2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_mutex
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
35 * inode_wb_list_lock (in set_page_dirty's __mark_inode_dirty)
36 * sb_lock (within inode_lock in fs/fs-writeback.c)
37 * mapping->tree_lock (widely used, in set_page_dirty,
38 * in arch-dependent flush_dcache_mmap_lock,
39 * within inode_wb_list_lock in __sync_single_inode)
41 * (code doesn't rely on that order so it could be switched around)
43 * anon_vma->mutex (memory_failure, collect_procs_anon)
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/swapops.h>
51 #include <linux/slab.h>
52 #include <linux/init.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/rcupdate.h>
56 #include <linux/module.h>
57 #include <linux/memcontrol.h>
58 #include <linux/mmu_notifier.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
62 #include <asm/tlbflush.h>
66 static struct kmem_cache
*anon_vma_cachep
;
67 static struct kmem_cache
*anon_vma_chain_cachep
;
69 static inline struct anon_vma
*anon_vma_alloc(void)
71 struct anon_vma
*anon_vma
;
73 anon_vma
= kmem_cache_alloc(anon_vma_cachep
, GFP_KERNEL
);
75 atomic_set(&anon_vma
->refcount
, 1);
77 * Initialise the anon_vma root to point to itself. If called
78 * from fork, the root will be reset to the parents anon_vma.
80 anon_vma
->root
= anon_vma
;
86 static inline void anon_vma_free(struct anon_vma
*anon_vma
)
88 VM_BUG_ON(atomic_read(&anon_vma
->refcount
));
91 * Synchronize against page_lock_anon_vma() such that
92 * we can safely hold the lock without the anon_vma getting
95 * Relies on the full mb implied by the atomic_dec_and_test() from
96 * put_anon_vma() against the acquire barrier implied by
97 * mutex_trylock() from page_lock_anon_vma(). This orders:
99 * page_lock_anon_vma() VS put_anon_vma()
100 * mutex_trylock() atomic_dec_and_test()
102 * atomic_read() mutex_is_locked()
104 * LOCK should suffice since the actual taking of the lock must
105 * happen _before_ what follows.
107 if (mutex_is_locked(&anon_vma
->root
->mutex
)) {
108 anon_vma_lock(anon_vma
);
109 anon_vma_unlock(anon_vma
);
112 kmem_cache_free(anon_vma_cachep
, anon_vma
);
115 static inline struct anon_vma_chain
*anon_vma_chain_alloc(gfp_t gfp
)
117 return kmem_cache_alloc(anon_vma_chain_cachep
, gfp
);
120 static void anon_vma_chain_free(struct anon_vma_chain
*anon_vma_chain
)
122 kmem_cache_free(anon_vma_chain_cachep
, anon_vma_chain
);
126 * anon_vma_prepare - attach an anon_vma to a memory region
127 * @vma: the memory region in question
129 * This makes sure the memory mapping described by 'vma' has
130 * an 'anon_vma' attached to it, so that we can associate the
131 * anonymous pages mapped into it with that anon_vma.
133 * The common case will be that we already have one, but if
134 * not we either need to find an adjacent mapping that we
135 * can re-use the anon_vma from (very common when the only
136 * reason for splitting a vma has been mprotect()), or we
137 * allocate a new one.
139 * Anon-vma allocations are very subtle, because we may have
140 * optimistically looked up an anon_vma in page_lock_anon_vma()
141 * and that may actually touch the spinlock even in the newly
142 * allocated vma (it depends on RCU to make sure that the
143 * anon_vma isn't actually destroyed).
145 * As a result, we need to do proper anon_vma locking even
146 * for the new allocation. At the same time, we do not want
147 * to do any locking for the common case of already having
150 * This must be called with the mmap_sem held for reading.
152 int anon_vma_prepare(struct vm_area_struct
*vma
)
154 struct anon_vma
*anon_vma
= vma
->anon_vma
;
155 struct anon_vma_chain
*avc
;
158 if (unlikely(!anon_vma
)) {
159 struct mm_struct
*mm
= vma
->vm_mm
;
160 struct anon_vma
*allocated
;
162 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
166 anon_vma
= find_mergeable_anon_vma(vma
);
169 anon_vma
= anon_vma_alloc();
170 if (unlikely(!anon_vma
))
171 goto out_enomem_free_avc
;
172 allocated
= anon_vma
;
175 anon_vma_lock(anon_vma
);
176 /* page_table_lock to protect against threads */
177 spin_lock(&mm
->page_table_lock
);
178 if (likely(!vma
->anon_vma
)) {
179 vma
->anon_vma
= anon_vma
;
180 avc
->anon_vma
= anon_vma
;
182 list_add(&avc
->same_vma
, &vma
->anon_vma_chain
);
183 list_add_tail(&avc
->same_anon_vma
, &anon_vma
->head
);
187 spin_unlock(&mm
->page_table_lock
);
188 anon_vma_unlock(anon_vma
);
190 if (unlikely(allocated
))
191 put_anon_vma(allocated
);
193 anon_vma_chain_free(avc
);
198 anon_vma_chain_free(avc
);
204 * This is a useful helper function for locking the anon_vma root as
205 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
208 * Such anon_vma's should have the same root, so you'd expect to see
209 * just a single mutex_lock for the whole traversal.
211 static inline struct anon_vma
*lock_anon_vma_root(struct anon_vma
*root
, struct anon_vma
*anon_vma
)
213 struct anon_vma
*new_root
= anon_vma
->root
;
214 if (new_root
!= root
) {
215 if (WARN_ON_ONCE(root
))
216 mutex_unlock(&root
->mutex
);
218 mutex_lock(&root
->mutex
);
223 static inline void unlock_anon_vma_root(struct anon_vma
*root
)
226 mutex_unlock(&root
->mutex
);
229 static void anon_vma_chain_link(struct vm_area_struct
*vma
,
230 struct anon_vma_chain
*avc
,
231 struct anon_vma
*anon_vma
)
234 avc
->anon_vma
= anon_vma
;
235 list_add(&avc
->same_vma
, &vma
->anon_vma_chain
);
238 * It's critical to add new vmas to the tail of the anon_vma,
239 * see comment in huge_memory.c:__split_huge_page().
241 list_add_tail(&avc
->same_anon_vma
, &anon_vma
->head
);
245 * Attach the anon_vmas from src to dst.
246 * Returns 0 on success, -ENOMEM on failure.
