Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / core / sock.c
blobba5d2116aea1b4eadb7e72736e8e40b63ff6aa09
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
83 * To Fix:
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
114 #include <asm/uaccess.h>
115 #include <asm/system.h>
117 #include <linux/netdevice.h>
118 #include <net/protocol.h>
119 #include <linux/skbuff.h>
120 #include <net/net_namespace.h>
121 #include <net/request_sock.h>
122 #include <net/sock.h>
123 #include <linux/net_tstamp.h>
124 #include <net/xfrm.h>
125 #include <linux/ipsec.h>
127 #include <linux/filter.h>
129 #ifdef CONFIG_INET
130 #include <net/tcp.h>
131 #endif
134 * Each address family might have different locking rules, so we have
135 * one slock key per address family:
137 static struct lock_class_key af_family_keys[AF_MAX];
138 static struct lock_class_key af_family_slock_keys[AF_MAX];
141 * Make lock validator output more readable. (we pre-construct these
142 * strings build-time, so that runtime initialization of socket
143 * locks is fast):
145 static const char *af_family_key_strings[AF_MAX+1] = {
146 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
147 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
148 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
149 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
150 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
151 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
152 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
153 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
154 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
155 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
156 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
157 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
158 "sk_lock-AF_IEEE802154",
159 "sk_lock-AF_MAX"
161 static const char *af_family_slock_key_strings[AF_MAX+1] = {
162 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
163 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
164 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
165 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
166 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
167 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
168 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
169 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
170 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
171 "slock-27" , "slock-28" , "slock-AF_CAN" ,
172 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
173 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
174 "slock-AF_IEEE802154",
175 "slock-AF_MAX"
177 static const char *af_family_clock_key_strings[AF_MAX+1] = {
178 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
179 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
180 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
181 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
182 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
183 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
184 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
185 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
186 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
187 "clock-27" , "clock-28" , "clock-AF_CAN" ,
188 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
189 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
190 "clock-AF_IEEE802154",
191 "clock-AF_MAX"
195 * sk_callback_lock locking rules are per-address-family,
196 * so split the lock classes by using a per-AF key:
198 static struct lock_class_key af_callback_keys[AF_MAX];
200 /* Take into consideration the size of the struct sk_buff overhead in the
201 * determination of these values, since that is non-constant across
202 * platforms. This makes socket queueing behavior and performance
203 * not depend upon such differences.
205 #define _SK_MEM_PACKETS 256
206 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
207 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
208 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
210 /* Run time adjustable parameters. */
211 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
212 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
213 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
214 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
216 /* Maximal space eaten by iovec or ancilliary data plus some space */
217 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
218 EXPORT_SYMBOL(sysctl_optmem_max);
220 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
222 struct timeval tv;
224 if (optlen < sizeof(tv))
225 return -EINVAL;
226 if (copy_from_user(&tv, optval, sizeof(tv)))
227 return -EFAULT;
228 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
229 return -EDOM;
231 if (tv.tv_sec < 0) {
232 static int warned __read_mostly;
234 *timeo_p = 0;
235 if (warned < 10 && net_ratelimit()) {
236 warned++;
237 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
238 "tries to set negative timeout\n",
239 current->comm, task_pid_nr(current));
241 return 0;
243 *timeo_p = MAX_SCHEDULE_TIMEOUT;
244 if (tv.tv_sec == 0 && tv.tv_usec == 0)
245 return 0;
246 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
247 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
248 return 0;
251 static void sock_warn_obsolete_bsdism(const char *name)
253 static int warned;
254 static char warncomm[TASK_COMM_LEN];
255 if (strcmp(warncomm, current->comm) && warned < 5) {
256 strcpy(warncomm, current->comm);
257 printk(KERN_WARNING "process `%s' is using obsolete "
258 "%s SO_BSDCOMPAT\n", warncomm, name);
259 warned++;
263 static void sock_disable_timestamp(struct sock *sk, int flag)
265 if (sock_flag(sk, flag)) {
266 sock_reset_flag(sk, flag);
267 if (!sock_flag(sk, SOCK_TIMESTAMP) &&
268 !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
269 net_disable_timestamp();
275 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
277 int err = 0;
278 int skb_len;
280 /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
281 number of warnings when compiling with -W --ANK
283 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
284 (unsigned)sk->sk_rcvbuf) {
285 err = -ENOMEM;
286 goto out;
289 err = sk_filter(sk, skb);
290 if (err)
291 goto out;
293 if (!sk_rmem_schedule(sk, skb->truesize)) {
294 err = -ENOBUFS;
295 goto out;
298 skb->dev = NULL;
299 skb_set_owner_r(skb, sk);
301 /* Cache the SKB length before we tack it onto the receive
302 * queue. Once it is added it no longer belongs to us and
303 * may be freed by other threads of control pulling packets
304 * from the queue.
306 skb_len = skb->len;
308 skb_queue_tail(&sk->sk_receive_queue, skb);
310 if (!sock_flag(sk, SOCK_DEAD))
311 sk->sk_data_ready(sk, skb_len);
312 out:
313 return err;
315 EXPORT_SYMBOL(sock_queue_rcv_skb);
317 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
319 int rc = NET_RX_SUCCESS;
321 if (sk_filter(sk, skb))
322 goto discard_and_relse;
324 skb->dev = NULL;
326 if (nested)
327 bh_lock_sock_nested(sk);
328 else
329 bh_lock_sock(sk);
330 if (!sock_owned_by_user(sk)) {
332 * trylock + unlock semantics:
334 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
336 rc = sk_backlog_rcv(sk, skb);
338 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
339 } else
340 sk_add_backlog(sk, skb);
341 bh_unlock_sock(sk);
342 out:
343 sock_put(sk);
344 return rc;
345 discard_and_relse:
346 kfree_skb(skb);
347 goto out;
349 EXPORT_SYMBOL(sk_receive_skb);
351 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
353 struct dst_entry *dst = sk->sk_dst_cache;
355 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
356 sk->sk_dst_cache = NULL;
357 dst_release(dst);
358 return NULL;
361 return dst;
363 EXPORT_SYMBOL(__sk_dst_check);
365 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
367 struct dst_entry *dst = sk_dst_get(sk);
369 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
370 sk_dst_reset(sk);
371 dst_release(dst);
372 return NULL;
375 return dst;
377 EXPORT_SYMBOL(sk_dst_check);
379 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
381 int ret = -ENOPROTOOPT;
382 #ifdef CONFIG_NETDEVICES
383 struct net *net = sock_net(sk);
384 char devname[IFNAMSIZ];
385 int index;
387 /* Sorry... */
388 ret = -EPERM;
389 if (!capable(CAP_NET_RAW))
390 goto out;
392 ret = -EINVAL;
393 if (optlen < 0)
394 goto out;
396 /* Bind this socket to a particular device like "eth0",
397 * as specified in the passed interface name. If the
398 * name is "" or the option length is zero the socket
399 * is not bound.
401 if (optlen > IFNAMSIZ - 1)
402 optlen = IFNAMSIZ - 1;
403 memset(devname, 0, sizeof(devname));
405 ret = -EFAULT;
406 if (copy_from_user(devname, optval, optlen))
407 goto out;
409 if (devname[0] == '\0') {
410 index = 0;
411 } else {
412 struct net_device *dev = dev_get_by_name(net, devname);
414 ret = -ENODEV;
415 if (!dev)
416 goto out;
418 index = dev->ifindex;
419 dev_put(dev);
422 lock_sock(sk);
423 sk->sk_bound_dev_if = index;
424 sk_dst_reset(sk);
425 release_sock(sk);
427 ret = 0;
429 out:
430 #endif
432 return ret;
435 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
437 if (valbool)
438 sock_set_flag(sk, bit);
439 else
440 sock_reset_flag(sk, bit);
444 * This is meant for all protocols to use and covers goings on
445 * at the socket level. Everything here is generic.
