igb: cleanup flow control configuration to make requested/current more clear
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / igb / igb_main.c
blobfb3273517587ff7b7a66113da6747a9c42b7a430
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/pci-aspm.h>
43 #include <linux/delay.h>
44 #include <linux/interrupt.h>
45 #include <linux/if_ether.h>
46 #include <linux/aer.h>
47 #ifdef CONFIG_IGB_DCA
48 #include <linux/dca.h>
49 #endif
50 #include "igb.h"
52 #define DRV_VERSION "1.3.16-k2"
53 char igb_driver_name[] = "igb";
54 char igb_driver_version[] = DRV_VERSION;
55 static const char igb_driver_string[] =
56 "Intel(R) Gigabit Ethernet Network Driver";
57 static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
59 static const struct e1000_info *igb_info_tbl[] = {
60 [board_82575] = &e1000_82575_info,
63 static struct pci_device_id igb_pci_tbl[] = {
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
73 /* required last entry */
74 {0, }
77 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
79 void igb_reset(struct igb_adapter *);
80 static int igb_setup_all_tx_resources(struct igb_adapter *);
81 static int igb_setup_all_rx_resources(struct igb_adapter *);
82 static void igb_free_all_tx_resources(struct igb_adapter *);
83 static void igb_free_all_rx_resources(struct igb_adapter *);
84 void igb_update_stats(struct igb_adapter *);
85 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
86 static void __devexit igb_remove(struct pci_dev *pdev);
87 static int igb_sw_init(struct igb_adapter *);
88 static int igb_open(struct net_device *);
89 static int igb_close(struct net_device *);
90 static void igb_configure_tx(struct igb_adapter *);
91 static void igb_configure_rx(struct igb_adapter *);
92 static void igb_setup_rctl(struct igb_adapter *);
93 static void igb_clean_all_tx_rings(struct igb_adapter *);
94 static void igb_clean_all_rx_rings(struct igb_adapter *);
95 static void igb_clean_tx_ring(struct igb_ring *);
96 static void igb_clean_rx_ring(struct igb_ring *);
97 static void igb_set_multi(struct net_device *);
98 static void igb_update_phy_info(unsigned long);
99 static void igb_watchdog(unsigned long);
100 static void igb_watchdog_task(struct work_struct *);
101 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
102 struct igb_ring *);
103 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
104 static struct net_device_stats *igb_get_stats(struct net_device *);
105 static int igb_change_mtu(struct net_device *, int);
106 static int igb_set_mac(struct net_device *, void *);
107 static irqreturn_t igb_intr(int irq, void *);
108 static irqreturn_t igb_intr_msi(int irq, void *);
109 static irqreturn_t igb_msix_other(int irq, void *);
110 static irqreturn_t igb_msix_rx(int irq, void *);
111 static irqreturn_t igb_msix_tx(int irq, void *);
112 #ifdef CONFIG_IGB_DCA
113 static void igb_update_rx_dca(struct igb_ring *);
114 static void igb_update_tx_dca(struct igb_ring *);
115 static void igb_setup_dca(struct igb_adapter *);
116 #endif /* CONFIG_IGB_DCA */
117 static bool igb_clean_tx_irq(struct igb_ring *);
118 static int igb_poll(struct napi_struct *, int);
119 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
120 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
121 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
122 static void igb_tx_timeout(struct net_device *);
123 static void igb_reset_task(struct work_struct *);
124 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
125 static void igb_vlan_rx_add_vid(struct net_device *, u16);
126 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
127 static void igb_restore_vlan(struct igb_adapter *);
128 static void igb_ping_all_vfs(struct igb_adapter *);
129 static void igb_msg_task(struct igb_adapter *);
130 static int igb_rcv_msg_from_vf(struct igb_adapter *, u32);
131 static inline void igb_set_rah_pool(struct e1000_hw *, int , int);
132 static void igb_vmm_control(struct igb_adapter *);
133 static int igb_set_vf_mac(struct igb_adapter *adapter, int, unsigned char *);
134 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
136 static inline void igb_set_vmolr(struct e1000_hw *hw, int vfn)
138 u32 reg_data;
140 reg_data = rd32(E1000_VMOLR(vfn));
141 reg_data |= E1000_VMOLR_BAM | /* Accept broadcast */
142 E1000_VMOLR_ROPE | /* Accept packets matched in UTA */
143 E1000_VMOLR_ROMPE | /* Accept packets matched in MTA */
144 E1000_VMOLR_AUPE | /* Accept untagged packets */
145 E1000_VMOLR_STRVLAN; /* Strip vlan tags */
146 wr32(E1000_VMOLR(vfn), reg_data);
149 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
150 int vfn)
152 struct e1000_hw *hw = &adapter->hw;
153 u32 vmolr;
155 vmolr = rd32(E1000_VMOLR(vfn));
156 vmolr &= ~E1000_VMOLR_RLPML_MASK;
157 vmolr |= size | E1000_VMOLR_LPE;
158 wr32(E1000_VMOLR(vfn), vmolr);
160 return 0;
163 static inline void igb_set_rah_pool(struct e1000_hw *hw, int pool, int entry)
165 u32 reg_data;
167 reg_data = rd32(E1000_RAH(entry));
168 reg_data &= ~E1000_RAH_POOL_MASK;
169 reg_data |= E1000_RAH_POOL_1 << pool;;
170 wr32(E1000_RAH(entry), reg_data);
173 #ifdef CONFIG_PM
