2 * SN Platform GRU Driver
4 * KERNEL SERVICES THAT USE THE GRU
6 * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 #include <linux/device.h>
29 #include <linux/miscdevice.h>
30 #include <linux/proc_fs.h>
31 #include <linux/interrupt.h>
32 #include <linux/uaccess.h>
33 #include <linux/delay.h>
36 #include "grutables.h"
37 #include "grukservices.h"
38 #include "gru_instructions.h"
39 #include <asm/uv/uv_hub.h>
44 * The following is an interim algorithm for management of kernel GRU
45 * resources. This will likely be replaced when we better understand the
46 * kernel/user requirements.
48 * Blade percpu resources reserved for kernel use. These resources are
49 * reserved whenever the the kernel context for the blade is loaded. Note
50 * that the kernel context is not guaranteed to be always available. It is
51 * loaded on demand & can be stolen by a user if the user demand exceeds the
52 * kernel demand. The kernel can always reload the kernel context but
53 * a SLEEP may be required!!!.
57 * Each blade has one "kernel context" that owns GRU kernel resources
58 * located on the blade. Kernel drivers use GRU resources in this context
59 * for sending messages, zeroing memory, etc.
61 * The kernel context is dynamically loaded on demand. If it is not in
62 * use by the kernel, the kernel context can be unloaded & given to a user.
63 * The kernel context will be reloaded when needed. This may require that
64 * a context be stolen from a user.
65 * NOTE: frequent unloading/reloading of the kernel context is
66 * expensive. We are depending on batch schedulers, cpusets, sane
67 * drivers or some other mechanism to prevent the need for frequent
70 * The kernel context consists of two parts:
71 * - 1 CB & a few DSRs that are reserved for each cpu on the blade.
72 * Each cpu has it's own private resources & does not share them
73 * with other cpus. These resources are used serially, ie,
74 * locked, used & unlocked on each call to a function in
76 * (Now that we have dynamic loading of kernel contexts, I
77 * may rethink this & allow sharing between cpus....)
79 * - Additional resources can be reserved long term & used directly
80 * by UV drivers located in the kernel. Drivers using these GRU
81 * resources can use asynchronous GRU instructions that send
82 * interrupts on completion.
83 * - these resources must be explicitly locked/unlocked
84 * - locked resources prevent (obviously) the kernel
85 * context from being unloaded.
86 * - drivers using these resource directly issue their own
87 * GRU instruction and must wait/check completion.
89 * When these resources are reserved, the caller can optionally
90 * associate a wait_queue with the resources and use asynchronous
91 * GRU instructions. When an async GRU instruction completes, the
92 * driver will do a wakeup on the event.
97 #define ASYNC_HAN_TO_BID(h) ((h) - 1)
98 #define ASYNC_BID_TO_HAN(b) ((b) + 1)
99 #define ASYNC_HAN_TO_BS(h) gru_base[ASYNC_HAN_TO_BID(h)]
101 #define GRU_NUM_KERNEL_CBR 1
102 #define GRU_NUM_KERNEL_DSR_BYTES 256
103 #define GRU_NUM_KERNEL_DSR_CL (GRU_NUM_KERNEL_DSR_BYTES / \
104 GRU_CACHE_LINE_BYTES)
106 /* GRU instruction attributes for all instructions */
107 #define IMA IMA_CB_DELAY
109 /* GRU cacheline size is always 64 bytes - even on arches with 128 byte lines */
110 #define __gru_cacheline_aligned__ \
111 __attribute__((__aligned__(GRU_CACHE_LINE_BYTES)))
113 #define MAGIC 0x1234567887654321UL
115 /* Default retry count for GRU errors on kernel instructions */
116 #define EXCEPTION_RETRY_LIMIT 3
118 /* Status of message queue sections */
123 /*----------------- RESOURCE MANAGEMENT -------------------------------------*/
124 /* optimized for x86_64 */
125 struct message_queue
{
126 union gru_mesqhead head __gru_cacheline_aligned__
; /* CL 0 */
127 int qlines
; /* DW 1 */
129 void *next __gru_cacheline_aligned__
;/* CL 1 */
133 char data ____cacheline_aligned
; /* CL 2 */
136 /* First word in every message - used by mesq interface */
137 struct message_header
{
144 #define HSTATUS(mq, h) ((mq) + offsetof(struct message_queue, hstatus[h]))
147 * Reload the blade's kernel context into a GRU chiplet. Called holding
148 * the bs_kgts_sema for READ. Will steal user contexts if necessary.
