270 * from a previous beacon with too many, or healthy # FAs
271 * OR 2) We've seen a lot of beacons (100) with too few
272 * false alarms */
273 if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
274 ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
275 (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
277 IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n");
278 /* Increase nrg value to increase sensitivity */
279 val = data->nrg_th_cck + NRG_STEP_CCK;
280 data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
281 } else {
282 IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n");
285 /* Else we got a healthy number of false alarms, keep status quo */
286 } else {
287 IWL_DEBUG_CALIB(priv, " FA in safe zone\n");
288 data->nrg_curr_state = IWL_FA_GOOD_RANGE;
290 /* Store for use in "fewer than desired" with later beacon */
291 data->nrg_silence_ref = silence_ref;
293 /* If previous beacon had too many false alarms,
294 * give it some extra margin by reducing sensitivity again
295 * (but don't go below measured energy of desired Rx) */
296 if (IWL_FA_TOO_MANY == data->nrg_prev_state) {
297 IWL_DEBUG_CALIB(priv, "... increasing margin\n");
298 if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
299 data->nrg_th_cck -= NRG_MARGIN;
300 else
301 data->nrg_th_cck = max_nrg_cck;
305 /* Make sure the energy threshold does not go above the measured
306 * energy of the desired Rx signals (reduced by backoff margin),
307 * or else we might start missing Rx frames.
308 * Lower value is higher energy, so we use max()!
310 data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
311 IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck);
313 data->nrg_prev_state = data->nrg_curr_state;
315 /* Auto-correlation CCK algorithm */
316 if (false_alarms > min_false_alarms) {
318 /* increase auto_corr values to decrease sensitivity
319 * so the DSP won't be disturbed by the noise
321 if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
322 data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
323 else {
324 val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
325 data->auto_corr_cck =
326 min((u32)ranges->auto_corr_max_cck, val);
328 val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
329 data->auto_corr_cck_mrc =
330 min((u32)ranges->auto_corr_max_cck_mrc, val);
331 } else if ((false_alarms < min_false_alarms) &&
332 ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
333 (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
335 /* Decrease auto_corr values to increase sensitivity */
336 val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
337 data->auto_corr_cck =
338 max((u32)ranges->auto_corr_min_cck, val);
339 val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
340 data->auto_corr_cck_mrc =
341 max((u32)ranges->auto_corr_min_cck_mrc, val);
344 return 0;
348 static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
349 u32 norm_fa,
350 u32 rx_enable_time)
352 u32 val;
353 u32 false_alarms = norm_fa * 200 * 1024;
354 u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
355 u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
356 struct iwl_sensitivity_data *data = NULL;
357 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
359 data = &(priv->sensitivity_data);
361 /* If we got too many false alarms this time, reduce sensitivity */
362 if (false_alarms > max_false_alarms) {
364 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n",
365 false_alarms, max_false_alarms);
367 val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
368 data->auto_corr_ofdm =
369 min((u32)ranges->auto_corr_max_ofdm, val);
371 val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
372 data->auto_corr_ofdm_mrc =
373 min((u32)ranges->auto_corr_max_ofdm_mrc, val);
375 val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
376 data->auto_corr_ofdm_x1 =
377 min((u32)ranges->auto_corr_max_ofdm_x1, val);
379 val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
380 data->auto_corr_ofdm_mrc_x1 =
381 min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
384 /* Else if we got fewer than desired, increase sensitivity */
385 else if (false_alarms < min_false_alarms) {
387 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n",
388 false_alarms, min_false_alarms);
390 val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
391 data->auto_corr_ofdm =
