thinkpad-acpi: hotkey event driver update
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / vxge / vxge-config.c
blob58d2551c78ed064aa1ba72bd384482df3d56f46b
1 /******************************************************************************
2 * This software may be used and distributed according to the terms of
3 * the GNU General Public License (GPL), incorporated herein by reference.
4 * Drivers based on or derived from this code fall under the GPL and must
5 * retain the authorship, copyright and license notice. This file is not
6 * a complete program and may only be used when the entire operating
7 * system is licensed under the GPL.
8 * See the file COPYING in this distribution for more information.
10 * vxge-config.c: Driver for Neterion Inc's X3100 Series 10GbE PCIe I/O
11 * Virtualized Server Adapter.
12 * Copyright(c) 2002-2009 Neterion Inc.
13 ******************************************************************************/
14 #include <linux/vmalloc.h>
15 #include <linux/etherdevice.h>
16 #include <linux/pci.h>
17 #include <linux/pci_hotplug.h>
19 #include "vxge-traffic.h"
20 #include "vxge-config.h"
23 * __vxge_hw_channel_allocate - Allocate memory for channel
24 * This function allocates required memory for the channel and various arrays
25 * in the channel
27 struct __vxge_hw_channel*
28 __vxge_hw_channel_allocate(struct __vxge_hw_vpath_handle *vph,
29 enum __vxge_hw_channel_type type,
30 u32 length, u32 per_dtr_space, void *userdata)
32 struct __vxge_hw_channel *channel;
33 struct __vxge_hw_device *hldev;
34 int size = 0;
35 u32 vp_id;
37 hldev = vph->vpath->hldev;
38 vp_id = vph->vpath->vp_id;
40 switch (type) {
41 case VXGE_HW_CHANNEL_TYPE_FIFO:
42 size = sizeof(struct __vxge_hw_fifo);
43 break;
44 case VXGE_HW_CHANNEL_TYPE_RING:
45 size = sizeof(struct __vxge_hw_ring);
46 break;
47 default:
48 break;
51 channel = kzalloc(size, GFP_KERNEL);
52 if (channel == NULL)
53 goto exit0;
54 INIT_LIST_HEAD(&channel->item);
56 channel->common_reg = hldev->common_reg;
57 channel->first_vp_id = hldev->first_vp_id;
58 channel->type = type;
59 channel->devh = hldev;
60 channel->vph = vph;
61 channel->userdata = userdata;
62 channel->per_dtr_space = per_dtr_space;
63 channel->length = length;
64 channel->vp_id = vp_id;
66 channel->work_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
67 if (channel->work_arr == NULL)
68 goto exit1;
70 channel->free_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
71 if (channel->free_arr == NULL)
72 goto exit1;
73 channel->free_ptr = length;
75 channel->reserve_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
76 if (channel->reserve_arr == NULL)
77 goto exit1;
78 channel->reserve_ptr = length;
79 channel->reserve_top = 0;
81 channel->orig_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
82 if (channel->orig_arr == NULL)
83 goto exit1;
85 return channel;
86 exit1:
87 __vxge_hw_channel_free(channel);
89 exit0:
90 return NULL;
94 * __vxge_hw_channel_free - Free memory allocated for channel
95 * This function deallocates memory from the channel and various arrays
96 * in the channel
98 void __vxge_hw_channel_free(struct __vxge_hw_channel *channel)
100 kfree(channel->work_arr);
101 kfree(channel->free_arr);
102 kfree(channel->reserve_arr);
103 kfree(channel->orig_arr);
104 kfree(channel);
108 * __vxge_hw_channel_initialize - Initialize a channel
109 * This function initializes a channel by properly setting the
110 * various references
112 enum vxge_hw_status
113 __vxge_hw_channel_initialize(struct __vxge_hw_channel *channel)
115 u32 i;
116 struct __vxge_hw_virtualpath *vpath;
118 vpath = channel->vph->vpath;
120 if ((channel->reserve_arr != NULL) && (channel->orig_arr != NULL)) {
121 for (i = 0; i < channel->length; i++)
122 channel->orig_arr[i] = channel->reserve_arr[i];
125 switch (channel->type) {
126 case VXGE_HW_CHANNEL_TYPE_FIFO:
127 vpath->fifoh = (struct __vxge_hw_fifo *)channel;
128 channel->stats = &((struct __vxge_hw_fifo *)
129 channel)->stats->common_stats;
130 break;
131 case VXGE_HW_CHANNEL_TYPE_RING:
132 vpath->ringh = (struct __vxge_hw_ring *)channel;
133 channel->stats = &((struct __vxge_hw_ring *)
134 channel)->stats->common_stats;
135 break;
136 default:
137 break;
140 return VXGE_HW_OK;
144 * __vxge_hw_channel_reset - Resets a channel
145 * This function resets a channel by properly setting the various references
147 enum vxge_hw_status
148 __vxge_hw_channel_reset(struct __vxge_hw_channel *channel)
150 u32 i;
152 for (i = 0; i < channel->length; i++) {
153 if (channel->reserve_arr != NULL)
154 channel->reserve_arr[i] = channel->orig_arr[i];
155 if (channel->free_arr != NULL)
156 channel->free_arr[i] = NULL;
157 if (channel->work_arr != NULL)
158 channel->work_arr[i] = NULL;
160 channel->free_ptr = channel->length;
161 channel->reserve_ptr = channel->length;
162 channel->reserve_top = 0;
163 channel->post_index = 0;
164 channel->compl_index = 0;
166 return VXGE_HW_OK;
170 * __vxge_hw_device_pci_e_init
171 * Initialize certain PCI/PCI-X configuration registers
172 * with recommended values. Save config space for future hw resets.
174 void
175 __vxge_hw_device_pci_e_init(struct __vxge_hw_device *hldev)
177 u16 cmd = 0;
179 /* Set the PErr Repconse bit and SERR in PCI command register. */
180 pci_read_config_word(hldev->pdev, PCI_COMMAND, &cmd);
181 cmd |= 0x140;
182 pci_write_config_word(hldev->pdev, PCI_COMMAND, cmd);
184 pci_save_state(hldev->pdev);
186 return;
190 * __vxge_hw_device_register_poll
191 * Will poll certain register for specified amount of time.
192 * Will poll until masked bit is not cleared.
194 enum vxge_hw_status
195 __vxge_hw_device_register_poll(void __iomem *reg, u64 mask, u32 max_millis)
197 u64 val64;
198 u32 i = 0;
199 enum vxge_hw_status ret = VXGE_HW_FAIL;
201 udelay(10);
203 do {
204 val64 = readq(reg);
205 if (!(val64 & mask))
206 return VXGE_HW_OK;
207 udelay(100);
208 } while (++i <= 9);
210 i = 0;
211 do {
212 val64 = readq(reg);
213 if (!(val64 & mask))
214 return VXGE_HW_OK;
215 mdelay(1);
216 } while (++i <= max_millis);
218 return ret;
221 /* __vxge_hw_device_vpath_reset_in_prog_check - Check if vpath reset
222 * in progress
223 * This routine checks the vpath reset in progress register is turned zero
225 enum vxge_hw_status
226 __vxge_hw_device_vpath_reset_in_prog_check(u64 __iomem *vpath_rst_in_prog)
228 enum vxge_hw_status status;
229 status = __vxge_hw_device_register_poll(vpath_rst_in_prog,
230 VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(0x1ffff),
231 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
232 return status;
236 * __vxge_hw_device_toc_get
237 * This routine sets the swapper and reads the toc pointer and returns the
238 * memory mapped address of the toc
240 struct vxge_hw_toc_reg __iomem *
241 __vxge_hw_device_toc_get(void __iomem *bar0)
243 u64 val64;
244 struct vxge_hw_toc_reg __iomem *toc = NULL;
245 enum vxge_hw_status status;
247 struct vxge_hw_legacy_reg __iomem *legacy_reg =
248 (struct vxge_hw_legacy_reg __iomem *)bar0;
250 status = __vxge_hw_legacy_swapper_set(legacy_reg);
251 if (status != VXGE_HW_OK)
252 goto exit;
254 val64 = readq(&legacy_reg->toc_first_pointer);
255 toc = (struct vxge_hw_toc_reg __iomem *)(bar0+val64);
256 exit:
257 return toc;
261 * __vxge_hw_device_reg_addr_get
262 * This routine sets the swapper and reads the toc pointer and initializes the
263 * register location pointers in the device object. It waits until the ric is
264 * completed initializing registers.
266 enum vxge_hw_status
267 __vxge_hw_device_reg_addr_get(struct __vxge_hw_device *hldev)
269 u64 val64;
270 u32 i;
271 enum vxge_hw_status status = VXGE_HW_OK;
273 hldev->legacy_reg = (struct vxge_hw_legacy_reg __iomem *)hldev->bar0;
275 hldev->toc_reg = __vxge_hw_device_toc_get(hldev->bar0);
276 if (hldev->toc_reg == NULL) {
277 status = VXGE_HW_FAIL;
278 goto exit;
281 val64 = readq(&hldev->toc_reg->toc_common_pointer);
282 hldev->common_reg =
283 (struct vxge_hw_common_reg __iomem *)(hldev->bar0 + val64);
285 val64 = readq(&hldev->toc_reg->toc_mrpcim_pointer);
286 hldev->mrpcim_reg =
287 (struct vxge_hw_mrpcim_reg __iomem *)(hldev->bar0 + val64);
289 for (i = 0; i < VXGE_HW_TITAN_SRPCIM_REG_SPACES; i++) {
290 val64 = readq(&hldev->toc_reg->toc_srpcim_pointer[i]);
291 hldev->srpcim_reg[i] =
292 (struct vxge_hw_srpcim_reg __iomem *)
293 (hldev->bar0 + val64);
296 for (i = 0; i < VXGE_HW_TITAN_VPMGMT_REG_SPACES; i++) {
297 val64 = readq(&hldev->toc_reg->toc_vpmgmt_pointer[i]);
298 hldev->vpmgmt_reg[i] =
299 (struct vxge_hw_vpmgmt_reg __iomem *)(hldev->bar0 + val64);
302 for (i = 0; i < VXGE_HW_TITAN_VPATH_REG_SPACES; i++) {
303 val64 = readq(&hldev->toc_reg->toc_vpath_pointer[i]);
304 hldev->vpath_reg[i] =
305 (struct vxge_hw_vpath_reg __iomem *)
306 (hldev->bar0 + val64);
309 val64 = readq(&hldev->toc_reg->toc_kdfc);
311 switch (VXGE_HW_TOC_GET_KDFC_INITIAL_BIR(val64)) {
312 case 0:
313 hldev->kdfc = (u8 __iomem *)(hldev->bar0 +
314 VXGE_HW_TOC_GET_KDFC_INITIAL_OFFSET(val64));
315 break;
316 case 2:
317 hldev->kdfc = (u8 __iomem *)(hldev->bar1 +
318 VXGE_HW_TOC_GET_KDFC_INITIAL_OFFSET(val64));
319 break;
320 case 4:
321 hldev->kdfc = (u8 __iomem *)(hldev->bar2 +
322 VXGE_HW_TOC_GET_KDFC_INITIAL_OFFSET(val64));
323 break;
324 default:
325 break;
328 status = __vxge_hw_device_vpath_reset_in_prog_check(
329 (u64 __iomem *)&hldev->common_reg->vpath_rst_in_prog);
330 exit:
331 return status;
335 * __vxge_hw_device_id_get
336 * This routine returns sets the device id and revision numbers into the device
337 * structure
339 void __vxge_hw_device_id_get(struct __vxge_hw_device *hldev)
341 u64 val64;
343 val64 = readq(&hldev->common_reg->titan_asic_id);
344 hldev->device_id =
345 (u16)VXGE_HW_TITAN_ASIC_ID_GET_INITIAL_DEVICE_ID(val64);
347 hldev->major_revision =
348 (u8)VXGE_HW_TITAN_ASIC_ID_GET_INITIAL_MAJOR_REVISION(val64);
350 hldev->minor_revision =
351 (u8)VXGE_HW_TITAN_ASIC_ID_GET_INITIAL_MINOR_REVISION(val64);
353 return;
357 * __vxge_hw_device_access_rights_get: Get Access Rights of the driver
358 * This routine returns the Access Rights of the driver
360 static u32
361 __vxge_hw_device_access_rights_get(u32 host_type, u32 func_id)
363 u32 access_rights = VXGE_HW_DEVICE_ACCESS_RIGHT_VPATH;
365 switch (host_type) {
366 case VXGE_HW_NO_MR_NO_SR_NORMAL_FUNCTION:
367 if (func_id == 0) {
368 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
369 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
371 break;
372 case VXGE_HW_MR_NO_SR_VH0_BASE_FUNCTION:
373 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
374 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
375 break;
376 case VXGE_HW_NO_MR_SR_VH0_FUNCTION0:
377 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
378 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
379 break;
380 case VXGE_HW_NO_MR_SR_VH0_VIRTUAL_FUNCTION:
381 case VXGE_HW_SR_VH_VIRTUAL_FUNCTION:
382 case VXGE_HW_MR_SR_VH0_INVALID_CONFIG:
383 break;
384 case VXGE_HW_SR_VH_FUNCTION0:
385 case VXGE_HW_VH_NORMAL_FUNCTION:
386 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
387 break;
390 return access_rights;
393 * __vxge_hw_device_host_info_get
394 * This routine returns the host type assignments
396 void __vxge_hw_device_host_info_get(struct __vxge_hw_device *hldev)
398 u64 val64;
399 u32 i;
401 val64 = readq(&hldev->common_reg->host_type_assignments);
403 hldev->host_type =
404 (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
406 hldev->vpath_assignments = readq(&hldev->common_reg->vpath_assignments);
408 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
410 if (!(hldev->vpath_assignments & vxge_mBIT(i)))
411 continue;
413 hldev->func_id =
414 __vxge_hw_vpath_func_id_get(i, hldev->vpmgmt_reg[i]);
416 hldev->access_rights = __vxge_hw_device_access_rights_get(
417 hldev->host_type, hldev->func_id);
419 hldev->first_vp_id = i;
420 break;
423 return;
427 * __vxge_hw_verify_pci_e_info - Validate the pci-e link parameters such as
428 * link width and signalling rate.
430 static enum vxge_hw_status
431 __vxge_hw_verify_pci_e_info(struct __vxge_hw_device *hldev)
433 int exp_cap;
434 u16 lnk;
436 /* Get the negotiated link width and speed from PCI config space */
437 exp_cap = pci_find_capability(hldev->pdev, PCI_CAP_ID_EXP);
438 pci_read_config_word(hldev->pdev, exp_cap + PCI_EXP_LNKSTA, &lnk);
440 if ((lnk & PCI_EXP_LNKSTA_CLS) != 1)
441 return VXGE_HW_ERR_INVALID_PCI_INFO;
443 switch ((lnk & PCI_EXP_LNKSTA_NLW) >> 4) {
444 case PCIE_LNK_WIDTH_RESRV:
445 case PCIE_LNK_X1:
446 case PCIE_LNK_X2:
447 case PCIE_LNK_X4:
448 case PCIE_LNK_X8:
449 break;
450 default:
451 return VXGE_HW_ERR_INVALID_PCI_INFO;
454 return VXGE_HW_OK;
457 enum vxge_hw_status
458 __vxge_hw_device_is_privilaged(struct __vxge_hw_device *hldev)
460 if ((hldev->host_type == VXGE_HW_NO_MR_NO_SR_NORMAL_FUNCTION ||
461 hldev->host_type == VXGE_HW_MR_NO_SR_VH0_BASE_FUNCTION ||
462 hldev->host_type == VXGE_HW_NO_MR_SR_VH0_FUNCTION0) &&
463 (hldev->func_id == 0))
464 return VXGE_HW_OK;
465 else
466 return VXGE_HW_ERR_PRIVILAGED_OPEARATION;
470 * vxge_hw_wrr_rebalance - Rebalance the RX_WRR and KDFC_WRR calandars.
471 * Rebalance the RX_WRR and KDFC_WRR calandars.
473 static enum
474 vxge_hw_status vxge_hw_wrr_rebalance(struct __vxge_hw_device *hldev)
476 u64 val64;
477 u32 wrr_states[VXGE_HW_WEIGHTED_RR_SERVICE_STATES];
478 u32 i, j, how_often = 1;
479 enum vxge_hw_status status = VXGE_HW_OK;
481 status = __vxge_hw_device_is_privilaged(hldev);
482 if (status != VXGE_HW_OK)
483 goto exit;
485 /* Reset the priorities assigned to the WRR arbitration
486 phases for the receive traffic */
487 for (i = 0; i < VXGE_HW_WRR_RING_COUNT; i++)
488 writeq(0, ((&hldev->mrpcim_reg->rx_w_round_robin_0) + i));
490 /* Reset the transmit FIFO servicing calendar for FIFOs */
491 for (i = 0; i < VXGE_HW_WRR_FIFO_COUNT; i++) {
492 writeq(0, ((&hldev->mrpcim_reg->kdfc_w_round_robin_0) + i));
493 writeq(0, ((&hldev->mrpcim_reg->kdfc_w_round_robin_20) + i));
496 /* Assign WRR priority 0 for all FIFOs */
497 for (i = 1; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
498 writeq(VXGE_HW_KDFC_FIFO_0_CTRL_WRR_NUMBER(0),
499 ((&hldev->mrpcim_reg->kdfc_fifo_0_ctrl) + i));
501 writeq(VXGE_HW_KDFC_FIFO_17_CTRL_WRR_NUMBER(0),
502 ((&hldev->mrpcim_reg->kdfc_fifo_17_ctrl) + i));
505 /* Reset to service non-offload doorbells */
506 writeq(0, &hldev->mrpcim_reg->kdfc_entry_type_sel_0);
507 writeq(0, &hldev->mrpcim_reg->kdfc_entry_type_sel_1);
509 /* Set priority 0 to all receive queues */
510 writeq(0, &hldev->mrpcim_reg->rx_queue_priority_0);
511 writeq(0, &hldev->mrpcim_reg->rx_queue_priority_1);
512 writeq(0, &hldev->mrpcim_reg->rx_queue_priority_2);
514 /* Initialize all the slots as unused */
515 for (i = 0; i < VXGE_HW_WEIGHTED_RR_SERVICE_STATES; i++)
516 wrr_states[i] = -1;
518 /* Prepare the Fifo service states */
519 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
521 if (!hldev->config.vp_config[i].min_bandwidth)
522 continue;
524 how_often = VXGE_HW_VPATH_BANDWIDTH_MAX /
525 hldev->config.vp_config[i].min_bandwidth;
526 if (how_often) {
528 for (j = 0; j < VXGE_HW_WRR_FIFO_SERVICE_STATES;) {
529 if (wrr_states[j] == -1) {
530 wrr_states[j] = i;
531 /* Make sure each fifo is serviced
532 * atleast once */
533 if (i == j)
534 j += VXGE_HW_MAX_VIRTUAL_PATHS;
535 else
536 j += how_often;
537 } else
538 j++;
543 /* Fill the unused slots with 0 */
544 for (j = 0; j < VXGE_HW_WEIGHTED_RR_SERVICE_STATES; j++) {
545 if (wrr_states[j] == -1)
546 wrr_states[j] = 0;
549 /* Assign WRR priority number for FIFOs */
550 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
551 writeq(VXGE_HW_KDFC_FIFO_0_CTRL_WRR_NUMBER(i),
552 ((&hldev->mrpcim_reg->kdfc_fifo_0_ctrl) + i));
554 writeq(VXGE_HW_KDFC_FIFO_17_CTRL_WRR_NUMBER(i),
555 ((&hldev->mrpcim_reg->kdfc_fifo_17_ctrl) + i));
558 /* Modify the servicing algorithm applied to the 3 types of doorbells.