448 int sock_setsockopt(struct socket *sock, int level, int optname,
449 char __user *optval, int optlen)
451 struct sock *sk = sock->sk;
452 int val;
453 int valbool;
454 struct linger ling;
455 int ret = 0;
458 * Options without arguments
461 if (optname == SO_BINDTODEVICE)
462 return sock_bindtodevice(sk, optval, optlen);
464 if (optlen < sizeof(int))
465 return -EINVAL;
467 if (get_user(val, (int __user *)optval))
468 return -EFAULT;
470 valbool = val ? 1 : 0;
472 lock_sock(sk);
474 switch (optname) {
475 case SO_DEBUG:
476 if (val && !capable(CAP_NET_ADMIN))
477 ret = -EACCES;
478 else
479 sock_valbool_flag(sk, SOCK_DBG, valbool);
480 break;
481 case SO_REUSEADDR:
482 sk->sk_reuse = valbool;
483 break;
484 case SO_TYPE:
485 case SO_ERROR:
486 ret = -ENOPROTOOPT;
487 break;
488 case SO_DONTROUTE:
489 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
490 break;
491 case SO_BROADCAST:
492 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
493 break;
494 case SO_SNDBUF:
495 /* Don't error on this BSD doesn't and if you think
496 about it this is right. Otherwise apps have to
497 play 'guess the biggest size' games. RCVBUF/SNDBUF
498 are treated in BSD as hints */
500 if (val > sysctl_wmem_max)
501 val = sysctl_wmem_max;
502 set_sndbuf:
503 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
504 if ((val * 2) < SOCK_MIN_SNDBUF)
505 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
506 else
507 sk->sk_sndbuf = val * 2;
510 * Wake up sending tasks if we
511 * upped the value.
513 sk->sk_write_space(sk);
514 break;
516 case SO_SNDBUFFORCE:
517 if (!capable(CAP_NET_ADMIN)) {
518 ret = -EPERM;
519 break;
521 goto set_sndbuf;
523 case SO_RCVBUF:
524 /* Don't error on this BSD doesn't and if you think
525 about it this is right. Otherwise apps have to
526 play 'guess the biggest size' games. RCVBUF/SNDBUF
527 are treated in BSD as hints */
529 if (val > sysctl_rmem_max)
530 val = sysctl_rmem_max;
531 set_rcvbuf:
532 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
534 * We double it on the way in to account for
535 * "struct sk_buff" etc. overhead. Applications
536 * assume that the SO_RCVBUF setting they make will
537 * allow that much actual data to be received on that
538 * socket.
540 * Applications are unaware that "struct sk_buff" and
541 * other overheads allocate from the receive buffer
542 * during socket buffer allocation.
544 * And after considering the possible alternatives,
545 * returning the value we actually used in getsockopt
546 * is the most desirable behavior.
548 if ((val * 2) < SOCK_MIN_RCVBUF)
549 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
550 else
551 sk->sk_rcvbuf = val * 2;
552 break;
554 case SO_RCVBUFFORCE:
555 if (!capable(CAP_NET_ADMIN)) {
556 ret = -EPERM;
557 break;
559 goto set_rcvbuf;
561 case SO_KEEPALIVE:
562 #ifdef CONFIG_INET
563 if (sk->sk_protocol == IPPROTO_TCP)
564 tcp_set_keepalive(sk, valbool);
565 #endif
566 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
567 break;
569 case SO_OOBINLINE:
570 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
571 break;
573 case SO_NO_CHECK:
574 sk->sk_no_check = valbool;
575 break;
577 case SO_PRIORITY:
578 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
579 sk->sk_priority = val;
580 else
581 ret = -EPERM;
582 break;
584 case SO_LINGER:
585 if (optlen < sizeof(ling)) {
586 ret = -EINVAL; /* 1003.1g */
587 break;
589 if (copy_from_user(&ling, optval, sizeof(ling))) {
590 ret = -EFAULT;
591 break;
593 if (!ling.l_onoff)
594 sock_reset_flag(sk, SOCK_LINGER);
595 else {
596 #if (BITS_PER_LONG == 32)
597 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
598 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
599 else
600 #endif
601 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
602 sock_set_flag(sk, SOCK_LINGER);
604 break;
606 case SO_BSDCOMPAT:
607 sock_warn_obsolete_bsdism("setsockopt");
608 break;
610 case SO_PASSCRED:
611 if (valbool)
612 set_bit(SOCK_PASSCRED, &sock->flags);
613 else
614 clear_bit(SOCK_PASSCRED, &sock->flags);
615 break;
617 case SO_TIMESTAMP:
618 case SO_TIMESTAMPNS:
619 if (valbool) {
620 if (optname == SO_TIMESTAMP)
621 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
622 else
623 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
624 sock_set_flag(sk, SOCK_RCVTSTAMP);
625 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
626 } else {
627 sock_reset_flag(sk, SOCK_RCVTSTAMP);
628 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
630 break;
632 case SO_TIMESTAMPING:
633 if (val & ~SOF_TIMESTAMPING_MASK) {
634 ret = EINVAL;
635 break;
637 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
638 val & SOF_TIMESTAMPING_TX_HARDWARE);
639 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
640 val & SOF_TIMESTAMPING_TX_SOFTWARE);
641 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
642 val & SOF_TIMESTAMPING_RX_HARDWARE);
643 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
644 sock_enable_timestamp(sk,
645 SOCK_TIMESTAMPING_RX_SOFTWARE);
646 else
647 sock_disable_timestamp(sk,
648 SOCK_TIMESTAMPING_RX_SOFTWARE);
649 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
650 val & SOF_TIMESTAMPING_SOFTWARE);
651 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
652 val & SOF_TIMESTAMPING_SYS_HARDWARE);
653 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
654 val & SOF_TIMESTAMPING_RAW_HARDWARE);
655 break;
657 case SO_RCVLOWAT:
658 if (val < 0)
659 val = INT_MAX;
660 sk->sk_rcvlowat = val ? : 1;
661 break;
663 case SO_RCVTIMEO:
664 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
665 break;
667 case SO_SNDTIMEO:
668 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
669 break;
671 case SO_ATTACH_FILTER:
672 ret = -EINVAL;
673 if (optlen == sizeof(struct sock_fprog)) {
674 struct sock_fprog fprog;
676 ret = -EFAULT;
677 if (copy_from_user(&fprog, optval, sizeof(fprog)))
678 break;
680 ret = sk_attach_filter(&fprog, sk);
682 break;
684 case SO_DETACH_FILTER:
685 ret = sk_detach_filter(sk);
686 break;
688 case SO_PASSSEC:
689 if (valbool)
690 set_bit(SOCK_PASSSEC, &sock->flags);
691 else
692 clear_bit(SOCK_PASSSEC, &sock->flags);
693 break;
694 case SO_MARK:
695 if (!capable(CAP_NET_ADMIN))
696 ret = -EPERM;
697 else
698 sk->sk_mark = val;
699 break;
701 /* We implement the SO_SNDLOWAT etc to
702 not be settable (1003.1g 5.3) */
703 default:
704 ret = -ENOPROTOOPT;
705 break;
707 release_sock(sk);
708 return ret;
710 EXPORT_SYMBOL(sock_setsockopt);
713 int sock_getsockopt(struct socket *sock, int level, int optname,
714 char __user *optval, int __user *optlen)
716 struct sock *sk = sock->sk;
718 union {
719 int val;
720 struct linger ling;
721 struct timeval tm;
722 } v;
724 unsigned int lv = sizeof(int);
725 int len;
727 if (get_user(len, optlen))
728 return -EFAULT;
729 if (len < 0)
730 return -EINVAL;
732 memset(&v, 0, sizeof(v));
734 switch (optname) {
735 case SO_DEBUG:
736 v.val = sock_flag(sk, SOCK_DBG);
737 break;
739 case SO_DONTROUTE:
740 v.val = sock_flag(sk, SOCK_LOCALROUTE);
741 break;
743 case SO_BROADCAST:
744 v.val = !!sock_flag(sk, SOCK_BROADCAST);
745 break;
747 case SO_SNDBUF:
748 v.val = sk->sk_sndbuf;
749 break;
751 case SO_RCVBUF:
752 v.val = sk->sk_rcvbuf;