392 max((u32)ranges->auto_corr_min_ofdm, val);
394 val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
395 data->auto_corr_ofdm_mrc =
396 max((u32)ranges->auto_corr_min_ofdm_mrc, val);
398 val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
399 data->auto_corr_ofdm_x1 =
400 max((u32)ranges->auto_corr_min_ofdm_x1, val);
402 val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
403 data->auto_corr_ofdm_mrc_x1 =
404 max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
405 } else {
406 IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n",
407 min_false_alarms, false_alarms, max_false_alarms);
409 return 0;
412 static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv *priv,
413 struct iwl_sensitivity_data *data,
414 __le16 *tbl)
416 tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
417 cpu_to_le16((u16)data->auto_corr_ofdm);
418 tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
419 cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
420 tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
421 cpu_to_le16((u16)data->auto_corr_ofdm_x1);
422 tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
423 cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
425 tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
426 cpu_to_le16((u16)data->auto_corr_cck);
427 tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
428 cpu_to_le16((u16)data->auto_corr_cck_mrc);
430 tbl[HD_MIN_ENERGY_CCK_DET_INDEX] =
431 cpu_to_le16((u16)data->nrg_th_cck);
432 tbl[HD_MIN_ENERGY_OFDM_DET_INDEX] =
433 cpu_to_le16((u16)data->nrg_th_ofdm);
435 tbl[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
436 cpu_to_le16(data->barker_corr_th_min);
437 tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
438 cpu_to_le16(data->barker_corr_th_min_mrc);
439 tbl[HD_OFDM_ENERGY_TH_IN_INDEX] =
440 cpu_to_le16(data->nrg_th_cca);
442 IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
443 data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
444 data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
445 data->nrg_th_ofdm);
447 IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n",
448 data->auto_corr_cck, data->auto_corr_cck_mrc,
449 data->nrg_th_cck);
452 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
453 static int iwl_sensitivity_write(struct iwl_priv *priv)
455 struct iwl_sensitivity_cmd cmd;
456 struct iwl_sensitivity_data *data = NULL;
457 struct iwl_host_cmd cmd_out = {
458 .id = SENSITIVITY_CMD,
459 .len = sizeof(struct iwl_sensitivity_cmd),
460 .flags = CMD_ASYNC,
461 .data = &cmd,
464 data = &(priv->sensitivity_data);
466 memset(&cmd, 0, sizeof(cmd));
468 iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.table[0]);
470 /* Update uCode's "work" table, and copy it to DSP */
471 cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
473 /* Don't send command to uCode if nothing has changed */
474 if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
475 sizeof(u16)*HD_TABLE_SIZE)) {
476 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
477 return 0;
480 /* Copy table for comparison next time */
481 memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
482 sizeof(u16)*HD_TABLE_SIZE);
484 return iwl_send_cmd(priv, &cmd_out);
487 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
488 static int iwl_enhance_sensitivity_write(struct iwl_priv *priv)
490 struct iwl_enhance_sensitivity_cmd cmd;
491 struct iwl_sensitivity_data *data = NULL;
492 struct iwl_host_cmd cmd_out = {
493 .id = SENSITIVITY_CMD,
494 .len = sizeof(struct iwl_enhance_sensitivity_cmd),
495 .flags = CMD_ASYNC,
496 .data = &cmd,
499 data = &(priv->sensitivity_data);
501 memset(&cmd, 0, sizeof(cmd));
503 iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.enhance_table[0]);
505 cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
506 HD_INA_NON_SQUARE_DET_OFDM_DATA;
507 cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
508 HD_INA_NON_SQUARE_DET_CCK_DATA;
509 cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
510 HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA;
511 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
512 HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA;
513 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
514 HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA;
515 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
