4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/smp.h>
49 #include <linux/threads.h>
50 #include <linux/timer.h>
51 #include <linux/rcupdate.h>
52 #include <linux/cpu.h>
53 #include <linux/cpuset.h>
54 #include <linux/percpu.h>
55 #include <linux/kthread.h>
56 #include <linux/seq_file.h>
57 #include <linux/sysctl.h>
58 #include <linux/syscalls.h>
59 #include <linux/times.h>
60 #include <linux/tsacct_kern.h>
61 #include <linux/kprobes.h>
62 #include <linux/delayacct.h>
63 #include <linux/reciprocal_div.h>
64 #include <linux/unistd.h>
65 #include <linux/pagemap.h>
68 #include <asm/irq_regs.h>
71 * Scheduler clock - returns current time in nanosec units.
72 * This is default implementation.
73 * Architectures and sub-architectures can override this.
75 unsigned long long __attribute__((weak
)) sched_clock(void)
77 return (unsigned long long)jiffies
* (NSEC_PER_SEC
/ HZ
);
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
94 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99 * Some helpers for converting nanosecond timing to jiffy resolution
101 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102 #define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
104 #define NICE_0_LOAD SCHED_LOAD_SCALE
105 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108 * These are the 'tuning knobs' of the scheduler:
110 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
111 * Timeslices get refilled after they expire.
113 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
120 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
122 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
129 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
131 sg
->__cpu_power
+= val
;
132 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
136 static inline int rt_policy(int policy
)
138 if (unlikely(policy
== SCHED_FIFO
) || unlikely(policy
== SCHED_RR
))
143 static inline int task_has_rt_policy(struct task_struct
*p
)
145 return rt_policy(p
->policy
);
149 * This is the priority-queue data structure of the RT scheduling class:
151 struct rt_prio_array
{
152 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
153 struct list_head queue
[MAX_RT_PRIO
];
156 #ifdef CONFIG_FAIR_GROUP_SCHED
158 #include <linux/cgroup.h>
162 /* task group related information */
164 #ifdef CONFIG_FAIR_CGROUP_SCHED
165 struct cgroup_subsys_state css
;
167 /* schedulable entities of this group on each cpu */
168 struct sched_entity
**se
;
169 /* runqueue "owned" by this group on each cpu */
170 struct cfs_rq
**cfs_rq
;
171 unsigned long shares
;
172 /* spinlock to serialize modification to shares */
177 /* Default task group's sched entity on each cpu */
178 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
179 /* Default task group's cfs_rq on each cpu */
180 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
182 static struct sched_entity
*init_sched_entity_p
[NR_CPUS
];
183 static struct cfs_rq
*init_cfs_rq_p
[NR_CPUS
];
185 /* Default task group.
186 * Every task in system belong to this group at bootup.
188 struct task_group init_task_group
= {
189 .se
= init_sched_entity_p
,
190 .cfs_rq
= init_cfs_rq_p
,
193 #ifdef CONFIG_FAIR_USER_SCHED
194 # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
196 # define INIT_TASK_GRP_LOAD NICE_0_LOAD
199 static int init_task_group_load
= INIT_TASK_GRP_LOAD
;
201 /* return group to which a task belongs */
202 static inline struct task_group
*task_group(struct task_struct
*p
)
204 struct task_group
*tg
;
206 #ifdef CONFIG_FAIR_USER_SCHED
208 #elif defined(CONFIG_FAIR_CGROUP_SCHED)
209 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
210 struct task_group
, css
);
212 tg
= &init_task_group
;
217 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
218 static inline void set_task_cfs_rq(struct task_struct
*p
, unsigned int cpu
)
220 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
221 p
->se
.parent
= task_group(p
)->se
[cpu
];
226 static inline void set_task_cfs_rq(struct task_struct
*p
, unsigned int cpu
) { }
228 #endif /* CONFIG_FAIR_GROUP_SCHED */
230 /* CFS-related fields in a runqueue */
232 struct load_weight load
;
233 unsigned long nr_running
;
238 struct rb_root tasks_timeline
;
239 struct rb_node
*rb_leftmost
;
240 struct rb_node
*rb_load_balance_curr
;
241 /* 'curr' points to currently running entity on this cfs_rq.
242 * It is set to NULL otherwise (i.e when none are currently running).
244 struct sched_entity
*curr
;
246 unsigned long nr_spread_over
;
248 #ifdef CONFIG_FAIR_GROUP_SCHED
249 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
252 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
253 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
254 * (like users, containers etc.)
256 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
257 * list is used during load balance.
259 struct list_head leaf_cfs_rq_list
;
260 struct task_group
*tg
; /* group that "owns" this runqueue */
264 /* Real-Time classes' related field in a runqueue: */
266 struct rt_prio_array active
;
267 int rt_load_balance_idx
;
268 struct list_head
*rt_load_balance_head
, *rt_load_balance_curr
;
272 * This is the main, per-CPU runqueue data structure.
274 * Locking rule: those places that want to lock multiple runqueues
275 * (such as the load balancing or the thread migration code), lock
276 * acquire operations must be ordered by ascending &runqueue.
283 * nr_running and cpu_load should be in the same cacheline because
284 * remote CPUs use both these fields when doing load calculation.
286 unsigned long nr_running
;
287 #define CPU_LOAD_IDX_MAX 5
288 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
289 unsigned char idle_at_tick
;
291 unsigned char in_nohz_recently
;
293 /* capture load from *all* tasks on this cpu: */
294 struct load_weight load
;
295 unsigned long nr_load_updates
;
299 #ifdef CONFIG_FAIR_GROUP_SCHED
300 /* list of leaf cfs_rq on this cpu: */
301 struct list_head leaf_cfs_rq_list
;
306 * This is part of a global counter where only the total sum
307 * over all CPUs matters. A task can increase this counter on
308 * one CPU and if it got migrated afterwards it may decrease
309 * it on another CPU. Always updated under the runqueue lock:
311 unsigned long nr_uninterruptible
;
313 struct task_struct
*curr
, *idle
;
314 unsigned long next_balance
;
315 struct mm_struct
*prev_mm
;
317 u64 clock
, prev_clock_raw
;
320 unsigned int clock_warps
, clock_overflows
;
322 unsigned int clock_deep_idle_events
;
328 struct sched_domain
*sd
;
330 /* For active balancing */
333 /* cpu of this runqueue: */
336 struct task_struct
*migration_thread
;
337 struct list_head migration_queue
;
340 #ifdef CONFIG_SCHEDSTATS
342 struct sched_info rq_sched_info
;
344 /* sys_sched_yield() stats */
345 unsigned int yld_exp_empty
;
346 unsigned int yld_act_empty
;
347 unsigned int yld_both_empty
;
348 unsigned int yld_count
;
350 /* schedule() stats */
351 unsigned int sched_switch
;
352 unsigned int sched_count
;
353 unsigned int sched_goidle
;
355 /* try_to_wake_up() stats */
356 unsigned int ttwu_count
;
357 unsigned int ttwu_local
;
360 unsigned int bkl_count
;
362 struct lock_class_key rq_lock_key
;
365 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
366 static DEFINE_MUTEX(sched_hotcpu_mutex
);
368 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
)
370 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
);
373 static inline int cpu_of(struct rq
*rq
)
383 * Update the per-runqueue clock, as finegrained as the platform can give
384 * us, but without assuming monotonicity, etc.:
386 static void __update_rq_clock(struct rq
*rq
)
388 u64 prev_raw
= rq
->prev_clock_raw
;
389 u64 now
= sched_clock();
390 s64 delta
= now
- prev_raw
;
391 u64 clock
= rq
->clock
;
393 #ifdef CONFIG_SCHED_DEBUG
394 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
397 * Protect against sched_clock() occasionally going backwards:
399 if (unlikely(delta
< 0)) {
404 * Catch too large forward jumps too:
406 if (unlikely(clock
+ delta
> rq
->tick_timestamp
+ TICK_NSEC
)) {
407 if (clock
< rq
->tick_timestamp
+ TICK_NSEC
)
408 clock
= rq
->tick_timestamp
+ TICK_NSEC
;
411 rq
->clock_overflows
++;
413 if (unlikely(delta
> rq
->clock_max_delta
))
414 rq
->clock_max_delta
= delta
;
419 rq
->prev_clock_raw
= now
;
423 static void update_rq_clock(struct rq
*rq
)
425 if (likely(smp_processor_id() == cpu_of(rq
)))
426 __update_rq_clock(rq
);
430 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
431 * See detach_destroy_domains: synchronize_sched for details.
433 * The domain tree of any CPU may only be accessed from within
434 * preempt-disabled sections.
436 #define for_each_domain(cpu, __sd) \
437 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
439 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
440 #define this_rq() (&__get_cpu_var(runqueues))
441 #define task_rq(p) cpu_rq(task_cpu(p))
442 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
445 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
447 #ifdef CONFIG_SCHED_DEBUG
448 # define const_debug __read_mostly
450 # define const_debug static const
454 * Debugging: various feature bits
457 SCHED_FEAT_NEW_FAIR_SLEEPERS
= 1,
458 SCHED_FEAT_WAKEUP_PREEMPT
= 2,
459 SCHED_FEAT_START_DEBIT
= 4,
460 SCHED_FEAT_TREE_AVG
= 8,
461 SCHED_FEAT_APPROX_AVG
= 16,
464 const_debug
unsigned int sysctl_sched_features
=
465 SCHED_FEAT_NEW_FAIR_SLEEPERS
* 1 |
466 SCHED_FEAT_WAKEUP_PREEMPT
* 1 |
467 SCHED_FEAT_START_DEBIT
* 1 |
468 SCHED_FEAT_TREE_AVG
* 0 |
469 SCHED_FEAT_APPROX_AVG
* 0;
471 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
474 * Number of tasks to iterate in a single balance run.
475 * Limited because this is done with IRQs disabled.
477 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
480 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
481 * clock constructed from sched_clock():
483 unsigned long long cpu_clock(int cpu
)
485 unsigned long long now
;
489 local_irq_save(flags
);
492 * Only call sched_clock() if the scheduler has already been
493 * initialized (some code might call cpu_clock() very early):
498 local_irq_restore(flags
);
502 EXPORT_SYMBOL_GPL(cpu_clock
);
504 #ifndef prepare_arch_switch
505 # define prepare_arch_switch(next) do { } while (0)
507 #ifndef finish_arch_switch
508 # define finish_arch_switch(prev) do { } while (0)
511 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
513 return rq
->curr
== p
;
516 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
517 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
519 return task_current(rq
, p
);
522 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
526 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
528 #ifdef CONFIG_DEBUG_SPINLOCK
529 /* this is a valid case when another task releases the spinlock */
530 rq
->lock
.owner
= current
;
533 * If we are tracking spinlock dependencies then we have to
534 * fix up the runqueue lock - which gets 'carried over' from
537 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
539 spin_unlock_irq(&rq
->lock
);
542 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
543 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
548 return task_current(rq
, p
);
552 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
556 * We can optimise this out completely for !SMP, because the
557 * SMP rebalancing from interrupt is the only thing that cares
562 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
563 spin_unlock_irq(&rq
->lock
);
565 spin_unlock(&rq
->lock
);
569 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
573 * After ->oncpu is cleared, the task can be moved to a different CPU.
574 * We must ensure this doesn't happen until the switch is completely
580 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
584 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
587 * __task_rq_lock - lock the runqueue a given task resides on.
588 * Must be called interrupts disabled.
590 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
594 struct rq
*rq
= task_rq(p
);
595 spin_lock(&rq
->lock
);
596 if (likely(rq
== task_rq(p
)))
598 spin_unlock(&rq
->lock
);
603 * task_rq_lock - lock the runqueue a given task resides on and disable
604 * interrupts. Note the ordering: we can safely lookup the task_rq without
605 * explicitly disabling preemption.
607 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
613 local_irq_save(*flags
);
615 spin_lock(&rq
->lock
);
616 if (likely(rq
== task_rq(p
)))
618 spin_unlock_irqrestore(&rq
->lock
, *flags
);
622 static void __task_rq_unlock(struct rq
*rq
)
625 spin_unlock(&rq
->lock
);
628 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
631 spin_unlock_irqrestore(&rq
->lock
, *flags
);
635 * this_rq_lock - lock this runqueue and disable interrupts.
637 static struct rq
*this_rq_lock(void)
644 spin_lock(&rq
->lock
);
650 * We are going deep-idle (irqs are disabled):
652 void sched_clock_idle_sleep_event(void)
654 struct rq
*rq
= cpu_rq(smp_processor_id());
656 spin_lock(&rq
->lock
);
657 __update_rq_clock(rq
);
658 spin_unlock(&rq
->lock
);
659 rq
->clock_deep_idle_events
++;
661 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event
);
664 * We just idled delta nanoseconds (called with irqs disabled):
666 void sched_clock_idle_wakeup_event(u64 delta_ns
)
668 struct rq
*rq
= cpu_rq(smp_processor_id());
669 u64 now
= sched_clock();
671 touch_softlockup_watchdog();
672 rq
->idle_clock
+= delta_ns
;
674 * Override the previous timestamp and ignore all
675 * sched_clock() deltas that occured while we idled,
676 * and use the PM-provided delta_ns to advance the
679 spin_lock(&rq
->lock
);
680 rq
->prev_clock_raw
= now
;
681 rq
->clock
+= delta_ns
;
682 spin_unlock(&rq
->lock
);
684 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event
);
687 * resched_task - mark a task 'to be rescheduled now'.
689 * On UP this means the setting of the need_resched flag, on SMP it
690 * might also involve a cross-CPU call to trigger the scheduler on
695 #ifndef tsk_is_polling
696 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
699 static void resched_task(struct task_struct
*p
)
703 assert_spin_locked(&task_rq(p
)->lock
);
705 if (unlikely(test_tsk_thread_flag(p
, TIF_NEED_RESCHED
)))
708 set_tsk_thread_flag(p
, TIF_NEED_RESCHED
);
711 if (cpu
== smp_processor_id())
714 /* NEED_RESCHED must be visible before we test polling */
716 if (!tsk_is_polling(p
))
717 smp_send_reschedule(cpu
);
720 static void resched_cpu(int cpu
)
722 struct rq
*rq
= cpu_rq(cpu
);
725 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
727 resched_task(cpu_curr(cpu
));
728 spin_unlock_irqrestore(&rq
->lock
, flags
);
731 static inline void resched_task(struct task_struct
*p
)
733 assert_spin_locked(&task_rq(p
)->lock
);
734 set_tsk_need_resched(p
);
738 #if BITS_PER_LONG == 32
739 # define WMULT_CONST (~0UL)
741 # define WMULT_CONST (1UL << 32)
744 #define WMULT_SHIFT 32
747 * Shift right and round:
749 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
752 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
753 struct load_weight
*lw
)
757 if (unlikely(!lw
->inv_weight
))
758 lw
->inv_weight
= (WMULT_CONST
- lw
->weight
/2) / lw
->weight
+ 1;
760 tmp
= (u64
)delta_exec
* weight
;
762 * Check whether we'd overflow the 64-bit multiplication:
764 if (unlikely(tmp
> WMULT_CONST
))
765 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
768 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
770 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
773 static inline unsigned long
774 calc_delta_fair(unsigned long delta_exec
, struct load_weight
*lw
)
776 return calc_delta_mine(delta_exec
, NICE_0_LOAD
, lw
);
779 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
784 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
790 * To aid in avoiding the subversion of "niceness" due to uneven distribution
791 * of tasks with abnormal "nice" values across CPUs the contribution that
792 * each task makes to its run queue's load is weighted according to its
793 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
794 * scaled version of the new time slice allocation that they receive on time
798 #define WEIGHT_IDLEPRIO 2
799 #define WMULT_IDLEPRIO (1 << 31)
802 * Nice levels are multiplicative, with a gentle 10% change for every
803 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
804 * nice 1, it will get ~10% less CPU time than another CPU-bound task
805 * that remained on nice 0.
807 * The "10% effect" is relative and cumulative: from _any_ nice level,
808 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
809 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
810 * If a task goes up by ~10% and another task goes down by ~10% then
811 * the relative distance between them is ~25%.)
813 static const int prio_to_weight
[40] = {
814 /* -20 */ 88761, 71755, 56483, 46273, 36291,
815 /* -15 */ 29154, 23254, 18705, 14949, 11916,
816 /* -10 */ 9548, 7620, 6100, 4904, 3906,
817 /* -5 */ 3121, 2501, 1991, 1586, 1277,
818 /* 0 */ 1024, 820, 655, 526, 423,
819 /* 5 */ 335, 272, 215, 172, 137,
820 /* 10 */ 110, 87, 70, 56, 45,
821 /* 15 */ 36, 29, 23, 18, 15,
825 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
827 * In cases where the weight does not change often, we can use the
828 * precalculated inverse to speed up arithmetics by turning divisions
829 * into multiplications:
831 static const u32 prio_to_wmult
[40] = {
832 /* -20 */ 48388, 59856, 76040, 92818, 118348,
833 /* -15 */ 147320, 184698, 229616, 287308, 360437,
834 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
835 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
836 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
837 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
838 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
839 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
842 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
845 * runqueue iterator, to support SMP load-balancing between different
846 * scheduling classes, without having to expose their internal data
847 * structures to the load-balancing proper:
851 struct task_struct
*(*start
)(void *);
852 struct task_struct
*(*next
)(void *);
857 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
858 unsigned long max_load_move
, struct sched_domain
*sd
,
859 enum cpu_idle_type idle
, int *all_pinned
,
860 int *this_best_prio
, struct rq_iterator
*iterator
);
863 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
864 struct sched_domain
*sd
, enum cpu_idle_type idle
,
865 struct rq_iterator
*iterator
);
868 #ifdef CONFIG_CGROUP_CPUACCT
869 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
871 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
874 #include "sched_stats.h"
875 #include "sched_idletask.c"
876 #include "sched_fair.c"
877 #include "sched_rt.c"
878 #ifdef CONFIG_SCHED_DEBUG
879 # include "sched_debug.c"
882 #define sched_class_highest (&rt_sched_class)
885 * Update delta_exec, delta_fair fields for rq.
887 * delta_fair clock advances at a rate inversely proportional to
888 * total load (rq->load.weight) on the runqueue, while
889 * delta_exec advances at the same rate as wall-clock (provided
892 * delta_exec / delta_fair is a measure of the (smoothened) load on this
893 * runqueue over any given interval. This (smoothened) load is used
894 * during load balance.
896 * This function is called /before/ updating rq->load
897 * and when switching tasks.
899 static inline void inc_load(struct rq
*rq
, const struct task_struct
*p
)
901 update_load_add(&rq
->load
, p
->se
.load
.weight
);
904 static inline void dec_load(struct rq
*rq
, const struct task_struct
*p
)
906 update_load_sub(&rq
->load
, p
->se
.load
.weight
);
909 static void inc_nr_running(struct task_struct
*p
, struct rq
*rq
)
915 static void dec_nr_running(struct task_struct
*p
, struct rq
*rq
)
921 static void set_load_weight(struct task_struct
*p
)
923 if (task_has_rt_policy(p
)) {
924 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
925 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
930 * SCHED_IDLE tasks get minimal weight:
932 if (p
->policy
== SCHED_IDLE
) {
933 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
934 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
938 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
939 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
942 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
944 sched_info_queued(p
);
945 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
949 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
951 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
956 * __normal_prio - return the priority that is based on the static prio
958 static inline int __normal_prio(struct task_struct
*p
)
960 return p
->static_prio
;
964 * Calculate the expected normal priority: i.e. priority
965 * without taking RT-inheritance into account. Might be
966 * boosted by interactivity modifiers. Changes upon fork,
967 * setprio syscalls, and whenever the interactivity
968 * estimator recalculates.
970 static inline int normal_prio(struct task_struct
*p
)
974 if (task_has_rt_policy(p
))
975 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
977 prio
= __normal_prio(p
);
982 * Calculate the current priority, i.e. the priority
983 * taken into account by the scheduler. This value might
984 * be boosted by RT tasks, or might be boosted by
985 * interactivity modifiers. Will be RT if the task got
986 * RT-boosted. If not then it returns p->normal_prio.
988 static int effective_prio(struct task_struct
*p
)
990 p
->normal_prio
= normal_prio(p
);
992 * If we are RT tasks or we were boosted to RT priority,
993 * keep the priority unchanged. Otherwise, update priority
994 * to the normal priority:
996 if (!rt_prio(p
->prio
))
997 return p
->normal_prio
;
1002 * activate_task - move a task to the runqueue.
1004 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1006 if (p
->state
== TASK_UNINTERRUPTIBLE
)
1007 rq
->nr_uninterruptible
--;
1009 enqueue_task(rq
, p
, wakeup
);
1010 inc_nr_running(p
, rq
);
1014 * deactivate_task - remove a task from the runqueue.
1016 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1018 if (p
->state
== TASK_UNINTERRUPTIBLE
)
1019 rq
->nr_uninterruptible
++;
1021 dequeue_task(rq
, p
, sleep
);
1022 dec_nr_running(p
, rq
);
1026 * task_curr - is this task currently executing on a CPU?
1027 * @p: the task in question.
1029 inline int task_curr(const struct task_struct
*p
)
1031 return cpu_curr(task_cpu(p
)) == p
;
1034 /* Used instead of source_load when we know the type == 0 */
1035 unsigned long weighted_cpuload(const int cpu
)
1037 return cpu_rq(cpu
)->load
.weight
;
1040 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1042 set_task_cfs_rq(p
, cpu
);
1045 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1046 * successfuly executed on another CPU. We must ensure that updates of
1047 * per-task data have been completed by this moment.