150 static void gru_load_kernel_context(struct gru_blade_state
*bs
, int blade_id
)
152 struct gru_state
*gru
;
153 struct gru_thread_state
*kgts
;
157 up_read(&bs
->bs_kgts_sema
);
158 down_write(&bs
->bs_kgts_sema
);
161 bs
->bs_kgts
= gru_alloc_gts(NULL
, 0, 0, 0, 0, 0);
162 bs
->bs_kgts
->ts_user_blade_id
= blade_id
;
167 STAT(load_kernel_context
);
168 ncpus
= uv_blade_nr_possible_cpus(blade_id
);
169 kgts
->ts_cbr_au_count
= GRU_CB_COUNT_TO_AU(
170 GRU_NUM_KERNEL_CBR
* ncpus
+ bs
->bs_async_cbrs
);
171 kgts
->ts_dsr_au_count
= GRU_DS_BYTES_TO_AU(
172 GRU_NUM_KERNEL_DSR_BYTES
* ncpus
+
173 bs
->bs_async_dsr_bytes
);
174 while (!gru_assign_gru_context(kgts
)) {
176 gru_steal_context(kgts
);
178 gru_load_context(kgts
);
179 gru
= bs
->bs_kgts
->ts_gru
;
180 vaddr
= gru
->gs_gru_base_vaddr
;
181 ctxnum
= kgts
->ts_ctxnum
;
182 bs
->kernel_cb
= get_gseg_base_address_cb(vaddr
, ctxnum
, 0);
183 bs
->kernel_dsr
= get_gseg_base_address_ds(vaddr
, ctxnum
, 0);
185 downgrade_write(&bs
->bs_kgts_sema
);
189 * Free all kernel contexts that are not currently in use.
190 * Returns 0 if all freed, else number of inuse context.
192 static int gru_free_kernel_contexts(void)
194 struct gru_blade_state
*bs
;
195 struct gru_thread_state
*kgts
;
198 for (bid
= 0; bid
< GRU_MAX_BLADES
; bid
++) {
203 /* Ignore busy contexts. Don't want to block here. */
204 if (down_write_trylock(&bs
->bs_kgts_sema
)) {
206 if (kgts
&& kgts
->ts_gru
)
207 gru_unload_context(kgts
, 0);
209 up_write(&bs
->bs_kgts_sema
);
219 * Lock & load the kernel context for the specified blade.
221 static struct gru_blade_state
*gru_lock_kernel_context(int blade_id
)
223 struct gru_blade_state
*bs
;
226 STAT(lock_kernel_context
);
228 bid
= blade_id
< 0 ? uv_numa_blade_id() : blade_id
;
231 /* Handle the case where migration occured while waiting for the sema */
232 down_read(&bs
->bs_kgts_sema
);
233 if (blade_id
< 0 && bid
!= uv_numa_blade_id()) {
234 up_read(&bs
->bs_kgts_sema
);
237 if (!bs
->bs_kgts
|| !bs
->bs_kgts
->ts_gru
)
238 gru_load_kernel_context(bs
, bid
);
244 * Unlock the kernel context for the specified blade. Context is not
245 * unloaded but may be stolen before next use.
247 static void gru_unlock_kernel_context(int blade_id
)
249 struct gru_blade_state
*bs
;
251 bs
= gru_base
[blade_id
];
252 up_read(&bs
->bs_kgts_sema
);
253 STAT(unlock_kernel_context
);
257 * Reserve & get pointers to the DSR/CBRs reserved for the current cpu.
258 * - returns with preemption disabled
260 static int gru_get_cpu_resources(int dsr_bytes
, void **cb
, void **dsr
)
262 struct gru_blade_state
*bs
;
265 BUG_ON(dsr_bytes
> GRU_NUM_KERNEL_DSR_BYTES
);
267 bs
= gru_lock_kernel_context(-1);
268 lcpu
= uv_blade_processor_id();
269 *cb
= bs
->kernel_cb
+ lcpu
* GRU_HANDLE_STRIDE
;
270 *dsr
= bs
->kernel_dsr
+ lcpu
* GRU_NUM_KERNEL_DSR_BYTES
;
275 * Free the current cpus reserved DSR/CBR resources.
277 static void gru_free_cpu_resources(void *cb
, void *dsr
)
279 gru_unlock_kernel_context(uv_numa_blade_id());
284 * Reserve GRU resources to be used asynchronously.