516 HD_OFDM_NON_SQUARE_DET_SLOPE_DATA;
517 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
518 HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA;
519 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
520 HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA;
521 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
522 HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA;
523 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
524 HD_CCK_NON_SQUARE_DET_SLOPE_DATA;
525 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
526 HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA;
528 /* Update uCode's "work" table, and copy it to DSP */
529 cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
531 /* Don't send command to uCode if nothing has changed */
532 if (!memcmp(&cmd.enhance_table[0], &(priv->sensitivity_tbl[0]),
533 sizeof(u16)*HD_TABLE_SIZE) &&
534 !memcmp(&cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX],
535 &(priv->enhance_sensitivity_tbl[0]),
536 sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES)) {
537 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
538 return 0;
541 /* Copy table for comparison next time */
542 memcpy(&(priv->sensitivity_tbl[0]), &(cmd.enhance_table[0]),
543 sizeof(u16)*HD_TABLE_SIZE);
544 memcpy(&(priv->enhance_sensitivity_tbl[0]),
545 &(cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX]),
546 sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES);
548 return iwl_send_cmd(priv, &cmd_out);
551 void iwl_init_sensitivity(struct iwl_priv *priv)
553 int ret = 0;
554 int i;
555 struct iwl_sensitivity_data *data = NULL;
556 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
558 if (priv->disable_sens_cal)
559 return;
561 IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n");
563 /* Clear driver's sensitivity algo data */
564 data = &(priv->sensitivity_data);
566 if (ranges == NULL)
567 return;
569 memset(data, 0, sizeof(struct iwl_sensitivity_data));
571 data->num_in_cck_no_fa = 0;
572 data->nrg_curr_state = IWL_FA_TOO_MANY;
573 data->nrg_prev_state = IWL_FA_TOO_MANY;
574 data->nrg_silence_ref = 0;
575 data->nrg_silence_idx = 0;
576 data->nrg_energy_idx = 0;
578 for (i = 0; i < 10; i++)
579 data->nrg_value[i] = 0;
581 for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
582 data->nrg_silence_rssi[i] = 0;
584 data->auto_corr_ofdm = ranges->auto_corr_min_ofdm;
585 data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
586 data->auto_corr_ofdm_x1 = ranges->auto_corr_min_ofdm_x1;
587 data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
588 data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
589 data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
590 data->nrg_th_cck = ranges->nrg_th_cck;
591 data->nrg_th_ofdm = ranges->nrg_th_ofdm;
592 data->barker_corr_th_min = ranges->barker_corr_th_min;
593 data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc;
594 data->nrg_th_cca = ranges->nrg_th_cca;
596 data->last_bad_plcp_cnt_ofdm = 0;
597 data->last_fa_cnt_ofdm = 0;
598 data->last_bad_plcp_cnt_cck = 0;
599 data->last_fa_cnt_cck = 0;
601 if (priv->enhance_sensitivity_table)
602 ret |= iwl_enhance_sensitivity_write(priv);
603 else
604 ret |= iwl_sensitivity_write(priv);
605 IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret);
608 void iwl_sensitivity_calibration(struct iwl_priv *priv, void *resp)
610 u32 rx_enable_time;
611 u32 fa_cck;
612 u32 fa_ofdm;
613 u32 bad_plcp_cck;
614 u32 bad_plcp_ofdm;
615 u32 norm_fa_ofdm;
616 u32 norm_fa_cck;
617 struct iwl_sensitivity_data *data = NULL;
618 struct statistics_rx_non_phy *rx_info;
619 struct statistics_rx_phy *ofdm, *cck;
620 unsigned long flags;
621 struct statistics_general_data statis;
623 if (priv->disable_sens_cal)
624 return;
626 data = &(priv->sensitivity_data);
628 if (!iwl_is_any_associated(priv)) {
629 IWL_DEBUG_CALIB(priv, "<< - not associated\n");
630 return;
633 spin_lock_irqsave(&priv->lock, flags);
634 if (priv->cfg->bt_params &&
635 priv->cfg->bt_params->bt_statistics) {
636 rx_info = &(((struct iwl_bt_notif_statistics *)resp)->
637 rx.general.common);
638 ofdm = &(((struct iwl_bt_notif_statistics *)resp)->rx.ofdm);
639 cck = &(((struct iwl_bt_notif_statistics *)resp)->rx.cck);
640 } else {
641 rx_info = &(((struct iwl_notif_statistics *)resp)->rx.general);
642 ofdm = &(((struct iwl_notif_statistics *)resp)->rx.ofdm);