1050 task_thread_info(p
)->cpu
= cpu
;
1057 * Is this task likely cache-hot:
1060 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
1064 if (p
->sched_class
!= &fair_sched_class
)
1067 if (sysctl_sched_migration_cost
== -1)
1069 if (sysctl_sched_migration_cost
== 0)
1072 delta
= now
- p
->se
.exec_start
;
1074 return delta
< (s64
)sysctl_sched_migration_cost
;
1078 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1080 int old_cpu
= task_cpu(p
);
1081 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
1082 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
1083 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
1086 clock_offset
= old_rq
->clock
- new_rq
->clock
;
1088 #ifdef CONFIG_SCHEDSTATS
1089 if (p
->se
.wait_start
)
1090 p
->se
.wait_start
-= clock_offset
;
1091 if (p
->se
.sleep_start
)
1092 p
->se
.sleep_start
-= clock_offset
;
1093 if (p
->se
.block_start
)
1094 p
->se
.block_start
-= clock_offset
;
1095 if (old_cpu
!= new_cpu
) {
1096 schedstat_inc(p
, se
.nr_migrations
);
1097 if (task_hot(p
, old_rq
->clock
, NULL
))
1098 schedstat_inc(p
, se
.nr_forced2_migrations
);
1101 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
1102 new_cfsrq
->min_vruntime
;
1104 __set_task_cpu(p
, new_cpu
);
1107 struct migration_req
{
1108 struct list_head list
;
1110 struct task_struct
*task
;
1113 struct completion done
;
1117 * The task's runqueue lock must be held.
1118 * Returns true if you have to wait for migration thread.
1121 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1123 struct rq
*rq
= task_rq(p
);
1126 * If the task is not on a runqueue (and not running), then
1127 * it is sufficient to simply update the task's cpu field.
1129 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1130 set_task_cpu(p
, dest_cpu
);
1134 init_completion(&req
->done
);
1136 req
->dest_cpu
= dest_cpu
;
1137 list_add(&req
->list
, &rq
->migration_queue
);
1143 * wait_task_inactive - wait for a thread to unschedule.
1145 * The caller must ensure that the task *will* unschedule sometime soon,
1146 * else this function might spin for a *long* time. This function can't
1147 * be called with interrupts off, or it may introduce deadlock with
1148 * smp_call_function() if an IPI is sent by the same process we are
1149 * waiting to become inactive.
1151 void wait_task_inactive(struct task_struct
*p
)
1153 unsigned long flags
;
1159 * We do the initial early heuristics without holding
1160 * any task-queue locks at all. We'll only try to get
1161 * the runqueue lock when things look like they will
1167 * If the task is actively running on another CPU
1168 * still, just relax and busy-wait without holding
1171 * NOTE! Since we don't hold any locks, it's not
1172 * even sure that "rq" stays as the right runqueue!
1173 * But we don't care, since "task_running()" will
1174 * return false if the runqueue has changed and p
1175 * is actually now running somewhere else!
1177 while (task_running(rq
, p
))
1181 * Ok, time to look more closely! We need the rq
1182 * lock now, to be *sure*. If we're wrong, we'll
1183 * just go back and repeat.
1185 rq
= task_rq_lock(p
, &flags
);
1186 running
= task_running(rq
, p
);
1187 on_rq
= p
->se
.on_rq
;
1188 task_rq_unlock(rq
, &flags
);
1191 * Was it really running after all now that we
1192 * checked with the proper locks actually held?
1194 * Oops. Go back and try again..
1196 if (unlikely(running
)) {
1202 * It's not enough that it's not actively running,
1203 * it must be off the runqueue _entirely_, and not
1206 * So if it wa still runnable (but just not actively
1207 * running right now), it's preempted, and we should
1208 * yield - it could be a while.
1210 if (unlikely(on_rq
)) {
1211 schedule_timeout_uninterruptible(1);
1216 * Ahh, all good. It wasn't running, and it wasn't
1217 * runnable, which means that it will never become
1218 * running in the future either. We're all done!
1225 * kick_process - kick a running thread to enter/exit the kernel
1226 * @p: the to-be-kicked thread
1228 * Cause a process which is running on another CPU to enter
1229 * kernel-mode, without any delay. (to get signals handled.)
1231 * NOTE: this function doesnt have to take the runqueue lock,
1232 * because all it wants to ensure is that the remote task enters
1233 * the kernel. If the IPI races and the task has been migrated
1234 * to another CPU then no harm is done and the purpose has been
1237 void kick_process(struct task_struct
*p
)
1243 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1244 smp_send_reschedule(cpu
);
1249 * Return a low guess at the load of a migration-source cpu weighted
1250 * according to the scheduling class and "nice" value.
1252 * We want to under-estimate the load of migration sources, to
1253 * balance conservatively.
1255 static unsigned long source_load(int cpu
, int type
)
1257 struct rq
*rq
= cpu_rq(cpu
);
1258 unsigned long total
= weighted_cpuload(cpu
);
1263 return min(rq
->cpu_load
[type
-1], total
);
1267 * Return a high guess at the load of a migration-target cpu weighted
1268 * according to the scheduling class and "nice" value.
1270 static unsigned long target_load(int cpu
, int type
)
1272 struct rq
*rq
= cpu_rq(cpu
);
1273 unsigned long total
= weighted_cpuload(cpu
);
1278 return max(rq
->cpu_load
[type
-1], total
);
1282 * Return the average load per task on the cpu's run queue
1284 static inline unsigned long cpu_avg_load_per_task(int cpu
)
1286 struct rq
*rq
= cpu_rq(cpu
);
1287 unsigned long total
= weighted_cpuload(cpu
);
1288 unsigned long n
= rq
->nr_running
;
1290 return n
? total
/ n
: SCHED_LOAD_SCALE
;
1294 * find_idlest_group finds and returns the least busy CPU group within the
1297 static struct sched_group
*
1298 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
1300 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1301 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1302 int load_idx
= sd
->forkexec_idx
;
1303 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1306 unsigned long load
, avg_load
;
1310 /* Skip over this group if it has no CPUs allowed */
1311 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
1314 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
1316 /* Tally up the load of all CPUs in the group */
1319 for_each_cpu_mask(i
, group
->cpumask
) {
1320 /* Bias balancing toward cpus of our domain */
1322 load
= source_load(i
, load_idx
);
1324 load
= target_load(i
, load_idx
);
1329 /* Adjust by relative CPU power of the group */
1330 avg_load
= sg_div_cpu_power(group
,
1331 avg_load
* SCHED_LOAD_SCALE
);
1334 this_load
= avg_load
;
1336 } else if (avg_load
< min_load
) {
1337 min_load
= avg_load
;
1340 } while (group
= group
->next
, group
!= sd
->groups
);
1342 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1348 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1351 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1354 unsigned long load
, min_load
= ULONG_MAX
;
1358 /* Traverse only the allowed CPUs */
1359 cpus_and(tmp
, group
->cpumask
, p
->cpus_allowed
);
1361 for_each_cpu_mask(i
, tmp
) {
1362 load
= weighted_cpuload(i
);
1364 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1374 * sched_balance_self: balance the current task (running on cpu) in domains
1375 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1378 * Balance, ie. select the least loaded group.
1380 * Returns the target CPU number, or the same CPU if no balancing is needed.
1382 * preempt must be disabled.
1384 static int sched_balance_self(int cpu
, int flag
)
1386 struct task_struct
*t
= current
;
1387 struct sched_domain
*tmp
, *sd
= NULL
;
1389 for_each_domain(cpu
, tmp
) {
1391 * If power savings logic is enabled for a domain, stop there.
1393 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
1395 if (tmp
->flags
& flag
)
1401 struct sched_group
*group
;
1402 int new_cpu
, weight
;
1404 if (!(sd
->flags
& flag
)) {
1410 group
= find_idlest_group(sd
, t
, cpu
);
1416 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
1417 if (new_cpu
== -1 || new_cpu
== cpu
) {
1418 /* Now try balancing at a lower domain level of cpu */
1423 /* Now try balancing at a lower domain level of new_cpu */
1426 weight
= cpus_weight(span
);
1427 for_each_domain(cpu
, tmp
) {
1428 if (weight
<= cpus_weight(tmp
->span
))
1430 if (tmp
->flags
& flag
)
1433 /* while loop will break here if sd == NULL */
1439 #endif /* CONFIG_SMP */
1442 * wake_idle() will wake a task on an idle cpu if task->cpu is
1443 * not idle and an idle cpu is available. The span of cpus to
1444 * search starts with cpus closest then further out as needed,
1445 * so we always favor a closer, idle cpu.
1447 * Returns the CPU we should wake onto.
1449 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1450 static int wake_idle(int cpu
, struct task_struct
*p
)
1453 struct sched_domain
*sd
;
1457 * If it is idle, then it is the best cpu to run this task.
1459 * This cpu is also the best, if it has more than one task already.
1460 * Siblings must be also busy(in most cases) as they didn't already
1461 * pickup the extra load from this cpu and hence we need not check
1462 * sibling runqueue info. This will avoid the checks and cache miss
1463 * penalities associated with that.
1465 if (idle_cpu(cpu
) || cpu_rq(cpu
)->nr_running
> 1)
1468 for_each_domain(cpu
, sd
) {
1469 if (sd
->flags
& SD_WAKE_IDLE
) {
1470 cpus_and(tmp
, sd
->span
, p
->cpus_allowed
);
1471 for_each_cpu_mask(i
, tmp
) {
1473 if (i
!= task_cpu(p
)) {
1475 se
.nr_wakeups_idle
);
1487 static inline int wake_idle(int cpu
, struct task_struct
*p
)
1494 * try_to_wake_up - wake up a thread
1495 * @p: the to-be-woken-up thread
1496 * @state: the mask of task states that can be woken
1497 * @sync: do a synchronous wakeup?
1499 * Put it on the run-queue if it's not already there. The "current"
1500 * thread is always on the run-queue (except when the actual
1501 * re-schedule is in progress), and as such you're allowed to do
1502 * the simpler "current->state = TASK_RUNNING" to mark yourself
1503 * runnable without the overhead of this.
1505 * returns failure only if the task is already active.
1507 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
1509 int cpu
, orig_cpu
, this_cpu
, success
= 0;
1510 unsigned long flags
;
1514 struct sched_domain
*sd
, *this_sd
= NULL
;
1515 unsigned long load
, this_load
;
1519 rq
= task_rq_lock(p
, &flags
);
1520 old_state
= p
->state
;
1521 if (!(old_state
& state
))
1529 this_cpu
= smp_processor_id();
1532 if (unlikely(task_running(rq
, p
)))
1537 schedstat_inc(rq
, ttwu_count
);
1538 if (cpu
== this_cpu
) {
1539 schedstat_inc(rq
, ttwu_local
);
1543 for_each_domain(this_cpu
, sd
) {
1544 if (cpu_isset(cpu
, sd
->span
)) {
1545 schedstat_inc(sd
, ttwu_wake_remote
);
1551 if (unlikely(!cpu_isset(this_cpu
, p
->cpus_allowed
)))
1555 * Check for affine wakeup and passive balancing possibilities.
1558 int idx
= this_sd
->wake_idx
;
1559 unsigned int imbalance
;
1561 imbalance
= 100 + (this_sd
->imbalance_pct
- 100) / 2;
1563 load
= source_load(cpu
, idx
);
1564 this_load
= target_load(this_cpu
, idx
);
1566 new_cpu
= this_cpu
; /* Wake to this CPU if we can */
1568 if (this_sd
->flags
& SD_WAKE_AFFINE
) {
1569 unsigned long tl
= this_load
;
1570 unsigned long tl_per_task
;
1573 * Attract cache-cold tasks on sync wakeups:
1575 if (sync
&& !task_hot(p
, rq
->clock
, this_sd
))
1578 schedstat_inc(p
, se
.nr_wakeups_affine_attempts
);
1579 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
1582 * If sync wakeup then subtract the (maximum possible)
1583 * effect of the currently running task from the load
1584 * of the current CPU:
1587 tl
-= current
->se
.load
.weight
;
1590 tl
+ target_load(cpu
, idx
) <= tl_per_task
) ||
1591 100*(tl
+ p
->se
.load
.weight
) <= imbalance
*load
) {
1593 * This domain has SD_WAKE_AFFINE and
1594 * p is cache cold in this domain, and
1595 * there is no bad imbalance.
1597 schedstat_inc(this_sd
, ttwu_move_affine
);
1598 schedstat_inc(p
, se
.nr_wakeups_affine
);
1604 * Start passive balancing when half the imbalance_pct
1607 if (this_sd
->flags
& SD_WAKE_BALANCE
) {
1608 if (imbalance
*this_load
<= 100*load
) {
1609 schedstat_inc(this_sd
, ttwu_move_balance
);
1610 schedstat_inc(p
, se
.nr_wakeups_passive
);
1616 new_cpu
= cpu
; /* Could not wake to this_cpu. Wake to cpu instead */
1618 new_cpu
= wake_idle(new_cpu
, p
);
1619 if (new_cpu
!= cpu
) {
1620 set_task_cpu(p
, new_cpu
);
1621 task_rq_unlock(rq
, &flags
);
1622 /* might preempt at this point */
1623 rq
= task_rq_lock(p
, &flags
);
1624 old_state
= p
->state
;
1625 if (!(old_state
& state
))
1630 this_cpu
= smp_processor_id();
1635 #endif /* CONFIG_SMP */
1636 schedstat_inc(p
, se
.nr_wakeups
);
1638 schedstat_inc(p
, se
.nr_wakeups_sync
);
1639 if (orig_cpu
!= cpu
)
1640 schedstat_inc(p
, se
.nr_wakeups_migrate
);
1641 if (cpu
== this_cpu
)
1642 schedstat_inc(p
, se
.nr_wakeups_local
);
1644 schedstat_inc(p
, se
.nr_wakeups_remote
);
1645 update_rq_clock(rq
);
1646 activate_task(rq
, p
, 1);
1647 check_preempt_curr(rq
, p
);
1651 p
->state
= TASK_RUNNING
;
1653 task_rq_unlock(rq
, &flags
);
1658 int fastcall
wake_up_process(struct task_struct
*p
)
1660 return try_to_wake_up(p
, TASK_STOPPED
| TASK_TRACED
|
1661 TASK_INTERRUPTIBLE
| TASK_UNINTERRUPTIBLE
, 0);
1663 EXPORT_SYMBOL(wake_up_process
);
1665 int fastcall
wake_up_state(struct task_struct
*p
, unsigned int state
)
1667 return try_to_wake_up(p
, state
, 0);
1671 * Perform scheduler related setup for a newly forked process p.
1672 * p is forked by current.
1674 * __sched_fork() is basic setup used by init_idle() too:
1676 static void __sched_fork(struct task_struct
*p
)
1678 p
->se
.exec_start
= 0;
1679 p
->se
.sum_exec_runtime
= 0;
1680 p
->se
.prev_sum_exec_runtime
= 0;
1682 #ifdef CONFIG_SCHEDSTATS
1683 p
->se
.wait_start
= 0;
1684 p
->se
.sum_sleep_runtime
= 0;
1685 p
->se
.sleep_start
= 0;
1686 p
->se
.block_start
= 0;
1687 p
->se
.sleep_max
= 0;
1688 p
->se
.block_max
= 0;
1690 p
->se
.slice_max
= 0;
1694 INIT_LIST_HEAD(&p
->run_list
);
1697 #ifdef CONFIG_PREEMPT_NOTIFIERS
1698 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
1702 * We mark the process as running here, but have not actually
1703 * inserted it onto the runqueue yet. This guarantees that
1704 * nobody will actually run it, and a signal or other external
1705 * event cannot wake it up and insert it on the runqueue either.
1707 p
->state
= TASK_RUNNING
;
1711 * fork()/clone()-time setup:
1713 void sched_fork(struct task_struct
*p
, int clone_flags
)
1715 int cpu
= get_cpu();
1720 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
1722 set_task_cpu(p
, cpu
);
1725 * Make sure we do not leak PI boosting priority to the child:
1727 p
->prio
= current
->normal_prio
;
1728 if (!rt_prio(p
->prio
))
1729 p
->sched_class
= &fair_sched_class
;
1731 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1732 if (likely(sched_info_on()))
1733 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1735 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1738 #ifdef CONFIG_PREEMPT
1739 /* Want to start with kernel preemption disabled. */
1740 task_thread_info(p
)->preempt_count
= 1;
1746 * wake_up_new_task - wake up a newly created task for the first time.
1748 * This function will do some initial scheduler statistics housekeeping
1749 * that must be done for every newly created context, then puts the task
1750 * on the runqueue and wakes it.
1752 void fastcall
wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
1754 unsigned long flags
;
1757 rq
= task_rq_lock(p
, &flags
);
1758 BUG_ON(p
->state
!= TASK_RUNNING
);
1759 update_rq_clock(rq
);
1761 p
->prio
= effective_prio(p
);
1763 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
1764 activate_task(rq
, p
, 0);
1767 * Let the scheduling class do new task startup
1768 * management (if any):
1770 p
->sched_class
->task_new(rq
, p
);
1771 inc_nr_running(p
, rq
);
1773 check_preempt_curr(rq
, p
);
1774 task_rq_unlock(rq
, &flags
);
1777 #ifdef CONFIG_PREEMPT_NOTIFIERS
1780 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1781 * @notifier: notifier struct to register
1783 void preempt_notifier_register(struct preempt_notifier
*notifier
)
1785 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
1787 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
1790 * preempt_notifier_unregister - no longer interested in preemption notifications
1791 * @notifier: notifier struct to unregister
1793 * This is safe to call from within a preemption notifier.
1795 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
1797 hlist_del(¬ifier
->link
);
1799 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
1801 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
1803 struct preempt_notifier
*notifier
;
1804 struct hlist_node
*node
;
1806 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
1807 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
1811 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
1812 struct task_struct
*next
)
1814 struct preempt_notifier
*notifier
;
1815 struct hlist_node
*node
;
1817 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
1818 notifier
->ops
->sched_out(notifier
, next
);
1823 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
1828 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
1829 struct task_struct
*next
)
1836 * prepare_task_switch - prepare to switch tasks
1837 * @rq: the runqueue preparing to switch
1838 * @prev: the current task that is being switched out
1839 * @next: the task we are going to switch to.
1841 * This is called with the rq lock held and interrupts off. It must
1842 * be paired with a subsequent finish_task_switch after the context
1845 * prepare_task_switch sets up locking and calls architecture specific
1849 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
1850 struct task_struct
*next
)
1852 fire_sched_out_preempt_notifiers(prev
, next
);
1853 prepare_lock_switch(rq
, next
);
1854 prepare_arch_switch(next
);
1858 * finish_task_switch - clean up after a task-switch
1859 * @rq: runqueue associated with task-switch
1860 * @prev: the thread we just switched away from.
1862 * finish_task_switch must be called after the context switch, paired
1863 * with a prepare_task_switch call before the context switch.
1864 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1865 * and do any other architecture-specific cleanup actions.
1867 * Note that we may have delayed dropping an mm in context_switch(). If
1868 * so, we finish that here outside of the runqueue lock. (Doing it
1869 * with the lock held can cause deadlocks; see schedule() for
1872 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
1873 __releases(rq
->lock
)
1875 struct mm_struct
*mm
= rq
->prev_mm
;
1881 * A task struct has one reference for the use as "current".
1882 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1883 * schedule one last time. The schedule call will never return, and
1884 * the scheduled task must drop that reference.
1885 * The test for TASK_DEAD must occur while the runqueue locks are
1886 * still held, otherwise prev could be scheduled on another cpu, die
1887 * there before we look at prev->state, and then the reference would
1889 * Manfred Spraul <manfred@colorfullife.com>
1891 prev_state
= prev
->state
;
1892 finish_arch_switch(prev
);
1893 finish_lock_switch(rq
, prev
);
1894 fire_sched_in_preempt_notifiers(current
);
1897 if (unlikely(prev_state
== TASK_DEAD
)) {
1899 * Remove function-return probe instances associated with this
1900 * task and put them back on the free list.
1902 kprobe_flush_task(prev
);
1903 put_task_struct(prev
);
1908 * schedule_tail - first thing a freshly forked thread must call.
1909 * @prev: the thread we just switched away from.
1911 asmlinkage
void schedule_tail(struct task_struct
*prev
)
1912 __releases(rq
->lock
)
1914 struct rq
*rq
= this_rq();
1916 finish_task_switch(rq
, prev
);
1917 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1918 /* In this case, finish_task_switch does not reenable preemption */
1921 if (current
->set_child_tid
)
1922 put_user(task_pid_vnr(current
), current
->set_child_tid
);
1926 * context_switch - switch to the new MM and the new
1927 * thread's register state.
1930 context_switch(struct rq
*rq
, struct task_struct
*prev
,
1931 struct task_struct
*next
)
1933 struct mm_struct
*mm
, *oldmm
;
1935 prepare_task_switch(rq
, prev
, next
);
1937 oldmm
= prev
->active_mm
;
1939 * For paravirt, this is coupled with an exit in switch_to to
1940 * combine the page table reload and the switch backend into
1943 arch_enter_lazy_cpu_mode();
1945 if (unlikely(!mm
)) {
1946 next
->active_mm
= oldmm
;
1947 atomic_inc(&oldmm
->mm_count
);
1948 enter_lazy_tlb(oldmm
, next
);
1950 switch_mm(oldmm
, mm
, next
);
1952 if (unlikely(!prev
->mm
)) {
1953 prev
->active_mm
= NULL
;
1954 rq
->prev_mm
= oldmm
;
1957 * Since the runqueue lock will be released by the next
1958 * task (which is an invalid locking op but in the case
1959 * of the scheduler it's an obvious special-case), so we
1960 * do an early lockdep release here:
1962 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1963 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
1966 /* Here we just switch the register state and the stack. */
1967 switch_to(prev
, next
, prev
);
1971 * this_rq must be evaluated again because prev may have moved
1972 * CPUs since it called schedule(), thus the 'rq' on its stack
1973 * frame will be invalid.