559 i.e, none-offload, message and offload */
560 writeq(VXGE_HW_KDFC_ENTRY_TYPE_SEL_0_NUMBER_0(0) |
561 VXGE_HW_KDFC_ENTRY_TYPE_SEL_0_NUMBER_1(0) |
562 VXGE_HW_KDFC_ENTRY_TYPE_SEL_0_NUMBER_2(0) |
563 VXGE_HW_KDFC_ENTRY_TYPE_SEL_0_NUMBER_3(0) |
564 VXGE_HW_KDFC_ENTRY_TYPE_SEL_0_NUMBER_4(1) |
565 VXGE_HW_KDFC_ENTRY_TYPE_SEL_0_NUMBER_5(0) |
566 VXGE_HW_KDFC_ENTRY_TYPE_SEL_0_NUMBER_6(0) |
567 VXGE_HW_KDFC_ENTRY_TYPE_SEL_0_NUMBER_7(0),
568 &hldev->mrpcim_reg->kdfc_entry_type_sel_0);
570 writeq(VXGE_HW_KDFC_ENTRY_TYPE_SEL_1_NUMBER_8(1),
571 &hldev->mrpcim_reg->kdfc_entry_type_sel_1);
573 for (i = 0, j = 0; i < VXGE_HW_WRR_FIFO_COUNT; i++) {
575 val64 = VXGE_HW_KDFC_W_ROUND_ROBIN_0_NUMBER_0(wrr_states[j++]);
576 val64 |= VXGE_HW_KDFC_W_ROUND_ROBIN_0_NUMBER_1(wrr_states[j++]);
577 val64 |= VXGE_HW_KDFC_W_ROUND_ROBIN_0_NUMBER_2(wrr_states[j++]);
578 val64 |= VXGE_HW_KDFC_W_ROUND_ROBIN_0_NUMBER_3(wrr_states[j++]);
579 val64 |= VXGE_HW_KDFC_W_ROUND_ROBIN_0_NUMBER_4(wrr_states[j++]);
580 val64 |= VXGE_HW_KDFC_W_ROUND_ROBIN_0_NUMBER_5(wrr_states[j++]);
581 val64 |= VXGE_HW_KDFC_W_ROUND_ROBIN_0_NUMBER_6(wrr_states[j++]);
582 val64 |= VXGE_HW_KDFC_W_ROUND_ROBIN_0_NUMBER_7(wrr_states[j++]);
584 writeq(val64, (&hldev->mrpcim_reg->kdfc_w_round_robin_0 + i));
585 writeq(val64, (&hldev->mrpcim_reg->kdfc_w_round_robin_20 + i));
588 /* Set up the priorities assigned to receive queues */
589 writeq(VXGE_HW_RX_QUEUE_PRIORITY_0_RX_Q_NUMBER_0(0) |
590 VXGE_HW_RX_QUEUE_PRIORITY_0_RX_Q_NUMBER_1(1) |
591 VXGE_HW_RX_QUEUE_PRIORITY_0_RX_Q_NUMBER_2(2) |
592 VXGE_HW_RX_QUEUE_PRIORITY_0_RX_Q_NUMBER_3(3) |
593 VXGE_HW_RX_QUEUE_PRIORITY_0_RX_Q_NUMBER_4(4) |
594 VXGE_HW_RX_QUEUE_PRIORITY_0_RX_Q_NUMBER_5(5) |
595 VXGE_HW_RX_QUEUE_PRIORITY_0_RX_Q_NUMBER_6(6) |
596 VXGE_HW_RX_QUEUE_PRIORITY_0_RX_Q_NUMBER_7(7),
597 &hldev->mrpcim_reg->rx_queue_priority_0);
599 writeq(VXGE_HW_RX_QUEUE_PRIORITY_1_RX_Q_NUMBER_8(8) |
600 VXGE_HW_RX_QUEUE_PRIORITY_1_RX_Q_NUMBER_9(9) |
601 VXGE_HW_RX_QUEUE_PRIORITY_1_RX_Q_NUMBER_10(10) |
602 VXGE_HW_RX_QUEUE_PRIORITY_1_RX_Q_NUMBER_11(11) |
603 VXGE_HW_RX_QUEUE_PRIORITY_1_RX_Q_NUMBER_12(12) |
604 VXGE_HW_RX_QUEUE_PRIORITY_1_RX_Q_NUMBER_13(13) |
605 VXGE_HW_RX_QUEUE_PRIORITY_1_RX_Q_NUMBER_14(14) |
606 VXGE_HW_RX_QUEUE_PRIORITY_1_RX_Q_NUMBER_15(15),
607 &hldev->mrpcim_reg->rx_queue_priority_1);
609 writeq(VXGE_HW_RX_QUEUE_PRIORITY_2_RX_Q_NUMBER_16(16),
610 &hldev->mrpcim_reg->rx_queue_priority_2);
612 /* Initialize all the slots as unused */
613 for (i = 0; i < VXGE_HW_WEIGHTED_RR_SERVICE_STATES; i++)
614 wrr_states[i] = -1;
616 /* Prepare the Ring service states */
617 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
619 if (!hldev->config.vp_config[i].min_bandwidth)
620 continue;
622 how_often = VXGE_HW_VPATH_BANDWIDTH_MAX /
623 hldev->config.vp_config[i].min_bandwidth;
625 if (how_often) {
626 for (j = 0; j < VXGE_HW_WRR_RING_SERVICE_STATES;) {
627 if (wrr_states[j] == -1) {
628 wrr_states[j] = i;
629 /* Make sure each ring is
630 * serviced atleast once */
631 if (i == j)
632 j += VXGE_HW_MAX_VIRTUAL_PATHS;
633 else
634 j += how_often;
635 } else
636 j++;
641 /* Fill the unused slots with 0 */
642 for (j = 0; j < VXGE_HW_WEIGHTED_RR_SERVICE_STATES; j++) {
643 if (wrr_states[j] == -1)
644 wrr_states[j] = 0;
647 for (i = 0, j = 0; i < VXGE_HW_WRR_RING_COUNT; i++) {
648 val64 = VXGE_HW_RX_W_ROUND_ROBIN_0_RX_W_PRIORITY_SS_0(
649 wrr_states[j++]);
650 val64 |= VXGE_HW_RX_W_ROUND_ROBIN_0_RX_W_PRIORITY_SS_1(
651 wrr_states[j++]);
652 val64 |= VXGE_HW_RX_W_ROUND_ROBIN_0_RX_W_PRIORITY_SS_2(
653 wrr_states[j++]);
654 val64 |= VXGE_HW_RX_W_ROUND_ROBIN_0_RX_W_PRIORITY_SS_3(
655 wrr_states[j++]);
656 val64 |= VXGE_HW_RX_W_ROUND_ROBIN_0_RX_W_PRIORITY_SS_4(
657 wrr_states[j++]);
658 val64 |= VXGE_HW_RX_W_ROUND_ROBIN_0_RX_W_PRIORITY_SS_5(
659 wrr_states[j++]);
660 val64 |= VXGE_HW_RX_W_ROUND_ROBIN_0_RX_W_PRIORITY_SS_6(
661 wrr_states[j++]);
662 val64 |= VXGE_HW_RX_W_ROUND_ROBIN_0_RX_W_PRIORITY_SS_7(
663 wrr_states[j++]);
665 writeq(val64, ((&hldev->mrpcim_reg->rx_w_round_robin_0) + i));
667 exit:
668 return status;
672 * __vxge_hw_device_initialize
673 * Initialize Titan-V hardware.
675 enum vxge_hw_status __vxge_hw_device_initialize(struct __vxge_hw_device *hldev)
677 enum vxge_hw_status status = VXGE_HW_OK;
679 if (VXGE_HW_OK == __vxge_hw_device_is_privilaged(hldev)) {
680 /* Validate the pci-e link width and speed */
681 status = __vxge_hw_verify_pci_e_info(hldev);
682 if (status != VXGE_HW_OK)
683 goto exit;
686 vxge_hw_wrr_rebalance(hldev);
687 exit:
688 return status;
692 * vxge_hw_device_hw_info_get - Get the hw information
693 * Returns the vpath mask that has the bits set for each vpath allocated
694 * for the driver, FW version information and the first mac addresse for
695 * each vpath
697 enum vxge_hw_status __devinit
698 vxge_hw_device_hw_info_get(void __iomem *bar0,
699 struct vxge_hw_device_hw_info *hw_info)
701 u32 i;
702 u64 val64;
703 struct vxge_hw_toc_reg __iomem *toc;
704 struct vxge_hw_mrpcim_reg __iomem *mrpcim_reg;
705 struct vxge_hw_common_reg __iomem *common_reg;
706 struct vxge_hw_vpath_reg __iomem *vpath_reg;
707 struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg;
708 enum vxge_hw_status status;
710 memset(hw_info, 0, sizeof(struct vxge_hw_device_hw_info));
712 toc = __vxge_hw_device_toc_get(bar0);
713 if (toc == NULL) {
714 status = VXGE_HW_ERR_CRITICAL;
715 goto exit;
718 val64 = readq(&toc->toc_common_pointer);
719 common_reg = (struct vxge_hw_common_reg __iomem *)(bar0 + val64);
721 status = __vxge_hw_device_vpath_reset_in_prog_check(
722 (u64 __iomem *)&common_reg->vpath_rst_in_prog);
723 if (status != VXGE_HW_OK)
724 goto exit;
726 hw_info->vpath_mask = readq(&common_reg->vpath_assignments);
728 val64 = readq(&common_reg->host_type_assignments);
730 hw_info->host_type =
731 (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
733 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
735 if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
736 continue;
738 val64 = readq(&toc->toc_vpmgmt_pointer[i]);
740 vpmgmt_reg = (struct vxge_hw_vpmgmt_reg __iomem *)
741 (bar0 + val64);
743 hw_info->func_id = __vxge_hw_vpath_func_id_get(i, vpmgmt_reg);
744 if (__vxge_hw_device_access_rights_get(hw_info->host_type,
745 hw_info->func_id) &
746 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM) {
748 val64 = readq(&toc->toc_mrpcim_pointer);
750 mrpcim_reg = (struct vxge_hw_mrpcim_reg __iomem *)
751 (bar0 + val64);
753 writeq(0, &mrpcim_reg->xgmac_gen_fw_memo_mask);
754 wmb();
757 val64 = readq(&toc->toc_vpath_pointer[i]);
759 vpath_reg = (struct vxge_hw_vpath_reg __iomem *)(bar0 + val64);
761 hw_info->function_mode =
762 __vxge_hw_vpath_pci_func_mode_get(i, vpath_reg);
764 status = __vxge_hw_vpath_fw_ver_get(i, vpath_reg, hw_info);
765 if (status != VXGE_HW_OK)
766 goto exit;
768 status = __vxge_hw_vpath_card_info_get(i, vpath_reg, hw_info);
769 if (status != VXGE_HW_OK)
770 goto exit;
772 break;
775 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
777 if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
778 continue;
780 val64 = readq(&toc->toc_vpath_pointer[i]);
781 vpath_reg = (struct vxge_hw_vpath_reg __iomem *)(bar0 + val64);
783 status = __vxge_hw_vpath_addr_get(i, vpath_reg,
784 hw_info->mac_addrs[i],
785 hw_info->mac_addr_masks[i]);
786 if (status != VXGE_HW_OK)
787 goto exit;
789 exit:
790 return status;
794 * vxge_hw_device_initialize - Initialize Titan device.
795 * Initialize Titan device. Note that all the arguments of this public API
796 * are 'IN', including @hldev. Driver cooperates with
797 * OS to find new Titan device, locate its PCI and memory spaces.
799 * When done, the driver allocates sizeof(struct __vxge_hw_device) bytes for HW
800 * to enable the latter to perform Titan hardware initialization.
802 enum vxge_hw_status __devinit
803 vxge_hw_device_initialize(
804 struct __vxge_hw_device **devh,
805 struct vxge_hw_device_attr *attr,
806 struct vxge_hw_device_config *device_config)
808 u32 i;
809 u32 nblocks = 0;
810 struct __vxge_hw_device *hldev = NULL;
811 enum vxge_hw_status status = VXGE_HW_OK;
813 status = __vxge_hw_device_config_check(device_config);
814 if (status != VXGE_HW_OK)
815 goto exit;
817 hldev = (struct __vxge_hw_device *)
818 vmalloc(sizeof(struct __vxge_hw_device));
819 if (hldev == NULL) {
820 status = VXGE_HW_ERR_OUT_OF_MEMORY;
821 goto exit;
824 memset(hldev, 0, sizeof(struct __vxge_hw_device));
825 hldev->magic = VXGE_HW_DEVICE_MAGIC;
827 vxge_hw_device_debug_set(hldev, VXGE_ERR, VXGE_COMPONENT_ALL);
829 /* apply config */
830 memcpy(&hldev->config, device_config,
831 sizeof(struct vxge_hw_device_config));
833 hldev->bar0 = attr->bar0;
834 hldev->bar1 = attr->bar1;
835 hldev->bar2 = attr->bar2;
836 hldev->pdev = attr->pdev;
838 hldev->uld_callbacks.link_up = attr->uld_callbacks.link_up;
839 hldev->uld_callbacks.link_down = attr->uld_callbacks.link_down;
840 hldev->uld_callbacks.crit_err = attr->uld_callbacks.crit_err;
842 __vxge_hw_device_pci_e_init(hldev);
844 status = __vxge_hw_device_reg_addr_get(hldev);
845 if (status != VXGE_HW_OK)
846 goto exit;
847 __vxge_hw_device_id_get(hldev);
849 __vxge_hw_device_host_info_get(hldev);
851 /* Incrementing for stats blocks */
852 nblocks++;
854 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
856 if (!(hldev->vpath_assignments & vxge_mBIT(i)))
857 continue;
859 if (device_config->vp_config[i].ring.enable ==
860 VXGE_HW_RING_ENABLE)
861 nblocks += device_config->vp_config[i].ring.ring_blocks;
863 if (device_config->vp_config[i].fifo.enable ==
864 VXGE_HW_FIFO_ENABLE)
865 nblocks += device_config->vp_config[i].fifo.fifo_blocks;
866 nblocks++;
869 if (__vxge_hw_blockpool_create(hldev,
870 &hldev->block_pool,
871 device_config->dma_blockpool_initial + nblocks,
872 device_config->dma_blockpool_max + nblocks) != VXGE_HW_OK) {
874 vxge_hw_device_terminate(hldev);
875 status = VXGE_HW_ERR_OUT_OF_MEMORY;
876 goto exit;
879 status = __vxge_hw_device_initialize(hldev);
881 if (status != VXGE_HW_OK) {
882 vxge_hw_device_terminate(hldev);
883 goto exit;
886 *devh = hldev;
887 exit:
888 return status;
892 * vxge_hw_device_terminate - Terminate Titan device.
893 * Terminate HW device.
895 void
896 vxge_hw_device_terminate(struct __vxge_hw_device *hldev)
898 vxge_assert(hldev->magic == VXGE_HW_DEVICE_MAGIC);
900 hldev->magic = VXGE_HW_DEVICE_DEAD;
901 __vxge_hw_blockpool_destroy(&hldev->block_pool);
902 vfree(hldev);
906 * vxge_hw_device_stats_get - Get the device hw statistics.
907 * Returns the vpath h/w stats for the device.
909 enum vxge_hw_status
910 vxge_hw_device_stats_get(struct __vxge_hw_device *hldev,
911 struct vxge_hw_device_stats_hw_info *hw_stats)
913 u32 i;
914 enum vxge_hw_status status = VXGE_HW_OK;
916 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
918 if (!(hldev->vpaths_deployed & vxge_mBIT(i)) ||
919 (hldev->virtual_paths[i].vp_open ==
920 VXGE_HW_VP_NOT_OPEN))
921 continue;
923 memcpy(hldev->virtual_paths[i].hw_stats_sav,
924 hldev->virtual_paths[i].hw_stats,
925 sizeof(struct vxge_hw_vpath_stats_hw_info));
927 status = __vxge_hw_vpath_stats_get(
928 &hldev->virtual_paths[i],
929 hldev->virtual_paths[i].hw_stats);
932 memcpy(hw_stats, &hldev->stats.hw_dev_info_stats,
933 sizeof(struct vxge_hw_device_stats_hw_info));
935 return status;
939 * vxge_hw_driver_stats_get - Get the device sw statistics.
940 * Returns the vpath s/w stats for the device.
942 enum vxge_hw_status vxge_hw_driver_stats_get(
943 struct __vxge_hw_device *hldev,
944 struct vxge_hw_device_stats_sw_info *sw_stats)
946 enum vxge_hw_status status = VXGE_HW_OK;
948 memcpy(sw_stats, &hldev->stats.sw_dev_info_stats,
949 sizeof(struct vxge_hw_device_stats_sw_info));
951 return status;
955 * vxge_hw_mrpcim_stats_access - Access the statistics from the given location
956 * and offset and perform an operation
957 * Get the statistics from the given location and offset.
959 enum vxge_hw_status
960 vxge_hw_mrpcim_stats_access(struct __vxge_hw_device *hldev,
961 u32 operation, u32 location, u32 offset, u64 *stat)
963 u64 val64;
964 enum vxge_hw_status status = VXGE_HW_OK;
966 status = __vxge_hw_device_is_privilaged(hldev);
967 if (status != VXGE_HW_OK)
968 goto exit;
970 val64 = VXGE_HW_XMAC_STATS_SYS_CMD_OP(operation) |
971 VXGE_HW_XMAC_STATS_SYS_CMD_STROBE |
972 VXGE_HW_XMAC_STATS_SYS_CMD_LOC_SEL(location) |
973 VXGE_HW_XMAC_STATS_SYS_CMD_OFFSET_SEL(offset);
975 status = __vxge_hw_pio_mem_write64(val64,
976 &hldev->mrpcim_reg->xmac_stats_sys_cmd,
977 VXGE_HW_XMAC_STATS_SYS_CMD_STROBE,
978 hldev->config.device_poll_millis);
980 if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
981 *stat = readq(&hldev->mrpcim_reg->xmac_stats_sys_data);
982 else
983 *stat = 0;
984 exit:
985 return status;
989 * vxge_hw_device_xmac_aggr_stats_get - Get the Statistics on aggregate port
990 * Get the Statistics on aggregate port
992 enum vxge_hw_status
993 vxge_hw_device_xmac_aggr_stats_get(struct __vxge_hw_device *hldev, u32 port,
994 struct vxge_hw_xmac_aggr_stats *aggr_stats)
996 u64 *val64;
997 int i;
998 u32 offset = VXGE_HW_STATS_AGGRn_OFFSET;
999 enum vxge_hw_status status = VXGE_HW_OK;
1001 val64 = (u64 *)aggr_stats;
1003 status = __vxge_hw_device_is_privilaged(hldev);
1004 if (status != VXGE_HW_OK)
1005 goto exit;
1007 for (i = 0; i < sizeof(struct vxge_hw_xmac_aggr_stats) / 8; i++) {
1008 status = vxge_hw_mrpcim_stats_access(hldev,
1009 VXGE_HW_STATS_OP_READ,
1010 VXGE_HW_STATS_LOC_AGGR,
1011 ((offset + (104 * port)) >> 3), val64);
1012 if (status != VXGE_HW_OK)
1013 goto exit;
1015 offset += 8;
1016 val64++;
1018 exit:
1019 return status;
1023 * vxge_hw_device_xmac_port_stats_get - Get the Statistics on a port
1024 * Get the Statistics on port
1026 enum vxge_hw_status
1027 vxge_hw_device_xmac_port_stats_get(struct __vxge_hw_device *hldev, u32 port,
1028 struct vxge_hw_xmac_port_stats *port_stats)
1030 u64 *val64;
1031 enum vxge_hw_status status = VXGE_HW_OK;
1032 int i;
1033 u32 offset = 0x0;
1034 val64 = (u64 *) port_stats;
1036 status = __vxge_hw_device_is_privilaged(hldev);
1037 if (status != VXGE_HW_OK)
1038 goto exit;
1040 for (i = 0; i < sizeof(struct vxge_hw_xmac_port_stats) / 8; i++) {
1041 status = vxge_hw_mrpcim_stats_access(hldev,
1042 VXGE_HW_STATS_OP_READ,
1043 VXGE_HW_STATS_LOC_AGGR,
1044 ((offset + (608 * port)) >> 3), val64);
1045 if (status != VXGE_HW_OK)
1046 goto exit;
1048 offset += 8;
1049 val64++;
1052 exit:
1053 return status;
1057 * vxge_hw_device_xmac_stats_get - Get the XMAC Statistics
1058 * Get the XMAC Statistics
1060 enum vxge_hw_status
1061 vxge_hw_device_xmac_stats_get(struct __vxge_hw_device *hldev,
1062 struct vxge_hw_xmac_stats *xmac_stats)
1064 enum vxge_hw_status status = VXGE_HW_OK;
1065 u32 i;
1067 status = vxge_hw_device_xmac_aggr_stats_get(hldev,
1068 0, &xmac_stats->aggr_stats[0]);
1070 if (status != VXGE_HW_OK)
1071 goto exit;
1073 status = vxge_hw_device_xmac_aggr_stats_get(hldev,
1074 1, &xmac_stats->aggr_stats[1]);
1075 if (status != VXGE_HW_OK)
1076 goto exit;
1078 for (i = 0; i <= VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
1080 status = vxge_hw_device_xmac_port_stats_get(hldev,
1081 i, &xmac_stats->port_stats[i]);
1082 if (status != VXGE_HW_OK)
1083 goto exit;
1086 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1088 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
1089 continue;
1091 status = __vxge_hw_vpath_xmac_tx_stats_get(
1092 &hldev->virtual_paths[i],
1093 &xmac_stats->vpath_tx_stats[i]);
1094 if (status != VXGE_HW_OK)
1095 goto exit;
1097 status = __vxge_hw_vpath_xmac_rx_stats_get(
1098 &hldev->virtual_paths[i],
1099 &xmac_stats->vpath_rx_stats[i]);
1100 if (status != VXGE_HW_OK)
1101 goto exit;
1103 exit:
1104 return status;
1108 * vxge_hw_device_debug_set - Set the debug module, level and timestamp
1109 * This routine is used to dynamically change the debug output
1111 void vxge_hw_device_debug_set(struct __vxge_hw_device *hldev,
1112 enum vxge_debug_level level, u32 mask)
1114 if (hldev == NULL)
1115 return;
1117 #if defined(VXGE_DEBUG_TRACE_MASK) || \
1118 defined(VXGE_DEBUG_ERR_MASK)
1119 hldev->debug_module_mask = mask;
1120 hldev->debug_level = level;
1121 #endif
1123 #if defined(VXGE_DEBUG_ERR_MASK)
1124 hldev->level_err = level & VXGE_ERR;
1125 #endif
1127 #if defined(VXGE_DEBUG_TRACE_MASK)
1128 hldev->level_trace = level & VXGE_TRACE;
1129 #endif
1133 * vxge_hw_device_error_level_get - Get the error level
1134 * This routine returns the current error level set
1136 u32 vxge_hw_device_error_level_get(struct __vxge_hw_device *hldev)
1138 #if defined(VXGE_DEBUG_ERR_MASK)
1139 if (hldev == NULL)
1140 return VXGE_ERR;
1141 else
1142 return hldev->level_err;
1143 #else
1144 return 0;
1145 #endif
1149 * vxge_hw_device_trace_level_get - Get the trace level
1150 * This routine returns the current trace level set
1152 u32 vxge_hw_device_trace_level_get(struct __vxge_hw_device *hldev)
1154 #if defined(VXGE_DEBUG_TRACE_MASK)
1155 if (hldev == NULL)
1156 return VXGE_TRACE;
1157 else
1158 return hldev->level_trace;
1159 #else
1160 return 0;
1161 #endif
1164 * vxge_hw_device_debug_mask_get - Get the debug mask
1165 * This routine returns the current debug mask set
1167 u32 vxge_hw_device_debug_mask_get(struct __vxge_hw_device *hldev)
1169 #if defined(VXGE_DEBUG_TRACE_MASK) || defined(VXGE_DEBUG_ERR_MASK)
1170 if (hldev == NULL)
1171 return 0;
1172 return hldev->debug_module_mask;
1173 #else
1174 return 0;
1175 #endif
1179 * vxge_hw_getpause_data -Pause frame frame generation and reception.