753 break;
755 case SO_REUSEADDR:
756 v.val = sk->sk_reuse;
757 break;
759 case SO_KEEPALIVE:
760 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
761 break;
763 case SO_TYPE:
764 v.val = sk->sk_type;
765 break;
767 case SO_ERROR:
768 v.val = -sock_error(sk);
769 if (v.val == 0)
770 v.val = xchg(&sk->sk_err_soft, 0);
771 break;
773 case SO_OOBINLINE:
774 v.val = !!sock_flag(sk, SOCK_URGINLINE);
775 break;
777 case SO_NO_CHECK:
778 v.val = sk->sk_no_check;
779 break;
781 case SO_PRIORITY:
782 v.val = sk->sk_priority;
783 break;
785 case SO_LINGER:
786 lv = sizeof(v.ling);
787 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
788 v.ling.l_linger = sk->sk_lingertime / HZ;
789 break;
791 case SO_BSDCOMPAT:
792 sock_warn_obsolete_bsdism("getsockopt");
793 break;
795 case SO_TIMESTAMP:
796 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
797 !sock_flag(sk, SOCK_RCVTSTAMPNS);
798 break;
800 case SO_TIMESTAMPNS:
801 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
802 break;
804 case SO_TIMESTAMPING:
805 v.val = 0;
806 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
807 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
808 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
809 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
810 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
811 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
812 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
813 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
814 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
815 v.val |= SOF_TIMESTAMPING_SOFTWARE;
816 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
817 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
818 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
819 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
820 break;
822 case SO_RCVTIMEO:
823 lv = sizeof(struct timeval);
824 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
825 v.tm.tv_sec = 0;
826 v.tm.tv_usec = 0;
827 } else {
828 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
829 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
831 break;
833 case SO_SNDTIMEO:
834 lv = sizeof(struct timeval);
835 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
836 v.tm.tv_sec = 0;
837 v.tm.tv_usec = 0;
838 } else {
839 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
840 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
842 break;
844 case SO_RCVLOWAT:
845 v.val = sk->sk_rcvlowat;
846 break;
848 case SO_SNDLOWAT:
849 v.val = 1;
850 break;
852 case SO_PASSCRED:
853 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
854 break;
856 case SO_PEERCRED:
857 if (len > sizeof(sk->sk_peercred))
858 len = sizeof(sk->sk_peercred);
859 if (copy_to_user(optval, &sk->sk_peercred, len))
860 return -EFAULT;
861 goto lenout;
863 case SO_PEERNAME:
865 char address[128];
867 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
868 return -ENOTCONN;
869 if (lv < len)
870 return -EINVAL;
871 if (copy_to_user(optval, address, len))
872 return -EFAULT;
873 goto lenout;
876 /* Dubious BSD thing... Probably nobody even uses it, but
877 * the UNIX standard wants it for whatever reason... -DaveM
879 case SO_ACCEPTCONN:
880 v.val = sk->sk_state == TCP_LISTEN;
881 break;
883 case SO_PASSSEC:
884 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
885 break;
887 case SO_PEERSEC:
888 return security_socket_getpeersec_stream(sock, optval, optlen, len);
890 case SO_MARK:
891 v.val = sk->sk_mark;
892 break;
894 default:
895 return -ENOPROTOOPT;
898 if (len > lv)
899 len = lv;
900 if (copy_to_user(optval, &v, len))
901 return -EFAULT;
902 lenout:
903 if (put_user(len, optlen))
904 return -EFAULT;
905 return 0;
909 * Initialize an sk_lock.
911 * (We also register the sk_lock with the lock validator.)
913 static inline void sock_lock_init(struct sock *sk)
915 sock_lock_init_class_and_name(sk,
916 af_family_slock_key_strings[sk->sk_family],
917 af_family_slock_keys + sk->sk_family,
918 af_family_key_strings[sk->sk_family],
919 af_family_keys + sk->sk_family);
922 static void sock_copy(struct sock *nsk, const struct sock *osk)
924 #ifdef CONFIG_SECURITY_NETWORK
925 void *sptr = nsk->sk_security;
926 #endif
928 memcpy(nsk, osk, osk->sk_prot->obj_size);
929 #ifdef CONFIG_SECURITY_NETWORK
930 nsk->sk_security = sptr;
931 security_sk_clone(osk, nsk);
932 #endif
935 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
936 int family)
938 struct sock *sk;
939 struct kmem_cache *slab;
941 slab = prot->slab;
942 if (slab != NULL) {
943 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
944 if (!sk)
945 return sk;
946 if (priority & __GFP_ZERO) {
948 * caches using SLAB_DESTROY_BY_RCU should let
949 * sk_node.next un-modified. Special care is taken
950 * when initializing object to zero.
952 if (offsetof(struct sock, sk_node.next) != 0)
953 memset(sk, 0, offsetof(struct sock, sk_node.next));
954 memset(&sk->sk_node.pprev, 0,
955 prot->obj_size - offsetof(struct sock,
956 sk_node.pprev));
959 else
960 sk = kmalloc(prot->obj_size, priority);
962 if (sk != NULL) {
963 kmemcheck_annotate_bitfield(sk, flags);
965 if (security_sk_alloc(sk, family, priority))
966 goto out_free;
968 if (!try_module_get(prot->owner))
969 goto out_free_sec;
972 return sk;
974 out_free_sec:
975 security_sk_free(sk);
976 out_free:
977 if (slab != NULL)
978 kmem_cache_free(slab, sk);
979 else
980 kfree(sk);
981 return NULL;
984 static void sk_prot_free(struct proto *prot, struct sock *sk)
986 struct kmem_cache *slab;
987 struct module *owner;
989 owner = prot->owner;
990 slab = prot->slab;
992 security_sk_free(sk);
993 if (slab != NULL)
994 kmem_cache_free(slab, sk);
995 else
996 kfree(sk);
997 module_put(owner);
1001 * sk_alloc - All socket objects are allocated here
1002 * @net: the applicable net namespace
1003 * @family: protocol family
1004 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1005 * @prot: struct proto associated with this new sock instance
1007 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1008 struct proto *prot)
1010 struct sock *sk;
1012 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1013 if (sk) {
1014 sk->sk_family = family;
1016 * See comment in struct sock definition to understand
1017 * why we need sk_prot_creator -acme
1019 sk->sk_prot = sk->sk_prot_creator = prot;
1020 sock_lock_init(sk);
1021 sock_net_set(sk, get_net(net));
1024 return sk;
1026 EXPORT_SYMBOL(sk_alloc);
1028 static void __sk_free(struct sock *sk)
1030 struct sk_filter *filter;
1032 if (sk->sk_destruct)
1033 sk->sk_destruct(sk);
1035 filter = rcu_dereference(sk->sk_filter);
1036 if (filter) {
1037 sk_filter_uncharge(sk, filter);
1038 rcu_assign_pointer(sk->sk_filter, NULL);
1041 sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1042 sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1044 if (atomic_read(&sk->sk_omem_alloc))
1045 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1046 __func__, atomic_read(&sk->sk_omem_alloc));
1048 put_net(sock_net(sk));
1049 sk_prot_free(sk->sk_prot_creator, sk);
1052 void sk_free(struct sock *sk)
1055 * We substract one from sk_wmem_alloc and can know if
1056 * some packets are still in some tx queue.