174 static int igb_suspend(struct pci_dev *, pm_message_t);
175 static int igb_resume(struct pci_dev *);
176 #endif
177 static void igb_shutdown(struct pci_dev *);
178 #ifdef CONFIG_IGB_DCA
179 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
180 static struct notifier_block dca_notifier = {
181 .notifier_call = igb_notify_dca,
182 .next = NULL,
183 .priority = 0
185 #endif
186 #ifdef CONFIG_NET_POLL_CONTROLLER
187 /* for netdump / net console */
188 static void igb_netpoll(struct net_device *);
189 #endif
190 #ifdef CONFIG_PCI_IOV
191 static unsigned int max_vfs = 0;
192 module_param(max_vfs, uint, 0);
193 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
194 "per physical function");
195 #endif /* CONFIG_PCI_IOV */
197 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
198 pci_channel_state_t);
199 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
200 static void igb_io_resume(struct pci_dev *);
202 static struct pci_error_handlers igb_err_handler = {
203 .error_detected = igb_io_error_detected,
204 .slot_reset = igb_io_slot_reset,
205 .resume = igb_io_resume,
209 static struct pci_driver igb_driver = {
210 .name = igb_driver_name,
211 .id_table = igb_pci_tbl,
212 .probe = igb_probe,
213 .remove = __devexit_p(igb_remove),
214 #ifdef CONFIG_PM
215 /* Power Managment Hooks */
216 .suspend = igb_suspend,
217 .resume = igb_resume,
218 #endif
219 .shutdown = igb_shutdown,
220 .err_handler = &igb_err_handler
223 static int global_quad_port_a; /* global quad port a indication */
225 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
226 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
227 MODULE_LICENSE("GPL");
228 MODULE_VERSION(DRV_VERSION);
231 * Scale the NIC clock cycle by a large factor so that
232 * relatively small clock corrections can be added or
233 * substracted at each clock tick. The drawbacks of a
234 * large factor are a) that the clock register overflows
235 * more quickly (not such a big deal) and b) that the
236 * increment per tick has to fit into 24 bits.
238 * Note that
239 * TIMINCA = IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS *
240 * IGB_TSYNC_SCALE
241 * TIMINCA += TIMINCA * adjustment [ppm] / 1e9
243 * The base scale factor is intentionally a power of two
244 * so that the division in %struct timecounter can be done with
245 * a shift.
247 #define IGB_TSYNC_SHIFT (19)
248 #define IGB_TSYNC_SCALE (1<<IGB_TSYNC_SHIFT)
251 * The duration of one clock cycle of the NIC.
253 * @todo This hard-coded value is part of the specification and might change
254 * in future hardware revisions. Add revision check.
256 #define IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS 16
258 #if (IGB_TSYNC_SCALE * IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS) >= (1<<24)
259 # error IGB_TSYNC_SCALE and/or IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS are too large to fit into TIMINCA
260 #endif
263 * igb_read_clock - read raw cycle counter (to be used by time counter)
265 static cycle_t igb_read_clock(const struct cyclecounter *tc)
267 struct igb_adapter *adapter =
268 container_of(tc, struct igb_adapter, cycles);
269 struct e1000_hw *hw = &adapter->hw;
270 u64 stamp;
272 stamp = rd32(E1000_SYSTIML);
273 stamp |= (u64)rd32(E1000_SYSTIMH) << 32ULL;
275 return stamp;
278 #ifdef DEBUG
280 * igb_get_hw_dev_name - return device name string
281 * used by hardware layer to print debugging information
283 char *igb_get_hw_dev_name(struct e1000_hw *hw)
285 struct igb_adapter *adapter = hw->back;
286 return adapter->netdev->name;
290 * igb_get_time_str - format current NIC and system time as string
292 static char *igb_get_time_str(struct igb_adapter *adapter,
293 char buffer[160])
295 cycle_t hw = adapter->cycles.read(&adapter->cycles);
296 struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
297 struct timespec sys;
298 struct timespec delta;
299 getnstimeofday(&sys);
301 delta = timespec_sub(nic, sys);
303 sprintf(buffer,
304 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
306 (long)nic.tv_sec, nic.tv_nsec,
307 (long)sys.tv_sec, sys.tv_nsec,
308 (long)delta.tv_sec, delta.tv_nsec);
310 return buffer;
312 #endif
315 * igb_desc_unused - calculate if we have unused descriptors
317 static int igb_desc_unused(struct igb_ring *ring)
319 if (ring->next_to_clean > ring->next_to_use)
320 return ring->next_to_clean - ring->next_to_use - 1;
322 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
326 * igb_init_module - Driver Registration Routine
328 * igb_init_module is the first routine called when the driver is
329 * loaded. All it does is register with the PCI subsystem.
331 static int __init igb_init_module(void)
333 int ret;
334 printk(KERN_INFO "%s - version %s\n",
335 igb_driver_string, igb_driver_version);
337 printk(KERN_INFO "%s\n", igb_copyright);
339 global_quad_port_a = 0;
341 #ifdef CONFIG_IGB_DCA
342 dca_register_notify(&dca_notifier);
343 #endif
345 ret = pci_register_driver(&igb_driver);
346 return ret;
349 module_init(igb_init_module);
352 * igb_exit_module - Driver Exit Cleanup Routine
354 * igb_exit_module is called just before the driver is removed
355 * from memory.