248 int anon_vma_clone(struct vm_area_struct
*dst
, struct vm_area_struct
*src
)
250 struct anon_vma_chain
*avc
, *pavc
;
251 struct anon_vma
*root
= NULL
;
253 list_for_each_entry_reverse(pavc
, &src
->anon_vma_chain
, same_vma
) {
254 struct anon_vma
*anon_vma
;
256 avc
= anon_vma_chain_alloc(GFP_NOWAIT
| __GFP_NOWARN
);
257 if (unlikely(!avc
)) {
258 unlock_anon_vma_root(root
);
260 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
264 anon_vma
= pavc
->anon_vma
;
265 root
= lock_anon_vma_root(root
, anon_vma
);
266 anon_vma_chain_link(dst
, avc
, anon_vma
);
268 unlock_anon_vma_root(root
);
272 unlink_anon_vmas(dst
);
277 * Attach vma to its own anon_vma, as well as to the anon_vmas that
278 * the corresponding VMA in the parent process is attached to.
279 * Returns 0 on success, non-zero on failure.
281 int anon_vma_fork(struct vm_area_struct
*vma
, struct vm_area_struct
*pvma
)
283 struct anon_vma_chain
*avc
;
284 struct anon_vma
*anon_vma
;
286 /* Don't bother if the parent process has no anon_vma here. */
291 * First, attach the new VMA to the parent VMA's anon_vmas,
292 * so rmap can find non-COWed pages in child processes.
294 if (anon_vma_clone(vma
, pvma
))
297 /* Then add our own anon_vma. */
298 anon_vma
= anon_vma_alloc();
301 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
303 goto out_error_free_anon_vma
;
306 * The root anon_vma's spinlock is the lock actually used when we
307 * lock any of the anon_vmas in this anon_vma tree.
309 anon_vma
->root
= pvma
->anon_vma
->root
;
311 * With refcounts, an anon_vma can stay around longer than the
312 * process it belongs to. The root anon_vma needs to be pinned until
313 * this anon_vma is freed, because the lock lives in the root.
315 get_anon_vma(anon_vma
->root
);
316 /* Mark this anon_vma as the one where our new (COWed) pages go. */
317 vma
->anon_vma
= anon_vma
;
318 anon_vma_lock(anon_vma
);
319 anon_vma_chain_link(vma
, avc
, anon_vma
);
320 anon_vma_unlock(anon_vma
);
324 out_error_free_anon_vma
:
325 put_anon_vma(anon_vma
);
327 unlink_anon_vmas(vma
);
331 void unlink_anon_vmas(struct vm_area_struct
*vma
)
333 struct anon_vma_chain
*avc
, *next
;
334 struct anon_vma
*root
= NULL
;
337 * Unlink each anon_vma chained to the VMA. This list is ordered
338 * from newest to oldest, ensuring the root anon_vma gets freed last.
340 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
341 struct anon_vma
*anon_vma
= avc
->anon_vma
;
343 root
= lock_anon_vma_root(root
, anon_vma
);
344 list_del(&avc
->same_anon_vma
);
347 * Leave empty anon_vmas on the list - we'll need
348 * to free them outside the lock.
350 if (list_empty(&anon_vma
->head
))
353 list_del(&avc
->same_vma
);
354 anon_vma_chain_free(avc
);
356 unlock_anon_vma_root(root
);
359 * Iterate the list once more, it now only contains empty and unlinked
360 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
361 * needing to acquire the anon_vma->root->mutex.
363 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
364 struct anon_vma
*anon_vma
= avc
->anon_vma
;
366 put_anon_vma(anon_vma
);
368 list_del(&avc
->same_vma
);
369 anon_vma_chain_free(avc
);
373 static void anon_vma_ctor(void *data
)
375 struct anon_vma
*anon_vma
= data
;
377 mutex_init(&anon_vma
->mutex
);
378 atomic_set(&anon_vma
->refcount
, 0);
379 INIT_LIST_HEAD(&anon_vma
->head
);
382 void __init
anon_vma_init(void)
384 anon_vma_cachep
= kmem_cache_create("anon_vma", sizeof(struct anon_vma
),
385 0, SLAB_DESTROY_BY_RCU
|SLAB_PANIC
, anon_vma_ctor
);
386 anon_vma_chain_cachep
= KMEM_CACHE(anon_vma_chain
, SLAB_PANIC
);
390 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
392 * Since there is no serialization what so ever against page_remove_rmap()
393 * the best this function can do is return a locked anon_vma that might
394 * have been relevant to this page.
396 * The page might have been remapped to a different anon_vma or the anon_vma
397 * returned may already be freed (and even reused).
399 * In case it was remapped to a different anon_vma, the new anon_vma will be a
400 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
401 * ensure that any anon_vma obtained from the page will still be valid for as
402 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
404 * All users of this function must be very careful when walking the anon_vma
405 * chain and verify that the page in question is indeed mapped in it
406 * [ something equivalent to page_mapped_in_vma() ].
408 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
409 * that the anon_vma pointer from page->mapping is valid if there is a
410 * mapcount, we can dereference the anon_vma after observing those.
412 struct anon_vma
*page_get_anon_vma(struct page
*page
)
414 struct anon_vma
*anon_vma
= NULL
;
415 unsigned long anon_mapping
;
418 anon_mapping
= (unsigned long) ACCESS_ONCE(page
->mapping
);
419 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
421 if (!page_mapped(page
))
424 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
425 if (!atomic_inc_not_zero(&anon_vma
->refcount
)) {
431 * If this page is still mapped, then its anon_vma cannot have been
432 * freed. But if it has been unmapped, we have no security against the
433 * anon_vma structure being freed and reused (for another anon_vma:
434 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
435 * above cannot corrupt).
437 if (!page_mapped(page
)) {
438 put_anon_vma(anon_vma
);
448 * Similar to page_get_anon_vma() except it locks the anon_vma.
450 * Its a little more complex as it tries to keep the fast path to a single
451 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
452 * reference like with page_get_anon_vma() and then block on the mutex.
454 struct anon_vma
*page_lock_anon_vma(struct page
*page
)
456 struct anon_vma
*anon_vma
= NULL
;
457 struct anon_vma
*root_anon_vma
;
458 unsigned long anon_mapping
;
461 anon_mapping
= (unsigned long) ACCESS_ONCE(page
->mapping
);
462 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
464 if (!page_mapped(page
))
467 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
468 root_anon_vma
= ACCESS_ONCE(anon_vma
->root
);
469 if (mutex_trylock(&root_anon_vma
->mutex
)) {
471 * If the page is still mapped, then this anon_vma is still
472 * its anon_vma, and holding the mutex ensures that it will
473 * not go away, see anon_vma_free().