1057 * If not null, sock_wfree() will call __sk_free(sk) later
1059 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1060 __sk_free(sk);
1062 EXPORT_SYMBOL(sk_free);
1065 * Last sock_put should drop referrence to sk->sk_net. It has already
1066 * been dropped in sk_change_net. Taking referrence to stopping namespace
1067 * is not an option.
1068 * Take referrence to a socket to remove it from hash _alive_ and after that
1069 * destroy it in the context of init_net.
1071 void sk_release_kernel(struct sock *sk)
1073 if (sk == NULL || sk->sk_socket == NULL)
1074 return;
1076 sock_hold(sk);
1077 sock_release(sk->sk_socket);
1078 release_net(sock_net(sk));
1079 sock_net_set(sk, get_net(&init_net));
1080 sock_put(sk);
1082 EXPORT_SYMBOL(sk_release_kernel);
1084 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1086 struct sock *newsk;
1088 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1089 if (newsk != NULL) {
1090 struct sk_filter *filter;
1092 sock_copy(newsk, sk);
1094 /* SANITY */
1095 get_net(sock_net(newsk));
1096 sk_node_init(&newsk->sk_node);
1097 sock_lock_init(newsk);
1098 bh_lock_sock(newsk);
1099 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1101 atomic_set(&newsk->sk_rmem_alloc, 0);
1103 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1105 atomic_set(&newsk->sk_wmem_alloc, 1);
1106 atomic_set(&newsk->sk_omem_alloc, 0);
1107 skb_queue_head_init(&newsk->sk_receive_queue);
1108 skb_queue_head_init(&newsk->sk_write_queue);
1109 #ifdef CONFIG_NET_DMA
1110 skb_queue_head_init(&newsk->sk_async_wait_queue);
1111 #endif
1113 rwlock_init(&newsk->sk_dst_lock);
1114 rwlock_init(&newsk->sk_callback_lock);
1115 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1116 af_callback_keys + newsk->sk_family,
1117 af_family_clock_key_strings[newsk->sk_family]);
1119 newsk->sk_dst_cache = NULL;
1120 newsk->sk_wmem_queued = 0;
1121 newsk->sk_forward_alloc = 0;
1122 newsk->sk_send_head = NULL;
1123 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1125 sock_reset_flag(newsk, SOCK_DONE);
1126 skb_queue_head_init(&newsk->sk_error_queue);
1128 filter = newsk->sk_filter;
1129 if (filter != NULL)
1130 sk_filter_charge(newsk, filter);
1132 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1133 /* It is still raw copy of parent, so invalidate
1134 * destructor and make plain sk_free() */
1135 newsk->sk_destruct = NULL;
1136 sk_free(newsk);
1137 newsk = NULL;
1138 goto out;
1141 newsk->sk_err = 0;
1142 newsk->sk_priority = 0;
1143 atomic_set(&newsk->sk_refcnt, 2);
1146 * Increment the counter in the same struct proto as the master
1147 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1148 * is the same as sk->sk_prot->socks, as this field was copied
1149 * with memcpy).
1151 * This _changes_ the previous behaviour, where
1152 * tcp_create_openreq_child always was incrementing the
1153 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1154 * to be taken into account in all callers. -acme
1156 sk_refcnt_debug_inc(newsk);
1157 sk_set_socket(newsk, NULL);
1158 newsk->sk_sleep = NULL;
1160 if (newsk->sk_prot->sockets_allocated)
1161 percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1163 out:
1164 return newsk;
1166 EXPORT_SYMBOL_GPL(sk_clone);
1168 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1170 __sk_dst_set(sk, dst);
1171 sk->sk_route_caps = dst->dev->features;
1172 if (sk->sk_route_caps & NETIF_F_GSO)
1173 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1174 if (sk_can_gso(sk)) {
1175 if (dst->header_len) {
1176 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1177 } else {
1178 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1179 sk->sk_gso_max_size = dst->dev->gso_max_size;
1183 EXPORT_SYMBOL_GPL(sk_setup_caps);
1185 void __init sk_init(void)
1187 if (num_physpages <= 4096) {
1188 sysctl_wmem_max = 32767;
1189 sysctl_rmem_max = 32767;
1190 sysctl_wmem_default = 32767;
1191 sysctl_rmem_default = 32767;
1192 } else if (num_physpages >= 131072) {
1193 sysctl_wmem_max = 131071;
1194 sysctl_rmem_max = 131071;
1199 * Simple resource managers for sockets.
1204 * Write buffer destructor automatically called from kfree_skb.
1206 void sock_wfree(struct sk_buff *skb)
1208 struct sock *sk = skb->sk;
1209 int res;
1211 /* In case it might be waiting for more memory. */
1212 res = atomic_sub_return(skb->truesize, &sk->sk_wmem_alloc);
1213 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1214 sk->sk_write_space(sk);
1216 * if sk_wmem_alloc reached 0, we are last user and should
1217 * free this sock, as sk_free() call could not do it.
1219 if (res == 0)
1220 __sk_free(sk);
1222 EXPORT_SYMBOL(sock_wfree);
1225 * Read buffer destructor automatically called from kfree_skb.
1227 void sock_rfree(struct sk_buff *skb)
1229 struct sock *sk = skb->sk;
1231 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1232 sk_mem_uncharge(skb->sk, skb->truesize);
1234 EXPORT_SYMBOL(sock_rfree);
1237 int sock_i_uid(struct sock *sk)
1239 int uid;
1241 read_lock(&sk->sk_callback_lock);
1242 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1243 read_unlock(&sk->sk_callback_lock);
1244 return uid;
1246 EXPORT_SYMBOL(sock_i_uid);
1248 unsigned long sock_i_ino(struct sock *sk)
1250 unsigned long ino;
1252 read_lock(&sk->sk_callback_lock);
1253 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1254 read_unlock(&sk->sk_callback_lock);
1255 return ino;
1257 EXPORT_SYMBOL(sock_i_ino);
1260 * Allocate a skb from the socket's send buffer.
1262 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1263 gfp_t priority)
1265 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1266 struct sk_buff *skb = alloc_skb(size, priority);
1267 if (skb) {
1268 skb_set_owner_w(skb, sk);
1269 return skb;
1272 return NULL;
1274 EXPORT_SYMBOL(sock_wmalloc);
1277 * Allocate a skb from the socket's receive buffer.