357 static void __exit igb_exit_module(void)
359 #ifdef CONFIG_IGB_DCA
360 dca_unregister_notify(&dca_notifier);
361 #endif
362 pci_unregister_driver(&igb_driver);
365 module_exit(igb_exit_module);
367 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
369 * igb_cache_ring_register - Descriptor ring to register mapping
370 * @adapter: board private structure to initialize
372 * Once we know the feature-set enabled for the device, we'll cache
373 * the register offset the descriptor ring is assigned to.
375 static void igb_cache_ring_register(struct igb_adapter *adapter)
377 int i;
378 unsigned int rbase_offset = adapter->vfs_allocated_count;
380 switch (adapter->hw.mac.type) {
381 case e1000_82576:
382 /* The queues are allocated for virtualization such that VF 0
383 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
384 * In order to avoid collision we start at the first free queue
385 * and continue consuming queues in the same sequence
387 for (i = 0; i < adapter->num_rx_queues; i++)
388 adapter->rx_ring[i].reg_idx = rbase_offset +
389 Q_IDX_82576(i);
390 for (i = 0; i < adapter->num_tx_queues; i++)
391 adapter->tx_ring[i].reg_idx = rbase_offset +
392 Q_IDX_82576(i);
393 break;
394 case e1000_82575:
395 default:
396 for (i = 0; i < adapter->num_rx_queues; i++)
397 adapter->rx_ring[i].reg_idx = i;
398 for (i = 0; i < adapter->num_tx_queues; i++)
399 adapter->tx_ring[i].reg_idx = i;
400 break;
405 * igb_alloc_queues - Allocate memory for all rings
406 * @adapter: board private structure to initialize
408 * We allocate one ring per queue at run-time since we don't know the
409 * number of queues at compile-time.
411 static int igb_alloc_queues(struct igb_adapter *adapter)
413 int i;
415 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
416 sizeof(struct igb_ring), GFP_KERNEL);
417 if (!adapter->tx_ring)
418 return -ENOMEM;
420 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
421 sizeof(struct igb_ring), GFP_KERNEL);
422 if (!adapter->rx_ring) {
423 kfree(adapter->tx_ring);
424 return -ENOMEM;
427 adapter->rx_ring->buddy = adapter->tx_ring;
429 for (i = 0; i < adapter->num_tx_queues; i++) {
430 struct igb_ring *ring = &(adapter->tx_ring[i]);
431 ring->count = adapter->tx_ring_count;
432 ring->adapter = adapter;
433 ring->queue_index = i;
435 for (i = 0; i < adapter->num_rx_queues; i++) {
436 struct igb_ring *ring = &(adapter->rx_ring[i]);
437 ring->count = adapter->rx_ring_count;
438 ring->adapter = adapter;
439 ring->queue_index = i;
440 ring->itr_register = E1000_ITR;
442 /* set a default napi handler for each rx_ring */
443 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
446 igb_cache_ring_register(adapter);
447 return 0;
450 static void igb_free_queues(struct igb_adapter *adapter)
452 int i;
454 for (i = 0; i < adapter->num_rx_queues; i++)
455 netif_napi_del(&adapter->rx_ring[i].napi);
457 adapter->num_rx_queues = 0;
458 adapter->num_tx_queues = 0;
460 kfree(adapter->tx_ring);
461 kfree(adapter->rx_ring);
464 #define IGB_N0_QUEUE -1
465 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
466 int tx_queue, int msix_vector)
468 u32 msixbm = 0;
469 struct e1000_hw *hw = &adapter->hw;
470 u32 ivar, index;
472 switch (hw->mac.type) {
473 case e1000_82575:
474 /* The 82575 assigns vectors using a bitmask, which matches the
475 bitmask for the EICR/EIMS/EIMC registers. To assign one
476 or more queues to a vector, we write the appropriate bits
477 into the MSIXBM register for that vector. */
478 if (rx_queue > IGB_N0_QUEUE) {
479 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
480 adapter->rx_ring[rx_queue].eims_value = msixbm;
482 if (tx_queue > IGB_N0_QUEUE) {
483 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
484 adapter->tx_ring[tx_queue].eims_value =
485 E1000_EICR_TX_QUEUE0 << tx_queue;
487 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
488 break;
489 case e1000_82576:
490 /* 82576 uses a table-based method for assigning vectors.
491 Each queue has a single entry in the table to which we write
492 a vector number along with a "valid" bit. Sadly, the layout
493 of the table is somewhat counterintuitive. */
494 if (rx_queue > IGB_N0_QUEUE) {
495 index = (rx_queue >> 1) + adapter->vfs_allocated_count;
496 ivar = array_rd32(E1000_IVAR0, index);
497 if (rx_queue & 0x1) {
498 /* vector goes into third byte of register */
499 ivar = ivar & 0xFF00FFFF;
500 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
501 } else {
502 /* vector goes into low byte of register */
503 ivar = ivar & 0xFFFFFF00;
504 ivar |= msix_vector | E1000_IVAR_VALID;
506 adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
507 array_wr32(E1000_IVAR0, index, ivar);
509 if (tx_queue > IGB_N0_QUEUE) {
510 index = (tx_queue >> 1) + adapter->vfs_allocated_count;
511 ivar = array_rd32(E1000_IVAR0, index);
512 if (tx_queue & 0x1) {
513 /* vector goes into high byte of register */
514 ivar = ivar & 0x00FFFFFF;
515 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
516 } else {
517 /* vector goes into second byte of register */
518 ivar = ivar & 0xFFFF00FF;
519 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
521 adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
522 array_wr32(E1000_IVAR0, index, ivar);
524 break;
525 default:
526 BUG();
527 break;
532 * igb_configure_msix - Configure MSI-X hardware
534 * igb_configure_msix sets up the hardware to properly
535 * generate MSI-X interrupts.