1975 finish_task_switch(this_rq(), prev
);
1979 * nr_running, nr_uninterruptible and nr_context_switches:
1981 * externally visible scheduler statistics: current number of runnable
1982 * threads, current number of uninterruptible-sleeping threads, total
1983 * number of context switches performed since bootup.
1985 unsigned long nr_running(void)
1987 unsigned long i
, sum
= 0;
1989 for_each_online_cpu(i
)
1990 sum
+= cpu_rq(i
)->nr_running
;
1995 unsigned long nr_uninterruptible(void)
1997 unsigned long i
, sum
= 0;
1999 for_each_possible_cpu(i
)
2000 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2003 * Since we read the counters lockless, it might be slightly
2004 * inaccurate. Do not allow it to go below zero though:
2006 if (unlikely((long)sum
< 0))
2012 unsigned long long nr_context_switches(void)
2015 unsigned long long sum
= 0;
2017 for_each_possible_cpu(i
)
2018 sum
+= cpu_rq(i
)->nr_switches
;
2023 unsigned long nr_iowait(void)
2025 unsigned long i
, sum
= 0;
2027 for_each_possible_cpu(i
)
2028 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2033 unsigned long nr_active(void)
2035 unsigned long i
, running
= 0, uninterruptible
= 0;
2037 for_each_online_cpu(i
) {
2038 running
+= cpu_rq(i
)->nr_running
;
2039 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
2042 if (unlikely((long)uninterruptible
< 0))
2043 uninterruptible
= 0;
2045 return running
+ uninterruptible
;
2049 * Update rq->cpu_load[] statistics. This function is usually called every
2050 * scheduler tick (TICK_NSEC).
2052 static void update_cpu_load(struct rq
*this_rq
)
2054 unsigned long this_load
= this_rq
->load
.weight
;
2057 this_rq
->nr_load_updates
++;
2059 /* Update our load: */
2060 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
2061 unsigned long old_load
, new_load
;
2063 /* scale is effectively 1 << i now, and >> i divides by scale */
2065 old_load
= this_rq
->cpu_load
[i
];
2066 new_load
= this_load
;
2068 * Round up the averaging division if load is increasing. This
2069 * prevents us from getting stuck on 9 if the load is 10, for
2072 if (new_load
> old_load
)
2073 new_load
+= scale
-1;
2074 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2081 * double_rq_lock - safely lock two runqueues
2083 * Note this does not disable interrupts like task_rq_lock,
2084 * you need to do so manually before calling.
2086 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2087 __acquires(rq1
->lock
)
2088 __acquires(rq2
->lock
)
2090 BUG_ON(!irqs_disabled());
2092 spin_lock(&rq1
->lock
);
2093 __acquire(rq2
->lock
); /* Fake it out ;) */
2096 spin_lock(&rq1
->lock
);
2097 spin_lock(&rq2
->lock
);
2099 spin_lock(&rq2
->lock
);
2100 spin_lock(&rq1
->lock
);
2103 update_rq_clock(rq1
);
2104 update_rq_clock(rq2
);
2108 * double_rq_unlock - safely unlock two runqueues
2110 * Note this does not restore interrupts like task_rq_unlock,
2111 * you need to do so manually after calling.
2113 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2114 __releases(rq1
->lock
)
2115 __releases(rq2
->lock
)
2117 spin_unlock(&rq1
->lock
);
2119 spin_unlock(&rq2
->lock
);
2121 __release(rq2
->lock
);
2125 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2127 static void double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
2128 __releases(this_rq
->lock
)
2129 __acquires(busiest
->lock
)
2130 __acquires(this_rq
->lock
)
2132 if (unlikely(!irqs_disabled())) {
2133 /* printk() doesn't work good under rq->lock */
2134 spin_unlock(&this_rq
->lock
);
2137 if (unlikely(!spin_trylock(&busiest
->lock
))) {
2138 if (busiest
< this_rq
) {
2139 spin_unlock(&this_rq
->lock
);
2140 spin_lock(&busiest
->lock
);
2141 spin_lock(&this_rq
->lock
);
2143 spin_lock(&busiest
->lock
);
2148 * If dest_cpu is allowed for this process, migrate the task to it.
2149 * This is accomplished by forcing the cpu_allowed mask to only
2150 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2151 * the cpu_allowed mask is restored.
2153 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
2155 struct migration_req req
;
2156 unsigned long flags
;
2159 rq
= task_rq_lock(p
, &flags
);
2160 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
2161 || unlikely(cpu_is_offline(dest_cpu
)))
2164 /* force the process onto the specified CPU */
2165 if (migrate_task(p
, dest_cpu
, &req
)) {
2166 /* Need to wait for migration thread (might exit: take ref). */
2167 struct task_struct
*mt
= rq
->migration_thread
;
2169 get_task_struct(mt
);
2170 task_rq_unlock(rq
, &flags
);
2171 wake_up_process(mt
);
2172 put_task_struct(mt
);
2173 wait_for_completion(&req
.done
);
2178 task_rq_unlock(rq
, &flags
);
2182 * sched_exec - execve() is a valuable balancing opportunity, because at
2183 * this point the task has the smallest effective memory and cache footprint.
2185 void sched_exec(void)
2187 int new_cpu
, this_cpu
= get_cpu();
2188 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2190 if (new_cpu
!= this_cpu
)
2191 sched_migrate_task(current
, new_cpu
);
2195 * pull_task - move a task from a remote runqueue to the local runqueue.
2196 * Both runqueues must be locked.
2198 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2199 struct rq
*this_rq
, int this_cpu
)
2201 deactivate_task(src_rq
, p
, 0);
2202 set_task_cpu(p
, this_cpu
);
2203 activate_task(this_rq
, p
, 0);
2205 * Note that idle threads have a prio of MAX_PRIO, for this test
2206 * to be always true for them.
2208 check_preempt_curr(this_rq
, p
);
2212 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2215 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2216 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2220 * We do not migrate tasks that are:
2221 * 1) running (obviously), or
2222 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2223 * 3) are cache-hot on their current CPU.
2225 if (!cpu_isset(this_cpu
, p
->cpus_allowed
)) {
2226 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
2231 if (task_running(rq
, p
)) {
2232 schedstat_inc(p
, se
.nr_failed_migrations_running
);
2237 * Aggressive migration if:
2238 * 1) task is cache cold, or
2239 * 2) too many balance attempts have failed.
2242 if (!task_hot(p
, rq
->clock
, sd
) ||
2243 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
2244 #ifdef CONFIG_SCHEDSTATS
2245 if (task_hot(p
, rq
->clock
, sd
)) {
2246 schedstat_inc(sd
, lb_hot_gained
[idle
]);
2247 schedstat_inc(p
, se
.nr_forced_migrations
);
2253 if (task_hot(p
, rq
->clock
, sd
)) {
2254 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
2260 static unsigned long
2261 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2262 unsigned long max_load_move
, struct sched_domain
*sd
,
2263 enum cpu_idle_type idle
, int *all_pinned
,
2264 int *this_best_prio
, struct rq_iterator
*iterator
)
2266 int loops
= 0, pulled
= 0, pinned
= 0, skip_for_load
;
2267 struct task_struct
*p
;
2268 long rem_load_move
= max_load_move
;
2270 if (max_load_move
== 0)
2276 * Start the load-balancing iterator:
2278 p
= iterator
->start(iterator
->arg
);
2280 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
2283 * To help distribute high priority tasks across CPUs we don't
2284 * skip a task if it will be the highest priority task (i.e. smallest
2285 * prio value) on its new queue regardless of its load weight
2287 skip_for_load
= (p
->se
.load
.weight
>> 1) > rem_load_move
+
2288 SCHED_LOAD_SCALE_FUZZ
;
2289 if ((skip_for_load
&& p
->prio
>= *this_best_prio
) ||
2290 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2291 p
= iterator
->next(iterator
->arg
);
2295 pull_task(busiest
, p
, this_rq
, this_cpu
);
2297 rem_load_move
-= p
->se
.load
.weight
;
2300 * We only want to steal up to the prescribed amount of weighted load.
2302 if (rem_load_move
> 0) {
2303 if (p
->prio
< *this_best_prio
)
2304 *this_best_prio
= p
->prio
;
2305 p
= iterator
->next(iterator
->arg
);
2310 * Right now, this is one of only two places pull_task() is called,
2311 * so we can safely collect pull_task() stats here rather than
2312 * inside pull_task().
2314 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2317 *all_pinned
= pinned
;
2319 return max_load_move
- rem_load_move
;
2323 * move_tasks tries to move up to max_load_move weighted load from busiest to
2324 * this_rq, as part of a balancing operation within domain "sd".
2325 * Returns 1 if successful and 0 otherwise.
2327 * Called with both runqueues locked.
2329 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2330 unsigned long max_load_move
,
2331 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2334 const struct sched_class
*class = sched_class_highest
;
2335 unsigned long total_load_moved
= 0;
2336 int this_best_prio
= this_rq
->curr
->prio
;
2340 class->load_balance(this_rq
, this_cpu
, busiest
,
2341 max_load_move
- total_load_moved
,
2342 sd
, idle
, all_pinned
, &this_best_prio
);
2343 class = class->next
;
2344 } while (class && max_load_move
> total_load_moved
);
2346 return total_load_moved
> 0;
2350 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2351 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2352 struct rq_iterator
*iterator
)
2354 struct task_struct
*p
= iterator
->start(iterator
->arg
);
2358 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2359 pull_task(busiest
, p
, this_rq
, this_cpu
);
2361 * Right now, this is only the second place pull_task()
2362 * is called, so we can safely collect pull_task()
2363 * stats here rather than inside pull_task().
2365 schedstat_inc(sd
, lb_gained
[idle
]);
2369 p
= iterator
->next(iterator
->arg
);
2376 * move_one_task tries to move exactly one task from busiest to this_rq, as
2377 * part of active balancing operations within "domain".
2378 * Returns 1 if successful and 0 otherwise.
2380 * Called with both runqueues locked.
2382 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2383 struct sched_domain
*sd
, enum cpu_idle_type idle
)
2385 const struct sched_class
*class;
2387 for (class = sched_class_highest
; class; class = class->next
)
2388 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
2395 * find_busiest_group finds and returns the busiest CPU group within the
2396 * domain. It calculates and returns the amount of weighted load which
2397 * should be moved to restore balance via the imbalance parameter.
2399 static struct sched_group
*
2400 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
2401 unsigned long *imbalance
, enum cpu_idle_type idle
,
2402 int *sd_idle
, cpumask_t
*cpus
, int *balance
)
2404 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2405 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
2406 unsigned long max_pull
;
2407 unsigned long busiest_load_per_task
, busiest_nr_running
;
2408 unsigned long this_load_per_task
, this_nr_running
;
2409 int load_idx
, group_imb
= 0;
2410 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2411 int power_savings_balance
= 1;
2412 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
2413 unsigned long min_nr_running
= ULONG_MAX
;
2414 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
2417 max_load
= this_load
= total_load
= total_pwr
= 0;
2418 busiest_load_per_task
= busiest_nr_running
= 0;
2419 this_load_per_task
= this_nr_running
= 0;
2420 if (idle
== CPU_NOT_IDLE
)
2421 load_idx
= sd
->busy_idx
;
2422 else if (idle
== CPU_NEWLY_IDLE
)
2423 load_idx
= sd
->newidle_idx
;
2425 load_idx
= sd
->idle_idx
;
2428 unsigned long load
, group_capacity
, max_cpu_load
, min_cpu_load
;
2431 int __group_imb
= 0;
2432 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
2433 unsigned long sum_nr_running
, sum_weighted_load
;
2435 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2438 balance_cpu
= first_cpu(group
->cpumask
);
2440 /* Tally up the load of all CPUs in the group */
2441 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
2443 min_cpu_load
= ~0UL;
2445 for_each_cpu_mask(i
, group
->cpumask
) {
2448 if (!cpu_isset(i
, *cpus
))
2453 if (*sd_idle
&& rq
->nr_running
)
2456 /* Bias balancing toward cpus of our domain */
2458 if (idle_cpu(i
) && !first_idle_cpu
) {
2463 load
= target_load(i
, load_idx
);
2465 load
= source_load(i
, load_idx
);
2466 if (load
> max_cpu_load
)
2467 max_cpu_load
= load
;
2468 if (min_cpu_load
> load
)
2469 min_cpu_load
= load
;
2473 sum_nr_running
+= rq
->nr_running
;
2474 sum_weighted_load
+= weighted_cpuload(i
);
2478 * First idle cpu or the first cpu(busiest) in this sched group
2479 * is eligible for doing load balancing at this and above
2480 * domains. In the newly idle case, we will allow all the cpu's
2481 * to do the newly idle load balance.
2483 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
2484 balance_cpu
!= this_cpu
&& balance
) {
2489 total_load
+= avg_load
;
2490 total_pwr
+= group
->__cpu_power
;
2492 /* Adjust by relative CPU power of the group */
2493 avg_load
= sg_div_cpu_power(group
,
2494 avg_load
* SCHED_LOAD_SCALE
);
2496 if ((max_cpu_load
- min_cpu_load
) > SCHED_LOAD_SCALE
)
2499 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
2502 this_load
= avg_load
;
2504 this_nr_running
= sum_nr_running
;
2505 this_load_per_task
= sum_weighted_load
;
2506 } else if (avg_load
> max_load
&&
2507 (sum_nr_running
> group_capacity
|| __group_imb
)) {
2508 max_load
= avg_load
;
2510 busiest_nr_running
= sum_nr_running
;
2511 busiest_load_per_task
= sum_weighted_load
;
2512 group_imb
= __group_imb
;
2515 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2517 * Busy processors will not participate in power savings
2520 if (idle
== CPU_NOT_IDLE
||
2521 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2525 * If the local group is idle or completely loaded
2526 * no need to do power savings balance at this domain
2528 if (local_group
&& (this_nr_running
>= group_capacity
||
2530 power_savings_balance
= 0;
2533 * If a group is already running at full capacity or idle,
2534 * don't include that group in power savings calculations
2536 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
2541 * Calculate the group which has the least non-idle load.
2542 * This is the group from where we need to pick up the load
2545 if ((sum_nr_running
< min_nr_running
) ||
2546 (sum_nr_running
== min_nr_running
&&
2547 first_cpu(group
->cpumask
) <
2548 first_cpu(group_min
->cpumask
))) {
2550 min_nr_running
= sum_nr_running
;
2551 min_load_per_task
= sum_weighted_load
/
2556 * Calculate the group which is almost near its
2557 * capacity but still has some space to pick up some load
2558 * from other group and save more power
2560 if (sum_nr_running
<= group_capacity
- 1) {
2561 if (sum_nr_running
> leader_nr_running
||
2562 (sum_nr_running
== leader_nr_running
&&
2563 first_cpu(group
->cpumask
) >
2564 first_cpu(group_leader
->cpumask
))) {
2565 group_leader
= group
;
2566 leader_nr_running
= sum_nr_running
;
2571 group
= group
->next
;
2572 } while (group
!= sd
->groups
);
2574 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
2577 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
2579 if (this_load
>= avg_load
||
2580 100*max_load
<= sd
->imbalance_pct
*this_load
)
2583 busiest_load_per_task
/= busiest_nr_running
;
2585 busiest_load_per_task
= min(busiest_load_per_task
, avg_load
);
2588 * We're trying to get all the cpus to the average_load, so we don't
2589 * want to push ourselves above the average load, nor do we wish to
2590 * reduce the max loaded cpu below the average load, as either of these
2591 * actions would just result in more rebalancing later, and ping-pong
2592 * tasks around. Thus we look for the minimum possible imbalance.
2593 * Negative imbalances (*we* are more loaded than anyone else) will
2594 * be counted as no imbalance for these purposes -- we can't fix that
2595 * by pulling tasks to us. Be careful of negative numbers as they'll
2596 * appear as very large values with unsigned longs.
2598 if (max_load
<= busiest_load_per_task
)
2602 * In the presence of smp nice balancing, certain scenarios can have
2603 * max load less than avg load(as we skip the groups at or below
2604 * its cpu_power, while calculating max_load..)
2606 if (max_load
< avg_load
) {
2608 goto small_imbalance
;
2611 /* Don't want to pull so many tasks that a group would go idle */
2612 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
2614 /* How much load to actually move to equalise the imbalance */
2615 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
2616 (avg_load
- this_load
) * this->__cpu_power
)
2620 * if *imbalance is less than the average load per runnable task
2621 * there is no gaurantee that any tasks will be moved so we'll have
2622 * a think about bumping its value to force at least one task to be
2625 if (*imbalance
< busiest_load_per_task
) {
2626 unsigned long tmp
, pwr_now
, pwr_move
;
2630 pwr_move
= pwr_now
= 0;
2632 if (this_nr_running
) {
2633 this_load_per_task
/= this_nr_running
;
2634 if (busiest_load_per_task
> this_load_per_task
)
2637 this_load_per_task
= SCHED_LOAD_SCALE
;
2639 if (max_load
- this_load
+ SCHED_LOAD_SCALE_FUZZ
>=
2640 busiest_load_per_task
* imbn
) {
2641 *imbalance
= busiest_load_per_task
;
2646 * OK, we don't have enough imbalance to justify moving tasks,
2647 * however we may be able to increase total CPU power used by
2651 pwr_now
+= busiest
->__cpu_power
*
2652 min(busiest_load_per_task
, max_load
);
2653 pwr_now
+= this->__cpu_power
*
2654 min(this_load_per_task
, this_load
);
2655 pwr_now
/= SCHED_LOAD_SCALE
;
2657 /* Amount of load we'd subtract */
2658 tmp
= sg_div_cpu_power(busiest
,
2659 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2661 pwr_move
+= busiest
->__cpu_power
*
2662 min(busiest_load_per_task
, max_load
- tmp
);
2664 /* Amount of load we'd add */
2665 if (max_load
* busiest
->__cpu_power
<
2666 busiest_load_per_task
* SCHED_LOAD_SCALE
)
2667 tmp
= sg_div_cpu_power(this,
2668 max_load
* busiest
->__cpu_power
);
2670 tmp
= sg_div_cpu_power(this,
2671 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2672 pwr_move
+= this->__cpu_power
*
2673 min(this_load_per_task
, this_load
+ tmp
);
2674 pwr_move
/= SCHED_LOAD_SCALE
;
2676 /* Move if we gain throughput */
2677 if (pwr_move
> pwr_now
)
2678 *imbalance
= busiest_load_per_task
;
2684 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2685 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2688 if (this == group_leader
&& group_leader
!= group_min
) {
2689 *imbalance
= min_load_per_task
;
2699 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2702 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
2703 unsigned long imbalance
, cpumask_t
*cpus
)
2705 struct rq
*busiest
= NULL
, *rq
;
2706 unsigned long max_load
= 0;
2709 for_each_cpu_mask(i
, group
->cpumask
) {
2712 if (!cpu_isset(i
, *cpus
))
2716 wl
= weighted_cpuload(i
);
2718 if (rq
->nr_running
== 1 && wl
> imbalance
)
2721 if (wl
> max_load
) {
2731 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2732 * so long as it is large enough.
2734 #define MAX_PINNED_INTERVAL 512
2737 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2738 * tasks if there is an imbalance.
2740 static int load_balance(int this_cpu
, struct rq
*this_rq
,
2741 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2744 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
2745 struct sched_group
*group
;
2746 unsigned long imbalance
;
2748 cpumask_t cpus
= CPU_MASK_ALL
;
2749 unsigned long flags
;
2752 * When power savings policy is enabled for the parent domain, idle
2753 * sibling can pick up load irrespective of busy siblings. In this case,
2754 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2755 * portraying it as CPU_NOT_IDLE.
2757 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2758 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2761 schedstat_inc(sd
, lb_count
[idle
]);
2764 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
2771 schedstat_inc(sd
, lb_nobusyg
[idle
]);
2775 busiest
= find_busiest_queue(group
, idle
, imbalance
, &cpus
);
2777 schedstat_inc(sd
, lb_nobusyq
[idle
]);
2781 BUG_ON(busiest
== this_rq
);
2783 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
2786 if (busiest
->nr_running
> 1) {
2788 * Attempt to move tasks. If find_busiest_group has found
2789 * an imbalance but busiest->nr_running <= 1, the group is
2790 * still unbalanced. ld_moved simply stays zero, so it is
2791 * correctly treated as an imbalance.
2793 local_irq_save(flags
);
2794 double_rq_lock(this_rq
, busiest
);
2795 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2796 imbalance
, sd
, idle
, &all_pinned
);
2797 double_rq_unlock(this_rq
, busiest
);
2798 local_irq_restore(flags
);
2801 * some other cpu did the load balance for us.
2803 if (ld_moved
&& this_cpu
!= smp_processor_id())
2804 resched_cpu(this_cpu
);
2806 /* All tasks on this runqueue were pinned by CPU affinity */
2807 if (unlikely(all_pinned
)) {
2808 cpu_clear(cpu_of(busiest
), cpus
);
2809 if (!cpus_empty(cpus
))
2816 schedstat_inc(sd
, lb_failed
[idle
]);
2817 sd
->nr_balance_failed
++;
2819 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
2821 spin_lock_irqsave(&busiest
->lock
, flags
);
2823 /* don't kick the migration_thread, if the curr
2824 * task on busiest cpu can't be moved to this_cpu
2826 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
2827 spin_unlock_irqrestore(&busiest
->lock
, flags
);
2829 goto out_one_pinned
;
2832 if (!busiest
->active_balance
) {
2833 busiest
->active_balance
= 1;
2834 busiest
->push_cpu
= this_cpu
;
2837 spin_unlock_irqrestore(&busiest
->lock
, flags
);
2839 wake_up_process(busiest
->migration_thread
);
2842 * We've kicked active balancing, reset the failure
2845 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
2848 sd
->nr_balance_failed
= 0;
2850 if (likely(!active_balance
)) {
2851 /* We were unbalanced, so reset the balancing interval */
2852 sd
->balance_interval
= sd
->min_interval
;
2855 * If we've begun active balancing, start to back off. This
2856 * case may not be covered by the all_pinned logic if there
2857 * is only 1 task on the busy runqueue (because we don't call
2860 if (sd
->balance_interval
< sd
->max_interval
)
2861 sd
->balance_interval
*= 2;
2864 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2865 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2870 schedstat_inc(sd
, lb_balanced
[idle
]);
2872 sd
->nr_balance_failed
= 0;
2875 /* tune up the balancing interval */
2876 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
2877 (sd
->balance_interval
< sd
->max_interval
))
2878 sd
->balance_interval
*= 2;
2880 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2881 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2887 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2888 * tasks if there is an imbalance.