475 if (!page_mapped(page
)) {
476 mutex_unlock(&root_anon_vma
->mutex
);
482 /* trylock failed, we got to sleep */
483 if (!atomic_inc_not_zero(&anon_vma
->refcount
)) {
488 if (!page_mapped(page
)) {
489 put_anon_vma(anon_vma
);
494 /* we pinned the anon_vma, its safe to sleep */
496 anon_vma_lock(anon_vma
);
498 if (atomic_dec_and_test(&anon_vma
->refcount
)) {
500 * Oops, we held the last refcount, release the lock
501 * and bail -- can't simply use put_anon_vma() because
502 * we'll deadlock on the anon_vma_lock() recursion.
504 anon_vma_unlock(anon_vma
);
505 __put_anon_vma(anon_vma
);
516 void page_unlock_anon_vma(struct anon_vma
*anon_vma
)
518 anon_vma_unlock(anon_vma
);
522 * At what user virtual address is page expected in @vma?
523 * Returns virtual address or -EFAULT if page's index/offset is not
524 * within the range mapped the @vma.
527 vma_address(struct page
*page
, struct vm_area_struct
*vma
)
529 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
530 unsigned long address
;
532 if (unlikely(is_vm_hugetlb_page(vma
)))
533 pgoff
= page
->index
<< huge_page_order(page_hstate(page
));
534 address
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
535 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
)) {
536 /* page should be within @vma mapping range */
543 * At what user virtual address is page expected in vma?
544 * Caller should check the page is actually part of the vma.
546 unsigned long page_address_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
548 if (PageAnon(page
)) {
549 struct anon_vma
*page__anon_vma
= page_anon_vma(page
);
551 * Note: swapoff's unuse_vma() is more efficient with this
552 * check, and needs it to match anon_vma when KSM is active.
554 if (!vma
->anon_vma
|| !page__anon_vma
||
555 vma
->anon_vma
->root
!= page__anon_vma
->root
)
557 } else if (page
->mapping
&& !(vma
->vm_flags
& VM_NONLINEAR
)) {
559 vma
->vm_file
->f_mapping
!= page
->mapping
)
563 return vma_address(page
, vma
);
567 * Check that @page is mapped at @address into @mm.
569 * If @sync is false, page_check_address may perform a racy check to avoid
570 * the page table lock when the pte is not present (helpful when reclaiming
571 * highly shared pages).
573 * On success returns with pte mapped and locked.
575 pte_t
*__page_check_address(struct page
*page
, struct mm_struct
*mm
,
576 unsigned long address
, spinlock_t
**ptlp
, int sync
)
584 if (unlikely(PageHuge(page
))) {
585 pte
= huge_pte_offset(mm
, address
);
586 ptl
= &mm
->page_table_lock
;
590 pgd
= pgd_offset(mm
, address
);
591 if (!pgd_present(*pgd
))
594 pud
= pud_offset(pgd
, address
);
595 if (!pud_present(*pud
))
598 pmd
= pmd_offset(pud
, address
);
599 if (!pmd_present(*pmd
))
601 if (pmd_trans_huge(*pmd
))
604 pte
= pte_offset_map(pmd
, address
);
605 /* Make a quick check before getting the lock */
606 if (!sync
&& !pte_present(*pte
)) {
611 ptl
= pte_lockptr(mm
, pmd
);
614 if (pte_present(*pte
) && page_to_pfn(page
) == pte_pfn(*pte
)) {
618 pte_unmap_unlock(pte
, ptl
);
623 * page_mapped_in_vma - check whether a page is really mapped in a VMA
624 * @page: the page to test
625 * @vma: the VMA to test
627 * Returns 1 if the page is mapped into the page tables of the VMA, 0
628 * if the page is not mapped into the page tables of this VMA. Only
629 * valid for normal file or anonymous VMAs.
631 int page_mapped_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
633 unsigned long address
;
637 address
= vma_address(page
, vma
);
638 if (address
== -EFAULT
) /* out of vma range */
640 pte
= page_check_address(page
, vma
->vm_mm
, address
, &ptl
, 1);
641 if (!pte
) /* the page is not in this mm */
643 pte_unmap_unlock(pte
, ptl
);
649 * Subfunctions of page_referenced: page_referenced_one called
650 * repeatedly from either page_referenced_anon or page_referenced_file.
652 int page_referenced_one(struct page
*page
, struct vm_area_struct
*vma
,
653 unsigned long address
, unsigned int *mapcount
,
654 unsigned long *vm_flags
)
656 struct mm_struct
*mm
= vma
->vm_mm
;
659 if (unlikely(PageTransHuge(page
))) {
662 spin_lock(&mm
->page_table_lock
);
664 * rmap might return false positives; we must filter
665 * these out using page_check_address_pmd().
667 pmd
= page_check_address_pmd(page
, mm
, address
,
668 PAGE_CHECK_ADDRESS_PMD_FLAG
);
670 spin_unlock(&mm
->page_table_lock
);
674 if (vma
->vm_flags
& VM_LOCKED
) {
675 spin_unlock(&mm
->page_table_lock
);
676 *mapcount
= 0; /* break early from loop */
677 *vm_flags
|= VM_LOCKED
;
681 /* go ahead even if the pmd is pmd_trans_splitting() */
682 if (pmdp_clear_flush_young_notify(vma
, address
, pmd
))
684 spin_unlock(&mm
->page_table_lock
);
690 * rmap might return false positives; we must filter
691 * these out using page_check_address().
693 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
697 if (vma
->vm_flags
& VM_LOCKED
) {
698 pte_unmap_unlock(pte
, ptl
);
699 *mapcount
= 0; /* break early from loop */
700 *vm_flags
|= VM_LOCKED
;
704 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
706 * Don't treat a reference through a sequentially read
707 * mapping as such. If the page has been used in
708 * another mapping, we will catch it; if this other
709 * mapping is already gone, the unmap path will have
710 * set PG_referenced or activated the page.