537 static void igb_configure_msix(struct igb_adapter *adapter)
539 u32 tmp;
540 int i, vector = 0;
541 struct e1000_hw *hw = &adapter->hw;
543 adapter->eims_enable_mask = 0;
544 if (hw->mac.type == e1000_82576)
545 /* Turn on MSI-X capability first, or our settings
546 * won't stick. And it will take days to debug. */
547 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
548 E1000_GPIE_PBA | E1000_GPIE_EIAME |
549 E1000_GPIE_NSICR);
551 for (i = 0; i < adapter->num_tx_queues; i++) {
552 struct igb_ring *tx_ring = &adapter->tx_ring[i];
553 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
554 adapter->eims_enable_mask |= tx_ring->eims_value;
555 if (tx_ring->itr_val)
556 writel(tx_ring->itr_val,
557 hw->hw_addr + tx_ring->itr_register);
558 else
559 writel(1, hw->hw_addr + tx_ring->itr_register);
562 for (i = 0; i < adapter->num_rx_queues; i++) {
563 struct igb_ring *rx_ring = &adapter->rx_ring[i];
564 rx_ring->buddy = NULL;
565 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
566 adapter->eims_enable_mask |= rx_ring->eims_value;
567 if (rx_ring->itr_val)
568 writel(rx_ring->itr_val,
569 hw->hw_addr + rx_ring->itr_register);
570 else
571 writel(1, hw->hw_addr + rx_ring->itr_register);
575 /* set vector for other causes, i.e. link changes */
576 switch (hw->mac.type) {
577 case e1000_82575:
578 array_wr32(E1000_MSIXBM(0), vector++,
579 E1000_EIMS_OTHER);
581 tmp = rd32(E1000_CTRL_EXT);
582 /* enable MSI-X PBA support*/
583 tmp |= E1000_CTRL_EXT_PBA_CLR;
585 /* Auto-Mask interrupts upon ICR read. */
586 tmp |= E1000_CTRL_EXT_EIAME;
587 tmp |= E1000_CTRL_EXT_IRCA;
589 wr32(E1000_CTRL_EXT, tmp);
590 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
591 adapter->eims_other = E1000_EIMS_OTHER;
593 break;
595 case e1000_82576:
596 tmp = (vector++ | E1000_IVAR_VALID) << 8;
597 wr32(E1000_IVAR_MISC, tmp);
599 adapter->eims_enable_mask = (1 << (vector)) - 1;
600 adapter->eims_other = 1 << (vector - 1);
601 break;
602 default:
603 /* do nothing, since nothing else supports MSI-X */
604 break;
605 } /* switch (hw->mac.type) */
606 wrfl();
610 * igb_request_msix - Initialize MSI-X interrupts
612 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
613 * kernel.
615 static int igb_request_msix(struct igb_adapter *adapter)
617 struct net_device *netdev = adapter->netdev;
618 int i, err = 0, vector = 0;
620 vector = 0;
622 for (i = 0; i < adapter->num_tx_queues; i++) {
623 struct igb_ring *ring = &(adapter->tx_ring[i]);
624 sprintf(ring->name, "%s-tx-%d", netdev->name, i);
625 err = request_irq(adapter->msix_entries[vector].vector,
626 &igb_msix_tx, 0, ring->name,
627 &(adapter->tx_ring[i]));
628 if (err)
629 goto out;
630 ring->itr_register = E1000_EITR(0) + (vector << 2);
631 ring->itr_val = 976; /* ~4000 ints/sec */
632 vector++;
634 for (i = 0; i < adapter->num_rx_queues; i++) {
635 struct igb_ring *ring = &(adapter->rx_ring[i]);
636 if (strlen(netdev->name) < (IFNAMSIZ - 5))
637 sprintf(ring->name, "%s-rx-%d", netdev->name, i);
638 else
639 memcpy(ring->name, netdev->name, IFNAMSIZ);
640 err = request_irq(adapter->msix_entries[vector].vector,
641 &igb_msix_rx, 0, ring->name,
642 &(adapter->rx_ring[i]));
643 if (err)
644 goto out;
645 ring->itr_register = E1000_EITR(0) + (vector << 2);
646 ring->itr_val = adapter->itr;
647 vector++;
650 err = request_irq(adapter->msix_entries[vector].vector,
651 &igb_msix_other, 0, netdev->name, netdev);
652 if (err)
653 goto out;
655 igb_configure_msix(adapter);
656 return 0;
657 out:
658 return err;
661 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
663 if (adapter->msix_entries) {
664 pci_disable_msix(adapter->pdev);
665 kfree(adapter->msix_entries);
666 adapter->msix_entries = NULL;
667 } else if (adapter->flags & IGB_FLAG_HAS_MSI)
668 pci_disable_msi(adapter->pdev);
669 return;
674 * igb_set_interrupt_capability - set MSI or MSI-X if supported
676 * Attempt to configure interrupts using the best available
677 * capabilities of the hardware and kernel.