1279 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1280 gfp_t priority)
1282 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1283 struct sk_buff *skb = alloc_skb(size, priority);
1284 if (skb) {
1285 skb_set_owner_r(skb, sk);
1286 return skb;
1289 return NULL;
1293 * Allocate a memory block from the socket's option memory buffer.
1295 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1297 if ((unsigned)size <= sysctl_optmem_max &&
1298 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1299 void *mem;
1300 /* First do the add, to avoid the race if kmalloc
1301 * might sleep.
1303 atomic_add(size, &sk->sk_omem_alloc);
1304 mem = kmalloc(size, priority);
1305 if (mem)
1306 return mem;
1307 atomic_sub(size, &sk->sk_omem_alloc);
1309 return NULL;
1311 EXPORT_SYMBOL(sock_kmalloc);
1314 * Free an option memory block.
1316 void sock_kfree_s(struct sock *sk, void *mem, int size)
1318 kfree(mem);
1319 atomic_sub(size, &sk->sk_omem_alloc);
1321 EXPORT_SYMBOL(sock_kfree_s);
1323 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1324 I think, these locks should be removed for datagram sockets.
1326 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1328 DEFINE_WAIT(wait);
1330 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1331 for (;;) {
1332 if (!timeo)
1333 break;
1334 if (signal_pending(current))
1335 break;
1336 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1337 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1338 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1339 break;
1340 if (sk->sk_shutdown & SEND_SHUTDOWN)
1341 break;
1342 if (sk->sk_err)
1343 break;
1344 timeo = schedule_timeout(timeo);
1346 finish_wait(sk->sk_sleep, &wait);
1347 return timeo;
1352 * Generic send/receive buffer handlers
1355 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1356 unsigned long data_len, int noblock,
1357 int *errcode)
1359 struct sk_buff *skb;
1360 gfp_t gfp_mask;
1361 long timeo;
1362 int err;
1364 gfp_mask = sk->sk_allocation;
1365 if (gfp_mask & __GFP_WAIT)
1366 gfp_mask |= __GFP_REPEAT;
1368 timeo = sock_sndtimeo(sk, noblock);
1369 while (1) {
1370 err = sock_error(sk);
1371 if (err != 0)
1372 goto failure;
1374 err = -EPIPE;
1375 if (sk->sk_shutdown & SEND_SHUTDOWN)
1376 goto failure;
1378 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1379 skb = alloc_skb(header_len, gfp_mask);
1380 if (skb) {
1381 int npages;
1382 int i;
1384 /* No pages, we're done... */
1385 if (!data_len)
1386 break;
1388 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1389 skb->truesize += data_len;
1390 skb_shinfo(skb)->nr_frags = npages;
1391 for (i = 0; i < npages; i++) {
1392 struct page *page;
1393 skb_frag_t *frag;
1395 page = alloc_pages(sk->sk_allocation, 0);
1396 if (!page) {
1397 err = -ENOBUFS;
1398 skb_shinfo(skb)->nr_frags = i;
1399 kfree_skb(skb);
1400 goto failure;
1403 frag = &skb_shinfo(skb)->frags[i];
1404 frag->page = page;
1405 frag->page_offset = 0;
1406 frag->size = (data_len >= PAGE_SIZE ?
1407 PAGE_SIZE :
1408 data_len);
1409 data_len -= PAGE_SIZE;
1412 /* Full success... */
1413 break;
1415 err = -ENOBUFS;
1416 goto failure;
1418 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1419 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1420 err = -EAGAIN;
1421 if (!timeo)
1422 goto failure;
1423 if (signal_pending(current))
1424 goto interrupted;
1425 timeo = sock_wait_for_wmem(sk, timeo);
1428 skb_set_owner_w(skb, sk);
1429 return skb;
1431 interrupted:
1432 err = sock_intr_errno(timeo);
1433 failure:
1434 *errcode = err;
1435 return NULL;
1437 EXPORT_SYMBOL(sock_alloc_send_pskb);
1439 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1440 int noblock, int *errcode)
1442 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1444 EXPORT_SYMBOL(sock_alloc_send_skb);
1446 static void __lock_sock(struct sock *sk)
1448 DEFINE_WAIT(wait);
1450 for (;;) {
1451 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1452 TASK_UNINTERRUPTIBLE);
1453 spin_unlock_bh(&sk->sk_lock.slock);
1454 schedule();
1455 spin_lock_bh(&sk->sk_lock.slock);
1456 if (!sock_owned_by_user(sk))
1457 break;
1459 finish_wait(&sk->sk_lock.wq, &wait);
1462 static void __release_sock(struct sock *sk)
1464 struct sk_buff *skb = sk->sk_backlog.head;
1466 do {
1467 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1468 bh_unlock_sock(sk);
1470 do {
1471 struct sk_buff *next = skb->next;
1473 skb->next = NULL;
1474 sk_backlog_rcv(sk, skb);
1477 * We are in process context here with softirqs
1478 * disabled, use cond_resched_softirq() to preempt.
1479 * This is safe to do because we've taken the backlog
1480 * queue private:
1482 cond_resched_softirq();
1484 skb = next;
1485 } while (skb != NULL);
1487 bh_lock_sock(sk);
1488 } while ((skb = sk->sk_backlog.head) != NULL);
1492 * sk_wait_data - wait for data to arrive at sk_receive_queue
1493 * @sk: sock to wait on
1494 * @timeo: for how long
1496 * Now socket state including sk->sk_err is changed only under lock,
1497 * hence we may omit checks after joining wait queue.
1498 * We check receive queue before schedule() only as optimization;
1499 * it is very likely that release_sock() added new data.
1501 int sk_wait_data(struct sock *sk, long *timeo)
1503 int rc;
1504 DEFINE_WAIT(wait);
1506 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1507 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1508 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1509 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1510 finish_wait(sk->sk_sleep, &wait);
1511 return rc;
1513 EXPORT_SYMBOL(sk_wait_data);
1516 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1517 * @sk: socket
1518 * @size: memory size to allocate
1519 * @kind: allocation type
1521 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1522 * rmem allocation. This function assumes that protocols which have
1523 * memory_pressure use sk_wmem_queued as write buffer accounting.
1525 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1527 struct proto *prot = sk->sk_prot;
1528 int amt = sk_mem_pages(size);
1529 int allocated;
1531 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1532 allocated = atomic_add_return(amt, prot->memory_allocated);
1534 /* Under limit. */
1535 if (allocated <= prot->sysctl_mem[0]) {
1536 if (prot->memory_pressure && *prot->memory_pressure)
1537 *prot->memory_pressure = 0;
1538 return 1;
1541 /* Under pressure. */
1542 if (allocated > prot->sysctl_mem[1])
1543 if (prot->enter_memory_pressure)
1544 prot->enter_memory_pressure(sk);
1546 /* Over hard limit. */
1547 if (allocated > prot->sysctl_mem[2])
1548 goto suppress_allocation;
1550 /* guarantee minimum buffer size under pressure */
1551 if (kind == SK_MEM_RECV) {
1552 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1553 return 1;
1554 } else { /* SK_MEM_SEND */
1555 if (sk->sk_type == SOCK_STREAM) {
1556 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1557 return 1;
1558 } else if (atomic_read(&sk->sk_wmem_alloc) <
1559 prot->sysctl_wmem[0])
1560 return 1;
1563 if (prot->memory_pressure) {
1564 int alloc;
1566 if (!*prot->memory_pressure)
1567 return 1;
1568 alloc = percpu_counter_read_positive(prot->sockets_allocated);
1569 if (prot->sysctl_mem[2] > alloc *
1570 sk_mem_pages(sk->sk_wmem_queued +
1571 atomic_read(&sk->sk_rmem_alloc) +
1572 sk->sk_forward_alloc))
1573 return 1;
1576 suppress_allocation:
1578 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1579 sk_stream_moderate_sndbuf(sk);
1581 /* Fail only if socket is _under_ its sndbuf.