712 if (likely(!VM_SequentialReadHint(vma
)))
715 pte_unmap_unlock(pte
, ptl
);
718 /* Pretend the page is referenced if the task has the
719 swap token and is in the middle of a page fault. */
720 if (mm
!= current
->mm
&& has_swap_token(mm
) &&
721 rwsem_is_locked(&mm
->mmap_sem
))
727 *vm_flags
|= vma
->vm_flags
;
732 static int page_referenced_anon(struct page
*page
,
733 struct mem_cgroup
*mem_cont
,
734 unsigned long *vm_flags
)
736 unsigned int mapcount
;
737 struct anon_vma
*anon_vma
;
738 struct anon_vma_chain
*avc
;
741 anon_vma
= page_lock_anon_vma(page
);
745 mapcount
= page_mapcount(page
);
746 list_for_each_entry(avc
, &anon_vma
->head
, same_anon_vma
) {
747 struct vm_area_struct
*vma
= avc
->vma
;
748 unsigned long address
= vma_address(page
, vma
);
749 if (address
== -EFAULT
)
752 * If we are reclaiming on behalf of a cgroup, skip
753 * counting on behalf of references from different
756 if (mem_cont
&& !mm_match_cgroup(vma
->vm_mm
, mem_cont
))
758 referenced
+= page_referenced_one(page
, vma
, address
,
759 &mapcount
, vm_flags
);
764 page_unlock_anon_vma(anon_vma
);
769 * page_referenced_file - referenced check for object-based rmap
770 * @page: the page we're checking references on.
771 * @mem_cont: target memory controller
772 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
774 * For an object-based mapped page, find all the places it is mapped and
775 * check/clear the referenced flag. This is done by following the page->mapping
776 * pointer, then walking the chain of vmas it holds. It returns the number
777 * of references it found.
779 * This function is only called from page_referenced for object-based pages.
781 static int page_referenced_file(struct page
*page
,
782 struct mem_cgroup
*mem_cont
,
783 unsigned long *vm_flags
)
785 unsigned int mapcount
;
786 struct address_space
*mapping
= page
->mapping
;
787 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
788 struct vm_area_struct
*vma
;
789 struct prio_tree_iter iter
;
793 * The caller's checks on page->mapping and !PageAnon have made
794 * sure that this is a file page: the check for page->mapping
795 * excludes the case just before it gets set on an anon page.
797 BUG_ON(PageAnon(page
));
800 * The page lock not only makes sure that page->mapping cannot
801 * suddenly be NULLified by truncation, it makes sure that the
802 * structure at mapping cannot be freed and reused yet,
803 * so we can safely take mapping->i_mmap_mutex.
805 BUG_ON(!PageLocked(page
));
807 mutex_lock(&mapping
->i_mmap_mutex
);
810 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
811 * is more likely to be accurate if we note it after spinning.
813 mapcount
= page_mapcount(page
);
815 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
816 unsigned long address
= vma_address(page
, vma
);
817 if (address
== -EFAULT
)
820 * If we are reclaiming on behalf of a cgroup, skip
821 * counting on behalf of references from different
824 if (mem_cont
&& !mm_match_cgroup(vma
->vm_mm
, mem_cont
))
826 referenced
+= page_referenced_one(page
, vma
, address
,
827 &mapcount
, vm_flags
);
832 mutex_unlock(&mapping
->i_mmap_mutex
);
837 * page_referenced - test if the page was referenced
838 * @page: the page to test
839 * @is_locked: caller holds lock on the page
840 * @mem_cont: target memory controller
841 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
843 * Quick test_and_clear_referenced for all mappings to a page,
844 * returns the number of ptes which referenced the page.
846 int page_referenced(struct page
*page
,
848 struct mem_cgroup
*mem_cont
,
849 unsigned long *vm_flags
)
855 if (page_mapped(page
) && page_rmapping(page
)) {
856 if (!is_locked
&& (!PageAnon(page
) || PageKsm(page
))) {
857 we_locked
= trylock_page(page
);
863 if (unlikely(PageKsm(page
)))
864 referenced
+= page_referenced_ksm(page
, mem_cont
,
866 else if (PageAnon(page
))
867 referenced
+= page_referenced_anon(page
, mem_cont
,
869 else if (page
->mapping
)
870 referenced
+= page_referenced_file(page
, mem_cont
,
876 if (page_test_and_clear_young(page_to_pfn(page
)))
882 static int page_mkclean_one(struct page
*page
, struct vm_area_struct
*vma
,
883 unsigned long address
)
885 struct mm_struct
*mm
= vma
->vm_mm
;
890 pte
= page_check_address(page
, mm
, address
, &ptl
, 1);
894 if (pte_dirty(*pte
) || pte_write(*pte
)) {
897 flush_cache_page(vma
, address
, pte_pfn(*pte
));
898 entry
= ptep_clear_flush_notify(vma
, address
, pte
);
899 entry
= pte_wrprotect(entry
);
900 entry
= pte_mkclean(entry
);
901 set_pte_at(mm
, address
, pte
, entry
);
905 pte_unmap_unlock(pte
, ptl
);
910 static int page_mkclean_file(struct address_space
*mapping
, struct page
*page
)
912 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
913 struct vm_area_struct
*vma
;
914 struct prio_tree_iter iter
;
917 BUG_ON(PageAnon(page
));
919 mutex_lock(&mapping
->i_mmap_mutex
);
920 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
921 if (vma
->vm_flags
& VM_SHARED
) {
922 unsigned long address
= vma_address(page
, vma
);
923 if (address
== -EFAULT
)
925 ret
+= page_mkclean_one(page
, vma
, address
);
928 mutex_unlock(&mapping
->i_mmap_mutex
);
932 int page_mkclean(struct page
*page
)
936 BUG_ON(!PageLocked(page
));
938 if (page_mapped(page
)) {
939 struct address_space
*mapping
= page_mapping(page
);
941 ret
= page_mkclean_file(mapping
, page
);
942 if (page_test_and_clear_dirty(page_to_pfn(page
), 1))
949 EXPORT_SYMBOL_GPL(page_mkclean
);
952 * page_move_anon_rmap - move a page to our anon_vma
953 * @page: the page to move to our anon_vma
954 * @vma: the vma the page belongs to
955 * @address: the user virtual address mapped
957 * When a page belongs exclusively to one process after a COW event,
958 * that page can be moved into the anon_vma that belongs to just that
959 * process, so the rmap code will not search the parent or sibling
962 void page_move_anon_rmap(struct page
*page
,
963 struct vm_area_struct
*vma
, unsigned long address
)
965 struct anon_vma
*anon_vma
= vma
->anon_vma
;
967 VM_BUG_ON(!PageLocked(page
));
968 VM_BUG_ON(!anon_vma
);
969 VM_BUG_ON(page
->index
!= linear_page_index(vma
, address
));
971 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
972 page
->mapping
= (struct address_space
*) anon_vma
;
976 * __page_set_anon_rmap - set up new anonymous rmap
977 * @page: Page to add to rmap
978 * @vma: VM area to add page to.