679 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
681 int err;
682 int numvecs, i;
684 /* Number of supported queues. */
685 /* Having more queues than CPUs doesn't make sense. */
686 adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
687 adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
689 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
690 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
691 GFP_KERNEL);
692 if (!adapter->msix_entries)
693 goto msi_only;
695 for (i = 0; i < numvecs; i++)
696 adapter->msix_entries[i].entry = i;
698 err = pci_enable_msix(adapter->pdev,
699 adapter->msix_entries,
700 numvecs);
701 if (err == 0)
702 goto out;
704 igb_reset_interrupt_capability(adapter);
706 /* If we can't do MSI-X, try MSI */
707 msi_only:
708 #ifdef CONFIG_PCI_IOV
709 /* disable SR-IOV for non MSI-X configurations */
710 if (adapter->vf_data) {
711 struct e1000_hw *hw = &adapter->hw;
712 /* disable iov and allow time for transactions to clear */
713 pci_disable_sriov(adapter->pdev);
714 msleep(500);
716 kfree(adapter->vf_data);
717 adapter->vf_data = NULL;
718 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
719 msleep(100);
720 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
722 #endif
723 adapter->num_rx_queues = 1;
724 adapter->num_tx_queues = 1;
725 if (!pci_enable_msi(adapter->pdev))
726 adapter->flags |= IGB_FLAG_HAS_MSI;
727 out:
728 /* Notify the stack of the (possibly) reduced Tx Queue count. */
729 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
730 return;
734 * igb_request_irq - initialize interrupts
736 * Attempts to configure interrupts using the best available
737 * capabilities of the hardware and kernel.
739 static int igb_request_irq(struct igb_adapter *adapter)
741 struct net_device *netdev = adapter->netdev;
742 struct e1000_hw *hw = &adapter->hw;
743 int err = 0;
745 if (adapter->msix_entries) {
746 err = igb_request_msix(adapter);
747 if (!err)
748 goto request_done;
749 /* fall back to MSI */
750 igb_reset_interrupt_capability(adapter);
751 if (!pci_enable_msi(adapter->pdev))
752 adapter->flags |= IGB_FLAG_HAS_MSI;
753 igb_free_all_tx_resources(adapter);
754 igb_free_all_rx_resources(adapter);
755 adapter->num_rx_queues = 1;
756 igb_alloc_queues(adapter);
757 } else {
758 switch (hw->mac.type) {
759 case e1000_82575:
760 wr32(E1000_MSIXBM(0),
761 (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
762 break;
763 case e1000_82576:
764 wr32(E1000_IVAR0, E1000_IVAR_VALID);
765 break;
766 default:
767 break;
771 if (adapter->flags & IGB_FLAG_HAS_MSI) {
772 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
773 netdev->name, netdev);
774 if (!err)
775 goto request_done;
776 /* fall back to legacy interrupts */
777 igb_reset_interrupt_capability(adapter);
778 adapter->flags &= ~IGB_FLAG_HAS_MSI;
781 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
782 netdev->name, netdev);
784 if (err)
785 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
786 err);
788 request_done:
789 return err;
792 static void igb_free_irq(struct igb_adapter *adapter)
794 struct net_device *netdev = adapter->netdev;
796 if (adapter->msix_entries) {
797 int vector = 0, i;
799 for (i = 0; i < adapter->num_tx_queues; i++)
800 free_irq(adapter->msix_entries[vector++].vector,
801 &(adapter->tx_ring[i]));
802 for (i = 0; i < adapter->num_rx_queues; i++)
803 free_irq(adapter->msix_entries[vector++].vector,
804 &(adapter->rx_ring[i]));
806 free_irq(adapter->msix_entries[vector++].vector, netdev);
807 return;
810 free_irq(adapter->pdev->irq, netdev);
814 * igb_irq_disable - Mask off interrupt generation on the NIC
815 * @adapter: board private structure
817 static void igb_irq_disable(struct igb_adapter *adapter)
819 struct e1000_hw *hw = &adapter->hw;
821 if (adapter->msix_entries) {
822 wr32(E1000_EIAM, 0);
823 wr32(E1000_EIMC, ~0);
824 wr32(E1000_EIAC, 0);
827 wr32(E1000_IAM, 0);
828 wr32(E1000_IMC, ~0);
829 wrfl();
830 synchronize_irq(adapter->pdev->irq);
834 * igb_irq_enable - Enable default interrupt generation settings
835 * @adapter: board private structure
837 static void igb_irq_enable(struct igb_adapter *adapter)
839 struct e1000_hw *hw = &adapter->hw;
841 if (adapter->msix_entries) {
842 wr32(E1000_EIAC, adapter->eims_enable_mask);
843 wr32(E1000_EIAM, adapter->eims_enable_mask);
844 wr32(E1000_EIMS, adapter->eims_enable_mask);
845 if (adapter->vfs_allocated_count)
846 wr32(E1000_MBVFIMR, 0xFF);
847 wr32(E1000_IMS, (E1000_IMS_LSC | E1000_IMS_VMMB |
848 E1000_IMS_DOUTSYNC));
849 } else {
850 wr32(E1000_IMS, IMS_ENABLE_MASK);
851 wr32(E1000_IAM, IMS_ENABLE_MASK);
855 static void igb_update_mng_vlan(struct igb_adapter *adapter)
857 struct net_device *netdev = adapter->netdev;
858 u16 vid = adapter->hw.mng_cookie.vlan_id;
859 u16 old_vid = adapter->mng_vlan_id;
860 if (adapter->vlgrp) {
861 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
862 if (adapter->hw.mng_cookie.status &
863 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
864 igb_vlan_rx_add_vid(netdev, vid);
865 adapter->mng_vlan_id = vid;
866 } else
867 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
869 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
870 (vid != old_vid) &&
871 !vlan_group_get_device(adapter->vlgrp, old_vid))
872 igb_vlan_rx_kill_vid(netdev, old_vid);
873 } else
874 adapter->mng_vlan_id = vid;
879 * igb_release_hw_control - release control of the h/w to f/w
880 * @adapter: address of board private structure
882 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
883 * For ASF and Pass Through versions of f/w this means that the
884 * driver is no longer loaded.