1180 * Returns the Pause frame generation and reception capability of the NIC.
1182 enum vxge_hw_status vxge_hw_device_getpause_data(struct __vxge_hw_device *hldev,
1183 u32 port, u32 *tx, u32 *rx)
1185 u64 val64;
1186 enum vxge_hw_status status = VXGE_HW_OK;
1188 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
1189 status = VXGE_HW_ERR_INVALID_DEVICE;
1190 goto exit;
1193 if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
1194 status = VXGE_HW_ERR_INVALID_PORT;
1195 goto exit;
1198 if (!(hldev->access_rights & VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
1199 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
1200 goto exit;
1203 val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1204 if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN)
1205 *tx = 1;
1206 if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN)
1207 *rx = 1;
1208 exit:
1209 return status;
1213 * vxge_hw_device_setpause_data - set/reset pause frame generation.
1214 * It can be used to set or reset Pause frame generation or reception
1215 * support of the NIC.
1218 enum vxge_hw_status vxge_hw_device_setpause_data(struct __vxge_hw_device *hldev,
1219 u32 port, u32 tx, u32 rx)
1221 u64 val64;
1222 enum vxge_hw_status status = VXGE_HW_OK;
1224 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
1225 status = VXGE_HW_ERR_INVALID_DEVICE;
1226 goto exit;
1229 if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
1230 status = VXGE_HW_ERR_INVALID_PORT;
1231 goto exit;
1234 status = __vxge_hw_device_is_privilaged(hldev);
1235 if (status != VXGE_HW_OK)
1236 goto exit;
1238 val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1239 if (tx)
1240 val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
1241 else
1242 val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
1243 if (rx)
1244 val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
1245 else
1246 val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
1248 writeq(val64, &hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1249 exit:
1250 return status;
1253 u16 vxge_hw_device_link_width_get(struct __vxge_hw_device *hldev)
1255 int link_width, exp_cap;
1256 u16 lnk;
1258 exp_cap = pci_find_capability(hldev->pdev, PCI_CAP_ID_EXP);
1259 pci_read_config_word(hldev->pdev, exp_cap + PCI_EXP_LNKSTA, &lnk);
1260 link_width = (lnk & VXGE_HW_PCI_EXP_LNKCAP_LNK_WIDTH) >> 4;
1261 return link_width;
1265 * __vxge_hw_ring_block_memblock_idx - Return the memblock index
1266 * This function returns the index of memory block
1268 static inline u32
1269 __vxge_hw_ring_block_memblock_idx(u8 *block)
1271 return (u32)*((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET));
1275 * __vxge_hw_ring_block_memblock_idx_set - Sets the memblock index
1276 * This function sets index to a memory block
1278 static inline void
1279 __vxge_hw_ring_block_memblock_idx_set(u8 *block, u32 memblock_idx)
1281 *((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET)) = memblock_idx;
1285 * __vxge_hw_ring_block_next_pointer_set - Sets the next block pointer
1286 * in RxD block
1287 * Sets the next block pointer in RxD block
1289 static inline void
1290 __vxge_hw_ring_block_next_pointer_set(u8 *block, dma_addr_t dma_next)
1292 *((u64 *)(block + VXGE_HW_RING_NEXT_BLOCK_POINTER_OFFSET)) = dma_next;
1296 * __vxge_hw_ring_first_block_address_get - Returns the dma address of the
1297 * first block
1298 * Returns the dma address of the first RxD block
1300 u64 __vxge_hw_ring_first_block_address_get(struct __vxge_hw_ring *ring)
1302 struct vxge_hw_mempool_dma *dma_object;
1304 dma_object = ring->mempool->memblocks_dma_arr;
1305 vxge_assert(dma_object != NULL);
1307 return dma_object->addr;
1311 * __vxge_hw_ring_item_dma_addr - Return the dma address of an item
1312 * This function returns the dma address of a given item
1314 static dma_addr_t __vxge_hw_ring_item_dma_addr(struct vxge_hw_mempool *mempoolh,
1315 void *item)
1317 u32 memblock_idx;
1318 void *memblock;
1319 struct vxge_hw_mempool_dma *memblock_dma_object;
1320 ptrdiff_t dma_item_offset;
1322 /* get owner memblock index */
1323 memblock_idx = __vxge_hw_ring_block_memblock_idx(item);
1325 /* get owner memblock by memblock index */
1326 memblock = mempoolh->memblocks_arr[memblock_idx];
1328 /* get memblock DMA object by memblock index */
1329 memblock_dma_object = mempoolh->memblocks_dma_arr + memblock_idx;
1331 /* calculate offset in the memblock of this item */
1332 dma_item_offset = (u8 *)item - (u8 *)memblock;
1334 return memblock_dma_object->addr + dma_item_offset;
1338 * __vxge_hw_ring_rxdblock_link - Link the RxD blocks
1339 * This function returns the dma address of a given item
1341 static void __vxge_hw_ring_rxdblock_link(struct vxge_hw_mempool *mempoolh,
1342 struct __vxge_hw_ring *ring, u32 from,
1343 u32 to)
1345 u8 *to_item , *from_item;
1346 dma_addr_t to_dma;
1348 /* get "from" RxD block */
1349 from_item = mempoolh->items_arr[from];
1350 vxge_assert(from_item);
1352 /* get "to" RxD block */
1353 to_item = mempoolh->items_arr[to];
1354 vxge_assert(to_item);
1356 /* return address of the beginning of previous RxD block */
1357 to_dma = __vxge_hw_ring_item_dma_addr(mempoolh, to_item);
1359 /* set next pointer for this RxD block to point on
1360 * previous item's DMA start address */
1361 __vxge_hw_ring_block_next_pointer_set(from_item, to_dma);
1365 * __vxge_hw_ring_mempool_item_alloc - Allocate List blocks for RxD
1366 * block callback
1367 * This function is callback passed to __vxge_hw_mempool_create to create memory
1368 * pool for RxD block
1370 static void
1371 __vxge_hw_ring_mempool_item_alloc(struct vxge_hw_mempool *mempoolh,
1372 u32 memblock_index,
1373 struct vxge_hw_mempool_dma *dma_object,
1374 u32 index, u32 is_last)
1376 u32 i;
1377 void *item = mempoolh->items_arr[index];
1378 struct __vxge_hw_ring *ring =
1379 (struct __vxge_hw_ring *)mempoolh->userdata;
1381 /* format rxds array */
1382 for (i = 0; i < ring->rxds_per_block; i++) {
1383 void *rxdblock_priv;
1384 void *uld_priv;
1385 struct vxge_hw_ring_rxd_1 *rxdp;
1387 u32 reserve_index = ring->channel.reserve_ptr -
1388 (index * ring->rxds_per_block + i + 1);
1389 u32 memblock_item_idx;
1391 ring->channel.reserve_arr[reserve_index] = ((u8 *)item) +
1392 i * ring->rxd_size;
1394 /* Note: memblock_item_idx is index of the item within
1395 * the memblock. For instance, in case of three RxD-blocks
1396 * per memblock this value can be 0, 1 or 2. */
1397 rxdblock_priv = __vxge_hw_mempool_item_priv(mempoolh,
1398 memblock_index, item,
1399 &memblock_item_idx);
1401 rxdp = (struct vxge_hw_ring_rxd_1 *)
1402 ring->channel.reserve_arr[reserve_index];
1404 uld_priv = ((u8 *)rxdblock_priv + ring->rxd_priv_size * i);
1406 /* pre-format Host_Control */
1407 rxdp->host_control = (u64)(size_t)uld_priv;
1410 __vxge_hw_ring_block_memblock_idx_set(item, memblock_index);
1412 if (is_last) {
1413 /* link last one with first one */
1414 __vxge_hw_ring_rxdblock_link(mempoolh, ring, index, 0);
1417 if (index > 0) {
1418 /* link this RxD block with previous one */
1419 __vxge_hw_ring_rxdblock_link(mempoolh, ring, index - 1, index);
1422 return;
1426 * __vxge_hw_ring_initial_replenish - Initial replenish of RxDs
1427 * This function replenishes the RxDs from reserve array to work array
1429 enum vxge_hw_status
1430 vxge_hw_ring_replenish(struct __vxge_hw_ring *ring, u16 min_flag)
1432 void *rxd;
1433 int i = 0;
1434 struct __vxge_hw_channel *channel;
1435 enum vxge_hw_status status = VXGE_HW_OK;
1437 channel = &ring->channel;
1439 while (vxge_hw_channel_dtr_count(channel) > 0) {
1441 status = vxge_hw_ring_rxd_reserve(ring, &rxd);
1443 vxge_assert(status == VXGE_HW_OK);
1445 if (ring->rxd_init) {
1446 status = ring->rxd_init(rxd, channel->userdata);
1447 if (status != VXGE_HW_OK) {
1448 vxge_hw_ring_rxd_free(ring, rxd);
1449 goto exit;
1453 vxge_hw_ring_rxd_post(ring, rxd);
1454 if (min_flag) {
1455 i++;
1456 if (i == VXGE_HW_RING_MIN_BUFF_ALLOCATION)
1457 break;
1460 status = VXGE_HW_OK;
1461 exit:
1462 return status;
1466 * __vxge_hw_ring_create - Create a Ring
1467 * This function creates Ring and initializes it.
1470 enum vxge_hw_status
1471 __vxge_hw_ring_create(struct __vxge_hw_vpath_handle *vp,
1472 struct vxge_hw_ring_attr *attr)
1474 enum vxge_hw_status status = VXGE_HW_OK;
1475 struct __vxge_hw_ring *ring;
1476 u32 ring_length;
1477 struct vxge_hw_ring_config *config;
1478 struct __vxge_hw_device *hldev;
1479 u32 vp_id;
1480 struct vxge_hw_mempool_cbs ring_mp_callback;
1482 if ((vp == NULL) || (attr == NULL)) {
1483 status = VXGE_HW_FAIL;
1484 goto exit;
1487 hldev = vp->vpath->hldev;
1488 vp_id = vp->vpath->vp_id;
1490 config = &hldev->config.vp_config[vp_id].ring;
1492 ring_length = config->ring_blocks *
1493 vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
1495 ring = (struct __vxge_hw_ring *)__vxge_hw_channel_allocate(vp,
1496 VXGE_HW_CHANNEL_TYPE_RING,
1497 ring_length,
1498 attr->per_rxd_space,
1499 attr->userdata);
1501 if (ring == NULL) {
1502 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1503 goto exit;
1506 vp->vpath->ringh = ring;
1507 ring->vp_id = vp_id;
1508 ring->vp_reg = vp->vpath->vp_reg;
1509 ring->common_reg = hldev->common_reg;
1510 ring->stats = &vp->vpath->sw_stats->ring_stats;
1511 ring->config = config;
1512 ring->callback = attr->callback;
1513 ring->rxd_init = attr->rxd_init;
1514 ring->rxd_term = attr->rxd_term;
1515 ring->buffer_mode = config->buffer_mode;
1516 ring->rxds_limit = config->rxds_limit;
1518 ring->rxd_size = vxge_hw_ring_rxd_size_get(config->buffer_mode);
1519 ring->rxd_priv_size =
1520 sizeof(struct __vxge_hw_ring_rxd_priv) + attr->per_rxd_space;
1521 ring->per_rxd_space = attr->per_rxd_space;
1523 ring->rxd_priv_size =
1524 ((ring->rxd_priv_size + VXGE_CACHE_LINE_SIZE - 1) /
1525 VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
1527 /* how many RxDs can fit into one block. Depends on configured
1528 * buffer_mode. */
1529 ring->rxds_per_block =
1530 vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
1532 /* calculate actual RxD block private size */
1533 ring->rxdblock_priv_size = ring->rxd_priv_size * ring->rxds_per_block;
1534 ring_mp_callback.item_func_alloc = __vxge_hw_ring_mempool_item_alloc;
1535 ring->mempool = __vxge_hw_mempool_create(hldev,
1536 VXGE_HW_BLOCK_SIZE,
1537 VXGE_HW_BLOCK_SIZE,
1538 ring->rxdblock_priv_size,
1539 ring->config->ring_blocks,
1540 ring->config->ring_blocks,
1541 &ring_mp_callback,
1542 ring);
1544 if (ring->mempool == NULL) {
1545 __vxge_hw_ring_delete(vp);
1546 return VXGE_HW_ERR_OUT_OF_MEMORY;
1549 status = __vxge_hw_channel_initialize(&ring->channel);
1550 if (status != VXGE_HW_OK) {
1551 __vxge_hw_ring_delete(vp);
1552 goto exit;
1555 /* Note:
1556 * Specifying rxd_init callback means two things:
1557 * 1) rxds need to be initialized by driver at channel-open time;
1558 * 2) rxds need to be posted at channel-open time
1559 * (that's what the initial_replenish() below does)
1560 * Currently we don't have a case when the 1) is done without the 2).
1562 if (ring->rxd_init) {
1563 status = vxge_hw_ring_replenish(ring, 1);
1564 if (status != VXGE_HW_OK) {
1565 __vxge_hw_ring_delete(vp);
1566 goto exit;
1570 /* initial replenish will increment the counter in its post() routine,
1571 * we have to reset it */
1572 ring->stats->common_stats.usage_cnt = 0;
1573 exit:
1574 return status;
1578 * __vxge_hw_ring_abort - Returns the RxD
1579 * This function terminates the RxDs of ring
1581 enum vxge_hw_status __vxge_hw_ring_abort(struct __vxge_hw_ring *ring)
1583 void *rxdh;
1584 struct __vxge_hw_channel *channel;
1586 channel = &ring->channel;
1588 for (;;) {
1589 vxge_hw_channel_dtr_try_complete(channel, &rxdh);
1591 if (rxdh == NULL)
1592 break;
1594 vxge_hw_channel_dtr_complete(channel);
1596 if (ring->rxd_term)
1597 ring->rxd_term(rxdh, VXGE_HW_RXD_STATE_POSTED,
1598 channel->userdata);
1600 vxge_hw_channel_dtr_free(channel, rxdh);
1603 return VXGE_HW_OK;
1607 * __vxge_hw_ring_reset - Resets the ring
1608 * This function resets the ring during vpath reset operation
1610 enum vxge_hw_status __vxge_hw_ring_reset(struct __vxge_hw_ring *ring)
1612 enum vxge_hw_status status = VXGE_HW_OK;
1613 struct __vxge_hw_channel *channel;
1615 channel = &ring->channel;
1617 __vxge_hw_ring_abort(ring);
1619 status = __vxge_hw_channel_reset(channel);
1621 if (status != VXGE_HW_OK)
1622 goto exit;
1624 if (ring->rxd_init) {
1625 status = vxge_hw_ring_replenish(ring, 1);
1626 if (status != VXGE_HW_OK)
1627 goto exit;
1629 exit:
1630 return status;
1634 * __vxge_hw_ring_delete - Removes the ring
1635 * This function freeup the memory pool and removes the ring
1637 enum vxge_hw_status __vxge_hw_ring_delete(struct __vxge_hw_vpath_handle *vp)
1639 struct __vxge_hw_ring *ring = vp->vpath->ringh;
1641 __vxge_hw_ring_abort(ring);
1643 if (ring->mempool)
1644 __vxge_hw_mempool_destroy(ring->mempool);
1646 vp->vpath->ringh = NULL;
1647 __vxge_hw_channel_free(&ring->channel);
1649 return VXGE_HW_OK;
1653 * __vxge_hw_mempool_grow
1654 * Will resize mempool up to %num_allocate value.
1656 enum vxge_hw_status
1657 __vxge_hw_mempool_grow(struct vxge_hw_mempool *mempool, u32 num_allocate,
1658 u32 *num_allocated)
1660 u32 i, first_time = mempool->memblocks_allocated == 0 ? 1 : 0;
1661 u32 n_items = mempool->items_per_memblock;
1662 u32 start_block_idx = mempool->memblocks_allocated;
1663 u32 end_block_idx = mempool->memblocks_allocated + num_allocate;
1664 enum vxge_hw_status status = VXGE_HW_OK;
1666 *num_allocated = 0;
1668 if (end_block_idx > mempool->memblocks_max) {
1669 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1670 goto exit;
1673 for (i = start_block_idx; i < end_block_idx; i++) {
1674 u32 j;
1675 u32 is_last = ((end_block_idx - 1) == i);
1676 struct vxge_hw_mempool_dma *dma_object =
1677 mempool->memblocks_dma_arr + i;
1678 void *the_memblock;
1680 /* allocate memblock's private part. Each DMA memblock
1681 * has a space allocated for item's private usage upon
1682 * mempool's user request. Each time mempool grows, it will
1683 * allocate new memblock and its private part at once.
1684 * This helps to minimize memory usage a lot. */
1685 mempool->memblocks_priv_arr[i] =
1686 vmalloc(mempool->items_priv_size * n_items);
1687 if (mempool->memblocks_priv_arr[i] == NULL) {
1688 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1689 goto exit;
1692 memset(mempool->memblocks_priv_arr[i], 0,
1693 mempool->items_priv_size * n_items);
1695 /* allocate DMA-capable memblock */
1696 mempool->memblocks_arr[i] =
1697 __vxge_hw_blockpool_malloc(mempool->devh,
1698 mempool->memblock_size, dma_object);
1699 if (mempool->memblocks_arr[i] == NULL) {
1700 vfree(mempool->memblocks_priv_arr[i]);
1701 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1702 goto exit;
1705 (*num_allocated)++;
1706 mempool->memblocks_allocated++;
1708 memset(mempool->memblocks_arr[i], 0, mempool->memblock_size);
1710 the_memblock = mempool->memblocks_arr[i];
1712 /* fill the items hash array */
1713 for (j = 0; j < n_items; j++) {
1714 u32 index = i * n_items + j;
1716 if (first_time && index >= mempool->items_initial)
1717 break;
1719 mempool->items_arr[index] =
1720 ((char *)the_memblock + j*mempool->item_size);
1722 /* let caller to do more job on each item */
1723 if (mempool->item_func_alloc != NULL)
1724 mempool->item_func_alloc(mempool, i,
1725 dma_object, index, is_last);
1727 mempool->items_current = index + 1;
1730 if (first_time && mempool->items_current ==
1731 mempool->items_initial)
1732 break;
1734 exit:
1735 return status;
1739 * vxge_hw_mempool_create
1740 * This function will create memory pool object. Pool may grow but will
1741 * never shrink. Pool consists of number of dynamically allocated blocks
1742 * with size enough to hold %items_initial number of items. Memory is
1743 * DMA-able but client must map/unmap before interoperating with the device.
1745 struct vxge_hw_mempool*
1746 __vxge_hw_mempool_create(
1747 struct __vxge_hw_device *devh,
1748 u32 memblock_size,
1749 u32 item_size,
1750 u32 items_priv_size,
1751 u32 items_initial,
1752 u32 items_max,
1753 struct vxge_hw_mempool_cbs *mp_callback,
1754 void *userdata)
1756 enum vxge_hw_status status = VXGE_HW_OK;
1757 u32 memblocks_to_allocate;
1758 struct vxge_hw_mempool *mempool = NULL;
1759 u32 allocated;
1761 if (memblock_size < item_size) {
1762 status = VXGE_HW_FAIL;
1763 goto exit;
1766 mempool = (struct vxge_hw_mempool *)
1767 vmalloc(sizeof(struct vxge_hw_mempool));
1768 if (mempool == NULL) {
1769 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1770 goto exit;
1772 memset(mempool, 0, sizeof(struct vxge_hw_mempool));
1774 mempool->devh = devh;
1775 mempool->memblock_size = memblock_size;
1776 mempool->items_max = items_max;
1777 mempool->items_initial = items_initial;
1778 mempool->item_size = item_size;
1779 mempool->items_priv_size = items_priv_size;
1780 mempool->item_func_alloc = mp_callback->item_func_alloc;
1781 mempool->userdata = userdata;
1783 mempool->memblocks_allocated = 0;
1785 mempool->items_per_memblock = memblock_size / item_size;
1787 mempool->memblocks_max = (items_max + mempool->items_per_memblock - 1) /
1788 mempool->items_per_memblock;
1790 /* allocate array of memblocks */
1791 mempool->memblocks_arr =
1792 (void **) vmalloc(sizeof(void *) * mempool->memblocks_max);
1793 if (mempool->memblocks_arr == NULL) {
1794 __vxge_hw_mempool_destroy(mempool);
1795 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1796 mempool = NULL;
1797 goto exit;
1799 memset(mempool->memblocks_arr, 0,
1800 sizeof(void *) * mempool->memblocks_max);
1802 /* allocate array of private parts of items per memblocks */
1803 mempool->memblocks_priv_arr =
1804 (void **) vmalloc(sizeof(void *) * mempool->memblocks_max);
1805 if (mempool->memblocks_priv_arr == NULL) {
1806 __vxge_hw_mempool_destroy(mempool);
1807 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1808 mempool = NULL;
1809 goto exit;
1811 memset(mempool->memblocks_priv_arr, 0,
1812 sizeof(void *) * mempool->memblocks_max);
1814 /* allocate array of memblocks DMA objects */
1815 mempool->memblocks_dma_arr = (struct vxge_hw_mempool_dma *)
1816 vmalloc(sizeof(struct vxge_hw_mempool_dma) *
1817 mempool->memblocks_max);
1819 if (mempool->memblocks_dma_arr == NULL) {
1820 __vxge_hw_mempool_destroy(mempool);
1821 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1822 mempool = NULL;
1823 goto exit;
1825 memset(mempool->memblocks_dma_arr, 0,
1826 sizeof(struct vxge_hw_mempool_dma) *
1827 mempool->memblocks_max);
1829 /* allocate hash array of items */
1830 mempool->items_arr =
1831 (void **) vmalloc(sizeof(void *) * mempool->items_max);
1832 if (mempool->items_arr == NULL) {
1833 __vxge_hw_mempool_destroy(mempool);
1834 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1835 mempool = NULL;
1836 goto exit;
1838 memset(mempool->items_arr, 0, sizeof(void *) * mempool->items_max);
1840 /* calculate initial number of memblocks */
1841 memblocks_to_allocate = (mempool->items_initial +
1842 mempool->items_per_memblock - 1) /
1843 mempool->items_per_memblock;
1845 /* pre-allocate the mempool */
1846 status = __vxge_hw_mempool_grow(mempool, memblocks_to_allocate,
1847 &allocated);
1848 if (status != VXGE_HW_OK) {
1849 __vxge_hw_mempool_destroy(mempool);
1850 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1851 mempool = NULL;
1852 goto exit;
1855 exit:
1856 return mempool;
1860 * vxge_hw_mempool_destroy
1862 void __vxge_hw_mempool_destroy(struct vxge_hw_mempool *mempool)
1864 u32 i, j;
1865 struct __vxge_hw_device *devh = mempool->devh;
1867 for (i = 0; i < mempool->memblocks_allocated; i++) {
1868 struct vxge_hw_mempool_dma *dma_object;
1870 vxge_assert(mempool->memblocks_arr[i]);
1871 vxge_assert(mempool->memblocks_dma_arr + i);
1873 dma_object = mempool->memblocks_dma_arr + i;
1875 for (j = 0; j < mempool->items_per_memblock; j++) {
1876 u32 index = i * mempool->items_per_memblock + j;
1878 /* to skip last partially filled(if any) memblock */
1879 if (index >= mempool->items_current)
1880 break;
1883 vfree(mempool->memblocks_priv_arr[i]);
1885 __vxge_hw_blockpool_free(devh, mempool->memblocks_arr[i],
1886 mempool->memblock_size, dma_object);
1889 vfree(mempool->items_arr);
1891 vfree(mempool->memblocks_dma_arr);
1893 vfree(mempool->memblocks_priv_arr);
1895 vfree(mempool->memblocks_arr);
1897 vfree(mempool);
1901 * __vxge_hw_device_fifo_config_check - Check fifo configuration.