2890 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2891 * this_rq is locked.
2894 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
)
2896 struct sched_group
*group
;
2897 struct rq
*busiest
= NULL
;
2898 unsigned long imbalance
;
2902 cpumask_t cpus
= CPU_MASK_ALL
;
2905 * When power savings policy is enabled for the parent domain, idle
2906 * sibling can pick up load irrespective of busy siblings. In this case,
2907 * let the state of idle sibling percolate up as IDLE, instead of
2908 * portraying it as CPU_NOT_IDLE.
2910 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
2911 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2914 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
2916 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
2917 &sd_idle
, &cpus
, NULL
);
2919 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
2923 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
,
2926 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
2930 BUG_ON(busiest
== this_rq
);
2932 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
2935 if (busiest
->nr_running
> 1) {
2936 /* Attempt to move tasks */
2937 double_lock_balance(this_rq
, busiest
);
2938 /* this_rq->clock is already updated */
2939 update_rq_clock(busiest
);
2940 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2941 imbalance
, sd
, CPU_NEWLY_IDLE
,
2943 spin_unlock(&busiest
->lock
);
2945 if (unlikely(all_pinned
)) {
2946 cpu_clear(cpu_of(busiest
), cpus
);
2947 if (!cpus_empty(cpus
))
2953 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
2954 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2955 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2958 sd
->nr_balance_failed
= 0;
2963 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
2964 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2965 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2967 sd
->nr_balance_failed
= 0;
2973 * idle_balance is called by schedule() if this_cpu is about to become
2974 * idle. Attempts to pull tasks from other CPUs.
2976 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
2978 struct sched_domain
*sd
;
2979 int pulled_task
= -1;
2980 unsigned long next_balance
= jiffies
+ HZ
;
2982 for_each_domain(this_cpu
, sd
) {
2983 unsigned long interval
;
2985 if (!(sd
->flags
& SD_LOAD_BALANCE
))
2988 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
2989 /* If we've pulled tasks over stop searching: */
2990 pulled_task
= load_balance_newidle(this_cpu
,
2993 interval
= msecs_to_jiffies(sd
->balance_interval
);
2994 if (time_after(next_balance
, sd
->last_balance
+ interval
))
2995 next_balance
= sd
->last_balance
+ interval
;
2999 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
3001 * We are going idle. next_balance may be set based on
3002 * a busy processor. So reset next_balance.
3004 this_rq
->next_balance
= next_balance
;
3009 * active_load_balance is run by migration threads. It pushes running tasks
3010 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3011 * running on each physical CPU where possible, and avoids physical /
3012 * logical imbalances.
3014 * Called with busiest_rq locked.
3016 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
3018 int target_cpu
= busiest_rq
->push_cpu
;
3019 struct sched_domain
*sd
;
3020 struct rq
*target_rq
;
3022 /* Is there any task to move? */
3023 if (busiest_rq
->nr_running
<= 1)
3026 target_rq
= cpu_rq(target_cpu
);
3029 * This condition is "impossible", if it occurs
3030 * we need to fix it. Originally reported by
3031 * Bjorn Helgaas on a 128-cpu setup.
3033 BUG_ON(busiest_rq
== target_rq
);
3035 /* move a task from busiest_rq to target_rq */
3036 double_lock_balance(busiest_rq
, target_rq
);
3037 update_rq_clock(busiest_rq
);
3038 update_rq_clock(target_rq
);
3040 /* Search for an sd spanning us and the target CPU. */
3041 for_each_domain(target_cpu
, sd
) {
3042 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
3043 cpu_isset(busiest_cpu
, sd
->span
))
3048 schedstat_inc(sd
, alb_count
);
3050 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
3052 schedstat_inc(sd
, alb_pushed
);
3054 schedstat_inc(sd
, alb_failed
);
3056 spin_unlock(&target_rq
->lock
);
3061 atomic_t load_balancer
;
3063 } nohz ____cacheline_aligned
= {
3064 .load_balancer
= ATOMIC_INIT(-1),
3065 .cpu_mask
= CPU_MASK_NONE
,
3069 * This routine will try to nominate the ilb (idle load balancing)
3070 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3071 * load balancing on behalf of all those cpus. If all the cpus in the system
3072 * go into this tickless mode, then there will be no ilb owner (as there is
3073 * no need for one) and all the cpus will sleep till the next wakeup event
3076 * For the ilb owner, tick is not stopped. And this tick will be used
3077 * for idle load balancing. ilb owner will still be part of
3080 * While stopping the tick, this cpu will become the ilb owner if there
3081 * is no other owner. And will be the owner till that cpu becomes busy
3082 * or if all cpus in the system stop their ticks at which point
3083 * there is no need for ilb owner.
3085 * When the ilb owner becomes busy, it nominates another owner, during the
3086 * next busy scheduler_tick()
3088 int select_nohz_load_balancer(int stop_tick
)
3090 int cpu
= smp_processor_id();
3093 cpu_set(cpu
, nohz
.cpu_mask
);
3094 cpu_rq(cpu
)->in_nohz_recently
= 1;
3097 * If we are going offline and still the leader, give up!
3099 if (cpu_is_offline(cpu
) &&
3100 atomic_read(&nohz
.load_balancer
) == cpu
) {
3101 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3106 /* time for ilb owner also to sleep */
3107 if (cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3108 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3109 atomic_set(&nohz
.load_balancer
, -1);
3113 if (atomic_read(&nohz
.load_balancer
) == -1) {
3114 /* make me the ilb owner */
3115 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
3117 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
3120 if (!cpu_isset(cpu
, nohz
.cpu_mask
))
3123 cpu_clear(cpu
, nohz
.cpu_mask
);
3125 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3126 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3133 static DEFINE_SPINLOCK(balancing
);
3136 * It checks each scheduling domain to see if it is due to be balanced,
3137 * and initiates a balancing operation if so.
3139 * Balancing parameters are set up in arch_init_sched_domains.
3141 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3144 struct rq
*rq
= cpu_rq(cpu
);
3145 unsigned long interval
;
3146 struct sched_domain
*sd
;
3147 /* Earliest time when we have to do rebalance again */
3148 unsigned long next_balance
= jiffies
+ 60*HZ
;
3149 int update_next_balance
= 0;
3151 for_each_domain(cpu
, sd
) {
3152 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3155 interval
= sd
->balance_interval
;
3156 if (idle
!= CPU_IDLE
)
3157 interval
*= sd
->busy_factor
;
3159 /* scale ms to jiffies */
3160 interval
= msecs_to_jiffies(interval
);
3161 if (unlikely(!interval
))
3163 if (interval
> HZ
*NR_CPUS
/10)
3164 interval
= HZ
*NR_CPUS
/10;
3167 if (sd
->flags
& SD_SERIALIZE
) {
3168 if (!spin_trylock(&balancing
))
3172 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3173 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
3175 * We've pulled tasks over so either we're no
3176 * longer idle, or one of our SMT siblings is
3179 idle
= CPU_NOT_IDLE
;
3181 sd
->last_balance
= jiffies
;
3183 if (sd
->flags
& SD_SERIALIZE
)
3184 spin_unlock(&balancing
);
3186 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3187 next_balance
= sd
->last_balance
+ interval
;
3188 update_next_balance
= 1;
3192 * Stop the load balance at this level. There is another
3193 * CPU in our sched group which is doing load balancing more
3201 * next_balance will be updated only when there is a need.
3202 * When the cpu is attached to null domain for ex, it will not be
3205 if (likely(update_next_balance
))
3206 rq
->next_balance
= next_balance
;
3210 * run_rebalance_domains is triggered when needed from the scheduler tick.
3211 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3212 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3214 static void run_rebalance_domains(struct softirq_action
*h
)
3216 int this_cpu
= smp_processor_id();
3217 struct rq
*this_rq
= cpu_rq(this_cpu
);
3218 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
3219 CPU_IDLE
: CPU_NOT_IDLE
;
3221 rebalance_domains(this_cpu
, idle
);
3225 * If this cpu is the owner for idle load balancing, then do the
3226 * balancing on behalf of the other idle cpus whose ticks are
3229 if (this_rq
->idle_at_tick
&&
3230 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
3231 cpumask_t cpus
= nohz
.cpu_mask
;
3235 cpu_clear(this_cpu
, cpus
);
3236 for_each_cpu_mask(balance_cpu
, cpus
) {
3238 * If this cpu gets work to do, stop the load balancing
3239 * work being done for other cpus. Next load
3240 * balancing owner will pick it up.
3245 rebalance_domains(balance_cpu
, CPU_IDLE
);
3247 rq
= cpu_rq(balance_cpu
);
3248 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
3249 this_rq
->next_balance
= rq
->next_balance
;
3256 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3258 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3259 * idle load balancing owner or decide to stop the periodic load balancing,
3260 * if the whole system is idle.
3262 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
3266 * If we were in the nohz mode recently and busy at the current
3267 * scheduler tick, then check if we need to nominate new idle
3270 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
3271 rq
->in_nohz_recently
= 0;
3273 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
3274 cpu_clear(cpu
, nohz
.cpu_mask
);
3275 atomic_set(&nohz
.load_balancer
, -1);
3278 if (atomic_read(&nohz
.load_balancer
) == -1) {
3280 * simple selection for now: Nominate the
3281 * first cpu in the nohz list to be the next
3284 * TBD: Traverse the sched domains and nominate
3285 * the nearest cpu in the nohz.cpu_mask.
3287 int ilb
= first_cpu(nohz
.cpu_mask
);
3295 * If this cpu is idle and doing idle load balancing for all the
3296 * cpus with ticks stopped, is it time for that to stop?
3298 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
3299 cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3305 * If this cpu is idle and the idle load balancing is done by
3306 * someone else, then no need raise the SCHED_SOFTIRQ
3308 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
3309 cpu_isset(cpu
, nohz
.cpu_mask
))
3312 if (time_after_eq(jiffies
, rq
->next_balance
))
3313 raise_softirq(SCHED_SOFTIRQ
);
3316 #else /* CONFIG_SMP */
3319 * on UP we do not need to balance between CPUs:
3321 static inline void idle_balance(int cpu
, struct rq
*rq
)
3327 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3329 EXPORT_PER_CPU_SYMBOL(kstat
);
3332 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3333 * that have not yet been banked in case the task is currently running.
3335 unsigned long long task_sched_runtime(struct task_struct
*p
)
3337 unsigned long flags
;
3341 rq
= task_rq_lock(p
, &flags
);
3342 ns
= p
->se
.sum_exec_runtime
;
3343 if (task_current(rq
, p
)) {
3344 update_rq_clock(rq
);
3345 delta_exec
= rq
->clock
- p
->se
.exec_start
;
3346 if ((s64
)delta_exec
> 0)
3349 task_rq_unlock(rq
, &flags
);
3355 * Account user cpu time to a process.
3356 * @p: the process that the cpu time gets accounted to
3357 * @cputime: the cpu time spent in user space since the last update
3359 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
3361 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3364 p
->utime
= cputime_add(p
->utime
, cputime
);
3366 /* Add user time to cpustat. */
3367 tmp
= cputime_to_cputime64(cputime
);
3368 if (TASK_NICE(p
) > 0)
3369 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3371 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3375 * Account guest cpu time to a process.
3376 * @p: the process that the cpu time gets accounted to
3377 * @cputime: the cpu time spent in virtual machine since the last update
3379 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
)
3382 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3384 tmp
= cputime_to_cputime64(cputime
);
3386 p
->utime
= cputime_add(p
->utime
, cputime
);
3387 p
->gtime
= cputime_add(p
->gtime
, cputime
);
3389 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3390 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
3394 * Account scaled user cpu time to a process.
3395 * @p: the process that the cpu time gets accounted to
3396 * @cputime: the cpu time spent in user space since the last update
3398 void account_user_time_scaled(struct task_struct
*p
, cputime_t cputime
)
3400 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime
);
3404 * Account system cpu time to a process.
3405 * @p: the process that the cpu time gets accounted to
3406 * @hardirq_offset: the offset to subtract from hardirq_count()
3407 * @cputime: the cpu time spent in kernel space since the last update
3409 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3412 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3413 struct rq
*rq
= this_rq();
3416 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0))
3417 return account_guest_time(p
, cputime
);
3419 p
->stime
= cputime_add(p
->stime
, cputime
);
3421 /* Add system time to cpustat. */
3422 tmp
= cputime_to_cputime64(cputime
);
3423 if (hardirq_count() - hardirq_offset
)
3424 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3425 else if (softirq_count())
3426 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3427 else if (p
!= rq
->idle
)
3428 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3429 else if (atomic_read(&rq
->nr_iowait
) > 0)
3430 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3432 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3433 /* Account for system time used */
3434 acct_update_integrals(p
);
3438 * Account scaled system cpu time to a process.
3439 * @p: the process that the cpu time gets accounted to
3440 * @hardirq_offset: the offset to subtract from hardirq_count()
3441 * @cputime: the cpu time spent in kernel space since the last update
3443 void account_system_time_scaled(struct task_struct
*p
, cputime_t cputime
)
3445 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime
);
3449 * Account for involuntary wait time.
3450 * @p: the process from which the cpu time has been stolen
3451 * @steal: the cpu time spent in involuntary wait
3453 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
3455 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3456 cputime64_t tmp
= cputime_to_cputime64(steal
);
3457 struct rq
*rq
= this_rq();
3459 if (p
== rq
->idle
) {
3460 p
->stime
= cputime_add(p
->stime
, steal
);
3461 if (atomic_read(&rq
->nr_iowait
) > 0)
3462 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3464 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3466 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
3470 * This function gets called by the timer code, with HZ frequency.
3471 * We call it with interrupts disabled.
3473 * It also gets called by the fork code, when changing the parent's
3476 void scheduler_tick(void)
3478 int cpu
= smp_processor_id();
3479 struct rq
*rq
= cpu_rq(cpu
);
3480 struct task_struct
*curr
= rq
->curr
;
3481 u64 next_tick
= rq
->tick_timestamp
+ TICK_NSEC
;
3483 spin_lock(&rq
->lock
);
3484 __update_rq_clock(rq
);
3486 * Let rq->clock advance by at least TICK_NSEC:
3488 if (unlikely(rq
->clock
< next_tick
))
3489 rq
->clock
= next_tick
;
3490 rq
->tick_timestamp
= rq
->clock
;
3491 update_cpu_load(rq
);
3492 if (curr
!= rq
->idle
) /* FIXME: needed? */
3493 curr
->sched_class
->task_tick(rq
, curr
);
3494 spin_unlock(&rq
->lock
);
3497 rq
->idle_at_tick
= idle_cpu(cpu
);
3498 trigger_load_balance(rq
, cpu
);
3502 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3504 void fastcall
add_preempt_count(int val
)
3509 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3511 preempt_count() += val
;
3513 * Spinlock count overflowing soon?
3515 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3518 EXPORT_SYMBOL(add_preempt_count
);
3520 void fastcall
sub_preempt_count(int val
)
3525 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3528 * Is the spinlock portion underflowing?
3530 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3531 !(preempt_count() & PREEMPT_MASK
)))
3534 preempt_count() -= val
;
3536 EXPORT_SYMBOL(sub_preempt_count
);
3541 * Print scheduling while atomic bug:
3543 static noinline
void __schedule_bug(struct task_struct
*prev
)
3545 struct pt_regs
*regs
= get_irq_regs();
3547 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
3548 prev
->comm
, prev
->pid
, preempt_count());
3550 debug_show_held_locks(prev
);
3551 if (irqs_disabled())
3552 print_irqtrace_events(prev
);
3561 * Various schedule()-time debugging checks and statistics:
3563 static inline void schedule_debug(struct task_struct
*prev
)
3566 * Test if we are atomic. Since do_exit() needs to call into
3567 * schedule() atomically, we ignore that path for now.
3568 * Otherwise, whine if we are scheduling when we should not be.
3570 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev
->exit_state
))
3571 __schedule_bug(prev
);
3573 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3575 schedstat_inc(this_rq(), sched_count
);
3576 #ifdef CONFIG_SCHEDSTATS
3577 if (unlikely(prev
->lock_depth
>= 0)) {
3578 schedstat_inc(this_rq(), bkl_count
);
3579 schedstat_inc(prev
, sched_info
.bkl_count
);
3585 * Pick up the highest-prio task:
3587 static inline struct task_struct
*
3588 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
3590 const struct sched_class
*class;
3591 struct task_struct
*p
;
3594 * Optimization: we know that if all tasks are in
3595 * the fair class we can call that function directly:
3597 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
3598 p
= fair_sched_class
.pick_next_task(rq
);
3603 class = sched_class_highest
;
3605 p
= class->pick_next_task(rq
);
3609 * Will never be NULL as the idle class always
3610 * returns a non-NULL p:
3612 class = class->next
;
3617 * schedule() is the main scheduler function.
3619 asmlinkage
void __sched
schedule(void)
3621 struct task_struct
*prev
, *next
;
3628 cpu
= smp_processor_id();
3632 switch_count
= &prev
->nivcsw
;
3634 release_kernel_lock(prev
);
3635 need_resched_nonpreemptible
:
3637 schedule_debug(prev
);
3640 * Do the rq-clock update outside the rq lock:
3642 local_irq_disable();
3643 __update_rq_clock(rq
);
3644 spin_lock(&rq
->lock
);
3645 clear_tsk_need_resched(prev
);
3647 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3648 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
3649 unlikely(signal_pending(prev
)))) {
3650 prev
->state
= TASK_RUNNING
;
3652 deactivate_task(rq
, prev
, 1);
3654 switch_count
= &prev
->nvcsw
;
3657 if (unlikely(!rq
->nr_running
))
3658 idle_balance(cpu
, rq
);
3660 prev
->sched_class
->put_prev_task(rq
, prev
);
3661 next
= pick_next_task(rq
, prev
);
3663 sched_info_switch(prev
, next
);
3665 if (likely(prev
!= next
)) {
3670 context_switch(rq
, prev
, next
); /* unlocks the rq */
3672 spin_unlock_irq(&rq
->lock
);
3674 if (unlikely(reacquire_kernel_lock(current
) < 0)) {
3675 cpu
= smp_processor_id();
3677 goto need_resched_nonpreemptible
;
3679 preempt_enable_no_resched();
3680 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3683 EXPORT_SYMBOL(schedule
);
3685 #ifdef CONFIG_PREEMPT
3687 * this is the entry point to schedule() from in-kernel preemption
3688 * off of preempt_enable. Kernel preemptions off return from interrupt
3689 * occur there and call schedule directly.
3691 asmlinkage
void __sched
preempt_schedule(void)
3693 struct thread_info
*ti
= current_thread_info();
3694 #ifdef CONFIG_PREEMPT_BKL
3695 struct task_struct
*task
= current
;
3696 int saved_lock_depth
;
3699 * If there is a non-zero preempt_count or interrupts are disabled,
3700 * we do not want to preempt the current task. Just return..
3702 if (likely(ti
->preempt_count
|| irqs_disabled()))
3706 add_preempt_count(PREEMPT_ACTIVE
);
3709 * We keep the big kernel semaphore locked, but we
3710 * clear ->lock_depth so that schedule() doesnt
3711 * auto-release the semaphore:
3713 #ifdef CONFIG_PREEMPT_BKL
3714 saved_lock_depth
= task
->lock_depth
;
3715 task
->lock_depth
= -1;
3718 #ifdef CONFIG_PREEMPT_BKL
3719 task
->lock_depth
= saved_lock_depth
;
3721 sub_preempt_count(PREEMPT_ACTIVE
);
3724 * Check again in case we missed a preemption opportunity
3725 * between schedule and now.
3728 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
3730 EXPORT_SYMBOL(preempt_schedule
);
3733 * this is the entry point to schedule() from kernel preemption
3734 * off of irq context.
3735 * Note, that this is called and return with irqs disabled. This will
3736 * protect us against recursive calling from irq.
3738 asmlinkage
void __sched
preempt_schedule_irq(void)
3740 struct thread_info
*ti
= current_thread_info();
3741 #ifdef CONFIG_PREEMPT_BKL
3742 struct task_struct
*task
= current
;
3743 int saved_lock_depth
;
3745 /* Catch callers which need to be fixed */
3746 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
3749 add_preempt_count(PREEMPT_ACTIVE
);
3752 * We keep the big kernel semaphore locked, but we
3753 * clear ->lock_depth so that schedule() doesnt
3754 * auto-release the semaphore:
3756 #ifdef CONFIG_PREEMPT_BKL
3757 saved_lock_depth
= task
->lock_depth
;
3758 task
->lock_depth
= -1;
3762 local_irq_disable();
3763 #ifdef CONFIG_PREEMPT_BKL
3764 task
->lock_depth
= saved_lock_depth
;
3766 sub_preempt_count(PREEMPT_ACTIVE
);
3769 * Check again in case we missed a preemption opportunity
3770 * between schedule and now.