887 static void igb_release_hw_control(struct igb_adapter *adapter)
889 struct e1000_hw *hw = &adapter->hw;
890 u32 ctrl_ext;
892 /* Let firmware take over control of h/w */
893 ctrl_ext = rd32(E1000_CTRL_EXT);
894 wr32(E1000_CTRL_EXT,
895 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
900 * igb_get_hw_control - get control of the h/w from f/w
901 * @adapter: address of board private structure
903 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
904 * For ASF and Pass Through versions of f/w this means that
905 * the driver is loaded.
908 static void igb_get_hw_control(struct igb_adapter *adapter)
910 struct e1000_hw *hw = &adapter->hw;
911 u32 ctrl_ext;
913 /* Let firmware know the driver has taken over */
914 ctrl_ext = rd32(E1000_CTRL_EXT);
915 wr32(E1000_CTRL_EXT,
916 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
920 * igb_configure - configure the hardware for RX and TX
921 * @adapter: private board structure
923 static void igb_configure(struct igb_adapter *adapter)
925 struct net_device *netdev = adapter->netdev;
926 int i;
928 igb_get_hw_control(adapter);
929 igb_set_multi(netdev);
931 igb_restore_vlan(adapter);
933 igb_configure_tx(adapter);
934 igb_setup_rctl(adapter);
935 igb_configure_rx(adapter);
937 igb_rx_fifo_flush_82575(&adapter->hw);
939 /* call igb_desc_unused which always leaves
940 * at least 1 descriptor unused to make sure
941 * next_to_use != next_to_clean */
942 for (i = 0; i < adapter->num_rx_queues; i++) {
943 struct igb_ring *ring = &adapter->rx_ring[i];
944 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
948 adapter->tx_queue_len = netdev->tx_queue_len;
953 * igb_up - Open the interface and prepare it to handle traffic
954 * @adapter: board private structure
957 int igb_up(struct igb_adapter *adapter)
959 struct e1000_hw *hw = &adapter->hw;
960 int i;
962 /* hardware has been reset, we need to reload some things */
963 igb_configure(adapter);
965 clear_bit(__IGB_DOWN, &adapter->state);
967 for (i = 0; i < adapter->num_rx_queues; i++)
968 napi_enable(&adapter->rx_ring[i].napi);
969 if (adapter->msix_entries)
970 igb_configure_msix(adapter);
972 igb_vmm_control(adapter);
973 igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
974 igb_set_vmolr(hw, adapter->vfs_allocated_count);
976 /* Clear any pending interrupts. */
977 rd32(E1000_ICR);
978 igb_irq_enable(adapter);
980 netif_tx_start_all_queues(adapter->netdev);
982 /* Fire a link change interrupt to start the watchdog. */
983 wr32(E1000_ICS, E1000_ICS_LSC);
984 return 0;
987 void igb_down(struct igb_adapter *adapter)
989 struct e1000_hw *hw = &adapter->hw;
990 struct net_device *netdev = adapter->netdev;
991 u32 tctl, rctl;
992 int i;
994 /* signal that we're down so the interrupt handler does not
995 * reschedule our watchdog timer */
996 set_bit(__IGB_DOWN, &adapter->state);
998 /* disable receives in the hardware */
999 rctl = rd32(E1000_RCTL);
1000 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1001 /* flush and sleep below */
1003 netif_tx_stop_all_queues(netdev);
1005 /* disable transmits in the hardware */
1006 tctl = rd32(E1000_TCTL);
1007 tctl &= ~E1000_TCTL_EN;
1008 wr32(E1000_TCTL, tctl);
1009 /* flush both disables and wait for them to finish */
1010 wrfl();
1011 msleep(10);
1013 for (i = 0; i < adapter->num_rx_queues; i++)
1014 napi_disable(&adapter->rx_ring[i].napi);
1016 igb_irq_disable(adapter);
1018 del_timer_sync(&adapter->watchdog_timer);
1019 del_timer_sync(&adapter->phy_info_timer);
1021 netdev->tx_queue_len = adapter->tx_queue_len;
1022 netif_carrier_off(netdev);
1024 /* record the stats before reset*/
1025 igb_update_stats(adapter);
1027 adapter->link_speed = 0;
1028 adapter->link_duplex = 0;
1030 if (!pci_channel_offline(adapter->pdev))
1031 igb_reset(adapter);
1032 igb_clean_all_tx_rings(adapter);
1033 igb_clean_all_rx_rings(adapter);
1034 #ifdef CONFIG_IGB_DCA
1036 /* since we reset the hardware DCA settings were cleared */
1037 igb_setup_dca(adapter);
1038 #endif
1041 void igb_reinit_locked(struct igb_adapter *adapter)
1043 WARN_ON(in_interrupt());
1044 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1045 msleep(1);
1046 igb_down(adapter);
1047 igb_up(adapter);
1048 clear_bit(__IGB_RESETTING, &adapter->state);
1051 void igb_reset(struct igb_adapter *adapter)
1053 struct e1000_hw *hw = &adapter->hw;
1054 struct e1000_mac_info *mac = &hw->mac;
1055 struct e1000_fc_info *fc = &hw->fc;
1056 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1057 u16 hwm;
1059 /* Repartition Pba for greater than 9k mtu
1060 * To take effect CTRL.RST is required.