1902 * Check the fifo configuration
1904 enum vxge_hw_status
1905 __vxge_hw_device_fifo_config_check(struct vxge_hw_fifo_config *fifo_config)
1907 if ((fifo_config->fifo_blocks < VXGE_HW_MIN_FIFO_BLOCKS) ||
1908 (fifo_config->fifo_blocks > VXGE_HW_MAX_FIFO_BLOCKS))
1909 return VXGE_HW_BADCFG_FIFO_BLOCKS;
1911 return VXGE_HW_OK;
1915 * __vxge_hw_device_vpath_config_check - Check vpath configuration.
1916 * Check the vpath configuration
1918 enum vxge_hw_status
1919 __vxge_hw_device_vpath_config_check(struct vxge_hw_vp_config *vp_config)
1921 enum vxge_hw_status status;
1923 if ((vp_config->min_bandwidth < VXGE_HW_VPATH_BANDWIDTH_MIN) ||
1924 (vp_config->min_bandwidth >
1925 VXGE_HW_VPATH_BANDWIDTH_MAX))
1926 return VXGE_HW_BADCFG_VPATH_MIN_BANDWIDTH;
1928 status = __vxge_hw_device_fifo_config_check(&vp_config->fifo);
1929 if (status != VXGE_HW_OK)
1930 return status;
1932 if ((vp_config->mtu != VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) &&
1933 ((vp_config->mtu < VXGE_HW_VPATH_MIN_INITIAL_MTU) ||
1934 (vp_config->mtu > VXGE_HW_VPATH_MAX_INITIAL_MTU)))
1935 return VXGE_HW_BADCFG_VPATH_MTU;
1937 if ((vp_config->rpa_strip_vlan_tag !=
1938 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) &&
1939 (vp_config->rpa_strip_vlan_tag !=
1940 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE) &&
1941 (vp_config->rpa_strip_vlan_tag !=
1942 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_DISABLE))
1943 return VXGE_HW_BADCFG_VPATH_RPA_STRIP_VLAN_TAG;
1945 return VXGE_HW_OK;
1949 * __vxge_hw_device_config_check - Check device configuration.
1950 * Check the device configuration
1952 enum vxge_hw_status
1953 __vxge_hw_device_config_check(struct vxge_hw_device_config *new_config)
1955 u32 i;
1956 enum vxge_hw_status status;
1958 if ((new_config->intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
1959 (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
1960 (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
1961 (new_config->intr_mode != VXGE_HW_INTR_MODE_DEF))
1962 return VXGE_HW_BADCFG_INTR_MODE;
1964 if ((new_config->rts_mac_en != VXGE_HW_RTS_MAC_DISABLE) &&
1965 (new_config->rts_mac_en != VXGE_HW_RTS_MAC_ENABLE))
1966 return VXGE_HW_BADCFG_RTS_MAC_EN;
1968 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1969 status = __vxge_hw_device_vpath_config_check(
1970 &new_config->vp_config[i]);
1971 if (status != VXGE_HW_OK)
1972 return status;
1975 return VXGE_HW_OK;
1979 * vxge_hw_device_config_default_get - Initialize device config with defaults.
1980 * Initialize Titan device config with default values.
1982 enum vxge_hw_status __devinit
1983 vxge_hw_device_config_default_get(struct vxge_hw_device_config *device_config)
1985 u32 i;
1987 device_config->dma_blockpool_initial =
1988 VXGE_HW_INITIAL_DMA_BLOCK_POOL_SIZE;
1989 device_config->dma_blockpool_max = VXGE_HW_MAX_DMA_BLOCK_POOL_SIZE;
1990 device_config->intr_mode = VXGE_HW_INTR_MODE_DEF;
1991 device_config->rth_en = VXGE_HW_RTH_DEFAULT;
1992 device_config->rth_it_type = VXGE_HW_RTH_IT_TYPE_DEFAULT;
1993 device_config->device_poll_millis = VXGE_HW_DEF_DEVICE_POLL_MILLIS;
1994 device_config->rts_mac_en = VXGE_HW_RTS_MAC_DEFAULT;
1996 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1998 device_config->vp_config[i].vp_id = i;
2000 device_config->vp_config[i].min_bandwidth =
2001 VXGE_HW_VPATH_BANDWIDTH_DEFAULT;
2003 device_config->vp_config[i].ring.enable = VXGE_HW_RING_DEFAULT;
2005 device_config->vp_config[i].ring.ring_blocks =
2006 VXGE_HW_DEF_RING_BLOCKS;
2008 device_config->vp_config[i].ring.buffer_mode =
2009 VXGE_HW_RING_RXD_BUFFER_MODE_DEFAULT;
2011 device_config->vp_config[i].ring.scatter_mode =
2012 VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT;
2014 device_config->vp_config[i].ring.rxds_limit =
2015 VXGE_HW_DEF_RING_RXDS_LIMIT;
2017 device_config->vp_config[i].fifo.enable = VXGE_HW_FIFO_ENABLE;
2019 device_config->vp_config[i].fifo.fifo_blocks =
2020 VXGE_HW_MIN_FIFO_BLOCKS;
2022 device_config->vp_config[i].fifo.max_frags =
2023 VXGE_HW_MAX_FIFO_FRAGS;
2025 device_config->vp_config[i].fifo.memblock_size =
2026 VXGE_HW_DEF_FIFO_MEMBLOCK_SIZE;
2028 device_config->vp_config[i].fifo.alignment_size =
2029 VXGE_HW_DEF_FIFO_ALIGNMENT_SIZE;
2031 device_config->vp_config[i].fifo.intr =
2032 VXGE_HW_FIFO_QUEUE_INTR_DEFAULT;
2034 device_config->vp_config[i].fifo.no_snoop_bits =
2035 VXGE_HW_FIFO_NO_SNOOP_DEFAULT;
2036 device_config->vp_config[i].tti.intr_enable =
2037 VXGE_HW_TIM_INTR_DEFAULT;
2039 device_config->vp_config[i].tti.btimer_val =
2040 VXGE_HW_USE_FLASH_DEFAULT;
2042 device_config->vp_config[i].tti.timer_ac_en =
2043 VXGE_HW_USE_FLASH_DEFAULT;
2045 device_config->vp_config[i].tti.timer_ci_en =
2046 VXGE_HW_USE_FLASH_DEFAULT;
2048 device_config->vp_config[i].tti.timer_ri_en =
2049 VXGE_HW_USE_FLASH_DEFAULT;
2051 device_config->vp_config[i].tti.rtimer_val =
2052 VXGE_HW_USE_FLASH_DEFAULT;
2054 device_config->vp_config[i].tti.util_sel =
2055 VXGE_HW_USE_FLASH_DEFAULT;
2057 device_config->vp_config[i].tti.ltimer_val =
2058 VXGE_HW_USE_FLASH_DEFAULT;
2060 device_config->vp_config[i].tti.urange_a =
2061 VXGE_HW_USE_FLASH_DEFAULT;
2063 device_config->vp_config[i].tti.uec_a =
2064 VXGE_HW_USE_FLASH_DEFAULT;
2066 device_config->vp_config[i].tti.urange_b =
2067 VXGE_HW_USE_FLASH_DEFAULT;
2069 device_config->vp_config[i].tti.uec_b =
2070 VXGE_HW_USE_FLASH_DEFAULT;
2072 device_config->vp_config[i].tti.urange_c =
2073 VXGE_HW_USE_FLASH_DEFAULT;
2075 device_config->vp_config[i].tti.uec_c =
2076 VXGE_HW_USE_FLASH_DEFAULT;
2078 device_config->vp_config[i].tti.uec_d =
2079 VXGE_HW_USE_FLASH_DEFAULT;
2081 device_config->vp_config[i].rti.intr_enable =
2082 VXGE_HW_TIM_INTR_DEFAULT;
2084 device_config->vp_config[i].rti.btimer_val =
2085 VXGE_HW_USE_FLASH_DEFAULT;
2087 device_config->vp_config[i].rti.timer_ac_en =
2088 VXGE_HW_USE_FLASH_DEFAULT;
2090 device_config->vp_config[i].rti.timer_ci_en =
2091 VXGE_HW_USE_FLASH_DEFAULT;
2093 device_config->vp_config[i].rti.timer_ri_en =
2094 VXGE_HW_USE_FLASH_DEFAULT;
2096 device_config->vp_config[i].rti.rtimer_val =
2097 VXGE_HW_USE_FLASH_DEFAULT;
2099 device_config->vp_config[i].rti.util_sel =
2100 VXGE_HW_USE_FLASH_DEFAULT;
2102 device_config->vp_config[i].rti.ltimer_val =
2103 VXGE_HW_USE_FLASH_DEFAULT;
2105 device_config->vp_config[i].rti.urange_a =
2106 VXGE_HW_USE_FLASH_DEFAULT;
2108 device_config->vp_config[i].rti.uec_a =
2109 VXGE_HW_USE_FLASH_DEFAULT;
2111 device_config->vp_config[i].rti.urange_b =
2112 VXGE_HW_USE_FLASH_DEFAULT;
2114 device_config->vp_config[i].rti.uec_b =
2115 VXGE_HW_USE_FLASH_DEFAULT;
2117 device_config->vp_config[i].rti.urange_c =
2118 VXGE_HW_USE_FLASH_DEFAULT;
2120 device_config->vp_config[i].rti.uec_c =
2121 VXGE_HW_USE_FLASH_DEFAULT;
2123 device_config->vp_config[i].rti.uec_d =
2124 VXGE_HW_USE_FLASH_DEFAULT;
2126 device_config->vp_config[i].mtu =
2127 VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU;
2129 device_config->vp_config[i].rpa_strip_vlan_tag =
2130 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT;
2133 return VXGE_HW_OK;
2137 * _hw_legacy_swapper_set - Set the swapper bits for the legacy secion.
2138 * Set the swapper bits appropriately for the lagacy section.
2140 enum vxge_hw_status
2141 __vxge_hw_legacy_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg)
2143 u64 val64;
2144 enum vxge_hw_status status = VXGE_HW_OK;
2146 val64 = readq(&legacy_reg->toc_swapper_fb);
2148 wmb();
2150 switch (val64) {
2152 case VXGE_HW_SWAPPER_INITIAL_VALUE:
2153 return status;
2155 case VXGE_HW_SWAPPER_BYTE_SWAPPED_BIT_FLIPPED:
2156 writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
2157 &legacy_reg->pifm_rd_swap_en);
2158 writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
2159 &legacy_reg->pifm_rd_flip_en);
2160 writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
2161 &legacy_reg->pifm_wr_swap_en);
2162 writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
2163 &legacy_reg->pifm_wr_flip_en);
2164 break;
2166 case VXGE_HW_SWAPPER_BYTE_SWAPPED:
2167 writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
2168 &legacy_reg->pifm_rd_swap_en);
2169 writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
2170 &legacy_reg->pifm_wr_swap_en);
2171 break;
2173 case VXGE_HW_SWAPPER_BIT_FLIPPED:
2174 writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
2175 &legacy_reg->pifm_rd_flip_en);
2176 writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
2177 &legacy_reg->pifm_wr_flip_en);
2178 break;
2181 wmb();
2183 val64 = readq(&legacy_reg->toc_swapper_fb);
2185 if (val64 != VXGE_HW_SWAPPER_INITIAL_VALUE)
2186 status = VXGE_HW_ERR_SWAPPER_CTRL;
2188 return status;
2192 * __vxge_hw_vpath_swapper_set - Set the swapper bits for the vpath.
2193 * Set the swapper bits appropriately for the vpath.
2195 enum vxge_hw_status
2196 __vxge_hw_vpath_swapper_set(struct vxge_hw_vpath_reg __iomem *vpath_reg)
2198 #ifndef __BIG_ENDIAN
2199 u64 val64;
2201 val64 = readq(&vpath_reg->vpath_general_cfg1);
2202 wmb();
2203 val64 |= VXGE_HW_VPATH_GENERAL_CFG1_CTL_BYTE_SWAPEN;
2204 writeq(val64, &vpath_reg->vpath_general_cfg1);
2205 wmb();
2206 #endif
2207 return VXGE_HW_OK;
2211 * __vxge_hw_kdfc_swapper_set - Set the swapper bits for the kdfc.
2212 * Set the swapper bits appropriately for the vpath.
2214 enum vxge_hw_status
2215 __vxge_hw_kdfc_swapper_set(
2216 struct vxge_hw_legacy_reg __iomem *legacy_reg,
2217 struct vxge_hw_vpath_reg __iomem *vpath_reg)
2219 u64 val64;
2221 val64 = readq(&legacy_reg->pifm_wr_swap_en);
2223 if (val64 == VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE) {
2224 val64 = readq(&vpath_reg->kdfcctl_cfg0);
2225 wmb();
2227 val64 |= VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO0 |
2228 VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO1 |
2229 VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO2;
2231 writeq(val64, &vpath_reg->kdfcctl_cfg0);
2232 wmb();
2235 return VXGE_HW_OK;
2239 * vxge_hw_mgmt_device_config - Retrieve device configuration.
2240 * Get device configuration. Permits to retrieve at run-time configuration
2241 * values that were used to initialize and configure the device.
2243 enum vxge_hw_status
2244 vxge_hw_mgmt_device_config(struct __vxge_hw_device *hldev,
2245 struct vxge_hw_device_config *dev_config, int size)
2248 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC))
2249 return VXGE_HW_ERR_INVALID_DEVICE;
2251 if (size != sizeof(struct vxge_hw_device_config))
2252 return VXGE_HW_ERR_VERSION_CONFLICT;
2254 memcpy(dev_config, &hldev->config,
2255 sizeof(struct vxge_hw_device_config));
2257 return VXGE_HW_OK;
2261 * vxge_hw_mgmt_reg_read - Read Titan register.
2263 enum vxge_hw_status
2264 vxge_hw_mgmt_reg_read(struct __vxge_hw_device *hldev,
2265 enum vxge_hw_mgmt_reg_type type,
2266 u32 index, u32 offset, u64 *value)
2268 enum vxge_hw_status status = VXGE_HW_OK;
2270 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
2271 status = VXGE_HW_ERR_INVALID_DEVICE;
2272 goto exit;
2275 switch (type) {
2276 case vxge_hw_mgmt_reg_type_legacy:
2277 if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
2278 status = VXGE_HW_ERR_INVALID_OFFSET;
2279 break;
2281 *value = readq((void __iomem *)hldev->legacy_reg + offset);
2282 break;
2283 case vxge_hw_mgmt_reg_type_toc:
2284 if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
2285 status = VXGE_HW_ERR_INVALID_OFFSET;
2286 break;
2288 *value = readq((void __iomem *)hldev->toc_reg + offset);
2289 break;
2290 case vxge_hw_mgmt_reg_type_common:
2291 if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
2292 status = VXGE_HW_ERR_INVALID_OFFSET;
2293 break;
2295 *value = readq((void __iomem *)hldev->common_reg + offset);
2296 break;
2297 case vxge_hw_mgmt_reg_type_mrpcim:
2298 if (!(hldev->access_rights &
2299 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
2300 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
2301 break;
2303 if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
2304 status = VXGE_HW_ERR_INVALID_OFFSET;
2305 break;
2307 *value = readq((void __iomem *)hldev->mrpcim_reg + offset);
2308 break;
2309 case vxge_hw_mgmt_reg_type_srpcim:
2310 if (!(hldev->access_rights &
2311 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
2312 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
2313 break;
2315 if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
2316 status = VXGE_HW_ERR_INVALID_INDEX;
2317 break;
2319 if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
2320 status = VXGE_HW_ERR_INVALID_OFFSET;
2321 break;
2323 *value = readq((void __iomem *)hldev->srpcim_reg[index] +
2324 offset);
2325 break;
2326 case vxge_hw_mgmt_reg_type_vpmgmt:
2327 if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
2328 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
2329 status = VXGE_HW_ERR_INVALID_INDEX;
2330 break;
2332 if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
2333 status = VXGE_HW_ERR_INVALID_OFFSET;
2334 break;
2336 *value = readq((void __iomem *)hldev->vpmgmt_reg[index] +
2337 offset);
2338 break;
2339 case vxge_hw_mgmt_reg_type_vpath:
2340 if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) ||
2341 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
2342 status = VXGE_HW_ERR_INVALID_INDEX;
2343 break;
2345 if (index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) {
2346 status = VXGE_HW_ERR_INVALID_INDEX;
2347 break;
2349 if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
2350 status = VXGE_HW_ERR_INVALID_OFFSET;
2351 break;
2353 *value = readq((void __iomem *)hldev->vpath_reg[index] +
2354 offset);
2355 break;
2356 default:
2357 status = VXGE_HW_ERR_INVALID_TYPE;
2358 break;
2361 exit:
2362 return status;
2366 * vxge_hw_mgmt_reg_Write - Write Titan register.
2368 enum vxge_hw_status
2369 vxge_hw_mgmt_reg_write(struct __vxge_hw_device *hldev,
2370 enum vxge_hw_mgmt_reg_type type,
2371 u32 index, u32 offset, u64 value)
2373 enum vxge_hw_status status = VXGE_HW_OK;
2375 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
2376 status = VXGE_HW_ERR_INVALID_DEVICE;
2377 goto exit;
2380 switch (type) {
2381 case vxge_hw_mgmt_reg_type_legacy:
2382 if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
2383 status = VXGE_HW_ERR_INVALID_OFFSET;
2384 break;
2386 writeq(value, (void __iomem *)hldev->legacy_reg + offset);
2387 break;
2388 case vxge_hw_mgmt_reg_type_toc:
2389 if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
2390 status = VXGE_HW_ERR_INVALID_OFFSET;
2391 break;
2393 writeq(value, (void __iomem *)hldev->toc_reg + offset);
2394 break;
2395 case vxge_hw_mgmt_reg_type_common:
2396 if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
2397 status = VXGE_HW_ERR_INVALID_OFFSET;
2398 break;
2400 writeq(value, (void __iomem *)hldev->common_reg + offset);
2401 break;
2402 case vxge_hw_mgmt_reg_type_mrpcim:
2403 if (!(hldev->access_rights &
2404 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
2405 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
2406 break;
2408 if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
2409 status = VXGE_HW_ERR_INVALID_OFFSET;
2410 break;
2412 writeq(value, (void __iomem *)hldev->mrpcim_reg + offset);
2413 break;
2414 case vxge_hw_mgmt_reg_type_srpcim:
2415 if (!(hldev->access_rights &
2416 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
2417 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
2418 break;
2420 if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
2421 status = VXGE_HW_ERR_INVALID_INDEX;
2422 break;
2424 if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
2425 status = VXGE_HW_ERR_INVALID_OFFSET;
2426 break;
2428 writeq(value, (void __iomem *)hldev->srpcim_reg[index] +
2429 offset);
2431 break;
2432 case vxge_hw_mgmt_reg_type_vpmgmt:
2433 if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
2434 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
2435 status = VXGE_HW_ERR_INVALID_INDEX;
2436 break;
2438 if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
2439 status = VXGE_HW_ERR_INVALID_OFFSET;
2440 break;
2442 writeq(value, (void __iomem *)hldev->vpmgmt_reg[index] +
2443 offset);
2444 break;
2445 case vxge_hw_mgmt_reg_type_vpath:
2446 if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES-1) ||
2447 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
2448 status = VXGE_HW_ERR_INVALID_INDEX;
2449 break;
2451 if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
2452 status = VXGE_HW_ERR_INVALID_OFFSET;
2453 break;
2455 writeq(value, (void __iomem *)hldev->vpath_reg[index] +
2456 offset);
2457 break;
2458 default:
2459 status = VXGE_HW_ERR_INVALID_TYPE;
2460 break;
2462 exit:
2463 return status;
2467 * __vxge_hw_fifo_mempool_item_alloc - Allocate List blocks for TxD
2468 * list callback
2469 * This function is callback passed to __vxge_hw_mempool_create to create memory
2470 * pool for TxD list
2472 static void
2473 __vxge_hw_fifo_mempool_item_alloc(
2474 struct vxge_hw_mempool *mempoolh,
2475 u32 memblock_index, struct vxge_hw_mempool_dma *dma_object,
2476 u32 index, u32 is_last)
2478 u32 memblock_item_idx;
2479 struct __vxge_hw_fifo_txdl_priv *txdl_priv;
2480 struct vxge_hw_fifo_txd *txdp =
2481 (struct vxge_hw_fifo_txd *)mempoolh->items_arr[index];
2482 struct __vxge_hw_fifo *fifo =
2483 (struct __vxge_hw_fifo *)mempoolh->userdata;
2484 void *memblock = mempoolh->memblocks_arr[memblock_index];
2486 vxge_assert(txdp);
2488 txdp->host_control = (u64) (size_t)
2489 __vxge_hw_mempool_item_priv(mempoolh, memblock_index, txdp,
2490 &memblock_item_idx);
2492 txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
2494 vxge_assert(txdl_priv);
2496 fifo->channel.reserve_arr[fifo->channel.reserve_ptr - 1 - index] = txdp;
2498 /* pre-format HW's TxDL's private */
2499 txdl_priv->dma_offset = (char *)txdp - (char *)memblock;
2500 txdl_priv->dma_addr = dma_object->addr + txdl_priv->dma_offset;
2501 txdl_priv->dma_handle = dma_object->handle;
2502 txdl_priv->memblock = memblock;
2503 txdl_priv->first_txdp = txdp;
2504 txdl_priv->next_txdl_priv = NULL;
2505 txdl_priv->alloc_frags = 0;
2507 return;
2511 * __vxge_hw_fifo_create - Create a FIFO
2512 * This function creates FIFO and initializes it.