285 * Note: currently supports only 1 reservation per blade.
288 * blade_id - blade on which resources should be reserved
289 * cbrs - number of CBRs
290 * dsr_bytes - number of DSR bytes needed
292 * handle to identify resource
293 * (0 = async resources already reserved)
295 unsigned long gru_reserve_async_resources(int blade_id
, int cbrs
, int dsr_bytes
,
296 struct completion
*cmp
)
298 struct gru_blade_state
*bs
;
299 struct gru_thread_state
*kgts
;
302 bs
= gru_base
[blade_id
];
304 down_write(&bs
->bs_kgts_sema
);
306 /* Verify no resources already reserved */
307 if (bs
->bs_async_dsr_bytes
+ bs
->bs_async_cbrs
)
309 bs
->bs_async_dsr_bytes
= dsr_bytes
;
310 bs
->bs_async_cbrs
= cbrs
;
311 bs
->bs_async_wq
= cmp
;
314 /* Resources changed. Unload context if already loaded */
315 if (kgts
&& kgts
->ts_gru
)
316 gru_unload_context(kgts
, 0);
317 ret
= ASYNC_BID_TO_HAN(blade_id
);
320 up_write(&bs
->bs_kgts_sema
);
325 * Release async resources previously reserved.
328 * han - handle to identify resources
330 void gru_release_async_resources(unsigned long han
)
332 struct gru_blade_state
*bs
= ASYNC_HAN_TO_BS(han
);
334 down_write(&bs
->bs_kgts_sema
);
335 bs
->bs_async_dsr_bytes
= 0;
336 bs
->bs_async_cbrs
= 0;
337 bs
->bs_async_wq
= NULL
;
338 up_write(&bs
->bs_kgts_sema
);
342 * Wait for async GRU instructions to complete.
345 * han - handle to identify resources
347 void gru_wait_async_cbr(unsigned long han
)
349 struct gru_blade_state
*bs
= ASYNC_HAN_TO_BS(han
);
351 wait_for_completion(bs
->bs_async_wq
);
356 * Lock previous reserved async GRU resources
359 * han - handle to identify resources
361 * cb - pointer to first CBR
362 * dsr - pointer to first DSR
364 void gru_lock_async_resource(unsigned long han
, void **cb
, void **dsr
)
366 struct gru_blade_state
*bs
= ASYNC_HAN_TO_BS(han
);
367 int blade_id
= ASYNC_HAN_TO_BID(han
);
370 gru_lock_kernel_context(blade_id
);
371 ncpus
= uv_blade_nr_possible_cpus(blade_id
);
373 *cb
= bs
->kernel_cb
+ ncpus
* GRU_HANDLE_STRIDE
;
375 *dsr
= bs
->kernel_dsr
+ ncpus
* GRU_NUM_KERNEL_DSR_BYTES
;
379 * Unlock previous reserved async GRU resources
382 * han - handle to identify resources
384 void gru_unlock_async_resource(unsigned long han
)
386 int blade_id
= ASYNC_HAN_TO_BID(han
);
388 gru_unlock_kernel_context(blade_id
);
391 /*----------------------------------------------------------------------*/
392 int gru_get_cb_exception_detail(void *cb
,
393 struct control_block_extended_exc_detail
*excdet
)
395 struct gru_control_block_extended
*cbe
;
396 struct gru_thread_state
*kgts
= NULL
;
401 * Locate kgts for cb. This algorithm is SLOW but
402 * this function is rarely called (ie., almost never).
403 * Performance does not matter.