1062 switch (mac->type) {
1063 case e1000_82576:
1064 pba = E1000_PBA_64K;
1065 break;
1066 case e1000_82575:
1067 default:
1068 pba = E1000_PBA_34K;
1069 break;
1072 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1073 (mac->type < e1000_82576)) {
1074 /* adjust PBA for jumbo frames */
1075 wr32(E1000_PBA, pba);
1077 /* To maintain wire speed transmits, the Tx FIFO should be
1078 * large enough to accommodate two full transmit packets,
1079 * rounded up to the next 1KB and expressed in KB. Likewise,
1080 * the Rx FIFO should be large enough to accommodate at least
1081 * one full receive packet and is similarly rounded up and
1082 * expressed in KB. */
1083 pba = rd32(E1000_PBA);
1084 /* upper 16 bits has Tx packet buffer allocation size in KB */
1085 tx_space = pba >> 16;
1086 /* lower 16 bits has Rx packet buffer allocation size in KB */
1087 pba &= 0xffff;
1088 /* the tx fifo also stores 16 bytes of information about the tx
1089 * but don't include ethernet FCS because hardware appends it */
1090 min_tx_space = (adapter->max_frame_size +
1091 sizeof(union e1000_adv_tx_desc) -
1092 ETH_FCS_LEN) * 2;
1093 min_tx_space = ALIGN(min_tx_space, 1024);
1094 min_tx_space >>= 10;
1095 /* software strips receive CRC, so leave room for it */
1096 min_rx_space = adapter->max_frame_size;
1097 min_rx_space = ALIGN(min_rx_space, 1024);
1098 min_rx_space >>= 10;
1100 /* If current Tx allocation is less than the min Tx FIFO size,
1101 * and the min Tx FIFO size is less than the current Rx FIFO
1102 * allocation, take space away from current Rx allocation */
1103 if (tx_space < min_tx_space &&
1104 ((min_tx_space - tx_space) < pba)) {
1105 pba = pba - (min_tx_space - tx_space);
1107 /* if short on rx space, rx wins and must trump tx
1108 * adjustment */
1109 if (pba < min_rx_space)
1110 pba = min_rx_space;
1112 wr32(E1000_PBA, pba);
1115 /* flow control settings */
1116 /* The high water mark must be low enough to fit one full frame
1117 * (or the size used for early receive) above it in the Rx FIFO.
1118 * Set it to the lower of:
1119 * - 90% of the Rx FIFO size, or
1120 * - the full Rx FIFO size minus one full frame */
1121 hwm = min(((pba << 10) * 9 / 10),
1122 ((pba << 10) - 2 * adapter->max_frame_size));
1124 if (mac->type < e1000_82576) {
1125 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1126 fc->low_water = fc->high_water - 8;
1127 } else {
1128 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1129 fc->low_water = fc->high_water - 16;
1131 fc->pause_time = 0xFFFF;
1132 fc->send_xon = 1;
1133 fc->current_mode = fc->requested_mode;
1135 /* disable receive for all VFs and wait one second */
1136 if (adapter->vfs_allocated_count) {
1137 int i;
1138 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1139 adapter->vf_data[i].clear_to_send = false;
1141 /* ping all the active vfs to let them know we are going down */
1142 igb_ping_all_vfs(adapter);
1144 /* disable transmits and receives */
1145 wr32(E1000_VFRE, 0);
1146 wr32(E1000_VFTE, 0);
1149 /* Allow time for pending master requests to run */
1150 adapter->hw.mac.ops.reset_hw(&adapter->hw);
1151 wr32(E1000_WUC, 0);
1153 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
1154 dev_err(&adapter->pdev->dev, "Hardware Error\n");
1156 igb_update_mng_vlan(adapter);
1158 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1159 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1161 igb_reset_adaptive(&adapter->hw);
1162 igb_get_phy_info(&adapter->hw);
1165 static const struct net_device_ops igb_netdev_ops = {
1166 .ndo_open = igb_open,
1167 .ndo_stop = igb_close,
1168 .ndo_start_xmit = igb_xmit_frame_adv,
1169 .ndo_get_stats = igb_get_stats,
1170 .ndo_set_multicast_list = igb_set_multi,
1171 .ndo_set_mac_address = igb_set_mac,
1172 .ndo_change_mtu = igb_change_mtu,
1173 .ndo_do_ioctl = igb_ioctl,
1174 .ndo_tx_timeout = igb_tx_timeout,
1175 .ndo_validate_addr = eth_validate_addr,
1176 .ndo_vlan_rx_register = igb_vlan_rx_register,
1177 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1178 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1179 #ifdef CONFIG_NET_POLL_CONTROLLER
1180 .ndo_poll_controller = igb_netpoll,
1181 #endif
1185 * igb_probe - Device Initialization Routine
1186 * @pdev: PCI device information struct
1187 * @ent: entry in igb_pci_tbl
1189 * Returns 0 on success, negative on failure
1191 * igb_probe initializes an adapter identified by a pci_dev structure.
1192 * The OS initialization, configuring of the adapter private structure,
1193 * and a hardware reset occur.