2514 enum vxge_hw_status
2515 __vxge_hw_fifo_create(struct __vxge_hw_vpath_handle *vp,
2516 struct vxge_hw_fifo_attr *attr)
2518 enum vxge_hw_status status = VXGE_HW_OK;
2519 struct __vxge_hw_fifo *fifo;
2520 struct vxge_hw_fifo_config *config;
2521 u32 txdl_size, txdl_per_memblock;
2522 struct vxge_hw_mempool_cbs fifo_mp_callback;
2523 struct __vxge_hw_virtualpath *vpath;
2525 if ((vp == NULL) || (attr == NULL)) {
2526 status = VXGE_HW_ERR_INVALID_HANDLE;
2527 goto exit;
2529 vpath = vp->vpath;
2530 config = &vpath->hldev->config.vp_config[vpath->vp_id].fifo;
2532 txdl_size = config->max_frags * sizeof(struct vxge_hw_fifo_txd);
2534 txdl_per_memblock = config->memblock_size / txdl_size;
2536 fifo = (struct __vxge_hw_fifo *)__vxge_hw_channel_allocate(vp,
2537 VXGE_HW_CHANNEL_TYPE_FIFO,
2538 config->fifo_blocks * txdl_per_memblock,
2539 attr->per_txdl_space, attr->userdata);
2541 if (fifo == NULL) {
2542 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2543 goto exit;
2546 vpath->fifoh = fifo;
2547 fifo->nofl_db = vpath->nofl_db;
2549 fifo->vp_id = vpath->vp_id;
2550 fifo->vp_reg = vpath->vp_reg;
2551 fifo->stats = &vpath->sw_stats->fifo_stats;
2553 fifo->config = config;
2555 /* apply "interrupts per txdl" attribute */
2556 fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_UTILZ;
2558 if (fifo->config->intr)
2559 fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_PER_LIST;
2561 fifo->no_snoop_bits = config->no_snoop_bits;
2564 * FIFO memory management strategy:
2566 * TxDL split into three independent parts:
2567 * - set of TxD's
2568 * - TxD HW private part
2569 * - driver private part
2571 * Adaptative memory allocation used. i.e. Memory allocated on
2572 * demand with the size which will fit into one memory block.
2573 * One memory block may contain more than one TxDL.
2575 * During "reserve" operations more memory can be allocated on demand
2576 * for example due to FIFO full condition.
2578 * Pool of memory memblocks never shrinks except in __vxge_hw_fifo_close
2579 * routine which will essentially stop the channel and free resources.
2582 /* TxDL common private size == TxDL private + driver private */
2583 fifo->priv_size =
2584 sizeof(struct __vxge_hw_fifo_txdl_priv) + attr->per_txdl_space;
2585 fifo->priv_size = ((fifo->priv_size + VXGE_CACHE_LINE_SIZE - 1) /
2586 VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
2588 fifo->per_txdl_space = attr->per_txdl_space;
2590 /* recompute txdl size to be cacheline aligned */
2591 fifo->txdl_size = txdl_size;
2592 fifo->txdl_per_memblock = txdl_per_memblock;
2594 fifo->txdl_term = attr->txdl_term;
2595 fifo->callback = attr->callback;
2597 if (fifo->txdl_per_memblock == 0) {
2598 __vxge_hw_fifo_delete(vp);
2599 status = VXGE_HW_ERR_INVALID_BLOCK_SIZE;
2600 goto exit;
2603 fifo_mp_callback.item_func_alloc = __vxge_hw_fifo_mempool_item_alloc;
2605 fifo->mempool =
2606 __vxge_hw_mempool_create(vpath->hldev,
2607 fifo->config->memblock_size,
2608 fifo->txdl_size,
2609 fifo->priv_size,
2610 (fifo->config->fifo_blocks * fifo->txdl_per_memblock),
2611 (fifo->config->fifo_blocks * fifo->txdl_per_memblock),
2612 &fifo_mp_callback,
2613 fifo);
2615 if (fifo->mempool == NULL) {
2616 __vxge_hw_fifo_delete(vp);
2617 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2618 goto exit;
2621 status = __vxge_hw_channel_initialize(&fifo->channel);
2622 if (status != VXGE_HW_OK) {
2623 __vxge_hw_fifo_delete(vp);
2624 goto exit;
2627 vxge_assert(fifo->channel.reserve_ptr);
2628 exit:
2629 return status;
2633 * __vxge_hw_fifo_abort - Returns the TxD
2634 * This function terminates the TxDs of fifo
2636 enum vxge_hw_status __vxge_hw_fifo_abort(struct __vxge_hw_fifo *fifo)
2638 void *txdlh;
2640 for (;;) {
2641 vxge_hw_channel_dtr_try_complete(&fifo->channel, &txdlh);
2643 if (txdlh == NULL)
2644 break;
2646 vxge_hw_channel_dtr_complete(&fifo->channel);
2648 if (fifo->txdl_term) {
2649 fifo->txdl_term(txdlh,
2650 VXGE_HW_TXDL_STATE_POSTED,
2651 fifo->channel.userdata);
2654 vxge_hw_channel_dtr_free(&fifo->channel, txdlh);
2657 return VXGE_HW_OK;
2661 * __vxge_hw_fifo_reset - Resets the fifo
2662 * This function resets the fifo during vpath reset operation
2664 enum vxge_hw_status __vxge_hw_fifo_reset(struct __vxge_hw_fifo *fifo)
2666 enum vxge_hw_status status = VXGE_HW_OK;
2668 __vxge_hw_fifo_abort(fifo);
2669 status = __vxge_hw_channel_reset(&fifo->channel);
2671 return status;
2675 * __vxge_hw_fifo_delete - Removes the FIFO
2676 * This function freeup the memory pool and removes the FIFO
2678 enum vxge_hw_status __vxge_hw_fifo_delete(struct __vxge_hw_vpath_handle *vp)
2680 struct __vxge_hw_fifo *fifo = vp->vpath->fifoh;
2682 __vxge_hw_fifo_abort(fifo);
2684 if (fifo->mempool)
2685 __vxge_hw_mempool_destroy(fifo->mempool);
2687 vp->vpath->fifoh = NULL;
2689 __vxge_hw_channel_free(&fifo->channel);
2691 return VXGE_HW_OK;
2695 * __vxge_hw_vpath_pci_read - Read the content of given address
2696 * in pci config space.
2697 * Read from the vpath pci config space.
2699 enum vxge_hw_status
2700 __vxge_hw_vpath_pci_read(struct __vxge_hw_virtualpath *vpath,
2701 u32 phy_func_0, u32 offset, u32 *val)
2703 u64 val64;
2704 enum vxge_hw_status status = VXGE_HW_OK;
2705 struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
2707 val64 = VXGE_HW_PCI_CONFIG_ACCESS_CFG1_ADDRESS(offset);
2709 if (phy_func_0)
2710 val64 |= VXGE_HW_PCI_CONFIG_ACCESS_CFG1_SEL_FUNC0;
2712 writeq(val64, &vp_reg->pci_config_access_cfg1);
2713 wmb();
2714 writeq(VXGE_HW_PCI_CONFIG_ACCESS_CFG2_REQ,
2715 &vp_reg->pci_config_access_cfg2);
2716 wmb();
2718 status = __vxge_hw_device_register_poll(
2719 &vp_reg->pci_config_access_cfg2,
2720 VXGE_HW_INTR_MASK_ALL, VXGE_HW_DEF_DEVICE_POLL_MILLIS);
2722 if (status != VXGE_HW_OK)
2723 goto exit;
2725 val64 = readq(&vp_reg->pci_config_access_status);
2727 if (val64 & VXGE_HW_PCI_CONFIG_ACCESS_STATUS_ACCESS_ERR) {
2728 status = VXGE_HW_FAIL;
2729 *val = 0;
2730 } else
2731 *val = (u32)vxge_bVALn(val64, 32, 32);
2732 exit:
2733 return status;
2737 * __vxge_hw_vpath_func_id_get - Get the function id of the vpath.
2738 * Returns the function number of the vpath.
2741 __vxge_hw_vpath_func_id_get(u32 vp_id,
2742 struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg)
2744 u64 val64;
2746 val64 = readq(&vpmgmt_reg->vpath_to_func_map_cfg1);
2748 return
2749 (u32)VXGE_HW_VPATH_TO_FUNC_MAP_CFG1_GET_VPATH_TO_FUNC_MAP_CFG1(val64);
2753 * __vxge_hw_read_rts_ds - Program RTS steering critieria
2755 static inline void
2756 __vxge_hw_read_rts_ds(struct vxge_hw_vpath_reg __iomem *vpath_reg,
2757 u64 dta_struct_sel)
2759 writeq(0, &vpath_reg->rts_access_steer_ctrl);
2760 wmb();
2761 writeq(dta_struct_sel, &vpath_reg->rts_access_steer_data0);
2762 writeq(0, &vpath_reg->rts_access_steer_data1);
2763 wmb();
2764 return;
2769 * __vxge_hw_vpath_card_info_get - Get the serial numbers,
2770 * part number and product description.
2772 enum vxge_hw_status
2773 __vxge_hw_vpath_card_info_get(
2774 u32 vp_id,
2775 struct vxge_hw_vpath_reg __iomem *vpath_reg,
2776 struct vxge_hw_device_hw_info *hw_info)
2778 u32 i, j;
2779 u64 val64;
2780 u64 data1 = 0ULL;
2781 u64 data2 = 0ULL;
2782 enum vxge_hw_status status = VXGE_HW_OK;
2783 u8 *serial_number = hw_info->serial_number;
2784 u8 *part_number = hw_info->part_number;
2785 u8 *product_desc = hw_info->product_desc;
2787 __vxge_hw_read_rts_ds(vpath_reg,
2788 VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_SERIAL_NUMBER);
2790 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
2791 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) |
2792 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
2793 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
2794 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
2795 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
2797 status = __vxge_hw_pio_mem_write64(val64,
2798 &vpath_reg->rts_access_steer_ctrl,
2799 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
2800 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
2802 if (status != VXGE_HW_OK)
2803 return status;
2805 val64 = readq(&vpath_reg->rts_access_steer_ctrl);
2807 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
2808 data1 = readq(&vpath_reg->rts_access_steer_data0);
2809 ((u64 *)serial_number)[0] = be64_to_cpu(data1);
2811 data2 = readq(&vpath_reg->rts_access_steer_data1);
2812 ((u64 *)serial_number)[1] = be64_to_cpu(data2);
2813 status = VXGE_HW_OK;
2814 } else
2815 *serial_number = 0;
2817 __vxge_hw_read_rts_ds(vpath_reg,
2818 VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_PART_NUMBER);
2820 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
2821 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) |
2822 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
2823 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
2824 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
2825 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
2827 status = __vxge_hw_pio_mem_write64(val64,
2828 &vpath_reg->rts_access_steer_ctrl,
2829 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
2830 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
2832 if (status != VXGE_HW_OK)
2833 return status;
2835 val64 = readq(&vpath_reg->rts_access_steer_ctrl);
2837 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
2839 data1 = readq(&vpath_reg->rts_access_steer_data0);
2840 ((u64 *)part_number)[0] = be64_to_cpu(data1);
2842 data2 = readq(&vpath_reg->rts_access_steer_data1);
2843 ((u64 *)part_number)[1] = be64_to_cpu(data2);
2845 status = VXGE_HW_OK;
2847 } else
2848 *part_number = 0;
2850 j = 0;
2852 for (i = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_0;
2853 i <= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_3; i++) {
2855 __vxge_hw_read_rts_ds(vpath_reg, i);
2857 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
2858 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) |
2859 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
2860 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
2861 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
2862 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
2864 status = __vxge_hw_pio_mem_write64(val64,
2865 &vpath_reg->rts_access_steer_ctrl,
2866 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
2867 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
2869 if (status != VXGE_HW_OK)
2870 return status;
2872 val64 = readq(&vpath_reg->rts_access_steer_ctrl);
2874 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
2876 data1 = readq(&vpath_reg->rts_access_steer_data0);
2877 ((u64 *)product_desc)[j++] = be64_to_cpu(data1);
2879 data2 = readq(&vpath_reg->rts_access_steer_data1);
2880 ((u64 *)product_desc)[j++] = be64_to_cpu(data2);
2882 status = VXGE_HW_OK;
2883 } else
2884 *product_desc = 0;
2887 return status;
2891 * __vxge_hw_vpath_fw_ver_get - Get the fw version
2892 * Returns FW Version
2894 enum vxge_hw_status
2895 __vxge_hw_vpath_fw_ver_get(
2896 u32 vp_id,
2897 struct vxge_hw_vpath_reg __iomem *vpath_reg,
2898 struct vxge_hw_device_hw_info *hw_info)
2900 u64 val64;
2901 u64 data1 = 0ULL;
2902 u64 data2 = 0ULL;
2903 struct vxge_hw_device_version *fw_version = &hw_info->fw_version;
2904 struct vxge_hw_device_date *fw_date = &hw_info->fw_date;
2905 struct vxge_hw_device_version *flash_version = &hw_info->flash_version;
2906 struct vxge_hw_device_date *flash_date = &hw_info->flash_date;
2907 enum vxge_hw_status status = VXGE_HW_OK;
2909 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
2910 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY) |
2911 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
2912 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
2913 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
2914 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
2916 status = __vxge_hw_pio_mem_write64(val64,
2917 &vpath_reg->rts_access_steer_ctrl,
2918 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
2919 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
2921 if (status != VXGE_HW_OK)
2922 goto exit;
2924 val64 = readq(&vpath_reg->rts_access_steer_ctrl);
2926 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
2928 data1 = readq(&vpath_reg->rts_access_steer_data0);
2929 data2 = readq(&vpath_reg->rts_access_steer_data1);
2931 fw_date->day =
2932 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_DAY(
2933 data1);
2934 fw_date->month =
2935 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MONTH(
2936 data1);
2937 fw_date->year =
2938 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_YEAR(
2939 data1);
2941 snprintf(fw_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d",
2942 fw_date->month, fw_date->day, fw_date->year);
2944 fw_version->major =
2945 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data1);
2946 fw_version->minor =
2947 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data1);
2948 fw_version->build =
2949 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data1);
2951 snprintf(fw_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
2952 fw_version->major, fw_version->minor, fw_version->build);
2954 flash_date->day =
2955 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_DAY(data2);
2956 flash_date->month =
2957 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MONTH(data2);
2958 flash_date->year =
2959 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_YEAR(data2);
2961 snprintf(flash_date->date, VXGE_HW_FW_STRLEN,
2962 "%2.2d/%2.2d/%4.4d",
2963 flash_date->month, flash_date->day, flash_date->year);
2965 flash_version->major =
2966 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MAJOR(data2);
2967 flash_version->minor =
2968 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MINOR(data2);
2969 flash_version->build =
2970 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_BUILD(data2);
2972 snprintf(flash_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
2973 flash_version->major, flash_version->minor,
2974 flash_version->build);
2976 status = VXGE_HW_OK;
2978 } else
2979 status = VXGE_HW_FAIL;
2980 exit:
2981 return status;
2985 * __vxge_hw_vpath_pci_func_mode_get - Get the pci mode
2986 * Returns pci function mode
2989 __vxge_hw_vpath_pci_func_mode_get(
2990 u32 vp_id,
2991 struct vxge_hw_vpath_reg __iomem *vpath_reg)
2993 u64 val64;
2994 u64 data1 = 0ULL;
2995 enum vxge_hw_status status = VXGE_HW_OK;
2997 __vxge_hw_read_rts_ds(vpath_reg,
2998 VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_PCI_MODE);
3000 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
3001 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) |
3002 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
3003 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
3004 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
3005 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
3007 status = __vxge_hw_pio_mem_write64(val64,
3008 &vpath_reg->rts_access_steer_ctrl,
3009 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
3010 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
3012 if (status != VXGE_HW_OK)
3013 goto exit;
3015 val64 = readq(&vpath_reg->rts_access_steer_ctrl);
3017 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
3018 data1 = readq(&vpath_reg->rts_access_steer_data0);
3019 status = VXGE_HW_OK;
3020 } else {
3021 data1 = 0;
3022 status = VXGE_HW_FAIL;
3024 exit:
3025 return data1;
3029 * vxge_hw_device_flick_link_led - Flick (blink) link LED.
3030 * @hldev: HW device.
3031 * @on_off: TRUE if flickering to be on, FALSE to be off
3033 * Flicker the link LED.
3035 enum vxge_hw_status
3036 vxge_hw_device_flick_link_led(struct __vxge_hw_device *hldev,
3037 u64 on_off)
3039 u64 val64;
3040 enum vxge_hw_status status = VXGE_HW_OK;
3041 struct vxge_hw_vpath_reg __iomem *vp_reg;
3043 if (hldev == NULL) {
3044 status = VXGE_HW_ERR_INVALID_DEVICE;
3045 goto exit;
3048 vp_reg = hldev->vpath_reg[hldev->first_vp_id];
3050 writeq(0, &vp_reg->rts_access_steer_ctrl);
3051 wmb();
3052 writeq(on_off, &vp_reg->rts_access_steer_data0);
3053 writeq(0, &vp_reg->rts_access_steer_data1);
3054 wmb();
3056 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
3057 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LED_CONTROL) |
3058 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
3059 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
3060 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
3061 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
3063 status = __vxge_hw_pio_mem_write64(val64,
3064 &vp_reg->rts_access_steer_ctrl,
3065 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
3066 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
3067 exit:
3068 return status;
3072 * __vxge_hw_vpath_rts_table_get - Get the entries from RTS access tables
3074 enum vxge_hw_status
3075 __vxge_hw_vpath_rts_table_get(
3076 struct __vxge_hw_vpath_handle *vp,
3077 u32 action, u32 rts_table, u32 offset, u64 *data1, u64 *data2)
3079 u64 val64;
3080 struct __vxge_hw_virtualpath *vpath;
3081 struct vxge_hw_vpath_reg __iomem *vp_reg;
3083 enum vxge_hw_status status = VXGE_HW_OK;
3085 if (vp == NULL) {
3086 status = VXGE_HW_ERR_INVALID_HANDLE;
3087 goto exit;
3090 vpath = vp->vpath;
3091 vp_reg = vpath->vp_reg;
3093 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action) |
3094 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(rts_table) |
3095 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
3096 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(offset);
3098 if ((rts_table ==
3099 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT) ||
3100 (rts_table ==
3101 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT) ||
3102 (rts_table ==
3103 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MASK) ||
3104 (rts_table ==
3105 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_KEY)) {
3106 val64 = val64 | VXGE_HW_RTS_ACCESS_STEER_CTRL_TABLE_SEL;
3109 status = __vxge_hw_pio_mem_write64(val64,
3110 &vp_reg->rts_access_steer_ctrl,
3111 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
3112 vpath->hldev->config.device_poll_millis);
3114 if (status != VXGE_HW_OK)
3115 goto exit;
3117 val64 = readq(&vp_reg->rts_access_steer_ctrl);
3119 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
3121 *data1 = readq(&vp_reg->rts_access_steer_data0);
3123 if ((rts_table ==
3124 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) ||
3125 (rts_table ==
3126 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT)) {
3127 *data2 = readq(&vp_reg->rts_access_steer_data1);
3129 status = VXGE_HW_OK;
3130 } else
3131 status = VXGE_HW_FAIL;
3132 exit:
3133 return status;
3137 * __vxge_hw_vpath_rts_table_set - Set the entries of RTS access tables
3139 enum vxge_hw_status
3140 __vxge_hw_vpath_rts_table_set(
3141 struct __vxge_hw_vpath_handle *vp, u32 action, u32 rts_table,
3142 u32 offset, u64 data1, u64 data2)
3144 u64 val64;
3145 struct __vxge_hw_virtualpath *vpath;
3146 enum vxge_hw_status status = VXGE_HW_OK;
3147 struct vxge_hw_vpath_reg __iomem *vp_reg;
3149 if (vp == NULL) {
3150 status = VXGE_HW_ERR_INVALID_HANDLE;
3151 goto exit;
3154 vpath = vp->vpath;
3155 vp_reg = vpath->vp_reg;
3157 writeq(data1, &vp_reg->rts_access_steer_data0);
3158 wmb();
3160 if ((rts_table == VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) ||
3161 (rts_table ==
3162 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT)) {
3163 writeq(data2, &vp_reg->rts_access_steer_data1);
3164 wmb();
3167 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action) |
3168 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(rts_table) |
3169 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
3170 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(offset);
3172 status = __vxge_hw_pio_mem_write64(val64,
3173 &vp_reg->rts_access_steer_ctrl,
3174 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
3175 vpath->hldev->config.device_poll_millis);
3177 if (status != VXGE_HW_OK)
3178 goto exit;
3180 val64 = readq(&vp_reg->rts_access_steer_ctrl);
3182 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS)
3183 status = VXGE_HW_OK;
3184 else
3185 status = VXGE_HW_FAIL;
3186 exit:
3187 return status;
3191 * __vxge_hw_vpath_addr_get - Get the hw address entry for this vpath
3192 * from MAC address table.