1582 * In this case we cannot block, so that we have to fail.
1584 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1585 return 1;
1588 /* Alas. Undo changes. */
1589 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1590 atomic_sub(amt, prot->memory_allocated);
1591 return 0;
1593 EXPORT_SYMBOL(__sk_mem_schedule);
1596 * __sk_reclaim - reclaim memory_allocated
1597 * @sk: socket
1599 void __sk_mem_reclaim(struct sock *sk)
1601 struct proto *prot = sk->sk_prot;
1603 atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1604 prot->memory_allocated);
1605 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1607 if (prot->memory_pressure && *prot->memory_pressure &&
1608 (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1609 *prot->memory_pressure = 0;
1611 EXPORT_SYMBOL(__sk_mem_reclaim);
1615 * Set of default routines for initialising struct proto_ops when
1616 * the protocol does not support a particular function. In certain
1617 * cases where it makes no sense for a protocol to have a "do nothing"
1618 * function, some default processing is provided.
1621 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1623 return -EOPNOTSUPP;
1625 EXPORT_SYMBOL(sock_no_bind);
1627 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1628 int len, int flags)
1630 return -EOPNOTSUPP;
1632 EXPORT_SYMBOL(sock_no_connect);
1634 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1636 return -EOPNOTSUPP;
1638 EXPORT_SYMBOL(sock_no_socketpair);
1640 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1642 return -EOPNOTSUPP;
1644 EXPORT_SYMBOL(sock_no_accept);
1646 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1647 int *len, int peer)
1649 return -EOPNOTSUPP;
1651 EXPORT_SYMBOL(sock_no_getname);
1653 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1655 return 0;
1657 EXPORT_SYMBOL(sock_no_poll);
1659 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1661 return -EOPNOTSUPP;
1663 EXPORT_SYMBOL(sock_no_ioctl);
1665 int sock_no_listen(struct socket *sock, int backlog)
1667 return -EOPNOTSUPP;
1669 EXPORT_SYMBOL(sock_no_listen);
1671 int sock_no_shutdown(struct socket *sock, int how)
1673 return -EOPNOTSUPP;
1675 EXPORT_SYMBOL(sock_no_shutdown);
1677 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1678 char __user *optval, int optlen)
1680 return -EOPNOTSUPP;
1682 EXPORT_SYMBOL(sock_no_setsockopt);
1684 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1685 char __user *optval, int __user *optlen)
1687 return -EOPNOTSUPP;
1689 EXPORT_SYMBOL(sock_no_getsockopt);
1691 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1692 size_t len)
1694 return -EOPNOTSUPP;
1696 EXPORT_SYMBOL(sock_no_sendmsg);
1698 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1699 size_t len, int flags)
1701 return -EOPNOTSUPP;
1703 EXPORT_SYMBOL(sock_no_recvmsg);
1705 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1707 /* Mirror missing mmap method error code */
1708 return -ENODEV;
1710 EXPORT_SYMBOL(sock_no_mmap);
1712 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1714 ssize_t res;
1715 struct msghdr msg = {.msg_flags = flags};
1716 struct kvec iov;
1717 char *kaddr = kmap(page);
1718 iov.iov_base = kaddr + offset;
1719 iov.iov_len = size;
1720 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1721 kunmap(page);
1722 return res;
1724 EXPORT_SYMBOL(sock_no_sendpage);
1727 * Default Socket Callbacks
1730 static void sock_def_wakeup(struct sock *sk)
1732 read_lock(&sk->sk_callback_lock);
1733 if (sk_has_sleeper(sk))
1734 wake_up_interruptible_all(sk->sk_sleep);
1735 read_unlock(&sk->sk_callback_lock);
1738 static void sock_def_error_report(struct sock *sk)
1740 read_lock(&sk->sk_callback_lock);
1741 if (sk_has_sleeper(sk))
1742 wake_up_interruptible_poll(sk->sk_sleep, POLLERR);
1743 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1744 read_unlock(&sk->sk_callback_lock);
1747 static void sock_def_readable(struct sock *sk, int len)
1749 read_lock(&sk->sk_callback_lock);
1750 if (sk_has_sleeper(sk))
1751 wake_up_interruptible_sync_poll(sk->sk_sleep, POLLIN |
1752 POLLRDNORM | POLLRDBAND);
1753 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1754 read_unlock(&sk->sk_callback_lock);
1757 static void sock_def_write_space(struct sock *sk)
1759 read_lock(&sk->sk_callback_lock);
1761 /* Do not wake up a writer until he can make "significant"
1762 * progress. --DaveM
1764 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1765 if (sk_has_sleeper(sk))
1766 wake_up_interruptible_sync_poll(sk->sk_sleep, POLLOUT |
1767 POLLWRNORM | POLLWRBAND);
1769 /* Should agree with poll, otherwise some programs break */
1770 if (sock_writeable(sk))
1771 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1774 read_unlock(&sk->sk_callback_lock);
1777 static void sock_def_destruct(struct sock *sk)
1779 kfree(sk->sk_protinfo);
1782 void sk_send_sigurg(struct sock *sk)
1784 if (sk->sk_socket && sk->sk_socket->file)
1785 if (send_sigurg(&sk->sk_socket->file->f_owner))
1786 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1788 EXPORT_SYMBOL(sk_send_sigurg);
1790 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1791 unsigned long expires)
1793 if (!mod_timer(timer, expires))
1794 sock_hold(sk);
1796 EXPORT_SYMBOL(sk_reset_timer);
1798 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1800 if (timer_pending(timer) && del_timer(timer))
1801 __sock_put(sk);
1803 EXPORT_SYMBOL(sk_stop_timer);
1805 void sock_init_data(struct socket *sock, struct sock *sk)
1807 skb_queue_head_init(&sk->sk_receive_queue);
1808 skb_queue_head_init(&sk->sk_write_queue);
1809 skb_queue_head_init(&sk->sk_error_queue);
1810 #ifdef CONFIG_NET_DMA
1811 skb_queue_head_init(&sk->sk_async_wait_queue);
1812 #endif
1814 sk->sk_send_head = NULL;
1816 init_timer(&sk->sk_timer);
1818 sk->sk_allocation = GFP_KERNEL;
1819 sk->sk_rcvbuf = sysctl_rmem_default;
1820 sk->sk_sndbuf = sysctl_wmem_default;
1821 sk->sk_state = TCP_CLOSE;
1822 sk_set_socket(sk, sock);
1824 sock_set_flag(sk, SOCK_ZAPPED);
1826 if (sock) {
1827 sk->sk_type = sock->type;
1828 sk->sk_sleep = &sock->wait;
1829 sock->sk = sk;