979 * @address: User virtual address of the mapping
980 * @exclusive: the page is exclusively owned by the current process
982 static void __page_set_anon_rmap(struct page
*page
,
983 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
985 struct anon_vma
*anon_vma
= vma
->anon_vma
;
993 * If the page isn't exclusively mapped into this vma,
994 * we must use the _oldest_ possible anon_vma for the
998 anon_vma
= anon_vma
->root
;
1000 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
1001 page
->mapping
= (struct address_space
*) anon_vma
;
1002 page
->index
= linear_page_index(vma
, address
);
1006 * __page_check_anon_rmap - sanity check anonymous rmap addition
1007 * @page: the page to add the mapping to
1008 * @vma: the vm area in which the mapping is added
1009 * @address: the user virtual address mapped
1011 static void __page_check_anon_rmap(struct page
*page
,
1012 struct vm_area_struct
*vma
, unsigned long address
)
1014 #ifdef CONFIG_DEBUG_VM
1016 * The page's anon-rmap details (mapping and index) are guaranteed to
1017 * be set up correctly at this point.
1019 * We have exclusion against page_add_anon_rmap because the caller
1020 * always holds the page locked, except if called from page_dup_rmap,
1021 * in which case the page is already known to be setup.
1023 * We have exclusion against page_add_new_anon_rmap because those pages
1024 * are initially only visible via the pagetables, and the pte is locked
1025 * over the call to page_add_new_anon_rmap.
1027 BUG_ON(page_anon_vma(page
)->root
!= vma
->anon_vma
->root
);
1028 BUG_ON(page
->index
!= linear_page_index(vma
, address
));
1033 * page_add_anon_rmap - add pte mapping to an anonymous page
1034 * @page: the page to add the mapping to
1035 * @vma: the vm area in which the mapping is added
1036 * @address: the user virtual address mapped
1038 * The caller needs to hold the pte lock, and the page must be locked in
1039 * the anon_vma case: to serialize mapping,index checking after setting,
1040 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1041 * (but PageKsm is never downgraded to PageAnon).
1043 void page_add_anon_rmap(struct page
*page
,
1044 struct vm_area_struct
*vma
, unsigned long address
)
1046 do_page_add_anon_rmap(page
, vma
, address
, 0);
1050 * Special version of the above for do_swap_page, which often runs
1051 * into pages that are exclusively owned by the current process.
1052 * Everybody else should continue to use page_add_anon_rmap above.
1054 void do_page_add_anon_rmap(struct page
*page
,
1055 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
1057 int first
= atomic_inc_and_test(&page
->_mapcount
);
1059 if (!PageTransHuge(page
))
1060 __inc_zone_page_state(page
, NR_ANON_PAGES
);
1062 __inc_zone_page_state(page
,
1063 NR_ANON_TRANSPARENT_HUGEPAGES
);
1065 if (unlikely(PageKsm(page
)))
1068 VM_BUG_ON(!PageLocked(page
));
1069 /* address might be in next vma when migration races vma_adjust */
1071 __page_set_anon_rmap(page
, vma
, address
, exclusive
);
1073 __page_check_anon_rmap(page
, vma
, address
);
1077 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1078 * @page: the page to add the mapping to
1079 * @vma: the vm area in which the mapping is added
1080 * @address: the user virtual address mapped
1082 * Same as page_add_anon_rmap but must only be called on *new* pages.
1083 * This means the inc-and-test can be bypassed.
1084 * Page does not have to be locked.
1086 void page_add_new_anon_rmap(struct page
*page
,
1087 struct vm_area_struct
*vma
, unsigned long address
)
1089 VM_BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
1090 SetPageSwapBacked(page
);
1091 atomic_set(&page
->_mapcount
, 0); /* increment count (starts at -1) */
1092 if (!PageTransHuge(page
))
1093 __inc_zone_page_state(page
, NR_ANON_PAGES
);
1095 __inc_zone_page_state(page
, NR_ANON_TRANSPARENT_HUGEPAGES
);
1096 __page_set_anon_rmap(page
, vma
, address
, 1);
1097 if (page_evictable(page
, vma
))
1098 lru_cache_add_lru(page
, LRU_ACTIVE_ANON
);
1100 add_page_to_unevictable_list(page
);
1104 * page_add_file_rmap - add pte mapping to a file page
1105 * @page: the page to add the mapping to
1107 * The caller needs to hold the pte lock.
1109 void page_add_file_rmap(struct page
*page
)
1111 if (atomic_inc_and_test(&page
->_mapcount
)) {
1112 __inc_zone_page_state(page
, NR_FILE_MAPPED
);
1113 mem_cgroup_inc_page_stat(page
, MEMCG_NR_FILE_MAPPED
);
1118 * page_remove_rmap - take down pte mapping from a page
1119 * @page: page to remove mapping from
1121 * The caller needs to hold the pte lock.
1123 void page_remove_rmap(struct page
*page
)
1125 /* page still mapped by someone else? */
1126 if (!atomic_add_negative(-1, &page
->_mapcount
))
1130 * Now that the last pte has gone, s390 must transfer dirty
1131 * flag from storage key to struct page. We can usually skip
1132 * this if the page is anon, so about to be freed; but perhaps
1133 * not if it's in swapcache - there might be another pte slot
1134 * containing the swap entry, but page not yet written to swap.
1136 if ((!PageAnon(page
) || PageSwapCache(page
)) &&
1137 page_test_and_clear_dirty(page_to_pfn(page
), 1))
1138 set_page_dirty(page
);
1140 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1141 * and not charged by memcg for now.
1143 if (unlikely(PageHuge(page
)))
1145 if (PageAnon(page
)) {
1146 mem_cgroup_uncharge_page(page
);
1147 if (!PageTransHuge(page
))
1148 __dec_zone_page_state(page
, NR_ANON_PAGES
);
1150 __dec_zone_page_state(page
,
1151 NR_ANON_TRANSPARENT_HUGEPAGES
);
1153 __dec_zone_page_state(page
, NR_FILE_MAPPED
);
1154 mem_cgroup_dec_page_stat(page
, MEMCG_NR_FILE_MAPPED
);
1157 * It would be tidy to reset the PageAnon mapping here,
1158 * but that might overwrite a racing page_add_anon_rmap
1159 * which increments mapcount after us but sets mapping
1160 * before us: so leave the reset to free_hot_cold_page,
1161 * and remember that it's only reliable while mapped.