3773 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
3776 #endif /* CONFIG_PREEMPT */
3778 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
3781 return try_to_wake_up(curr
->private, mode
, sync
);
3783 EXPORT_SYMBOL(default_wake_function
);
3786 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3787 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3788 * number) then we wake all the non-exclusive tasks and one exclusive task.
3790 * There are circumstances in which we can try to wake a task which has already
3791 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3792 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3794 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
3795 int nr_exclusive
, int sync
, void *key
)
3797 wait_queue_t
*curr
, *next
;
3799 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
3800 unsigned flags
= curr
->flags
;
3802 if (curr
->func(curr
, mode
, sync
, key
) &&
3803 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
3809 * __wake_up - wake up threads blocked on a waitqueue.
3811 * @mode: which threads
3812 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3813 * @key: is directly passed to the wakeup function
3815 void fastcall
__wake_up(wait_queue_head_t
*q
, unsigned int mode
,
3816 int nr_exclusive
, void *key
)
3818 unsigned long flags
;
3820 spin_lock_irqsave(&q
->lock
, flags
);
3821 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
3822 spin_unlock_irqrestore(&q
->lock
, flags
);
3824 EXPORT_SYMBOL(__wake_up
);
3827 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3829 void fastcall
__wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
3831 __wake_up_common(q
, mode
, 1, 0, NULL
);
3835 * __wake_up_sync - wake up threads blocked on a waitqueue.
3837 * @mode: which threads
3838 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3840 * The sync wakeup differs that the waker knows that it will schedule
3841 * away soon, so while the target thread will be woken up, it will not
3842 * be migrated to another CPU - ie. the two threads are 'synchronized'
3843 * with each other. This can prevent needless bouncing between CPUs.
3845 * On UP it can prevent extra preemption.
3848 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
3850 unsigned long flags
;
3856 if (unlikely(!nr_exclusive
))
3859 spin_lock_irqsave(&q
->lock
, flags
);
3860 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
3861 spin_unlock_irqrestore(&q
->lock
, flags
);
3863 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
3865 void complete(struct completion
*x
)
3867 unsigned long flags
;
3869 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3871 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3873 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3875 EXPORT_SYMBOL(complete
);
3877 void complete_all(struct completion
*x
)
3879 unsigned long flags
;
3881 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3882 x
->done
+= UINT_MAX
/2;
3883 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3885 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3887 EXPORT_SYMBOL(complete_all
);
3889 static inline long __sched
3890 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
3893 DECLARE_WAITQUEUE(wait
, current
);
3895 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3896 __add_wait_queue_tail(&x
->wait
, &wait
);
3898 if (state
== TASK_INTERRUPTIBLE
&&
3899 signal_pending(current
)) {
3900 __remove_wait_queue(&x
->wait
, &wait
);
3901 return -ERESTARTSYS
;
3903 __set_current_state(state
);
3904 spin_unlock_irq(&x
->wait
.lock
);
3905 timeout
= schedule_timeout(timeout
);
3906 spin_lock_irq(&x
->wait
.lock
);
3908 __remove_wait_queue(&x
->wait
, &wait
);
3912 __remove_wait_queue(&x
->wait
, &wait
);
3919 wait_for_common(struct completion
*x
, long timeout
, int state
)
3923 spin_lock_irq(&x
->wait
.lock
);
3924 timeout
= do_wait_for_common(x
, timeout
, state
);
3925 spin_unlock_irq(&x
->wait
.lock
);
3929 void __sched
wait_for_completion(struct completion
*x
)
3931 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
3933 EXPORT_SYMBOL(wait_for_completion
);
3935 unsigned long __sched
3936 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
3938 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
3940 EXPORT_SYMBOL(wait_for_completion_timeout
);
3942 int __sched
wait_for_completion_interruptible(struct completion
*x
)
3944 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
3945 if (t
== -ERESTARTSYS
)
3949 EXPORT_SYMBOL(wait_for_completion_interruptible
);
3951 unsigned long __sched
3952 wait_for_completion_interruptible_timeout(struct completion
*x
,
3953 unsigned long timeout
)
3955 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
3957 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
3960 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
3962 unsigned long flags
;
3965 init_waitqueue_entry(&wait
, current
);
3967 __set_current_state(state
);
3969 spin_lock_irqsave(&q
->lock
, flags
);
3970 __add_wait_queue(q
, &wait
);
3971 spin_unlock(&q
->lock
);
3972 timeout
= schedule_timeout(timeout
);
3973 spin_lock_irq(&q
->lock
);
3974 __remove_wait_queue(q
, &wait
);
3975 spin_unlock_irqrestore(&q
->lock
, flags
);
3980 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
3982 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
3984 EXPORT_SYMBOL(interruptible_sleep_on
);
3987 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3989 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
3991 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
3993 void __sched
sleep_on(wait_queue_head_t
*q
)
3995 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
3997 EXPORT_SYMBOL(sleep_on
);
3999 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4001 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4003 EXPORT_SYMBOL(sleep_on_timeout
);
4005 #ifdef CONFIG_RT_MUTEXES
4008 * rt_mutex_setprio - set the current priority of a task
4010 * @prio: prio value (kernel-internal form)
4012 * This function changes the 'effective' priority of a task. It does
4013 * not touch ->normal_prio like __setscheduler().
4015 * Used by the rt_mutex code to implement priority inheritance logic.
4017 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4019 unsigned long flags
;
4020 int oldprio
, on_rq
, running
;
4023 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4025 rq
= task_rq_lock(p
, &flags
);
4026 update_rq_clock(rq
);
4029 on_rq
= p
->se
.on_rq
;
4030 running
= task_current(rq
, p
);
4032 dequeue_task(rq
, p
, 0);
4034 p
->sched_class
->put_prev_task(rq
, p
);
4038 p
->sched_class
= &rt_sched_class
;
4040 p
->sched_class
= &fair_sched_class
;
4046 p
->sched_class
->set_curr_task(rq
);
4047 enqueue_task(rq
, p
, 0);
4049 * Reschedule if we are currently running on this runqueue and
4050 * our priority decreased, or if we are not currently running on
4051 * this runqueue and our priority is higher than the current's
4054 if (p
->prio
> oldprio
)
4055 resched_task(rq
->curr
);
4057 check_preempt_curr(rq
, p
);
4060 task_rq_unlock(rq
, &flags
);
4065 void set_user_nice(struct task_struct
*p
, long nice
)
4067 int old_prio
, delta
, on_rq
;
4068 unsigned long flags
;
4071 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4074 * We have to be careful, if called from sys_setpriority(),
4075 * the task might be in the middle of scheduling on another CPU.
4077 rq
= task_rq_lock(p
, &flags
);
4078 update_rq_clock(rq
);
4080 * The RT priorities are set via sched_setscheduler(), but we still
4081 * allow the 'normal' nice value to be set - but as expected
4082 * it wont have any effect on scheduling until the task is
4083 * SCHED_FIFO/SCHED_RR:
4085 if (task_has_rt_policy(p
)) {
4086 p
->static_prio
= NICE_TO_PRIO(nice
);
4089 on_rq
= p
->se
.on_rq
;
4091 dequeue_task(rq
, p
, 0);
4095 p
->static_prio
= NICE_TO_PRIO(nice
);
4098 p
->prio
= effective_prio(p
);
4099 delta
= p
->prio
- old_prio
;
4102 enqueue_task(rq
, p
, 0);
4105 * If the task increased its priority or is running and
4106 * lowered its priority, then reschedule its CPU:
4108 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4109 resched_task(rq
->curr
);
4112 task_rq_unlock(rq
, &flags
);
4114 EXPORT_SYMBOL(set_user_nice
);
4117 * can_nice - check if a task can reduce its nice value
4121 int can_nice(const struct task_struct
*p
, const int nice
)
4123 /* convert nice value [19,-20] to rlimit style value [1,40] */
4124 int nice_rlim
= 20 - nice
;
4126 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
4127 capable(CAP_SYS_NICE
));
4130 #ifdef __ARCH_WANT_SYS_NICE
4133 * sys_nice - change the priority of the current process.
4134 * @increment: priority increment
4136 * sys_setpriority is a more generic, but much slower function that
4137 * does similar things.
4139 asmlinkage
long sys_nice(int increment
)
4144 * Setpriority might change our priority at the same moment.
4145 * We don't have to worry. Conceptually one call occurs first
4146 * and we have a single winner.
4148 if (increment
< -40)
4153 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
4159 if (increment
< 0 && !can_nice(current
, nice
))
4162 retval
= security_task_setnice(current
, nice
);
4166 set_user_nice(current
, nice
);
4173 * task_prio - return the priority value of a given task.
4174 * @p: the task in question.
4176 * This is the priority value as seen by users in /proc.
4177 * RT tasks are offset by -200. Normal tasks are centered
4178 * around 0, value goes from -16 to +15.
4180 int task_prio(const struct task_struct
*p
)
4182 return p
->prio
- MAX_RT_PRIO
;
4186 * task_nice - return the nice value of a given task.
4187 * @p: the task in question.
4189 int task_nice(const struct task_struct
*p
)
4191 return TASK_NICE(p
);
4193 EXPORT_SYMBOL_GPL(task_nice
);
4196 * idle_cpu - is a given cpu idle currently?
4197 * @cpu: the processor in question.
4199 int idle_cpu(int cpu
)
4201 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4205 * idle_task - return the idle task for a given cpu.
4206 * @cpu: the processor in question.
4208 struct task_struct
*idle_task(int cpu
)
4210 return cpu_rq(cpu
)->idle
;
4214 * find_process_by_pid - find a process with a matching PID value.
4215 * @pid: the pid in question.
4217 static struct task_struct
*find_process_by_pid(pid_t pid
)
4219 return pid
? find_task_by_vpid(pid
) : current
;
4222 /* Actually do priority change: must hold rq lock. */
4224 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4226 BUG_ON(p
->se
.on_rq
);
4229 switch (p
->policy
) {
4233 p
->sched_class
= &fair_sched_class
;
4237 p
->sched_class
= &rt_sched_class
;
4241 p
->rt_priority
= prio
;
4242 p
->normal_prio
= normal_prio(p
);
4243 /* we are holding p->pi_lock already */
4244 p
->prio
= rt_mutex_getprio(p
);
4249 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4250 * @p: the task in question.
4251 * @policy: new policy.
4252 * @param: structure containing the new RT priority.
4254 * NOTE that the task may be already dead.
4256 int sched_setscheduler(struct task_struct
*p
, int policy
,
4257 struct sched_param
*param
)
4259 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4260 unsigned long flags
;
4263 /* may grab non-irq protected spin_locks */
4264 BUG_ON(in_interrupt());
4266 /* double check policy once rq lock held */
4268 policy
= oldpolicy
= p
->policy
;
4269 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4270 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4271 policy
!= SCHED_IDLE
)
4274 * Valid priorities for SCHED_FIFO and SCHED_RR are
4275 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4276 * SCHED_BATCH and SCHED_IDLE is 0.
4278 if (param
->sched_priority
< 0 ||
4279 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4280 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4282 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4286 * Allow unprivileged RT tasks to decrease priority:
4288 if (!capable(CAP_SYS_NICE
)) {
4289 if (rt_policy(policy
)) {
4290 unsigned long rlim_rtprio
;
4292 if (!lock_task_sighand(p
, &flags
))
4294 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
4295 unlock_task_sighand(p
, &flags
);
4297 /* can't set/change the rt policy */
4298 if (policy
!= p
->policy
&& !rlim_rtprio
)
4301 /* can't increase priority */
4302 if (param
->sched_priority
> p
->rt_priority
&&
4303 param
->sched_priority
> rlim_rtprio
)
4307 * Like positive nice levels, dont allow tasks to
4308 * move out of SCHED_IDLE either:
4310 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4313 /* can't change other user's priorities */
4314 if ((current
->euid
!= p
->euid
) &&
4315 (current
->euid
!= p
->uid
))
4319 retval
= security_task_setscheduler(p
, policy
, param
);
4323 * make sure no PI-waiters arrive (or leave) while we are
4324 * changing the priority of the task:
4326 spin_lock_irqsave(&p
->pi_lock
, flags
);
4328 * To be able to change p->policy safely, the apropriate
4329 * runqueue lock must be held.
4331 rq
= __task_rq_lock(p
);
4332 /* recheck policy now with rq lock held */
4333 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4334 policy
= oldpolicy
= -1;
4335 __task_rq_unlock(rq
);
4336 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4339 update_rq_clock(rq
);
4340 on_rq
= p
->se
.on_rq
;
4341 running
= task_current(rq
, p
);
4343 deactivate_task(rq
, p
, 0);
4345 p
->sched_class
->put_prev_task(rq
, p
);
4349 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4353 p
->sched_class
->set_curr_task(rq
);
4354 activate_task(rq
, p
, 0);
4356 * Reschedule if we are currently running on this runqueue and
4357 * our priority decreased, or if we are not currently running on
4358 * this runqueue and our priority is higher than the current's
4361 if (p
->prio
> oldprio
)
4362 resched_task(rq
->curr
);
4364 check_preempt_curr(rq
, p
);
4367 __task_rq_unlock(rq
);
4368 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4370 rt_mutex_adjust_pi(p
);
4374 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4377 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4379 struct sched_param lparam
;
4380 struct task_struct
*p
;
4383 if (!param
|| pid
< 0)
4385 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4390 p
= find_process_by_pid(pid
);
4392 retval
= sched_setscheduler(p
, policy
, &lparam
);
4399 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4400 * @pid: the pid in question.
4401 * @policy: new policy.
4402 * @param: structure containing the new RT priority.
4405 sys_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4407 /* negative values for policy are not valid */
4411 return do_sched_setscheduler(pid
, policy
, param
);
4415 * sys_sched_setparam - set/change the RT priority of a thread
4416 * @pid: the pid in question.
4417 * @param: structure containing the new RT priority.
4419 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
4421 return do_sched_setscheduler(pid
, -1, param
);
4425 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4426 * @pid: the pid in question.
4428 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
4430 struct task_struct
*p
;
4437 read_lock(&tasklist_lock
);
4438 p
= find_process_by_pid(pid
);
4440 retval
= security_task_getscheduler(p
);
4444 read_unlock(&tasklist_lock
);
4449 * sys_sched_getscheduler - get the RT priority of a thread
4450 * @pid: the pid in question.
4451 * @param: structure containing the RT priority.
4453 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
4455 struct sched_param lp
;
4456 struct task_struct
*p
;
4459 if (!param
|| pid
< 0)
4462 read_lock(&tasklist_lock
);
4463 p
= find_process_by_pid(pid
);
4468 retval
= security_task_getscheduler(p
);
4472 lp
.sched_priority
= p
->rt_priority
;
4473 read_unlock(&tasklist_lock
);
4476 * This one might sleep, we cannot do it with a spinlock held ...
4478 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4483 read_unlock(&tasklist_lock
);
4487 long sched_setaffinity(pid_t pid
, cpumask_t new_mask
)
4489 cpumask_t cpus_allowed
;
4490 struct task_struct
*p
;
4493 mutex_lock(&sched_hotcpu_mutex
);
4494 read_lock(&tasklist_lock
);
4496 p
= find_process_by_pid(pid
);
4498 read_unlock(&tasklist_lock
);
4499 mutex_unlock(&sched_hotcpu_mutex
);
4504 * It is not safe to call set_cpus_allowed with the
4505 * tasklist_lock held. We will bump the task_struct's
4506 * usage count and then drop tasklist_lock.
4509 read_unlock(&tasklist_lock
);
4512 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
4513 !capable(CAP_SYS_NICE
))
4516 retval
= security_task_setscheduler(p
, 0, NULL
);
4520 cpus_allowed
= cpuset_cpus_allowed(p
);
4521 cpus_and(new_mask
, new_mask
, cpus_allowed
);
4523 retval
= set_cpus_allowed(p
, new_mask
);
4526 cpus_allowed
= cpuset_cpus_allowed(p
);
4527 if (!cpus_subset(new_mask
, cpus_allowed
)) {
4529 * We must have raced with a concurrent cpuset
4530 * update. Just reset the cpus_allowed to the
4531 * cpuset's cpus_allowed
4533 new_mask
= cpus_allowed
;
4539 mutex_unlock(&sched_hotcpu_mutex
);
4543 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4544 cpumask_t
*new_mask
)
4546 if (len
< sizeof(cpumask_t
)) {
4547 memset(new_mask
, 0, sizeof(cpumask_t
));
4548 } else if (len
> sizeof(cpumask_t
)) {
4549 len
= sizeof(cpumask_t
);
4551 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4555 * sys_sched_setaffinity - set the cpu affinity of a process
4556 * @pid: pid of the process
4557 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4558 * @user_mask_ptr: user-space pointer to the new cpu mask
4560 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
4561 unsigned long __user
*user_mask_ptr
)
4566 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
4570 return sched_setaffinity(pid
, new_mask
);
4574 * Represents all cpu's present in the system
4575 * In systems capable of hotplug, this map could dynamically grow
4576 * as new cpu's are detected in the system via any platform specific
4577 * method, such as ACPI for e.g.
4580 cpumask_t cpu_present_map __read_mostly
;
4581 EXPORT_SYMBOL(cpu_present_map
);
4584 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_ALL
;
4585 EXPORT_SYMBOL(cpu_online_map
);
4587 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_ALL
;
4588 EXPORT_SYMBOL(cpu_possible_map
);
4591 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
4593 struct task_struct
*p
;
4596 mutex_lock(&sched_hotcpu_mutex
);
4597 read_lock(&tasklist_lock
);
4600 p
= find_process_by_pid(pid
);
4604 retval
= security_task_getscheduler(p
);
4608 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
4611 read_unlock(&tasklist_lock
);
4612 mutex_unlock(&sched_hotcpu_mutex
);
4618 * sys_sched_getaffinity - get the cpu affinity of a process
4619 * @pid: pid of the process
4620 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4621 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4623 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
4624 unsigned long __user
*user_mask_ptr
)
4629 if (len
< sizeof(cpumask_t
))
4632 ret
= sched_getaffinity(pid
, &mask
);
4636 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
4639 return sizeof(cpumask_t
);
4643 * sys_sched_yield - yield the current processor to other threads.
4645 * This function yields the current CPU to other tasks. If there are no
4646 * other threads running on this CPU then this function will return.
4648 asmlinkage
long sys_sched_yield(void)
4650 struct rq
*rq
= this_rq_lock();
4652 schedstat_inc(rq
, yld_count
);
4653 current
->sched_class
->yield_task(rq
);
4656 * Since we are going to call schedule() anyway, there's
4657 * no need to preempt or enable interrupts:
4659 __release(rq
->lock
);
4660 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4661 _raw_spin_unlock(&rq
->lock
);
4662 preempt_enable_no_resched();
4669 static void __cond_resched(void)
4671 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4672 __might_sleep(__FILE__
, __LINE__
);
4675 * The BKS might be reacquired before we have dropped
4676 * PREEMPT_ACTIVE, which could trigger a second
4677 * cond_resched() call.
4680 add_preempt_count(PREEMPT_ACTIVE
);
4682 sub_preempt_count(PREEMPT_ACTIVE
);
4683 } while (need_resched());
4686 int __sched
cond_resched(void)
4688 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
4689 system_state
== SYSTEM_RUNNING
) {
4695 EXPORT_SYMBOL(cond_resched
);
4698 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4699 * call schedule, and on return reacquire the lock.
4701 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4702 * operations here to prevent schedule() from being called twice (once via
4703 * spin_unlock(), once by hand).
4705 int cond_resched_lock(spinlock_t
*lock
)
4709 if (need_lockbreak(lock
)) {
4715 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4716 spin_release(&lock
->dep_map
, 1, _THIS_IP_
);
4717 _raw_spin_unlock(lock
);
4718 preempt_enable_no_resched();
4725 EXPORT_SYMBOL(cond_resched_lock
);
4727 int __sched
cond_resched_softirq(void)
4729 BUG_ON(!in_softirq());
4731 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4739 EXPORT_SYMBOL(cond_resched_softirq
);
4742 * yield - yield the current processor to other threads.
4744 * This is a shortcut for kernel-space yielding - it marks the
4745 * thread runnable and calls sys_sched_yield().
4747 void __sched
yield(void)
4749 set_current_state(TASK_RUNNING
);
4752 EXPORT_SYMBOL(yield
);
4755 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4756 * that process accounting knows that this is a task in IO wait state.
4758 * But don't do that if it is a deliberate, throttling IO wait (this task
4759 * has set its backing_dev_info: the queue against which it should throttle)
4761 void __sched
io_schedule(void)
4763 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4765 delayacct_blkio_start();
4766 atomic_inc(&rq
->nr_iowait
);
4768 atomic_dec(&rq
->nr_iowait
);
4769 delayacct_blkio_end();
4771 EXPORT_SYMBOL(io_schedule
);
4773 long __sched
io_schedule_timeout(long timeout
)
4775 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4778 delayacct_blkio_start();
4779 atomic_inc(&rq
->nr_iowait
);
4780 ret
= schedule_timeout(timeout
);
4781 atomic_dec(&rq
->nr_iowait
);
4782 delayacct_blkio_end();
4787 * sys_sched_get_priority_max - return maximum RT priority.
4788 * @policy: scheduling class.
4790 * this syscall returns the maximum rt_priority that can be used
4791 * by a given scheduling class.
4793 asmlinkage
long sys_sched_get_priority_max(int policy
)
4800 ret
= MAX_USER_RT_PRIO
-1;
4812 * sys_sched_get_priority_min - return minimum RT priority.
4813 * @policy: scheduling class.
4815 * this syscall returns the minimum rt_priority that can be used
4816 * by a given scheduling class.