3194 enum vxge_hw_status
3195 __vxge_hw_vpath_addr_get(
3196 u32 vp_id, struct vxge_hw_vpath_reg __iomem *vpath_reg,
3197 u8 (macaddr)[ETH_ALEN], u8 (macaddr_mask)[ETH_ALEN])
3199 u32 i;
3200 u64 val64;
3201 u64 data1 = 0ULL;
3202 u64 data2 = 0ULL;
3203 enum vxge_hw_status status = VXGE_HW_OK;
3205 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
3206 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY) |
3207 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
3208 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) |
3209 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
3210 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
3212 status = __vxge_hw_pio_mem_write64(val64,
3213 &vpath_reg->rts_access_steer_ctrl,
3214 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
3215 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
3217 if (status != VXGE_HW_OK)
3218 goto exit;
3220 val64 = readq(&vpath_reg->rts_access_steer_ctrl);
3222 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
3224 data1 = readq(&vpath_reg->rts_access_steer_data0);
3225 data2 = readq(&vpath_reg->rts_access_steer_data1);
3227 data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
3228 data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(
3229 data2);
3231 for (i = ETH_ALEN; i > 0; i--) {
3232 macaddr[i-1] = (u8)(data1 & 0xFF);
3233 data1 >>= 8;
3235 macaddr_mask[i-1] = (u8)(data2 & 0xFF);
3236 data2 >>= 8;
3238 status = VXGE_HW_OK;
3239 } else
3240 status = VXGE_HW_FAIL;
3241 exit:
3242 return status;
3246 * vxge_hw_vpath_rts_rth_set - Set/configure RTS hashing.
3248 enum vxge_hw_status vxge_hw_vpath_rts_rth_set(
3249 struct __vxge_hw_vpath_handle *vp,
3250 enum vxge_hw_rth_algoritms algorithm,
3251 struct vxge_hw_rth_hash_types *hash_type,
3252 u16 bucket_size)
3254 u64 data0, data1;
3255 enum vxge_hw_status status = VXGE_HW_OK;
3257 if (vp == NULL) {
3258 status = VXGE_HW_ERR_INVALID_HANDLE;
3259 goto exit;
3262 status = __vxge_hw_vpath_rts_table_get(vp,
3263 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY,
3264 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
3265 0, &data0, &data1);
3267 data0 &= ~(VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(0xf) |
3268 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(0x3));
3270 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_EN |
3271 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(bucket_size) |
3272 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(algorithm);
3274 if (hash_type->hash_type_tcpipv4_en)
3275 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV4_EN;
3277 if (hash_type->hash_type_ipv4_en)
3278 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV4_EN;
3280 if (hash_type->hash_type_tcpipv6_en)
3281 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EN;
3283 if (hash_type->hash_type_ipv6_en)
3284 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EN;
3286 if (hash_type->hash_type_tcpipv6ex_en)
3287 data0 |=
3288 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EX_EN;
3290 if (hash_type->hash_type_ipv6ex_en)
3291 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EX_EN;
3293 if (VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_RTH_GEN_ACTIVE_TABLE(data0))
3294 data0 &= ~VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
3295 else
3296 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
3298 status = __vxge_hw_vpath_rts_table_set(vp,
3299 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY,
3300 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
3301 0, data0, 0);
3302 exit:
3303 return status;
3306 static void
3307 vxge_hw_rts_rth_data0_data1_get(u32 j, u64 *data0, u64 *data1,
3308 u16 flag, u8 *itable)
3310 switch (flag) {
3311 case 1:
3312 *data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_NUM(j)|
3313 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_ENTRY_EN |
3314 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_DATA(
3315 itable[j]);
3316 case 2:
3317 *data0 |=
3318 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_NUM(j)|
3319 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_ENTRY_EN |
3320 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_DATA(
3321 itable[j]);
3322 case 3:
3323 *data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_NUM(j)|
3324 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_ENTRY_EN |
3325 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_DATA(
3326 itable[j]);
3327 case 4:
3328 *data1 |=
3329 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_NUM(j)|
3330 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_ENTRY_EN |
3331 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_DATA(
3332 itable[j]);
3333 default:
3334 return;
3338 * vxge_hw_vpath_rts_rth_itable_set - Set/configure indirection table (IT).
3340 enum vxge_hw_status vxge_hw_vpath_rts_rth_itable_set(
3341 struct __vxge_hw_vpath_handle **vpath_handles,
3342 u32 vpath_count,
3343 u8 *mtable,
3344 u8 *itable,
3345 u32 itable_size)
3347 u32 i, j, action, rts_table;
3348 u64 data0;
3349 u64 data1;
3350 u32 max_entries;
3351 enum vxge_hw_status status = VXGE_HW_OK;
3352 struct __vxge_hw_vpath_handle *vp = vpath_handles[0];
3354 if (vp == NULL) {
3355 status = VXGE_HW_ERR_INVALID_HANDLE;
3356 goto exit;
3359 max_entries = (((u32)1) << itable_size);
3361 if (vp->vpath->hldev->config.rth_it_type
3362 == VXGE_HW_RTH_IT_TYPE_SOLO_IT) {
3363 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
3364 rts_table =
3365 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT;
3367 for (j = 0; j < max_entries; j++) {
3369 data1 = 0;
3371 data0 =
3372 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3373 itable[j]);
3375 status = __vxge_hw_vpath_rts_table_set(vpath_handles[0],
3376 action, rts_table, j, data0, data1);
3378 if (status != VXGE_HW_OK)
3379 goto exit;
3382 for (j = 0; j < max_entries; j++) {
3384 data1 = 0;
3386 data0 =
3387 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_ENTRY_EN |
3388 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3389 itable[j]);
3391 status = __vxge_hw_vpath_rts_table_set(
3392 vpath_handles[mtable[itable[j]]], action,
3393 rts_table, j, data0, data1);
3395 if (status != VXGE_HW_OK)
3396 goto exit;
3398 } else {
3399 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
3400 rts_table =
3401 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT;
3402 for (i = 0; i < vpath_count; i++) {
3404 for (j = 0; j < max_entries;) {
3406 data0 = 0;
3407 data1 = 0;
3409 while (j < max_entries) {
3410 if (mtable[itable[j]] != i) {
3411 j++;
3412 continue;
3414 vxge_hw_rts_rth_data0_data1_get(j,
3415 &data0, &data1, 1, itable);
3416 j++;
3417 break;
3420 while (j < max_entries) {
3421 if (mtable[itable[j]] != i) {
3422 j++;
3423 continue;
3425 vxge_hw_rts_rth_data0_data1_get(j,
3426 &data0, &data1, 2, itable);
3427 j++;
3428 break;
3431 while (j < max_entries) {
3432 if (mtable[itable[j]] != i) {
3433 j++;
3434 continue;
3436 vxge_hw_rts_rth_data0_data1_get(j,
3437 &data0, &data1, 3, itable);
3438 j++;
3439 break;
3442 while (j < max_entries) {
3443 if (mtable[itable[j]] != i) {
3444 j++;
3445 continue;
3447 vxge_hw_rts_rth_data0_data1_get(j,
3448 &data0, &data1, 4, itable);
3449 j++;
3450 break;
3453 if (data0 != 0) {
3454 status = __vxge_hw_vpath_rts_table_set(
3455 vpath_handles[i],
3456 action, rts_table,
3457 0, data0, data1);
3459 if (status != VXGE_HW_OK)
3460 goto exit;
3465 exit:
3466 return status;
3470 * vxge_hw_vpath_check_leak - Check for memory leak
3471 * @ringh: Handle to the ring object used for receive
3473 * If PRC_RXD_DOORBELL_VPn.NEW_QW_CNT is larger or equal to
3474 * PRC_CFG6_VPn.RXD_SPAT then a leak has occurred.
3475 * Returns: VXGE_HW_FAIL, if leak has occurred.
3478 enum vxge_hw_status
3479 vxge_hw_vpath_check_leak(struct __vxge_hw_ring *ring)
3481 enum vxge_hw_status status = VXGE_HW_OK;
3482 u64 rxd_new_count, rxd_spat;
3484 if (ring == NULL)
3485 return status;
3487 rxd_new_count = readl(&ring->vp_reg->prc_rxd_doorbell);
3488 rxd_spat = readq(&ring->vp_reg->prc_cfg6);
3489 rxd_spat = VXGE_HW_PRC_CFG6_RXD_SPAT(rxd_spat);
3491 if (rxd_new_count >= rxd_spat)
3492 status = VXGE_HW_FAIL;
3494 return status;
3498 * __vxge_hw_vpath_mgmt_read
3499 * This routine reads the vpath_mgmt registers
3501 static enum vxge_hw_status
3502 __vxge_hw_vpath_mgmt_read(
3503 struct __vxge_hw_device *hldev,
3504 struct __vxge_hw_virtualpath *vpath)
3506 u32 i, mtu = 0, max_pyld = 0;
3507 u64 val64;
3508 enum vxge_hw_status status = VXGE_HW_OK;
3510 for (i = 0; i < VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
3512 val64 = readq(&vpath->vpmgmt_reg->
3513 rxmac_cfg0_port_vpmgmt_clone[i]);
3514 max_pyld =
3515 (u32)
3516 VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_GET_MAX_PYLD_LEN
3517 (val64);
3518 if (mtu < max_pyld)
3519 mtu = max_pyld;
3522 vpath->max_mtu = mtu + VXGE_HW_MAC_HEADER_MAX_SIZE;
3524 val64 = readq(&vpath->vpmgmt_reg->xmac_vsport_choices_vp);
3526 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
3527 if (val64 & vxge_mBIT(i))
3528 vpath->vsport_number = i;
3531 val64 = readq(&vpath->vpmgmt_reg->xgmac_gen_status_vpmgmt_clone);
3533 if (val64 & VXGE_HW_XGMAC_GEN_STATUS_VPMGMT_CLONE_XMACJ_NTWK_OK)
3534 VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_UP);
3535 else
3536 VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_DOWN);
3538 return status;
3542 * __vxge_hw_vpath_reset_check - Check if resetting the vpath completed
3543 * This routine checks the vpath_rst_in_prog register to see if
3544 * adapter completed the reset process for the vpath
3546 enum vxge_hw_status
3547 __vxge_hw_vpath_reset_check(struct __vxge_hw_virtualpath *vpath)
3549 enum vxge_hw_status status;
3551 status = __vxge_hw_device_register_poll(
3552 &vpath->hldev->common_reg->vpath_rst_in_prog,
3553 VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(
3554 1 << (16 - vpath->vp_id)),
3555 vpath->hldev->config.device_poll_millis);
3557 return status;
3561 * __vxge_hw_vpath_reset
3562 * This routine resets the vpath on the device
3564 enum vxge_hw_status
3565 __vxge_hw_vpath_reset(struct __vxge_hw_device *hldev, u32 vp_id)
3567 u64 val64;
3568 enum vxge_hw_status status = VXGE_HW_OK;
3570 val64 = VXGE_HW_CMN_RSTHDLR_CFG0_SW_RESET_VPATH(1 << (16 - vp_id));
3572 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
3573 &hldev->common_reg->cmn_rsthdlr_cfg0);
3575 return status;
3579 * __vxge_hw_vpath_sw_reset
3580 * This routine resets the vpath structures
3582 enum vxge_hw_status
3583 __vxge_hw_vpath_sw_reset(struct __vxge_hw_device *hldev, u32 vp_id)
3585 enum vxge_hw_status status = VXGE_HW_OK;
3586 struct __vxge_hw_virtualpath *vpath;
3588 vpath = (struct __vxge_hw_virtualpath *)&hldev->virtual_paths[vp_id];
3590 if (vpath->ringh) {
3591 status = __vxge_hw_ring_reset(vpath->ringh);
3592 if (status != VXGE_HW_OK)
3593 goto exit;
3596 if (vpath->fifoh)
3597 status = __vxge_hw_fifo_reset(vpath->fifoh);
3598 exit:
3599 return status;
3603 * __vxge_hw_vpath_prc_configure
3604 * This routine configures the prc registers of virtual path using the config
3605 * passed
3607 void
3608 __vxge_hw_vpath_prc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
3610 u64 val64;
3611 struct __vxge_hw_virtualpath *vpath;
3612 struct vxge_hw_vp_config *vp_config;
3613 struct vxge_hw_vpath_reg __iomem *vp_reg;
3615 vpath = &hldev->virtual_paths[vp_id];
3616 vp_reg = vpath->vp_reg;
3617 vp_config = vpath->vp_config;
3619 if (vp_config->ring.enable == VXGE_HW_RING_DISABLE)
3620 return;
3622 val64 = readq(&vp_reg->prc_cfg1);
3623 val64 |= VXGE_HW_PRC_CFG1_RTI_TINT_DISABLE;
3624 writeq(val64, &vp_reg->prc_cfg1);
3626 val64 = readq(&vpath->vp_reg->prc_cfg6);
3627 val64 |= VXGE_HW_PRC_CFG6_DOORBELL_MODE_EN;
3628 writeq(val64, &vpath->vp_reg->prc_cfg6);
3630 val64 = readq(&vp_reg->prc_cfg7);
3632 if (vpath->vp_config->ring.scatter_mode !=
3633 VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT) {
3635 val64 &= ~VXGE_HW_PRC_CFG7_SCATTER_MODE(0x3);
3637 switch (vpath->vp_config->ring.scatter_mode) {
3638 case VXGE_HW_RING_SCATTER_MODE_A:
3639 val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
3640 VXGE_HW_PRC_CFG7_SCATTER_MODE_A);
3641 break;
3642 case VXGE_HW_RING_SCATTER_MODE_B:
3643 val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
3644 VXGE_HW_PRC_CFG7_SCATTER_MODE_B);
3645 break;
3646 case VXGE_HW_RING_SCATTER_MODE_C:
3647 val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
3648 VXGE_HW_PRC_CFG7_SCATTER_MODE_C);
3649 break;
3653 writeq(val64, &vp_reg->prc_cfg7);
3655 writeq(VXGE_HW_PRC_CFG5_RXD0_ADD(
3656 __vxge_hw_ring_first_block_address_get(
3657 vpath->ringh) >> 3), &vp_reg->prc_cfg5);
3659 val64 = readq(&vp_reg->prc_cfg4);
3660 val64 |= VXGE_HW_PRC_CFG4_IN_SVC;
3661 val64 &= ~VXGE_HW_PRC_CFG4_RING_MODE(0x3);
3663 val64 |= VXGE_HW_PRC_CFG4_RING_MODE(
3664 VXGE_HW_PRC_CFG4_RING_MODE_ONE_BUFFER);
3666 if (hldev->config.rth_en == VXGE_HW_RTH_DISABLE)
3667 val64 |= VXGE_HW_PRC_CFG4_RTH_DISABLE;
3668 else
3669 val64 &= ~VXGE_HW_PRC_CFG4_RTH_DISABLE;
3671 writeq(val64, &vp_reg->prc_cfg4);
3672 return;
3676 * __vxge_hw_vpath_kdfc_configure
3677 * This routine configures the kdfc registers of virtual path using the
3678 * config passed
3680 enum vxge_hw_status
3681 __vxge_hw_vpath_kdfc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
3683 u64 val64;
3684 u64 vpath_stride;
3685 enum vxge_hw_status status = VXGE_HW_OK;
3686 struct __vxge_hw_virtualpath *vpath;
3687 struct vxge_hw_vpath_reg __iomem *vp_reg;
3689 vpath = &hldev->virtual_paths[vp_id];
3690 vp_reg = vpath->vp_reg;
3691 status = __vxge_hw_kdfc_swapper_set(hldev->legacy_reg, vp_reg);
3693 if (status != VXGE_HW_OK)
3694 goto exit;
3696 val64 = readq(&vp_reg->kdfc_drbl_triplet_total);
3698 vpath->max_kdfc_db =
3699 (u32)VXGE_HW_KDFC_DRBL_TRIPLET_TOTAL_GET_KDFC_MAX_SIZE(
3700 val64+1)/2;
3702 if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
3704 vpath->max_nofl_db = vpath->max_kdfc_db;
3706 if (vpath->max_nofl_db <
3707 ((vpath->vp_config->fifo.memblock_size /
3708 (vpath->vp_config->fifo.max_frags *
3709 sizeof(struct vxge_hw_fifo_txd))) *
3710 vpath->vp_config->fifo.fifo_blocks)) {
3712 return VXGE_HW_BADCFG_FIFO_BLOCKS;
3714 val64 = VXGE_HW_KDFC_FIFO_TRPL_PARTITION_LENGTH_0(
3715 (vpath->max_nofl_db*2)-1);
3718 writeq(val64, &vp_reg->kdfc_fifo_trpl_partition);
3720 writeq(VXGE_HW_KDFC_FIFO_TRPL_CTRL_TRIPLET_ENABLE,
3721 &vp_reg->kdfc_fifo_trpl_ctrl);
3723 val64 = readq(&vp_reg->kdfc_trpl_fifo_0_ctrl);
3725 val64 &= ~(VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(0x3) |
3726 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0xFF));
3728 val64 |= VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(
3729 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE_NON_OFFLOAD_ONLY) |
3730 #ifndef __BIG_ENDIAN
3731 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SWAP_EN |
3732 #endif
3733 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0);
3735 writeq(val64, &vp_reg->kdfc_trpl_fifo_0_ctrl);
3736 writeq((u64)0, &vp_reg->kdfc_trpl_fifo_0_wb_address);
3737 wmb();
3738 vpath_stride = readq(&hldev->toc_reg->toc_kdfc_vpath_stride);
3740 vpath->nofl_db =
3741 (struct __vxge_hw_non_offload_db_wrapper __iomem *)
3742 (hldev->kdfc + (vp_id *
3743 VXGE_HW_TOC_KDFC_VPATH_STRIDE_GET_TOC_KDFC_VPATH_STRIDE(
3744 vpath_stride)));
3745 exit:
3746 return status;
3750 * __vxge_hw_vpath_mac_configure
3751 * This routine configures the mac of virtual path using the config passed
3753 enum vxge_hw_status
3754 __vxge_hw_vpath_mac_configure(struct __vxge_hw_device *hldev, u32 vp_id)
3756 u64 val64;
3757 enum vxge_hw_status status = VXGE_HW_OK;
3758 struct __vxge_hw_virtualpath *vpath;
3759 struct vxge_hw_vp_config *vp_config;
3760 struct vxge_hw_vpath_reg __iomem *vp_reg;
3762 vpath = &hldev->virtual_paths[vp_id];
3763 vp_reg = vpath->vp_reg;
3764 vp_config = vpath->vp_config;
3766 writeq(VXGE_HW_XMAC_VSPORT_CHOICE_VSPORT_NUMBER(
3767 vpath->vsport_number), &vp_reg->xmac_vsport_choice);
3769 if (vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
3771 val64 = readq(&vp_reg->xmac_rpa_vcfg);
3773 if (vp_config->rpa_strip_vlan_tag !=
3774 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) {
3775 if (vp_config->rpa_strip_vlan_tag)
3776 val64 |= VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
3777 else
3778 val64 &= ~VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
3781 writeq(val64, &vp_reg->xmac_rpa_vcfg);
3782 val64 = readq(&vp_reg->rxmac_vcfg0);
3784 if (vp_config->mtu !=
3785 VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) {
3786 val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
3787 if ((vp_config->mtu +
3788 VXGE_HW_MAC_HEADER_MAX_SIZE) < vpath->max_mtu)
3789 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
3790 vp_config->mtu +
3791 VXGE_HW_MAC_HEADER_MAX_SIZE);
3792 else
3793 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
3794 vpath->max_mtu);
3797 writeq(val64, &vp_reg->rxmac_vcfg0);
3799 val64 = readq(&vp_reg->rxmac_vcfg1);
3801 val64 &= ~(VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(0x3) |
3802 VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE);
3804 if (hldev->config.rth_it_type ==
3805 VXGE_HW_RTH_IT_TYPE_MULTI_IT) {
3806 val64 |= VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(
3807 0x2) |
3808 VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE;
3811 writeq(val64, &vp_reg->rxmac_vcfg1);
3813 return status;
3817 * __vxge_hw_vpath_tim_configure
3818 * This routine configures the tim registers of virtual path using the config
3819 * passed
3821 enum vxge_hw_status
3822 __vxge_hw_vpath_tim_configure(struct __vxge_hw_device *hldev, u32 vp_id)
3824 u64 val64;
3825 enum vxge_hw_status status = VXGE_HW_OK;
3826 struct __vxge_hw_virtualpath *vpath;
3827 struct vxge_hw_vpath_reg __iomem *vp_reg;
3828 struct vxge_hw_vp_config *config;
3830 vpath = &hldev->virtual_paths[vp_id];
3831 vp_reg = vpath->vp_reg;
3832 config = vpath->vp_config;
3834 writeq((u64)0, &vp_reg->tim_dest_addr);
3835 writeq((u64)0, &vp_reg->tim_vpath_map);
3836 writeq((u64)0, &vp_reg->tim_bitmap);
3837 writeq((u64)0, &vp_reg->tim_remap);
3839 if (config->ring.enable == VXGE_HW_RING_ENABLE)
3840 writeq(VXGE_HW_TIM_RING_ASSN_INT_NUM(
3841 (vp_id * VXGE_HW_MAX_INTR_PER_VP) +
3842 VXGE_HW_VPATH_INTR_RX), &vp_reg->tim_ring_assn);
3844 val64 = readq(&vp_reg->tim_pci_cfg);
3845 val64 |= VXGE_HW_TIM_PCI_CFG_ADD_PAD;
3846 writeq(val64, &vp_reg->tim_pci_cfg);
3848 if (config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
3850 val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
3852 if (config->tti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
3853 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
3854 0x3ffffff);
3855 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
3856 config->tti.btimer_val);
3859 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
3861 if (config->tti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
3862 if (config->tti.timer_ac_en)
3863 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
3864 else
3865 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
3868 if (config->tti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
3869 if (config->tti.timer_ci_en)
3870 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
3871 else
3872 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
3875 if (config->tti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
3876 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
3877 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
3878 config->tti.urange_a);
3881 if (config->tti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
3882 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
3883 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
3884 config->tti.urange_b);
3887 if (config->tti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
3888 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
3889 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
3890 config->tti.urange_c);
3893 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
3894 val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
3896 if (config->tti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
3897 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
3898 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
3899 config->tti.uec_a);
3902 if (config->tti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
3903 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
3904 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
3905 config->tti.uec_b);
3908 if (config->tti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
3909 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
3910 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
3911 config->tti.uec_c);
3914 if (config->tti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
3915 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
3916 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
3917 config->tti.uec_d);
3920 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
3921 val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
3923 if (config->tti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
3924 if (config->tti.timer_ri_en)
3925 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
3926 else
3927 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
3930 if (config->tti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
3931 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
3932 0x3ffffff);
3933 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
3934 config->tti.rtimer_val);
3937 if (config->tti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
3938 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
3939 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(
3940 config->tti.util_sel);
3943 if (config->tti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
3944 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
3945 0x3ffffff);
3946 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
3947 config->tti.ltimer_val);
3950 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
3953 if (config->ring.enable == VXGE_HW_RING_ENABLE) {
3955 val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
3957 if (config->rti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
3958 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
3959 0x3ffffff);
3960 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
3961 config->rti.btimer_val);
3964 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
3966 if (config->rti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
3967 if (config->rti.timer_ac_en)
3968 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
3969 else
3970 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
3973 if (config->rti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
3974 if (config->rti.timer_ci_en)
3975 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
3976 else
3977 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
3980 if (config->rti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
3981 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
3982 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
3983 config->rti.urange_a);
3986 if (config->rti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
3987 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
3988 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
3989 config->rti.urange_b);
3992 if (config->rti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
3993 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
3994 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
3995 config->rti.urange_c);
3998 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
3999 val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
4001 if (config->rti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
4002 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
4003 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
4004 config->rti.uec_a);
4007 if (config->rti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
4008 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
4009 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
4010 config->rti.uec_b);
4013 if (config->rti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
4014 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
4015 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
4016 config->rti.uec_c);
4019 if (config->rti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
4020 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
4021 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
4022 config->rti.uec_d);
4025 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
4026 val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
4028 if (config->rti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
4029 if (config->rti.timer_ri_en)
4030 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4031 else
4032 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4035 if (config->rti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4036 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4037 0x3ffffff);
4038 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4039 config->rti.rtimer_val);
4042 if (config->rti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
4043 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
4044 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(
4045 config->rti.util_sel);
4048 if (config->rti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4049 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4050 0x3ffffff);
4051 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4052 config->rti.ltimer_val);
4055 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
4058 val64 = 0;
4059 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4060 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4061 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4062 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4063 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4064 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4066 return status;
4070 * __vxge_hw_vpath_initialize
4071 * This routine is the final phase of init which initializes the
4072 * registers of the vpath using the configuration passed.