1162 * Leaving it set also helps swapoff to reinstate ptes
1163 * faster for those pages still in swapcache.
1168 * Subfunctions of try_to_unmap: try_to_unmap_one called
1169 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
1171 int try_to_unmap_one(struct page
*page
, struct vm_area_struct
*vma
,
1172 unsigned long address
, enum ttu_flags flags
)
1174 struct mm_struct
*mm
= vma
->vm_mm
;
1178 int ret
= SWAP_AGAIN
;
1180 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
1185 * If the page is mlock()d, we cannot swap it out.
1186 * If it's recently referenced (perhaps page_referenced
1187 * skipped over this mm) then we should reactivate it.
1189 if (!(flags
& TTU_IGNORE_MLOCK
)) {
1190 if (vma
->vm_flags
& VM_LOCKED
)
1193 if (TTU_ACTION(flags
) == TTU_MUNLOCK
)
1196 if (!(flags
& TTU_IGNORE_ACCESS
)) {
1197 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
1203 /* Nuke the page table entry. */
1204 flush_cache_page(vma
, address
, page_to_pfn(page
));
1205 pteval
= ptep_clear_flush_notify(vma
, address
, pte
);
1207 /* Move the dirty bit to the physical page now the pte is gone. */
1208 if (pte_dirty(pteval
))
1209 set_page_dirty(page
);
1211 /* Update high watermark before we lower rss */
1212 update_hiwater_rss(mm
);
1214 if (PageHWPoison(page
) && !(flags
& TTU_IGNORE_HWPOISON
)) {
1216 dec_mm_counter(mm
, MM_ANONPAGES
);
1218 dec_mm_counter(mm
, MM_FILEPAGES
);
1219 set_pte_at(mm
, address
, pte
,
1220 swp_entry_to_pte(make_hwpoison_entry(page
)));
1221 } else if (PageAnon(page
)) {
1222 swp_entry_t entry
= { .val
= page_private(page
) };
1224 if (PageSwapCache(page
)) {
1226 * Store the swap location in the pte.
1227 * See handle_pte_fault() ...
1229 if (swap_duplicate(entry
) < 0) {
1230 set_pte_at(mm
, address
, pte
, pteval
);
1234 if (list_empty(&mm
->mmlist
)) {
1235 spin_lock(&mmlist_lock
);
1236 if (list_empty(&mm
->mmlist
))
1237 list_add(&mm
->mmlist
, &init_mm
.mmlist
);
1238 spin_unlock(&mmlist_lock
);
1240 dec_mm_counter(mm
, MM_ANONPAGES
);
1241 inc_mm_counter(mm
, MM_SWAPENTS
);
1242 } else if (PAGE_MIGRATION
) {
1244 * Store the pfn of the page in a special migration
1245 * pte. do_swap_page() will wait until the migration
1246 * pte is removed and then restart fault handling.
1248 BUG_ON(TTU_ACTION(flags
) != TTU_MIGRATION
);
1249 entry
= make_migration_entry(page
, pte_write(pteval
));
1251 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
1252 BUG_ON(pte_file(*pte
));
1253 } else if (PAGE_MIGRATION
&& (TTU_ACTION(flags
) == TTU_MIGRATION
)) {
1254 /* Establish migration entry for a file page */
1256 entry
= make_migration_entry(page
, pte_write(pteval
));
1257 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
1259 dec_mm_counter(mm
, MM_FILEPAGES
);
1261 page_remove_rmap(page
);
1262 page_cache_release(page
);
1265 pte_unmap_unlock(pte
, ptl
);
1270 pte_unmap_unlock(pte
, ptl
);
1274 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1275 * unstable result and race. Plus, We can't wait here because
1276 * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
1277 * if trylock failed, the page remain in evictable lru and later
1278 * vmscan could retry to move the page to unevictable lru if the
1279 * page is actually mlocked.
1281 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
1282 if (vma
->vm_flags
& VM_LOCKED
) {
1283 mlock_vma_page(page
);
1286 up_read(&vma
->vm_mm
->mmap_sem
);
1292 * objrmap doesn't work for nonlinear VMAs because the assumption that
1293 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1294 * Consequently, given a particular page and its ->index, we cannot locate the
1295 * ptes which are mapping that page without an exhaustive linear search.
1297 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1298 * maps the file to which the target page belongs. The ->vm_private_data field
1299 * holds the current cursor into that scan. Successive searches will circulate
1300 * around the vma's virtual address space.
1302 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1303 * more scanning pressure is placed against them as well. Eventually pages
1304 * will become fully unmapped and are eligible for eviction.
1306 * For very sparsely populated VMAs this is a little inefficient - chances are
1307 * there there won't be many ptes located within the scan cluster. In this case
1308 * maybe we could scan further - to the end of the pte page, perhaps.
1310 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1311 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1312 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1313 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1315 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1316 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1318 static int try_to_unmap_cluster(unsigned long cursor
, unsigned int *mapcount
,
1319 struct vm_area_struct
*vma
, struct page
*check_page
)
1321 struct mm_struct
*mm
= vma
->vm_mm
;
1329 unsigned long address
;
1331 int ret
= SWAP_AGAIN
;
1334 address
= (vma
->vm_start
+ cursor
) & CLUSTER_MASK
;
1335 end
= address
+ CLUSTER_SIZE
;
1336 if (address
< vma
->vm_start
)
1337 address
= vma
->vm_start
;
1338 if (end
> vma
->vm_end
)
1341 pgd
= pgd_offset(mm
, address
);
1342 if (!pgd_present(*pgd
))
1345 pud
= pud_offset(pgd
, address
);
1346 if (!pud_present(*pud
))
1349 pmd
= pmd_offset(pud
, address
);
1350 if (!pmd_present(*pmd
))
1354 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1355 * keep the sem while scanning the cluster for mlocking pages.