4818 asmlinkage
long sys_sched_get_priority_min(int policy
)
4836 * sys_sched_rr_get_interval - return the default timeslice of a process.
4837 * @pid: pid of the process.
4838 * @interval: userspace pointer to the timeslice value.
4840 * this syscall writes the default timeslice value of a given process
4841 * into the user-space timespec buffer. A value of '0' means infinity.
4844 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
4846 struct task_struct
*p
;
4847 unsigned int time_slice
;
4855 read_lock(&tasklist_lock
);
4856 p
= find_process_by_pid(pid
);
4860 retval
= security_task_getscheduler(p
);
4865 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
4866 * tasks that are on an otherwise idle runqueue:
4869 if (p
->policy
== SCHED_RR
) {
4870 time_slice
= DEF_TIMESLICE
;
4872 struct sched_entity
*se
= &p
->se
;
4873 unsigned long flags
;
4876 rq
= task_rq_lock(p
, &flags
);
4877 if (rq
->cfs
.load
.weight
)
4878 time_slice
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
4879 task_rq_unlock(rq
, &flags
);
4881 read_unlock(&tasklist_lock
);
4882 jiffies_to_timespec(time_slice
, &t
);
4883 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
4887 read_unlock(&tasklist_lock
);
4891 static const char stat_nam
[] = "RSDTtZX";
4893 static void show_task(struct task_struct
*p
)
4895 unsigned long free
= 0;
4898 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
4899 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
4900 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
4901 #if BITS_PER_LONG == 32
4902 if (state
== TASK_RUNNING
)
4903 printk(KERN_CONT
" running ");
4905 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
4907 if (state
== TASK_RUNNING
)
4908 printk(KERN_CONT
" running task ");
4910 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
4912 #ifdef CONFIG_DEBUG_STACK_USAGE
4914 unsigned long *n
= end_of_stack(p
);
4917 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
4920 printk(KERN_CONT
"%5lu %5d %6d\n", free
,
4921 task_pid_nr(p
), task_pid_nr(p
->real_parent
));
4923 if (state
!= TASK_RUNNING
)
4924 show_stack(p
, NULL
);
4927 void show_state_filter(unsigned long state_filter
)
4929 struct task_struct
*g
, *p
;
4931 #if BITS_PER_LONG == 32
4933 " task PC stack pid father\n");
4936 " task PC stack pid father\n");
4938 read_lock(&tasklist_lock
);
4939 do_each_thread(g
, p
) {
4941 * reset the NMI-timeout, listing all files on a slow
4942 * console might take alot of time:
4944 touch_nmi_watchdog();
4945 if (!state_filter
|| (p
->state
& state_filter
))
4947 } while_each_thread(g
, p
);
4949 touch_all_softlockup_watchdogs();
4951 #ifdef CONFIG_SCHED_DEBUG
4952 sysrq_sched_debug_show();
4954 read_unlock(&tasklist_lock
);
4956 * Only show locks if all tasks are dumped:
4958 if (state_filter
== -1)
4959 debug_show_all_locks();
4962 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
4964 idle
->sched_class
= &idle_sched_class
;
4968 * init_idle - set up an idle thread for a given CPU
4969 * @idle: task in question
4970 * @cpu: cpu the idle task belongs to
4972 * NOTE: this function does not set the idle thread's NEED_RESCHED
4973 * flag, to make booting more robust.
4975 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
4977 struct rq
*rq
= cpu_rq(cpu
);
4978 unsigned long flags
;
4981 idle
->se
.exec_start
= sched_clock();
4983 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
4984 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
4985 __set_task_cpu(idle
, cpu
);
4987 spin_lock_irqsave(&rq
->lock
, flags
);
4988 rq
->curr
= rq
->idle
= idle
;
4989 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4992 spin_unlock_irqrestore(&rq
->lock
, flags
);
4994 /* Set the preempt count _outside_ the spinlocks! */
4995 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4996 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
4998 task_thread_info(idle
)->preempt_count
= 0;
5001 * The idle tasks have their own, simple scheduling class:
5003 idle
->sched_class
= &idle_sched_class
;
5007 * In a system that switches off the HZ timer nohz_cpu_mask
5008 * indicates which cpus entered this state. This is used
5009 * in the rcu update to wait only for active cpus. For system
5010 * which do not switch off the HZ timer nohz_cpu_mask should
5011 * always be CPU_MASK_NONE.
5013 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
5016 * Increase the granularity value when there are more CPUs,
5017 * because with more CPUs the 'effective latency' as visible
5018 * to users decreases. But the relationship is not linear,
5019 * so pick a second-best guess by going with the log2 of the
5022 * This idea comes from the SD scheduler of Con Kolivas:
5024 static inline void sched_init_granularity(void)
5026 unsigned int factor
= 1 + ilog2(num_online_cpus());
5027 const unsigned long limit
= 200000000;
5029 sysctl_sched_min_granularity
*= factor
;
5030 if (sysctl_sched_min_granularity
> limit
)
5031 sysctl_sched_min_granularity
= limit
;
5033 sysctl_sched_latency
*= factor
;
5034 if (sysctl_sched_latency
> limit
)
5035 sysctl_sched_latency
= limit
;
5037 sysctl_sched_wakeup_granularity
*= factor
;
5038 sysctl_sched_batch_wakeup_granularity
*= factor
;
5043 * This is how migration works:
5045 * 1) we queue a struct migration_req structure in the source CPU's
5046 * runqueue and wake up that CPU's migration thread.
5047 * 2) we down() the locked semaphore => thread blocks.
5048 * 3) migration thread wakes up (implicitly it forces the migrated
5049 * thread off the CPU)
5050 * 4) it gets the migration request and checks whether the migrated
5051 * task is still in the wrong runqueue.
5052 * 5) if it's in the wrong runqueue then the migration thread removes
5053 * it and puts it into the right queue.
5054 * 6) migration thread up()s the semaphore.
5055 * 7) we wake up and the migration is done.
5059 * Change a given task's CPU affinity. Migrate the thread to a
5060 * proper CPU and schedule it away if the CPU it's executing on
5061 * is removed from the allowed bitmask.
5063 * NOTE: the caller must have a valid reference to the task, the
5064 * task must not exit() & deallocate itself prematurely. The
5065 * call is not atomic; no spinlocks may be held.
5067 int set_cpus_allowed(struct task_struct
*p
, cpumask_t new_mask
)
5069 struct migration_req req
;
5070 unsigned long flags
;
5074 rq
= task_rq_lock(p
, &flags
);
5075 if (!cpus_intersects(new_mask
, cpu_online_map
)) {
5080 p
->cpus_allowed
= new_mask
;
5081 /* Can the task run on the task's current CPU? If so, we're done */
5082 if (cpu_isset(task_cpu(p
), new_mask
))
5085 if (migrate_task(p
, any_online_cpu(new_mask
), &req
)) {
5086 /* Need help from migration thread: drop lock and wait. */
5087 task_rq_unlock(rq
, &flags
);
5088 wake_up_process(rq
->migration_thread
);
5089 wait_for_completion(&req
.done
);
5090 tlb_migrate_finish(p
->mm
);
5094 task_rq_unlock(rq
, &flags
);
5098 EXPORT_SYMBOL_GPL(set_cpus_allowed
);
5101 * Move (not current) task off this cpu, onto dest cpu. We're doing
5102 * this because either it can't run here any more (set_cpus_allowed()
5103 * away from this CPU, or CPU going down), or because we're
5104 * attempting to rebalance this task on exec (sched_exec).
5106 * So we race with normal scheduler movements, but that's OK, as long
5107 * as the task is no longer on this CPU.
5109 * Returns non-zero if task was successfully migrated.
5111 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5113 struct rq
*rq_dest
, *rq_src
;
5116 if (unlikely(cpu_is_offline(dest_cpu
)))
5119 rq_src
= cpu_rq(src_cpu
);
5120 rq_dest
= cpu_rq(dest_cpu
);
5122 double_rq_lock(rq_src
, rq_dest
);
5123 /* Already moved. */
5124 if (task_cpu(p
) != src_cpu
)
5126 /* Affinity changed (again). */
5127 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
5130 on_rq
= p
->se
.on_rq
;
5132 deactivate_task(rq_src
, p
, 0);
5134 set_task_cpu(p
, dest_cpu
);
5136 activate_task(rq_dest
, p
, 0);
5137 check_preempt_curr(rq_dest
, p
);
5141 double_rq_unlock(rq_src
, rq_dest
);
5146 * migration_thread - this is a highprio system thread that performs
5147 * thread migration by bumping thread off CPU then 'pushing' onto
5150 static int migration_thread(void *data
)
5152 int cpu
= (long)data
;
5156 BUG_ON(rq
->migration_thread
!= current
);
5158 set_current_state(TASK_INTERRUPTIBLE
);
5159 while (!kthread_should_stop()) {
5160 struct migration_req
*req
;
5161 struct list_head
*head
;
5163 spin_lock_irq(&rq
->lock
);
5165 if (cpu_is_offline(cpu
)) {
5166 spin_unlock_irq(&rq
->lock
);
5170 if (rq
->active_balance
) {
5171 active_load_balance(rq
, cpu
);
5172 rq
->active_balance
= 0;
5175 head
= &rq
->migration_queue
;
5177 if (list_empty(head
)) {
5178 spin_unlock_irq(&rq
->lock
);
5180 set_current_state(TASK_INTERRUPTIBLE
);
5183 req
= list_entry(head
->next
, struct migration_req
, list
);
5184 list_del_init(head
->next
);
5186 spin_unlock(&rq
->lock
);
5187 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
5190 complete(&req
->done
);
5192 __set_current_state(TASK_RUNNING
);
5196 /* Wait for kthread_stop */
5197 set_current_state(TASK_INTERRUPTIBLE
);
5198 while (!kthread_should_stop()) {
5200 set_current_state(TASK_INTERRUPTIBLE
);
5202 __set_current_state(TASK_RUNNING
);
5206 #ifdef CONFIG_HOTPLUG_CPU
5208 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5212 local_irq_disable();
5213 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
5219 * Figure out where task on dead CPU should go, use force if necessary.
5220 * NOTE: interrupts should be disabled by the caller
5222 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5224 unsigned long flags
;
5231 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
5232 cpus_and(mask
, mask
, p
->cpus_allowed
);
5233 dest_cpu
= any_online_cpu(mask
);
5235 /* On any allowed CPU? */
5236 if (dest_cpu
== NR_CPUS
)
5237 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5239 /* No more Mr. Nice Guy. */
5240 if (dest_cpu
== NR_CPUS
) {
5241 cpumask_t cpus_allowed
= cpuset_cpus_allowed_locked(p
);
5243 * Try to stay on the same cpuset, where the
5244 * current cpuset may be a subset of all cpus.
5245 * The cpuset_cpus_allowed_locked() variant of
5246 * cpuset_cpus_allowed() will not block. It must be
5247 * called within calls to cpuset_lock/cpuset_unlock.
5249 rq
= task_rq_lock(p
, &flags
);
5250 p
->cpus_allowed
= cpus_allowed
;
5251 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5252 task_rq_unlock(rq
, &flags
);
5255 * Don't tell them about moving exiting tasks or
5256 * kernel threads (both mm NULL), since they never
5259 if (p
->mm
&& printk_ratelimit()) {
5260 printk(KERN_INFO
"process %d (%s) no "
5261 "longer affine to cpu%d\n",
5262 task_pid_nr(p
), p
->comm
, dead_cpu
);
5265 } while (!__migrate_task_irq(p
, dead_cpu
, dest_cpu
));
5269 * While a dead CPU has no uninterruptible tasks queued at this point,
5270 * it might still have a nonzero ->nr_uninterruptible counter, because
5271 * for performance reasons the counter is not stricly tracking tasks to
5272 * their home CPUs. So we just add the counter to another CPU's counter,
5273 * to keep the global sum constant after CPU-down:
5275 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5277 struct rq
*rq_dest
= cpu_rq(any_online_cpu(CPU_MASK_ALL
));
5278 unsigned long flags
;
5280 local_irq_save(flags
);
5281 double_rq_lock(rq_src
, rq_dest
);
5282 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5283 rq_src
->nr_uninterruptible
= 0;
5284 double_rq_unlock(rq_src
, rq_dest
);
5285 local_irq_restore(flags
);
5288 /* Run through task list and migrate tasks from the dead cpu. */
5289 static void migrate_live_tasks(int src_cpu
)
5291 struct task_struct
*p
, *t
;
5293 read_lock(&tasklist_lock
);
5295 do_each_thread(t
, p
) {
5299 if (task_cpu(p
) == src_cpu
)
5300 move_task_off_dead_cpu(src_cpu
, p
);
5301 } while_each_thread(t
, p
);
5303 read_unlock(&tasklist_lock
);
5307 * Schedules idle task to be the next runnable task on current CPU.
5308 * It does so by boosting its priority to highest possible.
5309 * Used by CPU offline code.
5311 void sched_idle_next(void)
5313 int this_cpu
= smp_processor_id();
5314 struct rq
*rq
= cpu_rq(this_cpu
);
5315 struct task_struct
*p
= rq
->idle
;
5316 unsigned long flags
;
5318 /* cpu has to be offline */
5319 BUG_ON(cpu_online(this_cpu
));
5322 * Strictly not necessary since rest of the CPUs are stopped by now
5323 * and interrupts disabled on the current cpu.
5325 spin_lock_irqsave(&rq
->lock
, flags
);
5327 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5329 update_rq_clock(rq
);
5330 activate_task(rq
, p
, 0);
5332 spin_unlock_irqrestore(&rq
->lock
, flags
);
5336 * Ensures that the idle task is using init_mm right before its cpu goes
5339 void idle_task_exit(void)
5341 struct mm_struct
*mm
= current
->active_mm
;
5343 BUG_ON(cpu_online(smp_processor_id()));
5346 switch_mm(mm
, &init_mm
, current
);
5350 /* called under rq->lock with disabled interrupts */
5351 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
5353 struct rq
*rq
= cpu_rq(dead_cpu
);
5355 /* Must be exiting, otherwise would be on tasklist. */
5356 BUG_ON(!p
->exit_state
);
5358 /* Cannot have done final schedule yet: would have vanished. */
5359 BUG_ON(p
->state
== TASK_DEAD
);
5364 * Drop lock around migration; if someone else moves it,
5365 * that's OK. No task can be added to this CPU, so iteration is
5368 spin_unlock_irq(&rq
->lock
);
5369 move_task_off_dead_cpu(dead_cpu
, p
);
5370 spin_lock_irq(&rq
->lock
);
5375 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5376 static void migrate_dead_tasks(unsigned int dead_cpu
)
5378 struct rq
*rq
= cpu_rq(dead_cpu
);
5379 struct task_struct
*next
;
5382 if (!rq
->nr_running
)
5384 update_rq_clock(rq
);
5385 next
= pick_next_task(rq
, rq
->curr
);
5388 migrate_dead(dead_cpu
, next
);
5392 #endif /* CONFIG_HOTPLUG_CPU */
5394 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5396 static struct ctl_table sd_ctl_dir
[] = {
5398 .procname
= "sched_domain",
5404 static struct ctl_table sd_ctl_root
[] = {
5406 .ctl_name
= CTL_KERN
,
5407 .procname
= "kernel",
5409 .child
= sd_ctl_dir
,
5414 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5416 struct ctl_table
*entry
=
5417 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
5422 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
5424 struct ctl_table
*entry
;
5427 * In the intermediate directories, both the child directory and
5428 * procname are dynamically allocated and could fail but the mode
5429 * will always be set. In the lowest directory the names are
5430 * static strings and all have proc handlers.
5432 for (entry
= *tablep
; entry
->mode
; entry
++) {
5434 sd_free_ctl_entry(&entry
->child
);
5435 if (entry
->proc_handler
== NULL
)
5436 kfree(entry
->procname
);
5444 set_table_entry(struct ctl_table
*entry
,
5445 const char *procname
, void *data
, int maxlen
,
5446 mode_t mode
, proc_handler
*proc_handler
)
5448 entry
->procname
= procname
;
5450 entry
->maxlen
= maxlen
;
5452 entry
->proc_handler
= proc_handler
;
5455 static struct ctl_table
*
5456 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5458 struct ctl_table
*table
= sd_alloc_ctl_entry(12);
5463 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5464 sizeof(long), 0644, proc_doulongvec_minmax
);
5465 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5466 sizeof(long), 0644, proc_doulongvec_minmax
);
5467 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5468 sizeof(int), 0644, proc_dointvec_minmax
);
5469 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5470 sizeof(int), 0644, proc_dointvec_minmax
);
5471 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5472 sizeof(int), 0644, proc_dointvec_minmax
);
5473 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5474 sizeof(int), 0644, proc_dointvec_minmax
);
5475 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5476 sizeof(int), 0644, proc_dointvec_minmax
);
5477 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5478 sizeof(int), 0644, proc_dointvec_minmax
);
5479 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5480 sizeof(int), 0644, proc_dointvec_minmax
);
5481 set_table_entry(&table
[9], "cache_nice_tries",
5482 &sd
->cache_nice_tries
,
5483 sizeof(int), 0644, proc_dointvec_minmax
);
5484 set_table_entry(&table
[10], "flags", &sd
->flags
,
5485 sizeof(int), 0644, proc_dointvec_minmax
);
5486 /* &table[11] is terminator */
5491 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5493 struct ctl_table
*entry
, *table
;
5494 struct sched_domain
*sd
;
5495 int domain_num
= 0, i
;
5498 for_each_domain(cpu
, sd
)
5500 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5505 for_each_domain(cpu
, sd
) {
5506 snprintf(buf
, 32, "domain%d", i
);
5507 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5509 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5516 static struct ctl_table_header
*sd_sysctl_header
;
5517 static void register_sched_domain_sysctl(void)
5519 int i
, cpu_num
= num_online_cpus();
5520 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5523 WARN_ON(sd_ctl_dir
[0].child
);
5524 sd_ctl_dir
[0].child
= entry
;
5529 for_each_online_cpu(i
) {
5530 snprintf(buf
, 32, "cpu%d", i
);
5531 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5533 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5537 WARN_ON(sd_sysctl_header
);
5538 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5541 /* may be called multiple times per register */
5542 static void unregister_sched_domain_sysctl(void)
5544 if (sd_sysctl_header
)
5545 unregister_sysctl_table(sd_sysctl_header
);
5546 sd_sysctl_header
= NULL
;
5547 if (sd_ctl_dir
[0].child
)
5548 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
5551 static void register_sched_domain_sysctl(void)
5554 static void unregister_sched_domain_sysctl(void)
5560 * migration_call - callback that gets triggered when a CPU is added.
5561 * Here we can start up the necessary migration thread for the new CPU.
5563 static int __cpuinit
5564 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5566 struct task_struct
*p
;
5567 int cpu
= (long)hcpu
;
5568 unsigned long flags
;
5572 case CPU_LOCK_ACQUIRE
:
5573 mutex_lock(&sched_hotcpu_mutex
);
5576 case CPU_UP_PREPARE
:
5577 case CPU_UP_PREPARE_FROZEN
:
5578 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
5581 kthread_bind(p
, cpu
);
5582 /* Must be high prio: stop_machine expects to yield to it. */
5583 rq
= task_rq_lock(p
, &flags
);
5584 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5585 task_rq_unlock(rq
, &flags
);
5586 cpu_rq(cpu
)->migration_thread
= p
;
5590 case CPU_ONLINE_FROZEN
:
5591 /* Strictly unnecessary, as first user will wake it. */
5592 wake_up_process(cpu_rq(cpu
)->migration_thread
);
5595 #ifdef CONFIG_HOTPLUG_CPU
5596 case CPU_UP_CANCELED
:
5597 case CPU_UP_CANCELED_FROZEN
:
5598 if (!cpu_rq(cpu
)->migration_thread
)
5600 /* Unbind it from offline cpu so it can run. Fall thru. */
5601 kthread_bind(cpu_rq(cpu
)->migration_thread
,
5602 any_online_cpu(cpu_online_map
));
5603 kthread_stop(cpu_rq(cpu
)->migration_thread
);
5604 cpu_rq(cpu
)->migration_thread
= NULL
;
5608 case CPU_DEAD_FROZEN
:
5609 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5610 migrate_live_tasks(cpu
);
5612 kthread_stop(rq
->migration_thread
);
5613 rq
->migration_thread
= NULL
;
5614 /* Idle task back to normal (off runqueue, low prio) */
5615 spin_lock_irq(&rq
->lock
);
5616 update_rq_clock(rq
);
5617 deactivate_task(rq
, rq
->idle
, 0);
5618 rq
->idle
->static_prio
= MAX_PRIO
;
5619 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
5620 rq
->idle
->sched_class
= &idle_sched_class
;
5621 migrate_dead_tasks(cpu
);
5622 spin_unlock_irq(&rq
->lock
);
5624 migrate_nr_uninterruptible(rq
);
5625 BUG_ON(rq
->nr_running
!= 0);
5628 * No need to migrate the tasks: it was best-effort if
5629 * they didn't take sched_hotcpu_mutex. Just wake up
5632 spin_lock_irq(&rq
->lock
);
5633 while (!list_empty(&rq
->migration_queue
)) {
5634 struct migration_req
*req
;
5636 req
= list_entry(rq
->migration_queue
.next
,
5637 struct migration_req
, list
);
5638 list_del_init(&req
->list
);
5639 complete(&req
->done
);
5641 spin_unlock_irq(&rq
->lock
);
5644 case CPU_LOCK_RELEASE
:
5645 mutex_unlock(&sched_hotcpu_mutex
);
5651 /* Register at highest priority so that task migration (migrate_all_tasks)
5652 * happens before everything else.