643 cck = &(((struct iwl_notif_statistics *)resp)->rx.cck);
645 if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
646 IWL_DEBUG_CALIB(priv, "<< invalid data.\n");
647 spin_unlock_irqrestore(&priv->lock, flags);
648 return;
651 /* Extract Statistics: */
652 rx_enable_time = le32_to_cpu(rx_info->channel_load);
653 fa_cck = le32_to_cpu(cck->false_alarm_cnt);
654 fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt);
655 bad_plcp_cck = le32_to_cpu(cck->plcp_err);
656 bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err);
658 statis.beacon_silence_rssi_a =
659 le32_to_cpu(rx_info->beacon_silence_rssi_a);
660 statis.beacon_silence_rssi_b =
661 le32_to_cpu(rx_info->beacon_silence_rssi_b);
662 statis.beacon_silence_rssi_c =
663 le32_to_cpu(rx_info->beacon_silence_rssi_c);
664 statis.beacon_energy_a =
665 le32_to_cpu(rx_info->beacon_energy_a);
666 statis.beacon_energy_b =
667 le32_to_cpu(rx_info->beacon_energy_b);
668 statis.beacon_energy_c =
669 le32_to_cpu(rx_info->beacon_energy_c);
671 spin_unlock_irqrestore(&priv->lock, flags);
673 IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time);
675 if (!rx_enable_time) {
676 IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0!\n");
677 return;
680 /* These statistics increase monotonically, and do not reset
681 * at each beacon. Calculate difference from last value, or just
682 * use the new statistics value if it has reset or wrapped around. */
683 if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
684 data->last_bad_plcp_cnt_cck = bad_plcp_cck;
685 else {
686 bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
687 data->last_bad_plcp_cnt_cck += bad_plcp_cck;
690 if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
691 data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
692 else {
693 bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
694 data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
697 if (data->last_fa_cnt_ofdm > fa_ofdm)
698 data->last_fa_cnt_ofdm = fa_ofdm;
699 else {
700 fa_ofdm -= data->last_fa_cnt_ofdm;
701 data->last_fa_cnt_ofdm += fa_ofdm;
704 if (data->last_fa_cnt_cck > fa_cck)
705 data->last_fa_cnt_cck = fa_cck;
706 else {
707 fa_cck -= data->last_fa_cnt_cck;
708 data->last_fa_cnt_cck += fa_cck;
711 /* Total aborted signal locks */
712 norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
713 norm_fa_cck = fa_cck + bad_plcp_cck;
715 IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck,
716 bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
718 iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
719 iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
720 if (priv->enhance_sensitivity_table)
721 iwl_enhance_sensitivity_write(priv);
722 else
723 iwl_sensitivity_write(priv);
726 static inline u8 find_first_chain(u8 mask)
728 if (mask & ANT_A)
729 return CHAIN_A;
730 if (mask & ANT_B)
731 return CHAIN_B;
732 return CHAIN_C;
736 * Accumulate 20 beacons of signal and noise statistics for each of
737 * 3 receivers/antennas/rx-chains, then figure out:
738 * 1) Which antennas are connected.
739 * 2) Differential rx gain settings to balance the 3 receivers.
741 void iwl_chain_noise_calibration(struct iwl_priv *priv, void *stat_resp)
743 struct iwl_chain_noise_data *data = NULL;
745 u32 chain_noise_a;
746 u32 chain_noise_b;
747 u32 chain_noise_c;
748 u32 chain_sig_a;
749 u32 chain_sig_b;
750 u32 chain_sig_c;
751 u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
752 u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
753 u32 max_average_sig;
754 u16 max_average_sig_antenna_i;
755 u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
756 u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
757 u16 i = 0;
758 u16 rxon_chnum = INITIALIZATION_VALUE;
759 u16 stat_chnum = INITIALIZATION_VALUE;
760 u8 rxon_band24;
761 u8 stat_band24;
762 u32 active_chains = 0;
763 u8 num_tx_chains;
764 unsigned long flags;
765 struct statistics_rx_non_phy *rx_info;
766 u8 first_chain;
768 * MULTI-FIXME:
769 * When we support multiple interfaces on different channels,
770 * this must be modified/fixed.
772 struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
774 if (priv->disable_chain_noise_cal)
775 return;
777 data = &(priv->chain_noise_data);
780 * Accumulate just the first "chain_noise_num_beacons" after
781 * the first association, then we're done forever.