405 for_each_possible_blade(bid
) {
408 kgts
= gru_base
[bid
]->bs_kgts
;
409 if (!kgts
|| !kgts
->ts_gru
)
411 off
= cb
- kgts
->ts_gru
->gs_gru_base_vaddr
;
417 cbrnum
= thread_cbr_number(kgts
, get_cb_number(cb
));
418 cbe
= get_cbe(GRUBASE(cb
), cbrnum
);
419 gru_flush_cache(cbe
); /* CBE not coherent */
421 excdet
->opc
= cbe
->opccpy
;
422 excdet
->exopc
= cbe
->exopccpy
;
423 excdet
->ecause
= cbe
->ecause
;
424 excdet
->exceptdet0
= cbe
->idef1upd
;
425 excdet
->exceptdet1
= cbe
->idef3upd
;
426 gru_flush_cache(cbe
);
430 char *gru_get_cb_exception_detail_str(int ret
, void *cb
,
433 struct gru_control_block_status
*gen
= (void *)cb
;
434 struct control_block_extended_exc_detail excdet
;
436 if (ret
> 0 && gen
->istatus
== CBS_EXCEPTION
) {
437 gru_get_cb_exception_detail(cb
, &excdet
);
439 "GRU:%d exception: cb %p, opc %d, exopc %d, ecause 0x%x,"
440 "excdet0 0x%lx, excdet1 0x%x", smp_processor_id(),
441 gen
, excdet
.opc
, excdet
.exopc
, excdet
.ecause
,
442 excdet
.exceptdet0
, excdet
.exceptdet1
);
444 snprintf(buf
, size
, "No exception");
449 static int gru_wait_idle_or_exception(struct gru_control_block_status
*gen
)
451 while (gen
->istatus
>= CBS_ACTIVE
) {
458 static int gru_retry_exception(void *cb
)
460 struct gru_control_block_status
*gen
= (void *)cb
;
461 struct control_block_extended_exc_detail excdet
;
462 int retry
= EXCEPTION_RETRY_LIMIT
;
465 if (gru_wait_idle_or_exception(gen
) == CBS_IDLE
)
467 if (gru_get_cb_message_queue_substatus(cb
))
468 return CBS_EXCEPTION
;
469 gru_get_cb_exception_detail(cb
, &excdet
);
470 if ((excdet
.ecause
& ~EXCEPTION_RETRY_BITS
) ||
471 (excdet
.cbrexecstatus
& CBR_EXS_ABORT_OCC
))
476 gru_flush_cache(gen
);
478 return CBS_EXCEPTION
;
481 int gru_check_status_proc(void *cb
)
483 struct gru_control_block_status
*gen
= (void *)cb
;
487 if (ret
== CBS_EXCEPTION
)
488 ret
= gru_retry_exception(cb
);
494 int gru_wait_proc(void *cb
)
496 struct gru_control_block_status
*gen
= (void *)cb
;
499 ret
= gru_wait_idle_or_exception(gen
);
500 if (ret
== CBS_EXCEPTION
)
501 ret
= gru_retry_exception(cb
);
506 void gru_abort(int ret
, void *cb
, char *str
)
508 char buf
[GRU_EXC_STR_SIZE
];
510 panic("GRU FATAL ERROR: %s - %s\n", str
,
511 gru_get_cb_exception_detail_str(ret
, cb
, buf
, sizeof(buf
)));
514 void gru_wait_abort_proc(void *cb
)
518 ret
= gru_wait_proc(cb
);
520 gru_abort(ret
, cb
, "gru_wait_abort");
524 /*------------------------------ MESSAGE QUEUES -----------------------------*/
526 /* Internal status . These are NOT returned to the user. */
527 #define MQIE_AGAIN -1 /* try again */
531 * Save/restore the "present" flag that is in the second line of 2-line
534 static inline int get_present2(void *p
)
536 struct message_header
*mhdr
= p
+ GRU_CACHE_LINE_BYTES
;
537 return mhdr
->present
;
540 static inline void restore_present2(void *p
, int val
)
542 struct message_header
*mhdr
= p
+ GRU_CACHE_LINE_BYTES
;
547 * Create a message queue.
548 * qlines - message queue size in cache lines. Includes 2-line header.
550 int gru_create_message_queue(struct gru_message_queue_desc
*mqd
,
551 void *p
, unsigned int bytes
, int nasid
, int vector
, int apicid
)
553 struct message_queue
*mq
= p
;
556 qlines
= bytes
/ GRU_CACHE_LINE_BYTES
- 2;
557 memset(mq
, 0, bytes
);
558 mq
->start
= &mq
->data
;
559 mq
->start2
= &mq
->data
+ (qlines
/ 2 - 1) * GRU_CACHE_LINE_BYTES
;
560 mq
->next
= &mq
->data
;
561 mq
->limit
= &mq
->data
+ (qlines
- 2) * GRU_CACHE_LINE_BYTES
;
565 mq
->head
= gru_mesq_head(2, qlines
/ 2 + 1);
567 mqd
->mq_gpa
= uv_gpa(mq
);
568 mqd
->qlines
= qlines
;
569 mqd
->interrupt_pnode
= UV_NASID_TO_PNODE(nasid
);
570 mqd
->interrupt_vector
= vector
;
571 mqd
->interrupt_apicid
= apicid
;
574 EXPORT_SYMBOL_GPL(gru_create_message_queue
);
577 * Send a NOOP message to a message queue
579 * 0 - if queue is full after the send. This is the normal case
580 * but various races can change this.