5654 static struct notifier_block __cpuinitdata migration_notifier
= {
5655 .notifier_call
= migration_call
,
5659 void __init
migration_init(void)
5661 void *cpu
= (void *)(long)smp_processor_id();
5664 /* Start one for the boot CPU: */
5665 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5666 BUG_ON(err
== NOTIFY_BAD
);
5667 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5668 register_cpu_notifier(&migration_notifier
);
5674 /* Number of possible processor ids */
5675 int nr_cpu_ids __read_mostly
= NR_CPUS
;
5676 EXPORT_SYMBOL(nr_cpu_ids
);
5678 #ifdef CONFIG_SCHED_DEBUG
5680 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
)
5682 struct sched_group
*group
= sd
->groups
;
5683 cpumask_t groupmask
;
5686 cpumask_scnprintf(str
, NR_CPUS
, sd
->span
);
5687 cpus_clear(groupmask
);
5689 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
5691 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5692 printk("does not load-balance\n");
5694 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
5699 printk(KERN_CONT
"span %s\n", str
);
5701 if (!cpu_isset(cpu
, sd
->span
)) {
5702 printk(KERN_ERR
"ERROR: domain->span does not contain "
5705 if (!cpu_isset(cpu
, group
->cpumask
)) {
5706 printk(KERN_ERR
"ERROR: domain->groups does not contain"
5710 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
5714 printk(KERN_ERR
"ERROR: group is NULL\n");
5718 if (!group
->__cpu_power
) {
5719 printk(KERN_CONT
"\n");
5720 printk(KERN_ERR
"ERROR: domain->cpu_power not "
5725 if (!cpus_weight(group
->cpumask
)) {
5726 printk(KERN_CONT
"\n");
5727 printk(KERN_ERR
"ERROR: empty group\n");
5731 if (cpus_intersects(groupmask
, group
->cpumask
)) {
5732 printk(KERN_CONT
"\n");
5733 printk(KERN_ERR
"ERROR: repeated CPUs\n");
5737 cpus_or(groupmask
, groupmask
, group
->cpumask
);
5739 cpumask_scnprintf(str
, NR_CPUS
, group
->cpumask
);
5740 printk(KERN_CONT
" %s", str
);
5742 group
= group
->next
;
5743 } while (group
!= sd
->groups
);
5744 printk(KERN_CONT
"\n");
5746 if (!cpus_equal(sd
->span
, groupmask
))
5747 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
5749 if (sd
->parent
&& !cpus_subset(groupmask
, sd
->parent
->span
))
5750 printk(KERN_ERR
"ERROR: parent span is not a superset "
5751 "of domain->span\n");
5755 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
5760 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
5764 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
5767 if (sched_domain_debug_one(sd
, cpu
, level
))
5776 # define sched_domain_debug(sd, cpu) do { } while (0)
5779 static int sd_degenerate(struct sched_domain
*sd
)
5781 if (cpus_weight(sd
->span
) == 1)
5784 /* Following flags need at least 2 groups */
5785 if (sd
->flags
& (SD_LOAD_BALANCE
|
5786 SD_BALANCE_NEWIDLE
|
5790 SD_SHARE_PKG_RESOURCES
)) {
5791 if (sd
->groups
!= sd
->groups
->next
)
5795 /* Following flags don't use groups */
5796 if (sd
->flags
& (SD_WAKE_IDLE
|
5805 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
5807 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
5809 if (sd_degenerate(parent
))
5812 if (!cpus_equal(sd
->span
, parent
->span
))
5815 /* Does parent contain flags not in child? */
5816 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5817 if (cflags
& SD_WAKE_AFFINE
)
5818 pflags
&= ~SD_WAKE_BALANCE
;
5819 /* Flags needing groups don't count if only 1 group in parent */
5820 if (parent
->groups
== parent
->groups
->next
) {
5821 pflags
&= ~(SD_LOAD_BALANCE
|
5822 SD_BALANCE_NEWIDLE
|
5826 SD_SHARE_PKG_RESOURCES
);
5828 if (~cflags
& pflags
)
5835 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5836 * hold the hotplug lock.
5838 static void cpu_attach_domain(struct sched_domain
*sd
, int cpu
)
5840 struct rq
*rq
= cpu_rq(cpu
);
5841 struct sched_domain
*tmp
;
5843 /* Remove the sched domains which do not contribute to scheduling. */
5844 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
5845 struct sched_domain
*parent
= tmp
->parent
;
5848 if (sd_parent_degenerate(tmp
, parent
)) {
5849 tmp
->parent
= parent
->parent
;
5851 parent
->parent
->child
= tmp
;
5855 if (sd
&& sd_degenerate(sd
)) {
5861 sched_domain_debug(sd
, cpu
);
5863 rcu_assign_pointer(rq
->sd
, sd
);
5866 /* cpus with isolated domains */
5867 static cpumask_t cpu_isolated_map
= CPU_MASK_NONE
;
5869 /* Setup the mask of cpus configured for isolated domains */
5870 static int __init
isolated_cpu_setup(char *str
)
5872 int ints
[NR_CPUS
], i
;
5874 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
5875 cpus_clear(cpu_isolated_map
);
5876 for (i
= 1; i
<= ints
[0]; i
++)
5877 if (ints
[i
] < NR_CPUS
)
5878 cpu_set(ints
[i
], cpu_isolated_map
);
5882 __setup("isolcpus=", isolated_cpu_setup
);
5885 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5886 * to a function which identifies what group(along with sched group) a CPU
5887 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5888 * (due to the fact that we keep track of groups covered with a cpumask_t).
5890 * init_sched_build_groups will build a circular linked list of the groups
5891 * covered by the given span, and will set each group's ->cpumask correctly,
5892 * and ->cpu_power to 0.
5895 init_sched_build_groups(cpumask_t span
, const cpumask_t
*cpu_map
,
5896 int (*group_fn
)(int cpu
, const cpumask_t
*cpu_map
,
5897 struct sched_group
**sg
))
5899 struct sched_group
*first
= NULL
, *last
= NULL
;
5900 cpumask_t covered
= CPU_MASK_NONE
;
5903 for_each_cpu_mask(i
, span
) {
5904 struct sched_group
*sg
;
5905 int group
= group_fn(i
, cpu_map
, &sg
);
5908 if (cpu_isset(i
, covered
))
5911 sg
->cpumask
= CPU_MASK_NONE
;
5912 sg
->__cpu_power
= 0;
5914 for_each_cpu_mask(j
, span
) {
5915 if (group_fn(j
, cpu_map
, NULL
) != group
)
5918 cpu_set(j
, covered
);
5919 cpu_set(j
, sg
->cpumask
);
5930 #define SD_NODES_PER_DOMAIN 16
5935 * find_next_best_node - find the next node to include in a sched_domain
5936 * @node: node whose sched_domain we're building
5937 * @used_nodes: nodes already in the sched_domain
5939 * Find the next node to include in a given scheduling domain. Simply
5940 * finds the closest node not already in the @used_nodes map.
5942 * Should use nodemask_t.
5944 static int find_next_best_node(int node
, unsigned long *used_nodes
)
5946 int i
, n
, val
, min_val
, best_node
= 0;
5950 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5951 /* Start at @node */
5952 n
= (node
+ i
) % MAX_NUMNODES
;
5954 if (!nr_cpus_node(n
))
5957 /* Skip already used nodes */
5958 if (test_bit(n
, used_nodes
))
5961 /* Simple min distance search */
5962 val
= node_distance(node
, n
);
5964 if (val
< min_val
) {
5970 set_bit(best_node
, used_nodes
);
5975 * sched_domain_node_span - get a cpumask for a node's sched_domain
5976 * @node: node whose cpumask we're constructing
5977 * @size: number of nodes to include in this span
5979 * Given a node, construct a good cpumask for its sched_domain to span. It
5980 * should be one that prevents unnecessary balancing, but also spreads tasks
5983 static cpumask_t
sched_domain_node_span(int node
)
5985 DECLARE_BITMAP(used_nodes
, MAX_NUMNODES
);
5986 cpumask_t span
, nodemask
;
5990 bitmap_zero(used_nodes
, MAX_NUMNODES
);
5992 nodemask
= node_to_cpumask(node
);
5993 cpus_or(span
, span
, nodemask
);
5994 set_bit(node
, used_nodes
);
5996 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
5997 int next_node
= find_next_best_node(node
, used_nodes
);
5999 nodemask
= node_to_cpumask(next_node
);
6000 cpus_or(span
, span
, nodemask
);
6007 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
6010 * SMT sched-domains:
6012 #ifdef CONFIG_SCHED_SMT
6013 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
6014 static DEFINE_PER_CPU(struct sched_group
, sched_group_cpus
);
6017 cpu_to_cpu_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
)
6020 *sg
= &per_cpu(sched_group_cpus
, cpu
);
6026 * multi-core sched-domains:
6028 #ifdef CONFIG_SCHED_MC
6029 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
6030 static DEFINE_PER_CPU(struct sched_group
, sched_group_core
);
6033 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6035 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
)
6038 cpumask_t mask
= per_cpu(cpu_sibling_map
, cpu
);
6039 cpus_and(mask
, mask
, *cpu_map
);
6040 group
= first_cpu(mask
);
6042 *sg
= &per_cpu(sched_group_core
, group
);
6045 #elif defined(CONFIG_SCHED_MC)
6047 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
)
6050 *sg
= &per_cpu(sched_group_core
, cpu
);
6055 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
6056 static DEFINE_PER_CPU(struct sched_group
, sched_group_phys
);
6059 cpu_to_phys_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
)
6062 #ifdef CONFIG_SCHED_MC
6063 cpumask_t mask
= cpu_coregroup_map(cpu
);
6064 cpus_and(mask
, mask
, *cpu_map
);
6065 group
= first_cpu(mask
);
6066 #elif defined(CONFIG_SCHED_SMT)
6067 cpumask_t mask
= per_cpu(cpu_sibling_map
, cpu
);
6068 cpus_and(mask
, mask
, *cpu_map
);
6069 group
= first_cpu(mask
);
6074 *sg
= &per_cpu(sched_group_phys
, group
);
6080 * The init_sched_build_groups can't handle what we want to do with node
6081 * groups, so roll our own. Now each node has its own list of groups which
6082 * gets dynamically allocated.
6084 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
6085 static struct sched_group
**sched_group_nodes_bycpu
[NR_CPUS
];
6087 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
6088 static DEFINE_PER_CPU(struct sched_group
, sched_group_allnodes
);
6090 static int cpu_to_allnodes_group(int cpu
, const cpumask_t
*cpu_map
,
6091 struct sched_group
**sg
)
6093 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(cpu
));
6096 cpus_and(nodemask
, nodemask
, *cpu_map
);
6097 group
= first_cpu(nodemask
);
6100 *sg
= &per_cpu(sched_group_allnodes
, group
);
6104 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
6106 struct sched_group
*sg
= group_head
;
6112 for_each_cpu_mask(j
, sg
->cpumask
) {
6113 struct sched_domain
*sd
;
6115 sd
= &per_cpu(phys_domains
, j
);
6116 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
6118 * Only add "power" once for each
6124 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
6127 } while (sg
!= group_head
);
6132 /* Free memory allocated for various sched_group structures */
6133 static void free_sched_groups(const cpumask_t
*cpu_map
)
6137 for_each_cpu_mask(cpu
, *cpu_map
) {
6138 struct sched_group
**sched_group_nodes
6139 = sched_group_nodes_bycpu
[cpu
];
6141 if (!sched_group_nodes
)
6144 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6145 cpumask_t nodemask
= node_to_cpumask(i
);
6146 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
6148 cpus_and(nodemask
, nodemask
, *cpu_map
);
6149 if (cpus_empty(nodemask
))
6159 if (oldsg
!= sched_group_nodes
[i
])
6162 kfree(sched_group_nodes
);
6163 sched_group_nodes_bycpu
[cpu
] = NULL
;
6167 static void free_sched_groups(const cpumask_t
*cpu_map
)
6173 * Initialize sched groups cpu_power.
6175 * cpu_power indicates the capacity of sched group, which is used while
6176 * distributing the load between different sched groups in a sched domain.
6177 * Typically cpu_power for all the groups in a sched domain will be same unless
6178 * there are asymmetries in the topology. If there are asymmetries, group
6179 * having more cpu_power will pickup more load compared to the group having
6182 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6183 * the maximum number of tasks a group can handle in the presence of other idle
6184 * or lightly loaded groups in the same sched domain.
6186 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
6188 struct sched_domain
*child
;
6189 struct sched_group
*group
;
6191 WARN_ON(!sd
|| !sd
->groups
);
6193 if (cpu
!= first_cpu(sd
->groups
->cpumask
))
6198 sd
->groups
->__cpu_power
= 0;
6201 * For perf policy, if the groups in child domain share resources
6202 * (for example cores sharing some portions of the cache hierarchy
6203 * or SMT), then set this domain groups cpu_power such that each group
6204 * can handle only one task, when there are other idle groups in the
6205 * same sched domain.
6207 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
6209 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
6210 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
6215 * add cpu_power of each child group to this groups cpu_power
6217 group
= child
->groups
;
6219 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
6220 group
= group
->next
;
6221 } while (group
!= child
->groups
);
6225 * Build sched domains for a given set of cpus and attach the sched domains
6226 * to the individual cpus
6228 static int build_sched_domains(const cpumask_t
*cpu_map
)
6232 struct sched_group
**sched_group_nodes
= NULL
;
6233 int sd_allnodes
= 0;
6236 * Allocate the per-node list of sched groups
6238 sched_group_nodes
= kcalloc(MAX_NUMNODES
, sizeof(struct sched_group
*),
6240 if (!sched_group_nodes
) {
6241 printk(KERN_WARNING
"Can not alloc sched group node list\n");
6244 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
6248 * Set up domains for cpus specified by the cpu_map.
6250 for_each_cpu_mask(i
, *cpu_map
) {
6251 struct sched_domain
*sd
= NULL
, *p
;
6252 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(i
));
6254 cpus_and(nodemask
, nodemask
, *cpu_map
);
6257 if (cpus_weight(*cpu_map
) >
6258 SD_NODES_PER_DOMAIN
*cpus_weight(nodemask
)) {
6259 sd
= &per_cpu(allnodes_domains
, i
);
6260 *sd
= SD_ALLNODES_INIT
;
6261 sd
->span
= *cpu_map
;
6262 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
);
6268 sd
= &per_cpu(node_domains
, i
);
6270 sd
->span
= sched_domain_node_span(cpu_to_node(i
));
6274 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6278 sd
= &per_cpu(phys_domains
, i
);
6280 sd
->span
= nodemask
;
6284 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
);
6286 #ifdef CONFIG_SCHED_MC
6288 sd
= &per_cpu(core_domains
, i
);
6290 sd
->span
= cpu_coregroup_map(i
);
6291 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6294 cpu_to_core_group(i
, cpu_map
, &sd
->groups
);
6297 #ifdef CONFIG_SCHED_SMT
6299 sd
= &per_cpu(cpu_domains
, i
);
6300 *sd
= SD_SIBLING_INIT
;
6301 sd
->span
= per_cpu(cpu_sibling_map
, i
);
6302 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6305 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
);
6309 #ifdef CONFIG_SCHED_SMT
6310 /* Set up CPU (sibling) groups */
6311 for_each_cpu_mask(i
, *cpu_map
) {
6312 cpumask_t this_sibling_map
= per_cpu(cpu_sibling_map
, i
);
6313 cpus_and(this_sibling_map
, this_sibling_map
, *cpu_map
);
6314 if (i
!= first_cpu(this_sibling_map
))
6317 init_sched_build_groups(this_sibling_map
, cpu_map
,
6322 #ifdef CONFIG_SCHED_MC
6323 /* Set up multi-core groups */
6324 for_each_cpu_mask(i
, *cpu_map
) {
6325 cpumask_t this_core_map
= cpu_coregroup_map(i
);
6326 cpus_and(this_core_map
, this_core_map
, *cpu_map
);
6327 if (i
!= first_cpu(this_core_map
))
6329 init_sched_build_groups(this_core_map
, cpu_map
,
6330 &cpu_to_core_group
);
6334 /* Set up physical groups */
6335 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6336 cpumask_t nodemask
= node_to_cpumask(i
);
6338 cpus_and(nodemask
, nodemask
, *cpu_map
);
6339 if (cpus_empty(nodemask
))
6342 init_sched_build_groups(nodemask
, cpu_map
, &cpu_to_phys_group
);
6346 /* Set up node groups */
6348 init_sched_build_groups(*cpu_map
, cpu_map
,
6349 &cpu_to_allnodes_group
);
6351 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6352 /* Set up node groups */
6353 struct sched_group
*sg
, *prev
;
6354 cpumask_t nodemask
= node_to_cpumask(i
);
6355 cpumask_t domainspan
;
6356 cpumask_t covered
= CPU_MASK_NONE
;
6359 cpus_and(nodemask
, nodemask
, *cpu_map
);
6360 if (cpus_empty(nodemask
)) {
6361 sched_group_nodes
[i
] = NULL
;
6365 domainspan
= sched_domain_node_span(i
);
6366 cpus_and(domainspan
, domainspan
, *cpu_map
);
6368 sg
= kmalloc_node(sizeof(struct sched_group
), GFP_KERNEL
, i
);
6370 printk(KERN_WARNING
"Can not alloc domain group for "
6374 sched_group_nodes
[i
] = sg
;
6375 for_each_cpu_mask(j
, nodemask
) {
6376 struct sched_domain
*sd
;
6378 sd
= &per_cpu(node_domains
, j
);
6381 sg
->__cpu_power
= 0;
6382 sg
->cpumask
= nodemask
;
6384 cpus_or(covered
, covered
, nodemask
);
6387 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
6388 cpumask_t tmp
, notcovered
;
6389 int n
= (i
+ j
) % MAX_NUMNODES
;
6391 cpus_complement(notcovered
, covered
);
6392 cpus_and(tmp
, notcovered
, *cpu_map
);
6393 cpus_and(tmp
, tmp
, domainspan
);
6394 if (cpus_empty(tmp
))
6397 nodemask
= node_to_cpumask(n
);
6398 cpus_and(tmp
, tmp
, nodemask
);
6399 if (cpus_empty(tmp
))
6402 sg
= kmalloc_node(sizeof(struct sched_group
),
6406 "Can not alloc domain group for node %d\n", j
);
6409 sg
->__cpu_power
= 0;
6411 sg
->next
= prev
->next
;
6412 cpus_or(covered
, covered
, tmp
);
6419 /* Calculate CPU power for physical packages and nodes */
6420 #ifdef CONFIG_SCHED_SMT
6421 for_each_cpu_mask(i
, *cpu_map
) {
6422 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
);
6424 init_sched_groups_power(i
, sd
);
6427 #ifdef CONFIG_SCHED_MC
6428 for_each_cpu_mask(i
, *cpu_map
) {
6429 struct sched_domain
*sd
= &per_cpu(core_domains
, i
);
6431 init_sched_groups_power(i
, sd
);
6435 for_each_cpu_mask(i
, *cpu_map
) {
6436 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
);
6438 init_sched_groups_power(i
, sd
);
6442 for (i
= 0; i
< MAX_NUMNODES
; i
++)
6443 init_numa_sched_groups_power(sched_group_nodes
[i
]);
6446 struct sched_group
*sg
;
6448 cpu_to_allnodes_group(first_cpu(*cpu_map
), cpu_map
, &sg
);
6449 init_numa_sched_groups_power(sg
);
6453 /* Attach the domains */
6454 for_each_cpu_mask(i
, *cpu_map
) {
6455 struct sched_domain
*sd
;
6456 #ifdef CONFIG_SCHED_SMT
6457 sd
= &per_cpu(cpu_domains
, i
);
6458 #elif defined(CONFIG_SCHED_MC)
6459 sd
= &per_cpu(core_domains
, i
);
6461 sd
= &per_cpu(phys_domains
, i
);
6463 cpu_attach_domain(sd
, i
);
6470 free_sched_groups(cpu_map
);
6475 static cpumask_t
*doms_cur
; /* current sched domains */
6476 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
6479 * Special case: If a kmalloc of a doms_cur partition (array of
6480 * cpumask_t) fails, then fallback to a single sched domain,
6481 * as determined by the single cpumask_t fallback_doms.
6483 static cpumask_t fallback_doms
;
6486 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6487 * For now this just excludes isolated cpus, but could be used to
6488 * exclude other special cases in the future.
6490 static int arch_init_sched_domains(const cpumask_t
*cpu_map
)
6495 doms_cur
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
6497 doms_cur
= &fallback_doms
;
6498 cpus_andnot(*doms_cur
, *cpu_map
, cpu_isolated_map
);
6499 err
= build_sched_domains(doms_cur
);
6500 register_sched_domain_sysctl();
6505 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
)
6507 free_sched_groups(cpu_map
);
6511 * Detach sched domains from a group of cpus specified in cpu_map
6512 * These cpus will now be attached to the NULL domain
6514 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
6518 unregister_sched_domain_sysctl();
6520 for_each_cpu_mask(i
, *cpu_map
)
6521 cpu_attach_domain(NULL
, i
);
6522 synchronize_sched();
6523 arch_destroy_sched_domains(cpu_map
);
6527 * Partition sched domains as specified by the 'ndoms_new'
6528 * cpumasks in the array doms_new[] of cpumasks. This compares
6529 * doms_new[] to the current sched domain partitioning, doms_cur[].
6530 * It destroys each deleted domain and builds each new domain.