783 if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
784 if (data->state == IWL_CHAIN_NOISE_ALIVE)
785 IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n");
786 return;
789 spin_lock_irqsave(&priv->lock, flags);
790 if (priv->cfg->bt_params &&
791 priv->cfg->bt_params->bt_statistics) {
792 rx_info = &(((struct iwl_bt_notif_statistics *)stat_resp)->
793 rx.general.common);
794 } else {
795 rx_info = &(((struct iwl_notif_statistics *)stat_resp)->
796 rx.general);
798 if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
799 IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n");
800 spin_unlock_irqrestore(&priv->lock, flags);
801 return;
804 rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK);
805 rxon_chnum = le16_to_cpu(ctx->staging.channel);
806 if (priv->cfg->bt_params &&
807 priv->cfg->bt_params->bt_statistics) {
808 stat_band24 = !!(((struct iwl_bt_notif_statistics *)
809 stat_resp)->flag &
810 STATISTICS_REPLY_FLG_BAND_24G_MSK);
811 stat_chnum = le32_to_cpu(((struct iwl_bt_notif_statistics *)
812 stat_resp)->flag) >> 16;
813 } else {
814 stat_band24 = !!(((struct iwl_notif_statistics *)
815 stat_resp)->flag &
816 STATISTICS_REPLY_FLG_BAND_24G_MSK);
817 stat_chnum = le32_to_cpu(((struct iwl_notif_statistics *)
818 stat_resp)->flag) >> 16;
821 /* Make sure we accumulate data for just the associated channel
822 * (even if scanning). */
823 if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
824 IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n",
825 rxon_chnum, rxon_band24);
826 spin_unlock_irqrestore(&priv->lock, flags);
827 return;
831 * Accumulate beacon statistics values across
832 * "chain_noise_num_beacons"
834 chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
835 IN_BAND_FILTER;
836 chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
837 IN_BAND_FILTER;
838 chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
839 IN_BAND_FILTER;
841 chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
842 chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
843 chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
845 spin_unlock_irqrestore(&priv->lock, flags);
847 data->beacon_count++;
849 data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
850 data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
851 data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
853 data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
854 data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
855 data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
857 IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n",
858 rxon_chnum, rxon_band24, data->beacon_count);
859 IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n",
860 chain_sig_a, chain_sig_b, chain_sig_c);
861 IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n",
862 chain_noise_a, chain_noise_b, chain_noise_c);
864 /* If this is the "chain_noise_num_beacons", determine:
865 * 1) Disconnected antennas (using signal strengths)
866 * 2) Differential gain (using silence noise) to balance receivers */
867 if (data->beacon_count !=
868 priv->cfg->base_params->chain_noise_num_beacons)
869 return;
871 /* Analyze signal for disconnected antenna */
872 average_sig[0] = data->chain_signal_a /
873 priv->cfg->base_params->chain_noise_num_beacons;
874 average_sig[1] = data->chain_signal_b /
875 priv->cfg->base_params->chain_noise_num_beacons;
876 average_sig[2] = data->chain_signal_c /
877 priv->cfg->base_params->chain_noise_num_beacons;
879 if (average_sig[0] >= average_sig[1]) {
880 max_average_sig = average_sig[0];
881 max_average_sig_antenna_i = 0;
882 active_chains = (1 << max_average_sig_antenna_i);
883 } else {
884 max_average_sig = average_sig[1];
885 max_average_sig_antenna_i = 1;
886 active_chains = (1 << max_average_sig_antenna_i);
889 if (average_sig[2] >= max_average_sig) {
890 max_average_sig = average_sig[2];
891 max_average_sig_antenna_i = 2;
892 active_chains = (1 << max_average_sig_antenna_i);
895 IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n",
896 average_sig[0], average_sig[1], average_sig[2]);
897 IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n",
898 max_average_sig, max_average_sig_antenna_i);
900 /* Compare signal strengths for all 3 receivers. */
901 for (i = 0; i < NUM_RX_CHAINS; i++) {
902 if (i != max_average_sig_antenna_i) {
903 s32 rssi_delta = (max_average_sig - average_sig[i]);
905 /* If signal is very weak, compared with
906 * strongest, mark it as disconnected. */
907 if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
908 data->disconn_array[i] = 1;
909 else
910 active_chains |= (1 << i);
911 IWL_DEBUG_CALIB(priv, "i = %d rssiDelta = %d "
912 "disconn_array[i] = %d\n",
913 i, rssi_delta, data->disconn_array[i]);
918 * The above algorithm sometimes fails when the ucode
919 * reports 0 for all chains. It's not clear why that
920 * happens to start with, but it is then causing trouble
921 * because this can make us enable more chains than the
922 * hardware really has.