581 * -1 - if mesq sent successfully but queue not full
582 * >0 - unexpected error. MQE_xxx returned
584 static int send_noop_message(void *cb
, struct gru_message_queue_desc
*mqd
,
587 const struct message_header noop_header
= {
588 .present
= MQS_NOOP
, .lines
= 1};
591 struct message_header save_mhdr
, *mhdr
= mesg
;
596 gru_mesq(cb
, mqd
->mq_gpa
, gru_get_tri(mhdr
), 1, IMA
);
600 substatus
= gru_get_cb_message_queue_substatus(cb
);
603 STAT(mesq_noop_unexpected_error
);
604 ret
= MQE_UNEXPECTED_CB_ERR
;
606 case CBSS_LB_OVERFLOWED
:
607 STAT(mesq_noop_lb_overflow
);
608 ret
= MQE_CONGESTION
;
610 case CBSS_QLIMIT_REACHED
:
611 STAT(mesq_noop_qlimit_reached
);
614 case CBSS_AMO_NACKED
:
615 STAT(mesq_noop_amo_nacked
);
616 ret
= MQE_CONGESTION
;
618 case CBSS_PUT_NACKED
:
619 STAT(mesq_noop_put_nacked
);
620 m
= mqd
->mq_gpa
+ (gru_get_amo_value_head(cb
) << 6);
621 gru_vstore(cb
, m
, gru_get_tri(mesg
), XTYPE_CL
, 1, 1,
623 if (gru_wait(cb
) == CBS_IDLE
)
626 ret
= MQE_UNEXPECTED_CB_ERR
;
628 case CBSS_PAGE_OVERFLOW
:
629 STAT(mesq_noop_page_overflow
);
640 * Handle a gru_mesq full.
642 static int send_message_queue_full(void *cb
, struct gru_message_queue_desc
*mqd
,
643 void *mesg
, int lines
)
645 union gru_mesqhead mqh
;
646 unsigned int limit
, head
;
647 unsigned long avalue
;
650 /* Determine if switching to first/second half of q */
651 avalue
= gru_get_amo_value(cb
);
652 head
= gru_get_amo_value_head(cb
);
653 limit
= gru_get_amo_value_limit(cb
);
655 qlines
= mqd
->qlines
;
656 half
= (limit
!= qlines
);
659 mqh
= gru_mesq_head(qlines
/ 2 + 1, qlines
);
661 mqh
= gru_mesq_head(2, qlines
/ 2 + 1);
663 /* Try to get lock for switching head pointer */
664 gru_gamir(cb
, EOP_IR_CLR
, HSTATUS(mqd
->mq_gpa
, half
), XTYPE_DW
, IMA
);
665 if (gru_wait(cb
) != CBS_IDLE
)
667 if (!gru_get_amo_value(cb
)) {
668 STAT(mesq_qf_locked
);
669 return MQE_QUEUE_FULL
;
672 /* Got the lock. Send optional NOP if queue not full, */
674 if (send_noop_message(cb
, mqd
, mesg
)) {
675 gru_gamir(cb
, EOP_IR_INC
, HSTATUS(mqd
->mq_gpa
, half
),
677 if (gru_wait(cb
) != CBS_IDLE
)
679 STAT(mesq_qf_noop_not_full
);
685 /* Then flip queuehead to other half of queue. */
686 gru_gamer(cb
, EOP_ERR_CSWAP
, mqd
->mq_gpa
, XTYPE_DW
, mqh
.val
, avalue
,
688 if (gru_wait(cb
) != CBS_IDLE
)
691 /* If not successfully in swapping queue head, clear the hstatus lock */
692 if (gru_get_amo_value(cb
) != avalue
) {
693 STAT(mesq_qf_switch_head_failed
);
694 gru_gamir(cb
, EOP_IR_INC
, HSTATUS(mqd
->mq_gpa
, half
), XTYPE_DW
,
696 if (gru_wait(cb
) != CBS_IDLE
)
701 STAT(mesq_qf_unexpected_error
);
702 return MQE_UNEXPECTED_CB_ERR
;
706 * Send a cross-partition interrupt to the SSI that contains the target
707 * message queue. Normally, the interrupt is automatically delivered by hardware
708 * but some error conditions require explicit delivery.