6532 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6533 * The masks don't intersect (don't overlap.) We should setup one
6534 * sched domain for each mask. CPUs not in any of the cpumasks will
6535 * not be load balanced. If the same cpumask appears both in the
6536 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6539 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6540 * ownership of it and will kfree it when done with it. If the caller
6541 * failed the kmalloc call, then it can pass in doms_new == NULL,
6542 * and partition_sched_domains() will fallback to the single partition
6545 * Call with hotplug lock held
6547 void partition_sched_domains(int ndoms_new
, cpumask_t
*doms_new
)
6551 /* always unregister in case we don't destroy any domains */
6552 unregister_sched_domain_sysctl();
6554 if (doms_new
== NULL
) {
6556 doms_new
= &fallback_doms
;
6557 cpus_andnot(doms_new
[0], cpu_online_map
, cpu_isolated_map
);
6560 /* Destroy deleted domains */
6561 for (i
= 0; i
< ndoms_cur
; i
++) {
6562 for (j
= 0; j
< ndoms_new
; j
++) {
6563 if (cpus_equal(doms_cur
[i
], doms_new
[j
]))
6566 /* no match - a current sched domain not in new doms_new[] */
6567 detach_destroy_domains(doms_cur
+ i
);
6572 /* Build new domains */
6573 for (i
= 0; i
< ndoms_new
; i
++) {
6574 for (j
= 0; j
< ndoms_cur
; j
++) {
6575 if (cpus_equal(doms_new
[i
], doms_cur
[j
]))
6578 /* no match - add a new doms_new */
6579 build_sched_domains(doms_new
+ i
);
6584 /* Remember the new sched domains */
6585 if (doms_cur
!= &fallback_doms
)
6587 doms_cur
= doms_new
;
6588 ndoms_cur
= ndoms_new
;
6590 register_sched_domain_sysctl();
6593 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6594 static int arch_reinit_sched_domains(void)
6598 mutex_lock(&sched_hotcpu_mutex
);
6599 detach_destroy_domains(&cpu_online_map
);
6600 err
= arch_init_sched_domains(&cpu_online_map
);
6601 mutex_unlock(&sched_hotcpu_mutex
);
6606 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
6610 if (buf
[0] != '0' && buf
[0] != '1')
6614 sched_smt_power_savings
= (buf
[0] == '1');
6616 sched_mc_power_savings
= (buf
[0] == '1');
6618 ret
= arch_reinit_sched_domains();
6620 return ret
? ret
: count
;
6623 #ifdef CONFIG_SCHED_MC
6624 static ssize_t
sched_mc_power_savings_show(struct sys_device
*dev
, char *page
)
6626 return sprintf(page
, "%u\n", sched_mc_power_savings
);
6628 static ssize_t
sched_mc_power_savings_store(struct sys_device
*dev
,
6629 const char *buf
, size_t count
)
6631 return sched_power_savings_store(buf
, count
, 0);
6633 static SYSDEV_ATTR(sched_mc_power_savings
, 0644, sched_mc_power_savings_show
,
6634 sched_mc_power_savings_store
);
6637 #ifdef CONFIG_SCHED_SMT
6638 static ssize_t
sched_smt_power_savings_show(struct sys_device
*dev
, char *page
)
6640 return sprintf(page
, "%u\n", sched_smt_power_savings
);
6642 static ssize_t
sched_smt_power_savings_store(struct sys_device
*dev
,
6643 const char *buf
, size_t count
)
6645 return sched_power_savings_store(buf
, count
, 1);
6647 static SYSDEV_ATTR(sched_smt_power_savings
, 0644, sched_smt_power_savings_show
,
6648 sched_smt_power_savings_store
);
6651 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
6655 #ifdef CONFIG_SCHED_SMT
6657 err
= sysfs_create_file(&cls
->kset
.kobj
,
6658 &attr_sched_smt_power_savings
.attr
);
6660 #ifdef CONFIG_SCHED_MC
6661 if (!err
&& mc_capable())
6662 err
= sysfs_create_file(&cls
->kset
.kobj
,
6663 &attr_sched_mc_power_savings
.attr
);
6670 * Force a reinitialization of the sched domains hierarchy. The domains
6671 * and groups cannot be updated in place without racing with the balancing
6672 * code, so we temporarily attach all running cpus to the NULL domain
6673 * which will prevent rebalancing while the sched domains are recalculated.
6675 static int update_sched_domains(struct notifier_block
*nfb
,
6676 unsigned long action
, void *hcpu
)
6679 case CPU_UP_PREPARE
:
6680 case CPU_UP_PREPARE_FROZEN
:
6681 case CPU_DOWN_PREPARE
:
6682 case CPU_DOWN_PREPARE_FROZEN
:
6683 detach_destroy_domains(&cpu_online_map
);
6686 case CPU_UP_CANCELED
:
6687 case CPU_UP_CANCELED_FROZEN
:
6688 case CPU_DOWN_FAILED
:
6689 case CPU_DOWN_FAILED_FROZEN
:
6691 case CPU_ONLINE_FROZEN
:
6693 case CPU_DEAD_FROZEN
:
6695 * Fall through and re-initialise the domains.
6702 /* The hotplug lock is already held by cpu_up/cpu_down */
6703 arch_init_sched_domains(&cpu_online_map
);
6708 void __init
sched_init_smp(void)
6710 cpumask_t non_isolated_cpus
;
6712 mutex_lock(&sched_hotcpu_mutex
);
6713 arch_init_sched_domains(&cpu_online_map
);
6714 cpus_andnot(non_isolated_cpus
, cpu_possible_map
, cpu_isolated_map
);
6715 if (cpus_empty(non_isolated_cpus
))
6716 cpu_set(smp_processor_id(), non_isolated_cpus
);
6717 mutex_unlock(&sched_hotcpu_mutex
);
6718 /* XXX: Theoretical race here - CPU may be hotplugged now */
6719 hotcpu_notifier(update_sched_domains
, 0);
6721 /* Move init over to a non-isolated CPU */
6722 if (set_cpus_allowed(current
, non_isolated_cpus
) < 0)
6724 sched_init_granularity();
6727 void __init
sched_init_smp(void)
6729 sched_init_granularity();
6731 #endif /* CONFIG_SMP */
6733 int in_sched_functions(unsigned long addr
)
6735 return in_lock_functions(addr
) ||
6736 (addr
>= (unsigned long)__sched_text_start
6737 && addr
< (unsigned long)__sched_text_end
);
6740 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
6742 cfs_rq
->tasks_timeline
= RB_ROOT
;
6743 #ifdef CONFIG_FAIR_GROUP_SCHED
6746 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
6749 void __init
sched_init(void)
6751 int highest_cpu
= 0;
6754 for_each_possible_cpu(i
) {
6755 struct rt_prio_array
*array
;
6759 spin_lock_init(&rq
->lock
);
6760 lockdep_set_class(&rq
->lock
, &rq
->rq_lock_key
);
6763 init_cfs_rq(&rq
->cfs
, rq
);
6764 #ifdef CONFIG_FAIR_GROUP_SCHED
6765 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
6767 struct cfs_rq
*cfs_rq
= &per_cpu(init_cfs_rq
, i
);
6768 struct sched_entity
*se
=
6769 &per_cpu(init_sched_entity
, i
);
6771 init_cfs_rq_p
[i
] = cfs_rq
;
6772 init_cfs_rq(cfs_rq
, rq
);
6773 cfs_rq
->tg
= &init_task_group
;
6774 list_add(&cfs_rq
->leaf_cfs_rq_list
,
6775 &rq
->leaf_cfs_rq_list
);
6777 init_sched_entity_p
[i
] = se
;
6778 se
->cfs_rq
= &rq
->cfs
;
6780 se
->load
.weight
= init_task_group_load
;
6781 se
->load
.inv_weight
=
6782 div64_64(1ULL<<32, init_task_group_load
);
6785 init_task_group
.shares
= init_task_group_load
;
6786 spin_lock_init(&init_task_group
.lock
);
6789 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
6790 rq
->cpu_load
[j
] = 0;
6793 rq
->active_balance
= 0;
6794 rq
->next_balance
= jiffies
;
6797 rq
->migration_thread
= NULL
;
6798 INIT_LIST_HEAD(&rq
->migration_queue
);
6800 atomic_set(&rq
->nr_iowait
, 0);
6802 array
= &rq
->rt
.active
;
6803 for (j
= 0; j
< MAX_RT_PRIO
; j
++) {
6804 INIT_LIST_HEAD(array
->queue
+ j
);
6805 __clear_bit(j
, array
->bitmap
);
6808 /* delimiter for bitsearch: */
6809 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
6812 set_load_weight(&init_task
);
6814 #ifdef CONFIG_PREEMPT_NOTIFIERS
6815 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
6819 nr_cpu_ids
= highest_cpu
+ 1;
6820 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
, NULL
);
6823 #ifdef CONFIG_RT_MUTEXES
6824 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
6828 * The boot idle thread does lazy MMU switching as well:
6830 atomic_inc(&init_mm
.mm_count
);
6831 enter_lazy_tlb(&init_mm
, current
);
6834 * Make us the idle thread. Technically, schedule() should not be
6835 * called from this thread, however somewhere below it might be,
6836 * but because we are the idle thread, we just pick up running again
6837 * when this runqueue becomes "idle".
6839 init_idle(current
, smp_processor_id());
6841 * During early bootup we pretend to be a normal task:
6843 current
->sched_class
= &fair_sched_class
;
6846 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6847 void __might_sleep(char *file
, int line
)
6850 static unsigned long prev_jiffy
; /* ratelimiting */
6852 if ((in_atomic() || irqs_disabled()) &&
6853 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
6854 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
6856 prev_jiffy
= jiffies
;
6857 printk(KERN_ERR
"BUG: sleeping function called from invalid"
6858 " context at %s:%d\n", file
, line
);
6859 printk("in_atomic():%d, irqs_disabled():%d\n",
6860 in_atomic(), irqs_disabled());
6861 debug_show_held_locks(current
);
6862 if (irqs_disabled())
6863 print_irqtrace_events(current
);
6868 EXPORT_SYMBOL(__might_sleep
);
6871 #ifdef CONFIG_MAGIC_SYSRQ
6872 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
6875 update_rq_clock(rq
);
6876 on_rq
= p
->se
.on_rq
;
6878 deactivate_task(rq
, p
, 0);
6879 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
6881 activate_task(rq
, p
, 0);
6882 resched_task(rq
->curr
);
6886 void normalize_rt_tasks(void)
6888 struct task_struct
*g
, *p
;
6889 unsigned long flags
;
6892 read_lock_irq(&tasklist_lock
);
6893 do_each_thread(g
, p
) {
6895 * Only normalize user tasks:
6900 p
->se
.exec_start
= 0;
6901 #ifdef CONFIG_SCHEDSTATS
6902 p
->se
.wait_start
= 0;
6903 p
->se
.sleep_start
= 0;
6904 p
->se
.block_start
= 0;
6906 task_rq(p
)->clock
= 0;
6910 * Renice negative nice level userspace
6913 if (TASK_NICE(p
) < 0 && p
->mm
)
6914 set_user_nice(p
, 0);
6918 spin_lock_irqsave(&p
->pi_lock
, flags
);
6919 rq
= __task_rq_lock(p
);
6921 normalize_task(rq
, p
);
6923 __task_rq_unlock(rq
);
6924 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6925 } while_each_thread(g
, p
);
6927 read_unlock_irq(&tasklist_lock
);
6930 #endif /* CONFIG_MAGIC_SYSRQ */
6934 * These functions are only useful for the IA64 MCA handling.
6936 * They can only be called when the whole system has been
6937 * stopped - every CPU needs to be quiescent, and no scheduling
6938 * activity can take place. Using them for anything else would
6939 * be a serious bug, and as a result, they aren't even visible
6940 * under any other configuration.
6944 * curr_task - return the current task for a given cpu.
6945 * @cpu: the processor in question.
6947 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6949 struct task_struct
*curr_task(int cpu
)
6951 return cpu_curr(cpu
);
6955 * set_curr_task - set the current task for a given cpu.
6956 * @cpu: the processor in question.
6957 * @p: the task pointer to set.
6959 * Description: This function must only be used when non-maskable interrupts
6960 * are serviced on a separate stack. It allows the architecture to switch the
6961 * notion of the current task on a cpu in a non-blocking manner. This function
6962 * must be called with all CPU's synchronized, and interrupts disabled, the
6963 * and caller must save the original value of the current task (see
6964 * curr_task() above) and restore that value before reenabling interrupts and
6965 * re-starting the system.
6967 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6969 void set_curr_task(int cpu
, struct task_struct
*p
)
6976 #ifdef CONFIG_FAIR_GROUP_SCHED
6978 /* allocate runqueue etc for a new task group */
6979 struct task_group
*sched_create_group(void)
6981 struct task_group
*tg
;
6982 struct cfs_rq
*cfs_rq
;
6983 struct sched_entity
*se
;
6987 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
6989 return ERR_PTR(-ENOMEM
);
6991 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * NR_CPUS
, GFP_KERNEL
);
6994 tg
->se
= kzalloc(sizeof(se
) * NR_CPUS
, GFP_KERNEL
);
6998 for_each_possible_cpu(i
) {
7001 cfs_rq
= kmalloc_node(sizeof(struct cfs_rq
), GFP_KERNEL
,
7006 se
= kmalloc_node(sizeof(struct sched_entity
), GFP_KERNEL
,
7011 memset(cfs_rq
, 0, sizeof(struct cfs_rq
));
7012 memset(se
, 0, sizeof(struct sched_entity
));
7014 tg
->cfs_rq
[i
] = cfs_rq
;
7015 init_cfs_rq(cfs_rq
, rq
);
7019 se
->cfs_rq
= &rq
->cfs
;
7021 se
->load
.weight
= NICE_0_LOAD
;
7022 se
->load
.inv_weight
= div64_64(1ULL<<32, NICE_0_LOAD
);
7026 for_each_possible_cpu(i
) {
7028 cfs_rq
= tg
->cfs_rq
[i
];
7029 list_add_rcu(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
7032 tg
->shares
= NICE_0_LOAD
;
7033 spin_lock_init(&tg
->lock
);
7038 for_each_possible_cpu(i
) {
7040 kfree(tg
->cfs_rq
[i
]);
7048 return ERR_PTR(-ENOMEM
);
7051 /* rcu callback to free various structures associated with a task group */
7052 static void free_sched_group(struct rcu_head
*rhp
)
7054 struct task_group
*tg
= container_of(rhp
, struct task_group
, rcu
);
7055 struct cfs_rq
*cfs_rq
;
7056 struct sched_entity
*se
;
7059 /* now it should be safe to free those cfs_rqs */
7060 for_each_possible_cpu(i
) {
7061 cfs_rq
= tg
->cfs_rq
[i
];
7073 /* Destroy runqueue etc associated with a task group */
7074 void sched_destroy_group(struct task_group
*tg
)
7076 struct cfs_rq
*cfs_rq
= NULL
;
7079 for_each_possible_cpu(i
) {
7080 cfs_rq
= tg
->cfs_rq
[i
];
7081 list_del_rcu(&cfs_rq
->leaf_cfs_rq_list
);
7086 /* wait for possible concurrent references to cfs_rqs complete */
7087 call_rcu(&tg
->rcu
, free_sched_group
);
7090 /* change task's runqueue when it moves between groups.
7091 * The caller of this function should have put the task in its new group
7092 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7093 * reflect its new group.
7095 void sched_move_task(struct task_struct
*tsk
)
7098 unsigned long flags
;
7101 rq
= task_rq_lock(tsk
, &flags
);
7103 if (tsk
->sched_class
!= &fair_sched_class
) {
7104 set_task_cfs_rq(tsk
, task_cpu(tsk
));
7108 update_rq_clock(rq
);
7110 running
= task_current(rq
, tsk
);
7111 on_rq
= tsk
->se
.on_rq
;
7114 dequeue_task(rq
, tsk
, 0);
7115 if (unlikely(running
))
7116 tsk
->sched_class
->put_prev_task(rq
, tsk
);
7119 set_task_cfs_rq(tsk
, task_cpu(tsk
));
7122 if (unlikely(running
))
7123 tsk
->sched_class
->set_curr_task(rq
);
7124 enqueue_task(rq
, tsk
, 0);
7128 task_rq_unlock(rq
, &flags
);
7131 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
7133 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
7134 struct rq
*rq
= cfs_rq
->rq
;
7137 spin_lock_irq(&rq
->lock
);
7141 dequeue_entity(cfs_rq
, se
, 0);
7143 se
->load
.weight
= shares
;
7144 se
->load
.inv_weight
= div64_64((1ULL<<32), shares
);
7147 enqueue_entity(cfs_rq
, se
, 0);
7149 spin_unlock_irq(&rq
->lock
);
7152 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
7157 * A weight of 0 or 1 can cause arithmetics problems.
7158 * (The default weight is 1024 - so there's no practical
7159 * limitation from this.)
7164 spin_lock(&tg
->lock
);
7165 if (tg
->shares
== shares
)
7168 tg
->shares
= shares
;
7169 for_each_possible_cpu(i
)
7170 set_se_shares(tg
->se
[i
], shares
);
7173 spin_unlock(&tg
->lock
);
7177 unsigned long sched_group_shares(struct task_group
*tg
)
7182 #endif /* CONFIG_FAIR_GROUP_SCHED */
7184 #ifdef CONFIG_FAIR_CGROUP_SCHED
7186 /* return corresponding task_group object of a cgroup */
7187 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
7189 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
7190 struct task_group
, css
);
7193 static struct cgroup_subsys_state
*
7194 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
7196 struct task_group
*tg
;
7198 if (!cgrp
->parent
) {
7199 /* This is early initialization for the top cgroup */
7200 init_task_group
.css
.cgroup
= cgrp
;
7201 return &init_task_group
.css
;
7204 /* we support only 1-level deep hierarchical scheduler atm */
7205 if (cgrp
->parent
->parent
)
7206 return ERR_PTR(-EINVAL
);
7208 tg
= sched_create_group();
7210 return ERR_PTR(-ENOMEM
);
7212 /* Bind the cgroup to task_group object we just created */
7213 tg
->css
.cgroup
= cgrp
;
7219 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
7221 struct task_group
*tg
= cgroup_tg(cgrp
);
7223 sched_destroy_group(tg
);
7227 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
7228 struct task_struct
*tsk
)
7230 /* We don't support RT-tasks being in separate groups */
7231 if (tsk
->sched_class
!= &fair_sched_class
)
7238 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
7239 struct cgroup
*old_cont
, struct task_struct
*tsk
)
7241 sched_move_task(tsk
);
7244 static int cpu_shares_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
7247 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
7250 static u64
cpu_shares_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
7252 struct task_group
*tg
= cgroup_tg(cgrp
);
7254 return (u64
) tg
->shares
;
7257 static struct cftype cpu_files
[] = {
7260 .read_uint
= cpu_shares_read_uint
,
7261 .write_uint
= cpu_shares_write_uint
,
7265 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
7267 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
7270 struct cgroup_subsys cpu_cgroup_subsys
= {
7272 .create
= cpu_cgroup_create
,
7273 .destroy
= cpu_cgroup_destroy
,
7274 .can_attach
= cpu_cgroup_can_attach
,
7275 .attach
= cpu_cgroup_attach
,
7276 .populate
= cpu_cgroup_populate
,
7277 .subsys_id
= cpu_cgroup_subsys_id
,
7281 #endif /* CONFIG_FAIR_CGROUP_SCHED */
7283 #ifdef CONFIG_CGROUP_CPUACCT
7286 * CPU accounting code for task groups.
7288 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7289 * (balbir@in.ibm.com).
7292 /* track cpu usage of a group of tasks */
7294 struct cgroup_subsys_state css
;
7295 /* cpuusage holds pointer to a u64-type object on every cpu */
7299 struct cgroup_subsys cpuacct_subsys
;
7301 /* return cpu accounting group corresponding to this container */
7302 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cont
)
7304 return container_of(cgroup_subsys_state(cont
, cpuacct_subsys_id
),
7305 struct cpuacct
, css
);
7308 /* return cpu accounting group to which this task belongs */
7309 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
7311 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
7312 struct cpuacct
, css
);
7315 /* create a new cpu accounting group */
7316 static struct cgroup_subsys_state
*cpuacct_create(
7317 struct cgroup_subsys
*ss
, struct cgroup
*cont
)
7319 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
7322 return ERR_PTR(-ENOMEM
);
7324 ca
->cpuusage
= alloc_percpu(u64
);
7325 if (!ca
->cpuusage
) {
7327 return ERR_PTR(-ENOMEM
);
7333 /* destroy an existing cpu accounting group */
7335 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
7337 struct cpuacct
*ca
= cgroup_ca(cont
);
7339 free_percpu(ca
->cpuusage
);
7343 /* return total cpu usage (in nanoseconds) of a group */
7344 static u64
cpuusage_read(struct cgroup
*cont
, struct cftype
*cft
)
7346 struct cpuacct
*ca
= cgroup_ca(cont
);
7347 u64 totalcpuusage
= 0;
7350 for_each_possible_cpu(i
) {
7351 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, i
);
7354 * Take rq->lock to make 64-bit addition safe on 32-bit
7357 spin_lock_irq(&cpu_rq(i
)->lock
);
7358 totalcpuusage
+= *cpuusage
;
7359 spin_unlock_irq(&cpu_rq(i
)->lock
);
7362 return totalcpuusage
;
7365 static struct cftype files
[] = {
7368 .read_uint
= cpuusage_read
,
7372 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
7374 return cgroup_add_files(cont
, ss
, files
, ARRAY_SIZE(files
));
7378 * charge this task's execution time to its accounting group.
7380 * called with rq->lock held.
7382 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
7386 if (!cpuacct_subsys
.active
)
7391 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, task_cpu(tsk
));
7393 *cpuusage
+= cputime
;
7397 struct cgroup_subsys cpuacct_subsys
= {
7399 .create
= cpuacct_create
,
7400 .destroy
= cpuacct_destroy
,
7401 .populate
= cpuacct_populate
,
7402 .subsys_id
= cpuacct_subsys_id
,
7404 #endif /* CONFIG_CGROUP_CPUACCT */