1830 } else
1831 sk->sk_sleep = NULL;
1833 rwlock_init(&sk->sk_dst_lock);
1834 rwlock_init(&sk->sk_callback_lock);
1835 lockdep_set_class_and_name(&sk->sk_callback_lock,
1836 af_callback_keys + sk->sk_family,
1837 af_family_clock_key_strings[sk->sk_family]);
1839 sk->sk_state_change = sock_def_wakeup;
1840 sk->sk_data_ready = sock_def_readable;
1841 sk->sk_write_space = sock_def_write_space;
1842 sk->sk_error_report = sock_def_error_report;
1843 sk->sk_destruct = sock_def_destruct;
1845 sk->sk_sndmsg_page = NULL;
1846 sk->sk_sndmsg_off = 0;
1848 sk->sk_peercred.pid = 0;
1849 sk->sk_peercred.uid = -1;
1850 sk->sk_peercred.gid = -1;
1851 sk->sk_write_pending = 0;
1852 sk->sk_rcvlowat = 1;
1853 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1854 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1856 sk->sk_stamp = ktime_set(-1L, 0);
1858 atomic_set(&sk->sk_refcnt, 1);
1859 atomic_set(&sk->sk_wmem_alloc, 1);
1860 atomic_set(&sk->sk_drops, 0);
1862 EXPORT_SYMBOL(sock_init_data);
1864 void lock_sock_nested(struct sock *sk, int subclass)
1866 might_sleep();
1867 spin_lock_bh(&sk->sk_lock.slock);
1868 if (sk->sk_lock.owned)
1869 __lock_sock(sk);
1870 sk->sk_lock.owned = 1;
1871 spin_unlock(&sk->sk_lock.slock);
1873 * The sk_lock has mutex_lock() semantics here:
1875 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1876 local_bh_enable();
1878 EXPORT_SYMBOL(lock_sock_nested);
1880 void release_sock(struct sock *sk)
1883 * The sk_lock has mutex_unlock() semantics:
1885 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1887 spin_lock_bh(&sk->sk_lock.slock);
1888 if (sk->sk_backlog.tail)
1889 __release_sock(sk);
1890 sk->sk_lock.owned = 0;
1891 if (waitqueue_active(&sk->sk_lock.wq))
1892 wake_up(&sk->sk_lock.wq);
1893 spin_unlock_bh(&sk->sk_lock.slock);
1895 EXPORT_SYMBOL(release_sock);
1897 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1899 struct timeval tv;
1900 if (!sock_flag(sk, SOCK_TIMESTAMP))
1901 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1902 tv = ktime_to_timeval(sk->sk_stamp);
1903 if (tv.tv_sec == -1)
1904 return -ENOENT;
1905 if (tv.tv_sec == 0) {
1906 sk->sk_stamp = ktime_get_real();
1907 tv = ktime_to_timeval(sk->sk_stamp);
1909 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1911 EXPORT_SYMBOL(sock_get_timestamp);
1913 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1915 struct timespec ts;
1916 if (!sock_flag(sk, SOCK_TIMESTAMP))
1917 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1918 ts = ktime_to_timespec(sk->sk_stamp);
1919 if (ts.tv_sec == -1)
1920 return -ENOENT;
1921 if (ts.tv_sec == 0) {
1922 sk->sk_stamp = ktime_get_real();
1923 ts = ktime_to_timespec(sk->sk_stamp);
1925 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1927 EXPORT_SYMBOL(sock_get_timestampns);
1929 void sock_enable_timestamp(struct sock *sk, int flag)
1931 if (!sock_flag(sk, flag)) {
1932 sock_set_flag(sk, flag);
1934 * we just set one of the two flags which require net
1935 * time stamping, but time stamping might have been on
1936 * already because of the other one
1938 if (!sock_flag(sk,
1939 flag == SOCK_TIMESTAMP ?
1940 SOCK_TIMESTAMPING_RX_SOFTWARE :
1941 SOCK_TIMESTAMP))
1942 net_enable_timestamp();
1947 * Get a socket option on an socket.
1949 * FIX: POSIX 1003.1g is very ambiguous here. It states that
1950 * asynchronous errors should be reported by getsockopt. We assume
1951 * this means if you specify SO_ERROR (otherwise whats the point of it).
1953 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1954 char __user *optval, int __user *optlen)
1956 struct sock *sk = sock->sk;
1958 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1960 EXPORT_SYMBOL(sock_common_getsockopt);
1962 #ifdef CONFIG_COMPAT
1963 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1964 char __user *optval, int __user *optlen)
1966 struct sock *sk = sock->sk;
1968 if (sk->sk_prot->compat_getsockopt != NULL)
1969 return sk->sk_prot->compat_getsockopt(sk, level, optname,
1970 optval, optlen);
1971 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1973 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1974 #endif
1976 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1977 struct msghdr *msg, size_t size, int flags)
1979 struct sock *sk = sock->sk;
1980 int addr_len = 0;
1981 int err;
1983 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1984 flags & ~MSG_DONTWAIT, &addr_len);
1985 if (err >= 0)
1986 msg->msg_namelen = addr_len;
1987 return err;
1989 EXPORT_SYMBOL(sock_common_recvmsg);
1992 * Set socket options on an inet socket.
1994 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1995 char __user *optval, int optlen)
1997 struct sock *sk = sock->sk;
1999 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2001 EXPORT_SYMBOL(sock_common_setsockopt);
2003 #ifdef CONFIG_COMPAT
2004 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2005 char __user *optval, int optlen)
2007 struct sock *sk = sock->sk;
2009 if (sk->sk_prot->compat_setsockopt != NULL)
2010 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2011 optval, optlen);
2012 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2014 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2015 #endif
2017 void sk_common_release(struct sock *sk)
2019 if (sk->sk_prot->destroy)
2020 sk->sk_prot->destroy(sk);
2023 * Observation: when sock_common_release is called, processes have
2024 * no access to socket. But net still has.
2025 * Step one, detach it from networking:
2027 * A. Remove from hash tables.
2030 sk->sk_prot->unhash(sk);
2033 * In this point socket cannot receive new packets, but it is possible
2034 * that some packets are in flight because some CPU runs receiver and
2035 * did hash table lookup before we unhashed socket. They will achieve
2036 * receive queue and will be purged by socket destructor.
2038 * Also we still have packets pending on receive queue and probably,
2039 * our own packets waiting in device queues. sock_destroy will drain
2040 * receive queue, but transmitted packets will delay socket destruction
2041 * until the last reference will be released.