710 static void send_message_queue_interrupt(struct gru_message_queue_desc
*mqd
)
712 if (mqd
->interrupt_vector
)
713 uv_hub_send_ipi(mqd
->interrupt_pnode
, mqd
->interrupt_apicid
,
714 mqd
->interrupt_vector
);
718 * Handle a PUT failure. Note: if message was a 2-line message, one of the
719 * lines might have successfully have been written. Before sending the
720 * message, "present" must be cleared in BOTH lines to prevent the receiver
721 * from prematurely seeing the full message.
723 static int send_message_put_nacked(void *cb
, struct gru_message_queue_desc
*mqd
,
724 void *mesg
, int lines
)
728 m
= mqd
->mq_gpa
+ (gru_get_amo_value_head(cb
) << 6);
730 gru_vset(cb
, m
, 0, XTYPE_CL
, lines
, 1, IMA
);
731 if (gru_wait(cb
) != CBS_IDLE
)
732 return MQE_UNEXPECTED_CB_ERR
;
734 gru_vstore(cb
, m
, gru_get_tri(mesg
), XTYPE_CL
, lines
, 1, IMA
);
735 if (gru_wait(cb
) != CBS_IDLE
)
736 return MQE_UNEXPECTED_CB_ERR
;
737 send_message_queue_interrupt(mqd
);
742 * Handle a gru_mesq failure. Some of these failures are software recoverable
745 static int send_message_failure(void *cb
, struct gru_message_queue_desc
*mqd
,
746 void *mesg
, int lines
)
748 int substatus
, ret
= 0;
750 substatus
= gru_get_cb_message_queue_substatus(cb
);
753 STAT(mesq_send_unexpected_error
);
754 ret
= MQE_UNEXPECTED_CB_ERR
;
756 case CBSS_LB_OVERFLOWED
:
757 STAT(mesq_send_lb_overflow
);
758 ret
= MQE_CONGESTION
;
760 case CBSS_QLIMIT_REACHED
:
761 STAT(mesq_send_qlimit_reached
);
762 ret
= send_message_queue_full(cb
, mqd
, mesg
, lines
);
764 case CBSS_AMO_NACKED
:
765 STAT(mesq_send_amo_nacked
);
766 ret
= MQE_CONGESTION
;
768 case CBSS_PUT_NACKED
:
769 STAT(mesq_send_put_nacked
);
770 ret
= send_message_put_nacked(cb
, mqd
, mesg
, lines
);
772 case CBSS_PAGE_OVERFLOW
:
773 STAT(mesq_page_overflow
);
782 * Send a message to a message queue
783 * mqd message queue descriptor
784 * mesg message. ust be vaddr within a GSEG
785 * bytes message size (<= 2 CL)
787 int gru_send_message_gpa(struct gru_message_queue_desc
*mqd
, void *mesg
,
790 struct message_header
*mhdr
;
793 int istatus
, clines
, ret
;
796 BUG_ON(bytes
< sizeof(int) || bytes
> 2 * GRU_CACHE_LINE_BYTES
);
798 clines
= DIV_ROUND_UP(bytes
, GRU_CACHE_LINE_BYTES
);
799 if (gru_get_cpu_resources(bytes
, &cb
, &dsr
))
800 return MQE_BUG_NO_RESOURCES
;
801 memcpy(dsr
, mesg
, bytes
);
803 mhdr
->present
= MQS_FULL
;
804 mhdr
->lines
= clines
;
806 mhdr
->present2
= get_present2(mhdr
);
807 restore_present2(mhdr
, MQS_FULL
);
812 gru_mesq(cb
, mqd
->mq_gpa
, gru_get_tri(mhdr
), clines
, IMA
);
813 istatus
= gru_wait(cb
);
814 if (istatus
!= CBS_IDLE
)
815 ret
= send_message_failure(cb
, mqd
, dsr
, clines
);
816 } while (ret
== MQIE_AGAIN
);
817 gru_free_cpu_resources(cb
, dsr
);
820 STAT(mesq_send_failed
);
823 EXPORT_SYMBOL_GPL(gru_send_message_gpa
);
826 * Advance the receive pointer for the queue to the next message.