1357 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
1358 locked_vma
= (vma
->vm_flags
& VM_LOCKED
);
1360 up_read(&vma
->vm_mm
->mmap_sem
); /* don't need it */
1363 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1365 /* Update high watermark before we lower rss */
1366 update_hiwater_rss(mm
);
1368 for (; address
< end
; pte
++, address
+= PAGE_SIZE
) {
1369 if (!pte_present(*pte
))
1371 page
= vm_normal_page(vma
, address
, *pte
);
1372 BUG_ON(!page
|| PageAnon(page
));
1375 mlock_vma_page(page
); /* no-op if already mlocked */
1376 if (page
== check_page
)
1378 continue; /* don't unmap */
1381 if (ptep_clear_flush_young_notify(vma
, address
, pte
))
1384 /* Nuke the page table entry. */
1385 flush_cache_page(vma
, address
, pte_pfn(*pte
));
1386 pteval
= ptep_clear_flush_notify(vma
, address
, pte
);
1388 /* If nonlinear, store the file page offset in the pte. */
1389 if (page
->index
!= linear_page_index(vma
, address
))
1390 set_pte_at(mm
, address
, pte
, pgoff_to_pte(page
->index
));
1392 /* Move the dirty bit to the physical page now the pte is gone. */
1393 if (pte_dirty(pteval
))
1394 set_page_dirty(page
);
1396 page_remove_rmap(page
);
1397 page_cache_release(page
);
1398 dec_mm_counter(mm
, MM_FILEPAGES
);
1401 pte_unmap_unlock(pte
- 1, ptl
);
1403 up_read(&vma
->vm_mm
->mmap_sem
);
1407 bool is_vma_temporary_stack(struct vm_area_struct
*vma
)
1409 int maybe_stack
= vma
->vm_flags
& (VM_GROWSDOWN
| VM_GROWSUP
);
1414 if ((vma
->vm_flags
& VM_STACK_INCOMPLETE_SETUP
) ==
1415 VM_STACK_INCOMPLETE_SETUP
)
1422 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1424 * @page: the page to unmap/unlock
1425 * @flags: action and flags
1427 * Find all the mappings of a page using the mapping pointer and the vma chains
1428 * contained in the anon_vma struct it points to.
1430 * This function is only called from try_to_unmap/try_to_munlock for
1432 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1433 * where the page was found will be held for write. So, we won't recheck
1434 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1437 static int try_to_unmap_anon(struct page
*page
, enum ttu_flags flags
)
1439 struct anon_vma
*anon_vma
;
1440 struct anon_vma_chain
*avc
;
1441 int ret
= SWAP_AGAIN
;
1443 anon_vma
= page_lock_anon_vma(page
);
1447 list_for_each_entry(avc
, &anon_vma
->head
, same_anon_vma
) {
1448 struct vm_area_struct
*vma
= avc
->vma
;
1449 unsigned long address
;
1452 * During exec, a temporary VMA is setup and later moved.
1453 * The VMA is moved under the anon_vma lock but not the
1454 * page tables leading to a race where migration cannot
1455 * find the migration ptes. Rather than increasing the
1456 * locking requirements of exec(), migration skips
1457 * temporary VMAs until after exec() completes.
1459 if (PAGE_MIGRATION
&& (flags
& TTU_MIGRATION
) &&
1460 is_vma_temporary_stack(vma
))
1463 address
= vma_address(page
, vma
);
1464 if (address
== -EFAULT
)
1466 ret
= try_to_unmap_one(page
, vma
, address
, flags
);
1467 if (ret
!= SWAP_AGAIN
|| !page_mapped(page
))
1471 page_unlock_anon_vma(anon_vma
);
1476 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1477 * @page: the page to unmap/unlock
1478 * @flags: action and flags
1480 * Find all the mappings of a page using the mapping pointer and the vma chains
1481 * contained in the address_space struct it points to.
1483 * This function is only called from try_to_unmap/try_to_munlock for
1484 * object-based pages.
1485 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1486 * where the page was found will be held for write. So, we won't recheck
1487 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1490 static int try_to_unmap_file(struct page
*page
, enum ttu_flags flags
)
1492 struct address_space
*mapping
= page
->mapping
;
1493 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1494 struct vm_area_struct
*vma
;
1495 struct prio_tree_iter iter
;
1496 int ret
= SWAP_AGAIN
;
1497 unsigned long cursor
;
1498 unsigned long max_nl_cursor
= 0;
1499 unsigned long max_nl_size
= 0;
1500 unsigned int mapcount
;
1502 mutex_lock(&mapping
->i_mmap_mutex
);
1503 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1504 unsigned long address
= vma_address(page
, vma
);
1505 if (address
== -EFAULT
)
1507 ret
= try_to_unmap_one(page
, vma
, address
, flags
);
1508 if (ret
!= SWAP_AGAIN
|| !page_mapped(page
))
1512 if (list_empty(&mapping
->i_mmap_nonlinear
))
1516 * We don't bother to try to find the munlocked page in nonlinears.
1517 * It's costly. Instead, later, page reclaim logic may call
1518 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1520 if (TTU_ACTION(flags
) == TTU_MUNLOCK
)
1523 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
1524 shared
.vm_set
.list
) {
1525 cursor
= (unsigned long) vma
->vm_private_data
;
1526 if (cursor
> max_nl_cursor
)
1527 max_nl_cursor
= cursor
;
1528 cursor
= vma
->vm_end
- vma
->vm_start
;
1529 if (cursor
> max_nl_size
)
1530 max_nl_size
= cursor
;
1533 if (max_nl_size
== 0) { /* all nonlinears locked or reserved ? */
1539 * We don't try to search for this page in the nonlinear vmas,
1540 * and page_referenced wouldn't have found it anyway. Instead
1541 * just walk the nonlinear vmas trying to age and unmap some.
1542 * The mapcount of the page we came in with is irrelevant,
1543 * but even so use it as a guide to how hard we should try?
1545 mapcount
= page_mapcount(page
);
1550 max_nl_size
= (max_nl_size
+ CLUSTER_SIZE
- 1) & CLUSTER_MASK
;
1551 if (max_nl_cursor
== 0)
1552 max_nl_cursor
= CLUSTER_SIZE
;
1555 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
1556 shared
.vm_set
.list
) {
1557 cursor
= (unsigned long) vma
->vm_private_data
;
1558 while ( cursor
< max_nl_cursor
&&
1559 cursor
< vma
->vm_end
- vma
->vm_start
) {
1560 if (try_to_unmap_cluster(cursor
, &mapcount
,
1561 vma
, page
) == SWAP_MLOCK
)
1563 cursor
+= CLUSTER_SIZE
;
1564 vma
->vm_private_data
= (void *) cursor
;
1565 if ((int)mapcount
<= 0)
1568 vma
->vm_private_data
= (void *) max_nl_cursor
;
1571 max_nl_cursor
+= CLUSTER_SIZE
;
1572 } while (max_nl_cursor
<= max_nl_size
);
1575 * Don't loop forever (perhaps all the remaining pages are
1576 * in locked vmas). Reset cursor on all unreserved nonlinear
1577 * vmas, now forgetting on which ones it had fallen behind.