2044 sock_orphan(sk);
2046 xfrm_sk_free_policy(sk);
2048 sk_refcnt_debug_release(sk);
2049 sock_put(sk);
2051 EXPORT_SYMBOL(sk_common_release);
2053 static DEFINE_RWLOCK(proto_list_lock);
2054 static LIST_HEAD(proto_list);
2056 #ifdef CONFIG_PROC_FS
2057 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2058 struct prot_inuse {
2059 int val[PROTO_INUSE_NR];
2062 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2064 #ifdef CONFIG_NET_NS
2065 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2067 int cpu = smp_processor_id();
2068 per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val;
2070 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2072 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2074 int cpu, idx = prot->inuse_idx;
2075 int res = 0;
2077 for_each_possible_cpu(cpu)
2078 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2080 return res >= 0 ? res : 0;
2082 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2084 static int sock_inuse_init_net(struct net *net)
2086 net->core.inuse = alloc_percpu(struct prot_inuse);
2087 return net->core.inuse ? 0 : -ENOMEM;
2090 static void sock_inuse_exit_net(struct net *net)
2092 free_percpu(net->core.inuse);
2095 static struct pernet_operations net_inuse_ops = {
2096 .init = sock_inuse_init_net,
2097 .exit = sock_inuse_exit_net,
2100 static __init int net_inuse_init(void)
2102 if (register_pernet_subsys(&net_inuse_ops))
2103 panic("Cannot initialize net inuse counters");
2105 return 0;
2108 core_initcall(net_inuse_init);
2109 #else
2110 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2112 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2114 __get_cpu_var(prot_inuse).val[prot->inuse_idx] += val;
2116 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2118 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2120 int cpu, idx = prot->inuse_idx;
2121 int res = 0;
2123 for_each_possible_cpu(cpu)
2124 res += per_cpu(prot_inuse, cpu).val[idx];
2126 return res >= 0 ? res : 0;
2128 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2129 #endif
2131 static void assign_proto_idx(struct proto *prot)
2133 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2135 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2136 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2137 return;
2140 set_bit(prot->inuse_idx, proto_inuse_idx);
2143 static void release_proto_idx(struct proto *prot)
2145 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2146 clear_bit(prot->inuse_idx, proto_inuse_idx);
2148 #else
2149 static inline void assign_proto_idx(struct proto *prot)
2153 static inline void release_proto_idx(struct proto *prot)
2156 #endif
2158 int proto_register(struct proto *prot, int alloc_slab)
2160 if (alloc_slab) {
2161 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2162 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2163 NULL);
2165 if (prot->slab == NULL) {
2166 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2167 prot->name);
2168 goto out;
2171 if (prot->rsk_prot != NULL) {
2172 static const char mask[] = "request_sock_%s";
2174 prot->rsk_prot->slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2175 if (prot->rsk_prot->slab_name == NULL)
2176 goto out_free_sock_slab;
2178 sprintf(prot->rsk_prot->slab_name, mask, prot->name);
2179 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2180 prot->rsk_prot->obj_size, 0,
2181 SLAB_HWCACHE_ALIGN, NULL);
2183 if (prot->rsk_prot->slab == NULL) {
2184 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2185 prot->name);
2186 goto out_free_request_sock_slab_name;
2190 if (prot->twsk_prot != NULL) {
2191 static const char mask[] = "tw_sock_%s";
2193 prot->twsk_prot->twsk_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2195 if (prot->twsk_prot->twsk_slab_name == NULL)
2196 goto out_free_request_sock_slab;
2198 sprintf(prot->twsk_prot->twsk_slab_name, mask, prot->name);
2199 prot->twsk_prot->twsk_slab =
2200 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2201 prot->twsk_prot->twsk_obj_size,
2203 SLAB_HWCACHE_ALIGN |
2204 prot->slab_flags,
2205 NULL);
2206 if (prot->twsk_prot->twsk_slab == NULL)
2207 goto out_free_timewait_sock_slab_name;
2211 write_lock(&proto_list_lock);
2212 list_add(&prot->node, &proto_list);
2213 assign_proto_idx(prot);
2214 write_unlock(&proto_list_lock);
2215 return 0;
2217 out_free_timewait_sock_slab_name:
2218 kfree(prot->twsk_prot->twsk_slab_name);
2219 out_free_request_sock_slab:
2220 if (prot->rsk_prot && prot->rsk_prot->slab) {
2221 kmem_cache_destroy(prot->rsk_prot->slab);
2222 prot->rsk_prot->slab = NULL;
2224 out_free_request_sock_slab_name:
2225 kfree(prot->rsk_prot->slab_name);
2226 out_free_sock_slab:
2227 kmem_cache_destroy(prot->slab);
2228 prot->slab = NULL;
2229 out:
2230 return -ENOBUFS;
2232 EXPORT_SYMBOL(proto_register);
2234 void proto_unregister(struct proto *prot)
2236 write_lock(&proto_list_lock);
2237 release_proto_idx(prot);
2238 list_del(&prot->node);
2239 write_unlock(&proto_list_lock);
2241 if (prot->slab != NULL) {
2242 kmem_cache_destroy(prot->slab);
2243 prot->slab = NULL;
2246 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2247 kmem_cache_destroy(prot->rsk_prot->slab);
2248 kfree(prot->rsk_prot->slab_name);
2249 prot->rsk_prot->slab = NULL;
2252 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2253 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2254 kfree(prot->twsk_prot->twsk_slab_name);
2255 prot->twsk_prot->twsk_slab = NULL;
2258 EXPORT_SYMBOL(proto_unregister);
2260 #ifdef CONFIG_PROC_FS
2261 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2262 __acquires(proto_list_lock)
2264 read_lock(&proto_list_lock);
2265 return seq_list_start_head(&proto_list, *pos);
2268 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2270 return seq_list_next(v, &proto_list, pos);
2273 static void proto_seq_stop(struct seq_file *seq, void *v)
2274 __releases(proto_list_lock)
2276 read_unlock(&proto_list_lock);
2279 static char proto_method_implemented(const void *method)
2281 return method == NULL ? 'n' : 'y';
2284 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2286 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s "
2287 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2288 proto->name,
2289 proto->obj_size,
2290 sock_prot_inuse_get(seq_file_net(seq), proto),
2291 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2292 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2293 proto->max_header,
2294 proto->slab == NULL ? "no" : "yes",
2295 module_name(proto->owner),
2296 proto_method_implemented(proto->close),
2297 proto_method_implemented(proto->connect),
2298 proto_method_implemented(proto->disconnect),
2299 proto_method_implemented(proto->accept),
2300 proto_method_implemented(proto->ioctl),
2301 proto_method_implemented(proto->init),
2302 proto_method_implemented(proto->destroy),
2303 proto_method_implemented(proto->shutdown),
2304 proto_method_implemented(proto->setsockopt),
2305 proto_method_implemented(proto->getsockopt),
2306 proto_method_implemented(proto->sendmsg),
2307 proto_method_implemented(proto->recvmsg),
2308 proto_method_implemented(proto->sendpage),
2309 proto_method_implemented(proto->bind),
2310 proto_method_implemented(proto->backlog_rcv),
2311 proto_method_implemented(proto->hash),
2312 proto_method_implemented(proto->unhash),
2313 proto_method_implemented(proto->get_port),
2314 proto_method_implemented(proto->enter_memory_pressure));
2317 static int proto_seq_show(struct seq_file *seq, void *v)
2319 if (v == &proto_list)
2320 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2321 "protocol",
2322 "size",
2323 "sockets",
2324 "memory",
2325 "press",
2326 "maxhdr",
2327 "slab",
2328 "module",
2329 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2330 else
2331 proto_seq_printf(seq, list_entry(v, struct proto, node));
2332 return 0;
2335 static const struct seq_operations proto_seq_ops = {
2336 .start = proto_seq_start,
2337 .next = proto_seq_next,
2338 .stop = proto_seq_stop,
2339 .show = proto_seq_show,
2342 static int proto_seq_open(struct inode *inode, struct file *file)
2344 return seq_open_net(inode, file, &proto_seq_ops,
2345 sizeof(struct seq_net_private));
2348 static const struct file_operations proto_seq_fops = {
2349 .owner = THIS_MODULE,
2350 .open = proto_seq_open,
2351 .read = seq_read,
2352 .llseek = seq_lseek,
2353 .release = seq_release_net,
2356 static __net_init int proto_init_net(struct net *net)
2358 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2359 return -ENOMEM;
2361 return 0;
2364 static __net_exit void proto_exit_net(struct net *net)
2366 proc_net_remove(net, "protocols");
2370 static __net_initdata struct pernet_operations proto_net_ops = {
2371 .init = proto_init_net,
2372 .exit = proto_exit_net,
2375 static int __init proto_init(void)
2377 return register_pernet_subsys(&proto_net_ops);
2380 subsys_initcall(proto_init);
2382 #endif /* PROC_FS */