828 void gru_free_message(struct gru_message_queue_desc
*mqd
, void *mesg
)
830 struct message_queue
*mq
= mqd
->mq
;
831 struct message_header
*mhdr
= mq
->next
;
834 int lines
= mhdr
->lines
;
837 restore_present2(mhdr
, MQS_EMPTY
);
838 mhdr
->present
= MQS_EMPTY
;
841 next
= pnext
+ GRU_CACHE_LINE_BYTES
* lines
;
842 if (next
== mq
->limit
) {
845 } else if (pnext
< mq
->start2
&& next
>= mq
->start2
) {
850 mq
->hstatus
[half
] = 1;
853 EXPORT_SYMBOL_GPL(gru_free_message
);
856 * Get next message from message queue. Return NULL if no message
857 * present. User must call next_message() to move to next message.
860 void *gru_get_next_message(struct gru_message_queue_desc
*mqd
)
862 struct message_queue
*mq
= mqd
->mq
;
863 struct message_header
*mhdr
= mq
->next
;
864 int present
= mhdr
->present
;
866 /* skip NOOP messages */
867 while (present
== MQS_NOOP
) {
868 gru_free_message(mqd
, mhdr
);
870 present
= mhdr
->present
;
873 /* Wait for both halves of 2 line messages */
874 if (present
== MQS_FULL
&& mhdr
->lines
== 2 &&
875 get_present2(mhdr
) == MQS_EMPTY
)
879 STAT(mesq_receive_none
);
883 if (mhdr
->lines
== 2)
884 restore_present2(mhdr
, mhdr
->present2
);
889 EXPORT_SYMBOL_GPL(gru_get_next_message
);
891 /* ---------------------- GRU DATA COPY FUNCTIONS ---------------------------*/
894 * Load a DW from a global GPA. The GPA can be a memory or MMR address.
896 int gru_read_gpa(unsigned long *value
, unsigned long gpa
)
903 if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES
, &cb
, &dsr
))
904 return MQE_BUG_NO_RESOURCES
;
906 gru_vload_phys(cb
, gpa
, gru_get_tri(dsr
), iaa
, IMA
);
909 *value
= *(unsigned long *)dsr
;
910 gru_free_cpu_resources(cb
, dsr
);
913 EXPORT_SYMBOL_GPL(gru_read_gpa
);
917 * Copy a block of data using the GRU resources
919 int gru_copy_gpa(unsigned long dest_gpa
, unsigned long src_gpa
,
927 if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES
, &cb
, &dsr
))
928 return MQE_BUG_NO_RESOURCES
;
929 gru_bcopy(cb
, src_gpa
, dest_gpa
, gru_get_tri(dsr
),
930 XTYPE_B
, bytes
, GRU_NUM_KERNEL_DSR_CL
, IMA
);
932 gru_free_cpu_resources(cb
, dsr
);
935 EXPORT_SYMBOL_GPL(gru_copy_gpa
);
937 /* ------------------- KERNEL QUICKTESTS RUN AT STARTUP ----------------*/
938 /* Temp - will delete after we gain confidence in the GRU */
940 static int quicktest0(unsigned long arg
)
949 if (gru_get_cpu_resources(GRU_CACHE_LINE_BYTES
, &cb
, &dsr
))
950 return MQE_BUG_NO_RESOURCES
;
955 gru_vload(cb
, uv_gpa(&word0
), gru_get_tri(dsr
), XTYPE_DW
, 1, 1, IMA
);
956 if (gru_wait(cb
) != CBS_IDLE
) {
957 printk(KERN_DEBUG
"GRU:%d quicktest0: CBR failure 1\n", smp_processor_id());
962 printk(KERN_DEBUG
"GRU:%d quicktest0 bad magic 0x%lx\n", smp_processor_id(), *p
);
965 gru_vstore(cb
, uv_gpa(&word1
), gru_get_tri(dsr
), XTYPE_DW
, 1, 1, IMA
);
966 if (gru_wait(cb
) != CBS_IDLE
) {
967 printk(KERN_DEBUG
"GRU:%d quicktest0: CBR failure 2\n", smp_processor_id());
971 if (word0
!= word1
|| word1
!= MAGIC
) {
973 "GRU:%d quicktest0 err: found 0x%lx, expected 0x%lx\n",