1579 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
1580 vma
->vm_private_data
= NULL
;
1582 mutex_unlock(&mapping
->i_mmap_mutex
);
1587 * try_to_unmap - try to remove all page table mappings to a page
1588 * @page: the page to get unmapped
1589 * @flags: action and flags
1591 * Tries to remove all the page table entries which are mapping this
1592 * page, used in the pageout path. Caller must hold the page lock.
1593 * Return values are:
1595 * SWAP_SUCCESS - we succeeded in removing all mappings
1596 * SWAP_AGAIN - we missed a mapping, try again later
1597 * SWAP_FAIL - the page is unswappable
1598 * SWAP_MLOCK - page is mlocked.
1600 int try_to_unmap(struct page
*page
, enum ttu_flags flags
)
1604 BUG_ON(!PageLocked(page
));
1605 VM_BUG_ON(!PageHuge(page
) && PageTransHuge(page
));
1607 if (unlikely(PageKsm(page
)))
1608 ret
= try_to_unmap_ksm(page
, flags
);
1609 else if (PageAnon(page
))
1610 ret
= try_to_unmap_anon(page
, flags
);
1612 ret
= try_to_unmap_file(page
, flags
);
1613 if (ret
!= SWAP_MLOCK
&& !page_mapped(page
))
1619 * try_to_munlock - try to munlock a page
1620 * @page: the page to be munlocked
1622 * Called from munlock code. Checks all of the VMAs mapping the page
1623 * to make sure nobody else has this page mlocked. The page will be
1624 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1626 * Return values are:
1628 * SWAP_AGAIN - no vma is holding page mlocked, or,
1629 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1630 * SWAP_FAIL - page cannot be located at present
1631 * SWAP_MLOCK - page is now mlocked.
1633 int try_to_munlock(struct page
*page
)
1635 VM_BUG_ON(!PageLocked(page
) || PageLRU(page
));
1637 if (unlikely(PageKsm(page
)))
1638 return try_to_unmap_ksm(page
, TTU_MUNLOCK
);
1639 else if (PageAnon(page
))
1640 return try_to_unmap_anon(page
, TTU_MUNLOCK
);
1642 return try_to_unmap_file(page
, TTU_MUNLOCK
);
1645 void __put_anon_vma(struct anon_vma
*anon_vma
)
1647 struct anon_vma
*root
= anon_vma
->root
;
1649 if (root
!= anon_vma
&& atomic_dec_and_test(&root
->refcount
))
1650 anon_vma_free(root
);
1652 anon_vma_free(anon_vma
);
1655 #ifdef CONFIG_MIGRATION
1657 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1658 * Called by migrate.c to remove migration ptes, but might be used more later.
1660 static int rmap_walk_anon(struct page
*page
, int (*rmap_one
)(struct page
*,
1661 struct vm_area_struct
*, unsigned long, void *), void *arg
)
1663 struct anon_vma
*anon_vma
;
1664 struct anon_vma_chain
*avc
;
1665 int ret
= SWAP_AGAIN
;
1668 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1669 * because that depends on page_mapped(); but not all its usages
1670 * are holding mmap_sem. Users without mmap_sem are required to
1671 * take a reference count to prevent the anon_vma disappearing
1673 anon_vma
= page_anon_vma(page
);
1676 anon_vma_lock(anon_vma
);
1677 list_for_each_entry(avc
, &anon_vma
->head
, same_anon_vma
) {
1678 struct vm_area_struct
*vma
= avc
->vma
;
1679 unsigned long address
= vma_address(page
, vma
);
1680 if (address
== -EFAULT
)
1682 ret
= rmap_one(page
, vma
, address
, arg
);
1683 if (ret
!= SWAP_AGAIN
)
1686 anon_vma_unlock(anon_vma
);
1690 static int rmap_walk_file(struct page
*page
, int (*rmap_one
)(struct page
*,
1691 struct vm_area_struct
*, unsigned long, void *), void *arg
)
1693 struct address_space
*mapping
= page
->mapping
;
1694 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1695 struct vm_area_struct
*vma
;
1696 struct prio_tree_iter iter
;
1697 int ret
= SWAP_AGAIN
;
1701 mutex_lock(&mapping
->i_mmap_mutex
);
1702 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1703 unsigned long address
= vma_address(page
, vma
);
1704 if (address
== -EFAULT
)
1706 ret
= rmap_one(page
, vma
, address
, arg
);
1707 if (ret
!= SWAP_AGAIN
)
1711 * No nonlinear handling: being always shared, nonlinear vmas
1712 * never contain migration ptes. Decide what to do about this
1713 * limitation to linear when we need rmap_walk() on nonlinear.
1715 mutex_unlock(&mapping
->i_mmap_mutex
);
1719 int rmap_walk(struct page
*page
, int (*rmap_one
)(struct page
*,
1720 struct vm_area_struct
*, unsigned long, void *), void *arg
)
1722 VM_BUG_ON(!PageLocked(page
));
1724 if (unlikely(PageKsm(page
)))
1725 return rmap_walk_ksm(page
, rmap_one
, arg
);
1726 else if (PageAnon(page
))
1727 return rmap_walk_anon(page
, rmap_one
, arg
);
1729 return rmap_walk_file(page
, rmap_one
, arg
);
1731 #endif /* CONFIG_MIGRATION */
1733 #ifdef CONFIG_HUGETLB_PAGE
1735 * The following three functions are for anonymous (private mapped) hugepages.
1736 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1737 * and no lru code, because we handle hugepages differently from common pages.
1739 static void __hugepage_set_anon_rmap(struct page
*page
,
1740 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
1742 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1749 anon_vma
= anon_vma
->root
;
1751 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
1752 page
->mapping
= (struct address_space
*) anon_vma
;
1753 page
->index
= linear_page_index(vma
, address
);
1756 void hugepage_add_anon_rmap(struct page
*page
,
1757 struct vm_area_struct
*vma
, unsigned long address
)
1759 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1762 BUG_ON(!PageLocked(page
));
1764 /* address might be in next vma when migration races vma_adjust */
1765 first
= atomic_inc_and_test(&page
->_mapcount
);
1767 __hugepage_set_anon_rmap(page
, vma
, address
, 0);
1770 void hugepage_add_new_anon_rmap(struct page
*page
,
1771 struct vm_area_struct
*vma
, unsigned long address
)
1773 BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
1774 atomic_set(&page
->_mapcount
, 0);
1775 __hugepage_set_anon_rmap(page
, vma
, address
, 1);
1777 #endif /* CONFIG_HUGETLB_PAGE */