4074 enum vxge_hw_status
4075 __vxge_hw_vpath_initialize(struct __vxge_hw_device *hldev, u32 vp_id)
4077 u64 val64;
4078 u32 val32;
4079 enum vxge_hw_status status = VXGE_HW_OK;
4080 struct __vxge_hw_virtualpath *vpath;
4081 struct vxge_hw_vpath_reg __iomem *vp_reg;
4083 vpath = &hldev->virtual_paths[vp_id];
4085 if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
4086 status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
4087 goto exit;
4089 vp_reg = vpath->vp_reg;
4091 status = __vxge_hw_vpath_swapper_set(vpath->vp_reg);
4093 if (status != VXGE_HW_OK)
4094 goto exit;
4096 status = __vxge_hw_vpath_mac_configure(hldev, vp_id);
4098 if (status != VXGE_HW_OK)
4099 goto exit;
4101 status = __vxge_hw_vpath_kdfc_configure(hldev, vp_id);
4103 if (status != VXGE_HW_OK)
4104 goto exit;
4106 status = __vxge_hw_vpath_tim_configure(hldev, vp_id);
4108 if (status != VXGE_HW_OK)
4109 goto exit;
4111 writeq(0, &vp_reg->gendma_int);
4113 val64 = readq(&vp_reg->rtdma_rd_optimization_ctrl);
4115 /* Get MRRS value from device control */
4116 status = __vxge_hw_vpath_pci_read(vpath, 1, 0x78, &val32);
4118 if (status == VXGE_HW_OK) {
4119 val32 = (val32 & VXGE_HW_PCI_EXP_DEVCTL_READRQ) >> 12;
4120 val64 &=
4121 ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(7));
4122 val64 |=
4123 VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(val32);
4125 val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_WAIT_FOR_SPACE;
4128 val64 &= ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(7));
4129 val64 |=
4130 VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(
4131 VXGE_HW_MAX_PAYLOAD_SIZE_512);
4133 val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY_EN;
4134 writeq(val64, &vp_reg->rtdma_rd_optimization_ctrl);
4136 exit:
4137 return status;
4141 * __vxge_hw_vp_initialize - Initialize Virtual Path structure
4142 * This routine is the initial phase of init which resets the vpath and
4143 * initializes the software support structures.
4145 enum vxge_hw_status
4146 __vxge_hw_vp_initialize(struct __vxge_hw_device *hldev, u32 vp_id,
4147 struct vxge_hw_vp_config *config)
4149 struct __vxge_hw_virtualpath *vpath;
4150 enum vxge_hw_status status = VXGE_HW_OK;
4152 if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
4153 status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
4154 goto exit;
4157 vpath = &hldev->virtual_paths[vp_id];
4159 vpath->vp_id = vp_id;
4160 vpath->vp_open = VXGE_HW_VP_OPEN;
4161 vpath->hldev = hldev;
4162 vpath->vp_config = config;
4163 vpath->vp_reg = hldev->vpath_reg[vp_id];
4164 vpath->vpmgmt_reg = hldev->vpmgmt_reg[vp_id];
4166 __vxge_hw_vpath_reset(hldev, vp_id);
4168 status = __vxge_hw_vpath_reset_check(vpath);
4170 if (status != VXGE_HW_OK) {
4171 memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4172 goto exit;
4175 status = __vxge_hw_vpath_mgmt_read(hldev, vpath);
4177 if (status != VXGE_HW_OK) {
4178 memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4179 goto exit;
4182 INIT_LIST_HEAD(&vpath->vpath_handles);
4184 vpath->sw_stats = &hldev->stats.sw_dev_info_stats.vpath_info[vp_id];
4186 VXGE_HW_DEVICE_TIM_INT_MASK_SET(hldev->tim_int_mask0,
4187 hldev->tim_int_mask1, vp_id);
4189 status = __vxge_hw_vpath_initialize(hldev, vp_id);
4191 if (status != VXGE_HW_OK)
4192 __vxge_hw_vp_terminate(hldev, vp_id);
4193 exit:
4194 return status;
4198 * __vxge_hw_vp_terminate - Terminate Virtual Path structure
4199 * This routine closes all channels it opened and freeup memory
4201 void
4202 __vxge_hw_vp_terminate(struct __vxge_hw_device *hldev, u32 vp_id)
4204 struct __vxge_hw_virtualpath *vpath;
4206 vpath = &hldev->virtual_paths[vp_id];
4208 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN)
4209 goto exit;
4211 VXGE_HW_DEVICE_TIM_INT_MASK_RESET(vpath->hldev->tim_int_mask0,
4212 vpath->hldev->tim_int_mask1, vpath->vp_id);
4213 hldev->stats.hw_dev_info_stats.vpath_info[vpath->vp_id] = NULL;
4215 memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4216 exit:
4217 return;
4221 * vxge_hw_vpath_mtu_set - Set MTU.
4222 * Set new MTU value. Example, to use jumbo frames:
4223 * vxge_hw_vpath_mtu_set(my_device, 9600);
4225 enum vxge_hw_status
4226 vxge_hw_vpath_mtu_set(struct __vxge_hw_vpath_handle *vp, u32 new_mtu)
4228 u64 val64;
4229 enum vxge_hw_status status = VXGE_HW_OK;
4230 struct __vxge_hw_virtualpath *vpath;
4232 if (vp == NULL) {
4233 status = VXGE_HW_ERR_INVALID_HANDLE;
4234 goto exit;
4236 vpath = vp->vpath;
4238 new_mtu += VXGE_HW_MAC_HEADER_MAX_SIZE;
4240 if ((new_mtu < VXGE_HW_MIN_MTU) || (new_mtu > vpath->max_mtu))
4241 status = VXGE_HW_ERR_INVALID_MTU_SIZE;
4243 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
4245 val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
4246 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(new_mtu);
4248 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
4250 vpath->vp_config->mtu = new_mtu - VXGE_HW_MAC_HEADER_MAX_SIZE;
4252 exit:
4253 return status;
4257 * vxge_hw_vpath_open - Open a virtual path on a given adapter
4258 * This function is used to open access to virtual path of an
4259 * adapter for offload, GRO operations. This function returns
4260 * synchronously.
4262 enum vxge_hw_status
4263 vxge_hw_vpath_open(struct __vxge_hw_device *hldev,
4264 struct vxge_hw_vpath_attr *attr,
4265 struct __vxge_hw_vpath_handle **vpath_handle)
4267 struct __vxge_hw_virtualpath *vpath;
4268 struct __vxge_hw_vpath_handle *vp;
4269 enum vxge_hw_status status;
4271 vpath = &hldev->virtual_paths[attr->vp_id];
4273 if (vpath->vp_open == VXGE_HW_VP_OPEN) {
4274 status = VXGE_HW_ERR_INVALID_STATE;
4275 goto vpath_open_exit1;
4278 status = __vxge_hw_vp_initialize(hldev, attr->vp_id,
4279 &hldev->config.vp_config[attr->vp_id]);
4281 if (status != VXGE_HW_OK)
4282 goto vpath_open_exit1;
4284 vp = (struct __vxge_hw_vpath_handle *)
4285 vmalloc(sizeof(struct __vxge_hw_vpath_handle));
4286 if (vp == NULL) {
4287 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4288 goto vpath_open_exit2;
4291 memset(vp, 0, sizeof(struct __vxge_hw_vpath_handle));
4293 vp->vpath = vpath;
4295 if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4296 status = __vxge_hw_fifo_create(vp, &attr->fifo_attr);
4297 if (status != VXGE_HW_OK)
4298 goto vpath_open_exit6;
4301 if (vpath->vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
4302 status = __vxge_hw_ring_create(vp, &attr->ring_attr);
4303 if (status != VXGE_HW_OK)
4304 goto vpath_open_exit7;
4306 __vxge_hw_vpath_prc_configure(hldev, attr->vp_id);
4309 vpath->fifoh->tx_intr_num =
4310 (attr->vp_id * VXGE_HW_MAX_INTR_PER_VP) +
4311 VXGE_HW_VPATH_INTR_TX;
4313 vpath->stats_block = __vxge_hw_blockpool_block_allocate(hldev,
4314 VXGE_HW_BLOCK_SIZE);
4316 if (vpath->stats_block == NULL) {
4317 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4318 goto vpath_open_exit8;
4321 vpath->hw_stats = (struct vxge_hw_vpath_stats_hw_info *)vpath->
4322 stats_block->memblock;
4323 memset(vpath->hw_stats, 0,
4324 sizeof(struct vxge_hw_vpath_stats_hw_info));
4326 hldev->stats.hw_dev_info_stats.vpath_info[attr->vp_id] =
4327 vpath->hw_stats;
4329 vpath->hw_stats_sav =
4330 &hldev->stats.hw_dev_info_stats.vpath_info_sav[attr->vp_id];
4331 memset(vpath->hw_stats_sav, 0,
4332 sizeof(struct vxge_hw_vpath_stats_hw_info));
4334 writeq(vpath->stats_block->dma_addr, &vpath->vp_reg->stats_cfg);
4336 status = vxge_hw_vpath_stats_enable(vp);
4337 if (status != VXGE_HW_OK)
4338 goto vpath_open_exit8;
4340 list_add(&vp->item, &vpath->vpath_handles);
4342 hldev->vpaths_deployed |= vxge_mBIT(vpath->vp_id);
4344 *vpath_handle = vp;
4346 attr->fifo_attr.userdata = vpath->fifoh;
4347 attr->ring_attr.userdata = vpath->ringh;
4349 return VXGE_HW_OK;
4351 vpath_open_exit8:
4352 if (vpath->ringh != NULL)
4353 __vxge_hw_ring_delete(vp);
4354 vpath_open_exit7:
4355 if (vpath->fifoh != NULL)
4356 __vxge_hw_fifo_delete(vp);
4357 vpath_open_exit6:
4358 vfree(vp);
4359 vpath_open_exit2:
4360 __vxge_hw_vp_terminate(hldev, attr->vp_id);
4361 vpath_open_exit1:
4363 return status;
4367 * vxge_hw_vpath_rx_doorbell_post - Close the handle got from previous vpath
4368 * (vpath) open
4369 * @vp: Handle got from previous vpath open
4371 * This function is used to close access to virtual path opened
4372 * earlier.
4374 void
4375 vxge_hw_vpath_rx_doorbell_init(struct __vxge_hw_vpath_handle *vp)
4377 struct __vxge_hw_virtualpath *vpath = NULL;
4378 u64 new_count, val64, val164;
4379 struct __vxge_hw_ring *ring;
4381 vpath = vp->vpath;
4382 ring = vpath->ringh;
4384 new_count = readq(&vpath->vp_reg->rxdmem_size);
4385 new_count &= 0x1fff;
4386 val164 = (VXGE_HW_RXDMEM_SIZE_PRC_RXDMEM_SIZE(new_count));
4388 writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(val164),
4389 &vpath->vp_reg->prc_rxd_doorbell);
4390 readl(&vpath->vp_reg->prc_rxd_doorbell);
4392 val164 /= 2;
4393 val64 = readq(&vpath->vp_reg->prc_cfg6);
4394 val64 = VXGE_HW_PRC_CFG6_RXD_SPAT(val64);
4395 val64 &= 0x1ff;
4398 * Each RxD is of 4 qwords
4400 new_count -= (val64 + 1);
4401 val64 = min(val164, new_count) / 4;
4403 ring->rxds_limit = min(ring->rxds_limit, val64);
4404 if (ring->rxds_limit < 4)
4405 ring->rxds_limit = 4;
4409 * vxge_hw_vpath_close - Close the handle got from previous vpath (vpath) open
4410 * This function is used to close access to virtual path opened
4411 * earlier.
4413 enum vxge_hw_status vxge_hw_vpath_close(struct __vxge_hw_vpath_handle *vp)
4415 struct __vxge_hw_virtualpath *vpath = NULL;
4416 struct __vxge_hw_device *devh = NULL;
4417 u32 vp_id = vp->vpath->vp_id;
4418 u32 is_empty = TRUE;
4419 enum vxge_hw_status status = VXGE_HW_OK;
4421 vpath = vp->vpath;
4422 devh = vpath->hldev;
4424 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4425 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4426 goto vpath_close_exit;
4429 list_del(&vp->item);
4431 if (!list_empty(&vpath->vpath_handles)) {
4432 list_add(&vp->item, &vpath->vpath_handles);
4433 is_empty = FALSE;
4436 if (!is_empty) {
4437 status = VXGE_HW_FAIL;
4438 goto vpath_close_exit;
4441 devh->vpaths_deployed &= ~vxge_mBIT(vp_id);
4443 if (vpath->ringh != NULL)
4444 __vxge_hw_ring_delete(vp);
4446 if (vpath->fifoh != NULL)
4447 __vxge_hw_fifo_delete(vp);
4449 if (vpath->stats_block != NULL)
4450 __vxge_hw_blockpool_block_free(devh, vpath->stats_block);
4452 vfree(vp);
4454 __vxge_hw_vp_terminate(devh, vp_id);
4456 vpath->vp_open = VXGE_HW_VP_NOT_OPEN;
4458 vpath_close_exit:
4459 return status;
4463 * vxge_hw_vpath_reset - Resets vpath
4464 * This function is used to request a reset of vpath
4466 enum vxge_hw_status vxge_hw_vpath_reset(struct __vxge_hw_vpath_handle *vp)
4468 enum vxge_hw_status status;
4469 u32 vp_id;
4470 struct __vxge_hw_virtualpath *vpath = vp->vpath;
4472 vp_id = vpath->vp_id;
4474 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4475 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4476 goto exit;
4479 status = __vxge_hw_vpath_reset(vpath->hldev, vp_id);
4480 if (status == VXGE_HW_OK)
4481 vpath->sw_stats->soft_reset_cnt++;
4482 exit:
4483 return status;
4487 * vxge_hw_vpath_recover_from_reset - Poll for reset complete and re-initialize.
4488 * This function poll's for the vpath reset completion and re initializes
4489 * the vpath.
4491 enum vxge_hw_status
4492 vxge_hw_vpath_recover_from_reset(struct __vxge_hw_vpath_handle *vp)
4494 struct __vxge_hw_virtualpath *vpath = NULL;
4495 enum vxge_hw_status status;
4496 struct __vxge_hw_device *hldev;
4497 u32 vp_id;
4499 vp_id = vp->vpath->vp_id;
4500 vpath = vp->vpath;
4501 hldev = vpath->hldev;
4503 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4504 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4505 goto exit;
4508 status = __vxge_hw_vpath_reset_check(vpath);
4509 if (status != VXGE_HW_OK)
4510 goto exit;
4512 status = __vxge_hw_vpath_sw_reset(hldev, vp_id);
4513 if (status != VXGE_HW_OK)
4514 goto exit;
4516 status = __vxge_hw_vpath_initialize(hldev, vp_id);
4517 if (status != VXGE_HW_OK)
4518 goto exit;
4520 if (vpath->ringh != NULL)
4521 __vxge_hw_vpath_prc_configure(hldev, vp_id);
4523 memset(vpath->hw_stats, 0,
4524 sizeof(struct vxge_hw_vpath_stats_hw_info));
4526 memset(vpath->hw_stats_sav, 0,
4527 sizeof(struct vxge_hw_vpath_stats_hw_info));
4529 writeq(vpath->stats_block->dma_addr,
4530 &vpath->vp_reg->stats_cfg);
4532 status = vxge_hw_vpath_stats_enable(vp);
4534 exit:
4535 return status;
4539 * vxge_hw_vpath_enable - Enable vpath.
4540 * This routine clears the vpath reset thereby enabling a vpath
4541 * to start forwarding frames and generating interrupts.
4543 void
4544 vxge_hw_vpath_enable(struct __vxge_hw_vpath_handle *vp)
4546 struct __vxge_hw_device *hldev;
4547 u64 val64;
4549 hldev = vp->vpath->hldev;
4551 val64 = VXGE_HW_CMN_RSTHDLR_CFG1_CLR_VPATH_RESET(
4552 1 << (16 - vp->vpath->vp_id));
4554 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
4555 &hldev->common_reg->cmn_rsthdlr_cfg1);
4559 * vxge_hw_vpath_stats_enable - Enable vpath h/wstatistics.
4560 * Enable the DMA vpath statistics. The function is to be called to re-enable
4561 * the adapter to update stats into the host memory
4563 enum vxge_hw_status
4564 vxge_hw_vpath_stats_enable(struct __vxge_hw_vpath_handle *vp)
4566 enum vxge_hw_status status = VXGE_HW_OK;
4567 struct __vxge_hw_virtualpath *vpath;
4569 vpath = vp->vpath;
4571 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4572 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4573 goto exit;
4576 memcpy(vpath->hw_stats_sav, vpath->hw_stats,
4577 sizeof(struct vxge_hw_vpath_stats_hw_info));
4579 status = __vxge_hw_vpath_stats_get(vpath, vpath->hw_stats);
4580 exit:
4581 return status;
4585 * __vxge_hw_vpath_stats_access - Get the statistics from the given location
4586 * and offset and perform an operation
4588 enum vxge_hw_status
4589 __vxge_hw_vpath_stats_access(struct __vxge_hw_virtualpath *vpath,
4590 u32 operation, u32 offset, u64 *stat)
4592 u64 val64;
4593 enum vxge_hw_status status = VXGE_HW_OK;
4594 struct vxge_hw_vpath_reg __iomem *vp_reg;
4596 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4597 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4598 goto vpath_stats_access_exit;
4601 vp_reg = vpath->vp_reg;
4603 val64 = VXGE_HW_XMAC_STATS_ACCESS_CMD_OP(operation) |
4604 VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE |
4605 VXGE_HW_XMAC_STATS_ACCESS_CMD_OFFSET_SEL(offset);
4607 status = __vxge_hw_pio_mem_write64(val64,
4608 &vp_reg->xmac_stats_access_cmd,
4609 VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE,
4610 vpath->hldev->config.device_poll_millis);
4612 if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
4613 *stat = readq(&vp_reg->xmac_stats_access_data);
4614 else
4615 *stat = 0;
4617 vpath_stats_access_exit:
4618 return status;
4622 * __vxge_hw_vpath_xmac_tx_stats_get - Get the TX Statistics of a vpath
4624 enum vxge_hw_status
4625 __vxge_hw_vpath_xmac_tx_stats_get(
4626 struct __vxge_hw_virtualpath *vpath,
4627 struct vxge_hw_xmac_vpath_tx_stats *vpath_tx_stats)
4629 u64 *val64;
4630 int i;
4631 u32 offset = VXGE_HW_STATS_VPATH_TX_OFFSET;
4632 enum vxge_hw_status status = VXGE_HW_OK;
4634 val64 = (u64 *) vpath_tx_stats;
4636 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4637 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4638 goto exit;
4641 for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_tx_stats) / 8; i++) {
4642 status = __vxge_hw_vpath_stats_access(vpath,
4643 VXGE_HW_STATS_OP_READ,
4644 offset, val64);
4645 if (status != VXGE_HW_OK)
4646 goto exit;
4647 offset++;
4648 val64++;
4650 exit:
4651 return status;
4655 * __vxge_hw_vpath_xmac_rx_stats_get - Get the RX Statistics of a vpath
4657 enum vxge_hw_status
4658 __vxge_hw_vpath_xmac_rx_stats_get(struct __vxge_hw_virtualpath *vpath,
4659 struct vxge_hw_xmac_vpath_rx_stats *vpath_rx_stats)
4661 u64 *val64;
4662 enum vxge_hw_status status = VXGE_HW_OK;
4663 int i;
4664 u32 offset = VXGE_HW_STATS_VPATH_RX_OFFSET;
4665 val64 = (u64 *) vpath_rx_stats;
4667 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4668 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4669 goto exit;
4671 for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_rx_stats) / 8; i++) {
4672 status = __vxge_hw_vpath_stats_access(vpath,
4673 VXGE_HW_STATS_OP_READ,
4674 offset >> 3, val64);
4675 if (status != VXGE_HW_OK)
4676 goto exit;
4678 offset += 8;
4679 val64++;
4681 exit:
4682 return status;
4686 * __vxge_hw_vpath_stats_get - Get the vpath hw statistics.