924 * To be safe, simply mask out any chains that we know
925 * are not on the device.
927 if (priv->cfg->bt_params &&
928 priv->cfg->bt_params->advanced_bt_coexist &&
929 priv->bt_full_concurrent) {
930 /* operated as 1x1 in full concurrency mode */
931 active_chains &= first_antenna(priv->hw_params.valid_rx_ant);
932 } else
933 active_chains &= priv->hw_params.valid_rx_ant;
935 num_tx_chains = 0;
936 for (i = 0; i < NUM_RX_CHAINS; i++) {
937 /* loops on all the bits of
938 * priv->hw_setting.valid_tx_ant */
939 u8 ant_msk = (1 << i);
940 if (!(priv->hw_params.valid_tx_ant & ant_msk))
941 continue;
943 num_tx_chains++;
944 if (data->disconn_array[i] == 0)
945 /* there is a Tx antenna connected */
946 break;
947 if (num_tx_chains == priv->hw_params.tx_chains_num &&
948 data->disconn_array[i]) {
950 * If all chains are disconnected
951 * connect the first valid tx chain
953 first_chain =
954 find_first_chain(priv->cfg->valid_tx_ant);
955 data->disconn_array[first_chain] = 0;
956 active_chains |= BIT(first_chain);
957 IWL_DEBUG_CALIB(priv, "All Tx chains are disconnected W/A - declare %d as connected\n",
958 first_chain);
959 break;
963 if (active_chains != priv->hw_params.valid_rx_ant &&
964 active_chains != priv->chain_noise_data.active_chains)
965 IWL_DEBUG_CALIB(priv,
966 "Detected that not all antennas are connected! "
967 "Connected: %#x, valid: %#x.\n",
968 active_chains, priv->hw_params.valid_rx_ant);
970 /* Save for use within RXON, TX, SCAN commands, etc. */
971 priv->chain_noise_data.active_chains = active_chains;
972 IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n",
973 active_chains);
975 /* Analyze noise for rx balance */
976 average_noise[0] = data->chain_noise_a /
977 priv->cfg->base_params->chain_noise_num_beacons;
978 average_noise[1] = data->chain_noise_b /
979 priv->cfg->base_params->chain_noise_num_beacons;
980 average_noise[2] = data->chain_noise_c /
981 priv->cfg->base_params->chain_noise_num_beacons;
983 for (i = 0; i < NUM_RX_CHAINS; i++) {
984 if (!(data->disconn_array[i]) &&
985 (average_noise[i] <= min_average_noise)) {
986 /* This means that chain i is active and has
987 * lower noise values so far: */
988 min_average_noise = average_noise[i];
989 min_average_noise_antenna_i = i;
993 IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n",
994 average_noise[0], average_noise[1],
995 average_noise[2]);
997 IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n",
998 min_average_noise, min_average_noise_antenna_i);
1000 if (priv->cfg->ops->utils->gain_computation)
1001 priv->cfg->ops->utils->gain_computation(priv, average_noise,
1002 min_average_noise_antenna_i, min_average_noise,
1003 find_first_chain(priv->cfg->valid_rx_ant));
1005 /* Some power changes may have been made during the calibration.
1006 * Update and commit the RXON
1008 if (priv->cfg->ops->lib->update_chain_flags)
1009 priv->cfg->ops->lib->update_chain_flags(priv);
1011 data->state = IWL_CHAIN_NOISE_DONE;
1012 iwl_power_update_mode(priv, false);
1015 void iwl_reset_run_time_calib(struct iwl_priv *priv)
1017 int i;
1018 memset(&(priv->sensitivity_data), 0,
1019 sizeof(struct iwl_sensitivity_data));
1020 memset(&(priv->chain_noise_data), 0,
1021 sizeof(struct iwl_chain_noise_data));
1022 for (i = 0; i < NUM_RX_CHAINS; i++)
1023 priv->chain_noise_data.delta_gain_code[i] =
1024 CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
1026 /* Ask for statistics now, the uCode will send notification
1027 * periodically after association */
1028 iwl_send_statistics_request(priv, CMD_ASYNC, true);