974 smp_processor_id(), word1
, MAGIC
);
980 gru_free_cpu_resources(cb
, dsr
);
984 #define ALIGNUP(p, q) ((void *)(((unsigned long)(p) + (q) - 1) & ~(q - 1)))
986 static int quicktest1(unsigned long arg
)
988 struct gru_message_queue_desc mqd
;
992 char mes
[GRU_CACHE_LINE_BYTES
], *m
;
994 /* Need 1K cacheline aligned that does not cross page boundary */
995 p
= kmalloc(4096, 0);
998 mq
= ALIGNUP(p
, 1024);
999 memset(mes
, 0xee, sizeof(mes
));
1002 gru_create_message_queue(&mqd
, mq
, 8 * GRU_CACHE_LINE_BYTES
, 0, 0, 0);
1003 for (i
= 0; i
< 6; i
++) {
1006 ret
= gru_send_message_gpa(&mqd
, mes
, sizeof(mes
));
1007 } while (ret
== MQE_CONGESTION
);
1011 if (ret
!= MQE_QUEUE_FULL
|| i
!= 4) {
1012 printk(KERN_DEBUG
"GRU:%d quicktest1: unexpect status %d, i %d\n",
1013 smp_processor_id(), ret
, i
);
1017 for (i
= 0; i
< 6; i
++) {
1018 m
= gru_get_next_message(&mqd
);
1019 if (!m
|| m
[8] != i
)
1021 gru_free_message(&mqd
, m
);
1024 printk(KERN_DEBUG
"GRU:%d quicktest2: bad message, i %d, m %p, m8 %d\n",
1025 smp_processor_id(), i
, m
, m
? m
[8] : -1);
1035 static int quicktest2(unsigned long arg
)
1037 static DECLARE_COMPLETION(cmp
);
1044 struct gru_control_block_status
*gen
;
1045 int i
, k
, istatus
, bytes
;
1047 bytes
= numcb
* 4 * 8;
1048 buf
= kmalloc(bytes
, GFP_KERNEL
);
1053 han
= gru_reserve_async_resources(blade_id
, numcb
, 0, &cmp
);
1057 gru_lock_async_resource(han
, &cb0
, NULL
);
1058 memset(buf
, 0xee, bytes
);
1059 for (i
= 0; i
< numcb
; i
++)
1060 gru_vset(cb0
+ i
* GRU_HANDLE_STRIDE
, uv_gpa(&buf
[i
* 4]), 0,
1061 XTYPE_DW
, 4, 1, IMA_INTERRUPT
);
1066 gru_wait_async_cbr(han
);
1067 for (i
= 0; i
< numcb
; i
++) {
1068 cb
= cb0
+ i
* GRU_HANDLE_STRIDE
;
1069 istatus
= gru_check_status(cb
);
1070 if (istatus
!= CBS_ACTIVE
&& istatus
!= CBS_CALL_OS
)
1075 if (istatus
!= CBS_IDLE
) {
1076 printk(KERN_DEBUG
"GRU:%d quicktest2: cb %d, exception\n", smp_processor_id(), i
);
1078 } else if (buf
[4 * i
] || buf
[4 * i
+ 1] || buf
[4 * i
+ 2] ||
1080 printk(KERN_DEBUG
"GRU:%d quicktest2:cb %d, buf 0x%lx, 0x%lx, 0x%lx, 0x%lx\n",
1081 smp_processor_id(), i
, buf
[4 * i
], buf
[4 * i
+ 1], buf
[4 * i
+ 2], buf
[4 * i
+ 3]);
1086 gen
->istatus
= CBS_CALL_OS
; /* don't handle this CBR again */
1090 gru_unlock_async_resource(han
);
1091 gru_release_async_resources(han
);
1098 static int quicktest3(unsigned long arg
)
1100 char buf1
[BUFSIZE
], buf2
[BUFSIZE
];
1103 memset(buf2
, 0, sizeof(buf2
));
1104 memset(buf1
, get_cycles() & 255, sizeof(buf1
));
1105 gru_copy_gpa(uv_gpa(buf2
), uv_gpa(buf1
), BUFSIZE
);
1106 if (memcmp(buf1
, buf2
, BUFSIZE
)) {
1107 printk(KERN_DEBUG
"GRU:%d quicktest3 error\n", smp_processor_id());
1114 * Debugging only. User hook for various kernel tests
1117 int gru_ktest(unsigned long arg
)
1121 switch (arg
& 0xff) {
1123 ret
= quicktest0(arg
);
1126 ret
= quicktest1(arg
);
1129 ret
= quicktest2(arg
);
1132 ret
= quicktest3(arg
);
1135 ret
= gru_free_kernel_contexts();
1142 int gru_kservices_init(void)
1147 void gru_kservices_exit(void)
1149 if (gru_free_kernel_contexts())