4688 enum vxge_hw_status __vxge_hw_vpath_stats_get(
4689 struct __vxge_hw_virtualpath *vpath,
4690 struct vxge_hw_vpath_stats_hw_info *hw_stats)
4692 u64 val64;
4693 enum vxge_hw_status status = VXGE_HW_OK;
4694 struct vxge_hw_vpath_reg __iomem *vp_reg;
4696 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4697 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4698 goto exit;
4700 vp_reg = vpath->vp_reg;
4702 val64 = readq(&vp_reg->vpath_debug_stats0);
4703 hw_stats->ini_num_mwr_sent =
4704 (u32)VXGE_HW_VPATH_DEBUG_STATS0_GET_INI_NUM_MWR_SENT(val64);
4706 val64 = readq(&vp_reg->vpath_debug_stats1);
4707 hw_stats->ini_num_mrd_sent =
4708 (u32)VXGE_HW_VPATH_DEBUG_STATS1_GET_INI_NUM_MRD_SENT(val64);
4710 val64 = readq(&vp_reg->vpath_debug_stats2);
4711 hw_stats->ini_num_cpl_rcvd =
4712 (u32)VXGE_HW_VPATH_DEBUG_STATS2_GET_INI_NUM_CPL_RCVD(val64);
4714 val64 = readq(&vp_reg->vpath_debug_stats3);
4715 hw_stats->ini_num_mwr_byte_sent =
4716 VXGE_HW_VPATH_DEBUG_STATS3_GET_INI_NUM_MWR_BYTE_SENT(val64);
4718 val64 = readq(&vp_reg->vpath_debug_stats4);
4719 hw_stats->ini_num_cpl_byte_rcvd =
4720 VXGE_HW_VPATH_DEBUG_STATS4_GET_INI_NUM_CPL_BYTE_RCVD(val64);
4722 val64 = readq(&vp_reg->vpath_debug_stats5);
4723 hw_stats->wrcrdtarb_xoff =
4724 (u32)VXGE_HW_VPATH_DEBUG_STATS5_GET_WRCRDTARB_XOFF(val64);
4726 val64 = readq(&vp_reg->vpath_debug_stats6);
4727 hw_stats->rdcrdtarb_xoff =
4728 (u32)VXGE_HW_VPATH_DEBUG_STATS6_GET_RDCRDTARB_XOFF(val64);
4730 val64 = readq(&vp_reg->vpath_genstats_count01);
4731 hw_stats->vpath_genstats_count0 =
4732 (u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT0(
4733 val64);
4735 val64 = readq(&vp_reg->vpath_genstats_count01);
4736 hw_stats->vpath_genstats_count1 =
4737 (u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT1(
4738 val64);
4740 val64 = readq(&vp_reg->vpath_genstats_count23);
4741 hw_stats->vpath_genstats_count2 =
4742 (u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT2(
4743 val64);
4745 val64 = readq(&vp_reg->vpath_genstats_count01);
4746 hw_stats->vpath_genstats_count3 =
4747 (u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT3(
4748 val64);
4750 val64 = readq(&vp_reg->vpath_genstats_count4);
4751 hw_stats->vpath_genstats_count4 =
4752 (u32)VXGE_HW_VPATH_GENSTATS_COUNT4_GET_PPIF_VPATH_GENSTATS_COUNT4(
4753 val64);
4755 val64 = readq(&vp_reg->vpath_genstats_count5);
4756 hw_stats->vpath_genstats_count5 =
4757 (u32)VXGE_HW_VPATH_GENSTATS_COUNT5_GET_PPIF_VPATH_GENSTATS_COUNT5(
4758 val64);
4760 status = __vxge_hw_vpath_xmac_tx_stats_get(vpath, &hw_stats->tx_stats);
4761 if (status != VXGE_HW_OK)
4762 goto exit;
4764 status = __vxge_hw_vpath_xmac_rx_stats_get(vpath, &hw_stats->rx_stats);
4765 if (status != VXGE_HW_OK)
4766 goto exit;
4768 VXGE_HW_VPATH_STATS_PIO_READ(
4769 VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM0_OFFSET);
4771 hw_stats->prog_event_vnum0 =
4772 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM0(val64);
4774 hw_stats->prog_event_vnum1 =
4775 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM1(val64);
4777 VXGE_HW_VPATH_STATS_PIO_READ(
4778 VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM2_OFFSET);
4780 hw_stats->prog_event_vnum2 =
4781 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM2(val64);
4783 hw_stats->prog_event_vnum3 =
4784 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM3(val64);
4786 val64 = readq(&vp_reg->rx_multi_cast_stats);
4787 hw_stats->rx_multi_cast_frame_discard =
4788 (u16)VXGE_HW_RX_MULTI_CAST_STATS_GET_FRAME_DISCARD(val64);
4790 val64 = readq(&vp_reg->rx_frm_transferred);
4791 hw_stats->rx_frm_transferred =
4792 (u32)VXGE_HW_RX_FRM_TRANSFERRED_GET_RX_FRM_TRANSFERRED(val64);
4794 val64 = readq(&vp_reg->rxd_returned);
4795 hw_stats->rxd_returned =
4796 (u16)VXGE_HW_RXD_RETURNED_GET_RXD_RETURNED(val64);
4798 val64 = readq(&vp_reg->dbg_stats_rx_mpa);
4799 hw_stats->rx_mpa_len_fail_frms =
4800 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_LEN_FAIL_FRMS(val64);
4801 hw_stats->rx_mpa_mrk_fail_frms =
4802 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_MRK_FAIL_FRMS(val64);
4803 hw_stats->rx_mpa_crc_fail_frms =
4804 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_CRC_FAIL_FRMS(val64);
4806 val64 = readq(&vp_reg->dbg_stats_rx_fau);
4807 hw_stats->rx_permitted_frms =
4808 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_PERMITTED_FRMS(val64);
4809 hw_stats->rx_vp_reset_discarded_frms =
4810 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_VP_RESET_DISCARDED_FRMS(val64);
4811 hw_stats->rx_wol_frms =
4812 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_WOL_FRMS(val64);
4814 val64 = readq(&vp_reg->tx_vp_reset_discarded_frms);
4815 hw_stats->tx_vp_reset_discarded_frms =
4816 (u16)VXGE_HW_TX_VP_RESET_DISCARDED_FRMS_GET_TX_VP_RESET_DISCARDED_FRMS(
4817 val64);
4818 exit:
4819 return status;
4823 * __vxge_hw_blockpool_create - Create block pool
4826 enum vxge_hw_status
4827 __vxge_hw_blockpool_create(struct __vxge_hw_device *hldev,
4828 struct __vxge_hw_blockpool *blockpool,
4829 u32 pool_size,
4830 u32 pool_max)
4832 u32 i;
4833 struct __vxge_hw_blockpool_entry *entry = NULL;
4834 void *memblock;
4835 dma_addr_t dma_addr;
4836 struct pci_dev *dma_handle;
4837 struct pci_dev *acc_handle;
4838 enum vxge_hw_status status = VXGE_HW_OK;
4840 if (blockpool == NULL) {
4841 status = VXGE_HW_FAIL;
4842 goto blockpool_create_exit;
4845 blockpool->hldev = hldev;
4846 blockpool->block_size = VXGE_HW_BLOCK_SIZE;
4847 blockpool->pool_size = 0;
4848 blockpool->pool_max = pool_max;
4849 blockpool->req_out = 0;
4851 INIT_LIST_HEAD(&blockpool->free_block_list);
4852 INIT_LIST_HEAD(&blockpool->free_entry_list);
4854 for (i = 0; i < pool_size + pool_max; i++) {
4855 entry = kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
4856 GFP_KERNEL);
4857 if (entry == NULL) {
4858 __vxge_hw_blockpool_destroy(blockpool);
4859 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4860 goto blockpool_create_exit;
4862 list_add(&entry->item, &blockpool->free_entry_list);
4865 for (i = 0; i < pool_size; i++) {
4867 memblock = vxge_os_dma_malloc(
4868 hldev->pdev,
4869 VXGE_HW_BLOCK_SIZE,
4870 &dma_handle,
4871 &acc_handle);
4873 if (memblock == NULL) {
4874 __vxge_hw_blockpool_destroy(blockpool);
4875 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4876 goto blockpool_create_exit;
4879 dma_addr = pci_map_single(hldev->pdev, memblock,
4880 VXGE_HW_BLOCK_SIZE, PCI_DMA_BIDIRECTIONAL);
4882 if (unlikely(pci_dma_mapping_error(hldev->pdev,
4883 dma_addr))) {
4885 vxge_os_dma_free(hldev->pdev, memblock, &acc_handle);
4886 __vxge_hw_blockpool_destroy(blockpool);
4887 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4888 goto blockpool_create_exit;
4891 if (!list_empty(&blockpool->free_entry_list))
4892 entry = (struct __vxge_hw_blockpool_entry *)
4893 list_first_entry(&blockpool->free_entry_list,
4894 struct __vxge_hw_blockpool_entry,
4895 item);
4897 if (entry == NULL)
4898 entry =
4899 kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
4900 GFP_KERNEL);
4901 if (entry != NULL) {
4902 list_del(&entry->item);
4903 entry->length = VXGE_HW_BLOCK_SIZE;
4904 entry->memblock = memblock;
4905 entry->dma_addr = dma_addr;
4906 entry->acc_handle = acc_handle;
4907 entry->dma_handle = dma_handle;
4908 list_add(&entry->item,
4909 &blockpool->free_block_list);
4910 blockpool->pool_size++;
4911 } else {
4912 __vxge_hw_blockpool_destroy(blockpool);
4913 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4914 goto blockpool_create_exit;
4918 blockpool_create_exit:
4919 return status;
4923 * __vxge_hw_blockpool_destroy - Deallocates the block pool
4926 void __vxge_hw_blockpool_destroy(struct __vxge_hw_blockpool *blockpool)
4929 struct __vxge_hw_device *hldev;
4930 struct list_head *p, *n;
4931 u16 ret;
4933 if (blockpool == NULL) {
4934 ret = 1;
4935 goto exit;
4938 hldev = blockpool->hldev;
4940 list_for_each_safe(p, n, &blockpool->free_block_list) {
4942 pci_unmap_single(hldev->pdev,
4943 ((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
4944 ((struct __vxge_hw_blockpool_entry *)p)->length,
4945 PCI_DMA_BIDIRECTIONAL);
4947 vxge_os_dma_free(hldev->pdev,
4948 ((struct __vxge_hw_blockpool_entry *)p)->memblock,
4949 &((struct __vxge_hw_blockpool_entry *) p)->acc_handle);
4951 list_del(
4952 &((struct __vxge_hw_blockpool_entry *)p)->item);
4953 kfree(p);
4954 blockpool->pool_size--;
4957 list_for_each_safe(p, n, &blockpool->free_entry_list) {
4958 list_del(
4959 &((struct __vxge_hw_blockpool_entry *)p)->item);
4960 kfree((void *)p);
4962 ret = 0;
4963 exit:
4964 return;
4968 * __vxge_hw_blockpool_blocks_add - Request additional blocks
4970 static
4971 void __vxge_hw_blockpool_blocks_add(struct __vxge_hw_blockpool *blockpool)
4973 u32 nreq = 0, i;
4975 if ((blockpool->pool_size + blockpool->req_out) <
4976 VXGE_HW_MIN_DMA_BLOCK_POOL_SIZE) {
4977 nreq = VXGE_HW_INCR_DMA_BLOCK_POOL_SIZE;
4978 blockpool->req_out += nreq;
4981 for (i = 0; i < nreq; i++)
4982 vxge_os_dma_malloc_async(
4983 ((struct __vxge_hw_device *)blockpool->hldev)->pdev,
4984 blockpool->hldev, VXGE_HW_BLOCK_SIZE);
4988 * __vxge_hw_blockpool_blocks_remove - Free additional blocks
4990 static
4991 void __vxge_hw_blockpool_blocks_remove(struct __vxge_hw_blockpool *blockpool)
4993 struct list_head *p, *n;
4995 list_for_each_safe(p, n, &blockpool->free_block_list) {
4997 if (blockpool->pool_size < blockpool->pool_max)
4998 break;
5000 pci_unmap_single(
5001 ((struct __vxge_hw_device *)blockpool->hldev)->pdev,
5002 ((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
5003 ((struct __vxge_hw_blockpool_entry *)p)->length,
5004 PCI_DMA_BIDIRECTIONAL);
5006 vxge_os_dma_free(
5007 ((struct __vxge_hw_device *)blockpool->hldev)->pdev,
5008 ((struct __vxge_hw_blockpool_entry *)p)->memblock,
5009 &((struct __vxge_hw_blockpool_entry *)p)->acc_handle);
5011 list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
5013 list_add(p, &blockpool->free_entry_list);
5015 blockpool->pool_size--;
5021 * vxge_hw_blockpool_block_add - callback for vxge_os_dma_malloc_async
5022 * Adds a block to block pool
5024 void vxge_hw_blockpool_block_add(
5025 struct __vxge_hw_device *devh,
5026 void *block_addr,
5027 u32 length,
5028 struct pci_dev *dma_h,
5029 struct pci_dev *acc_handle)
5031 struct __vxge_hw_blockpool *blockpool;
5032 struct __vxge_hw_blockpool_entry *entry = NULL;
5033 dma_addr_t dma_addr;
5034 enum vxge_hw_status status = VXGE_HW_OK;
5035 u32 req_out;
5037 blockpool = &devh->block_pool;
5039 if (block_addr == NULL) {
5040 blockpool->req_out--;
5041 status = VXGE_HW_FAIL;
5042 goto exit;
5045 dma_addr = pci_map_single(devh->pdev, block_addr, length,
5046 PCI_DMA_BIDIRECTIONAL);
5048 if (unlikely(pci_dma_mapping_error(devh->pdev, dma_addr))) {
5050 vxge_os_dma_free(devh->pdev, block_addr, &acc_handle);
5051 blockpool->req_out--;
5052 status = VXGE_HW_FAIL;
5053 goto exit;
5057 if (!list_empty(&blockpool->free_entry_list))
5058 entry = (struct __vxge_hw_blockpool_entry *)
5059 list_first_entry(&blockpool->free_entry_list,
5060 struct __vxge_hw_blockpool_entry,
5061 item);
5063 if (entry == NULL)
5064 entry = (struct __vxge_hw_blockpool_entry *)
5065 vmalloc(sizeof(struct __vxge_hw_blockpool_entry));
5066 else
5067 list_del(&entry->item);
5069 if (entry != NULL) {
5070 entry->length = length;
5071 entry->memblock = block_addr;
5072 entry->dma_addr = dma_addr;
5073 entry->acc_handle = acc_handle;
5074 entry->dma_handle = dma_h;
5075 list_add(&entry->item, &blockpool->free_block_list);
5076 blockpool->pool_size++;
5077 status = VXGE_HW_OK;
5078 } else
5079 status = VXGE_HW_ERR_OUT_OF_MEMORY;
5081 blockpool->req_out--;
5083 req_out = blockpool->req_out;
5084 exit:
5085 return;
5089 * __vxge_hw_blockpool_malloc - Allocate a memory block from pool
5090 * Allocates a block of memory of given size, either from block pool
5091 * or by calling vxge_os_dma_malloc()
5093 void *
5094 __vxge_hw_blockpool_malloc(struct __vxge_hw_device *devh, u32 size,
5095 struct vxge_hw_mempool_dma *dma_object)
5097 struct __vxge_hw_blockpool_entry *entry = NULL;
5098 struct __vxge_hw_blockpool *blockpool;
5099 void *memblock = NULL;
5100 enum vxge_hw_status status = VXGE_HW_OK;
5102 blockpool = &devh->block_pool;
5104 if (size != blockpool->block_size) {
5106 memblock = vxge_os_dma_malloc(devh->pdev, size,
5107 &dma_object->handle,
5108 &dma_object->acc_handle);
5110 if (memblock == NULL) {
5111 status = VXGE_HW_ERR_OUT_OF_MEMORY;
5112 goto exit;
5115 dma_object->addr = pci_map_single(devh->pdev, memblock, size,
5116 PCI_DMA_BIDIRECTIONAL);
5118 if (unlikely(pci_dma_mapping_error(devh->pdev,
5119 dma_object->addr))) {
5120 vxge_os_dma_free(devh->pdev, memblock,
5121 &dma_object->acc_handle);
5122 status = VXGE_HW_ERR_OUT_OF_MEMORY;
5123 goto exit;
5126 } else {
5128 if (!list_empty(&blockpool->free_block_list))
5129 entry = (struct __vxge_hw_blockpool_entry *)
5130 list_first_entry(&blockpool->free_block_list,
5131 struct __vxge_hw_blockpool_entry,
5132 item);
5134 if (entry != NULL) {
5135 list_del(&entry->item);
5136 dma_object->addr = entry->dma_addr;
5137 dma_object->handle = entry->dma_handle;
5138 dma_object->acc_handle = entry->acc_handle;
5139 memblock = entry->memblock;
5141 list_add(&entry->item,
5142 &blockpool->free_entry_list);
5143 blockpool->pool_size--;
5146 if (memblock != NULL)
5147 __vxge_hw_blockpool_blocks_add(blockpool);
5149 exit:
5150 return memblock;
5154 * __vxge_hw_blockpool_free - Frees the memory allcoated with
5155 __vxge_hw_blockpool_malloc
5157 void
5158 __vxge_hw_blockpool_free(struct __vxge_hw_device *devh,
5159 void *memblock, u32 size,
5160 struct vxge_hw_mempool_dma *dma_object)
5162 struct __vxge_hw_blockpool_entry *entry = NULL;
5163 struct __vxge_hw_blockpool *blockpool;
5164 enum vxge_hw_status status = VXGE_HW_OK;
5166 blockpool = &devh->block_pool;
5168 if (size != blockpool->block_size) {
5169 pci_unmap_single(devh->pdev, dma_object->addr, size,
5170 PCI_DMA_BIDIRECTIONAL);
5171 vxge_os_dma_free(devh->pdev, memblock, &dma_object->acc_handle);
5172 } else {
5174 if (!list_empty(&blockpool->free_entry_list))
5175 entry = (struct __vxge_hw_blockpool_entry *)
5176 list_first_entry(&blockpool->free_entry_list,
5177 struct __vxge_hw_blockpool_entry,
5178 item);
5180 if (entry == NULL)
5181 entry = (struct __vxge_hw_blockpool_entry *)
5182 vmalloc(sizeof(
5183 struct __vxge_hw_blockpool_entry));
5184 else
5185 list_del(&entry->item);
5187 if (entry != NULL) {
5188 entry->length = size;
5189 entry->memblock = memblock;
5190 entry->dma_addr = dma_object->addr;
5191 entry->acc_handle = dma_object->acc_handle;
5192 entry->dma_handle = dma_object->handle;
5193 list_add(&entry->item,
5194 &blockpool->free_block_list);
5195 blockpool->pool_size++;
5196 status = VXGE_HW_OK;
5197 } else
5198 status = VXGE_HW_ERR_OUT_OF_MEMORY;
5200 if (status == VXGE_HW_OK)
5201 __vxge_hw_blockpool_blocks_remove(blockpool);
5204 return;
5208 * __vxge_hw_blockpool_block_allocate - Allocates a block from block pool
5209 * This function allocates a block from block pool or from the system
5211 struct __vxge_hw_blockpool_entry *
5212 __vxge_hw_blockpool_block_allocate(struct __vxge_hw_device *devh, u32 size)
5214 struct __vxge_hw_blockpool_entry *entry = NULL;
5215 struct __vxge_hw_blockpool *blockpool;
5217 blockpool = &devh->block_pool;
5219 if (size == blockpool->block_size) {
5221 if (!list_empty(&blockpool->free_block_list))
5222 entry = (struct __vxge_hw_blockpool_entry *)
5223 list_first_entry(&blockpool->free_block_list,
5224 struct __vxge_hw_blockpool_entry,
5225 item);
5227 if (entry != NULL) {
5228 list_del(&entry->item);
5229 blockpool->pool_size--;
5233 if (entry != NULL)
5234 __vxge_hw_blockpool_blocks_add(blockpool);
5236 return entry;
5240 * __vxge_hw_blockpool_block_free - Frees a block from block pool
5241 * @devh: Hal device
5242 * @entry: Entry of block to be freed
5244 * This function frees a block from block pool
5246 void
5247 __vxge_hw_blockpool_block_free(struct __vxge_hw_device *devh,
5248 struct __vxge_hw_blockpool_entry *entry)
5250 struct __vxge_hw_blockpool *blockpool;
5252 blockpool = &devh->block_pool;
5254 if (entry->length == blockpool->block_size) {
5255 list_add(&entry->item, &blockpool->free_block_list);
5256 blockpool->pool_size++;
5259 __vxge_hw_blockpool_blocks_remove(blockpool);
5261 return;