1195 static int __devinit igb_probe(struct pci_dev *pdev,
1196 const struct pci_device_id *ent)
1198 struct net_device *netdev;
1199 struct igb_adapter *adapter;
1200 struct e1000_hw *hw;
1201 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1202 unsigned long mmio_start, mmio_len;
1203 int err, pci_using_dac;
1204 u16 eeprom_data = 0;
1205 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1206 u32 part_num;
1208 err = pci_enable_device_mem(pdev);
1209 if (err)
1210 return err;
1212 pci_using_dac = 0;
1213 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1214 if (!err) {
1215 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1216 if (!err)
1217 pci_using_dac = 1;
1218 } else {
1219 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1220 if (err) {
1221 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1222 if (err) {
1223 dev_err(&pdev->dev, "No usable DMA "
1224 "configuration, aborting\n");
1225 goto err_dma;
1230 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1231 IORESOURCE_MEM),
1232 igb_driver_name);
1233 if (err)
1234 goto err_pci_reg;
1236 err = pci_enable_pcie_error_reporting(pdev);
1237 if (err) {
1238 dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
1239 "0x%x\n", err);
1240 /* non-fatal, continue */
1243 pci_set_master(pdev);
1244 pci_save_state(pdev);
1246 err = -ENOMEM;
1247 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1248 IGB_ABS_MAX_TX_QUEUES);
1249 if (!netdev)
1250 goto err_alloc_etherdev;
1252 SET_NETDEV_DEV(netdev, &pdev->dev);
1254 pci_set_drvdata(pdev, netdev);
1255 adapter = netdev_priv(netdev);
1256 adapter->netdev = netdev;
1257 adapter->pdev = pdev;
1258 hw = &adapter->hw;
1259 hw->back = adapter;
1260 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1262 mmio_start = pci_resource_start(pdev, 0);
1263 mmio_len = pci_resource_len(pdev, 0);
1265 err = -EIO;
1266 hw->hw_addr = ioremap(mmio_start, mmio_len);
1267 if (!hw->hw_addr)
1268 goto err_ioremap;
1270 netdev->netdev_ops = &igb_netdev_ops;
1271 igb_set_ethtool_ops(netdev);
1272 netdev->watchdog_timeo = 5 * HZ;
1274 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1276 netdev->mem_start = mmio_start;
1277 netdev->mem_end = mmio_start + mmio_len;
1279 /* PCI config space info */
1280 hw->vendor_id = pdev->vendor;
1281 hw->device_id = pdev->device;
1282 hw->revision_id = pdev->revision;
1283 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1284 hw->subsystem_device_id = pdev->subsystem_device;
1286 /* setup the private structure */
1287 hw->back = adapter;
1288 /* Copy the default MAC, PHY and NVM function pointers */
1289 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1290 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1291 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1292 /* Initialize skew-specific constants */
1293 err = ei->get_invariants(hw);
1294 if (err)
1295 goto err_sw_init;
1297 #ifdef CONFIG_PCI_IOV
1298 /* since iov functionality isn't critical to base device function we
1299 * can accept failure. If it fails we don't allow iov to be enabled */
1300 if (hw->mac.type == e1000_82576) {
1301 /* 82576 supports a maximum of 7 VFs in addition to the PF */
1302 unsigned int num_vfs = (max_vfs > 7) ? 7 : max_vfs;
1303 int i;
1304 unsigned char mac_addr[ETH_ALEN];
1306 if (num_vfs) {
1307 adapter->vf_data = kcalloc(num_vfs,
1308 sizeof(struct vf_data_storage),
1309 GFP_KERNEL);
1310 if (!adapter->vf_data) {
1311 dev_err(&pdev->dev,
1312 "Could not allocate VF private data - "
1313 "IOV enable failed\n");
1314 } else {
1315 err = pci_enable_sriov(pdev, num_vfs);
1316 if (!err) {
1317 adapter->vfs_allocated_count = num_vfs;
1318 dev_info(&pdev->dev,
1319 "%d vfs allocated\n",
1320 num_vfs);
1321 for (i = 0;
1322 i < adapter->vfs_allocated_count;
1323 i++) {
1324 random_ether_addr(mac_addr);
1325 igb_set_vf_mac(adapter, i,
1326 mac_addr);
1328 } else {
1329 kfree(adapter->vf_data);
1330 adapter->vf_data = NULL;
1336 #endif
1337 /* setup the private structure */
1338 err = igb_sw_init(adapter);
1339 if (err)
1340 goto err_sw_init;
1342 igb_get_bus_info_pcie(hw);
1344 /* set flags */
1345 switch (hw->mac.type) {
1346 case e1000_82575:
1347 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1348 break;
1349 case e1000_82576:
1350 default:
1351 break;
1354 hw->phy.autoneg_wait_to_complete = false;
1355 hw->mac.adaptive_ifs = true;
1357 /* Copper options */
1358 if (hw->phy.media_type == e1000_media_type_copper) {
1359 hw->phy.mdix = AUTO_ALL_MODES;
1360 hw->phy.disable_polarity_correction = false;
1361 hw->phy.ms_type = e1000_ms_hw_default;
1364 if (igb_check_reset_block(hw))
1365 dev_info(&pdev->dev,
1366 "PHY reset is blocked due to SOL/IDER session.\n");
1368 netdev->features = NETIF_F_SG |
1369 NETIF_F_IP_CSUM |
1370 NETIF_F_HW_VLAN_TX |
1371 NETIF_F_HW_VLAN_RX |
1372 NETIF_F_HW_VLAN_FILTER;
1374 netdev->features |= NETIF_F_IPV6_CSUM;
1375 netdev->features |= NETIF_F_TSO;
1376 netdev->features |= NETIF_F_TSO6;
1378 netdev->features |= NETIF_F_GRO;
1380 netdev->vlan_features |= NETIF_F_TSO;
1381 netdev->vlan_features |= NETIF_F_TSO6;
1382 netdev->vlan_features |= NETIF_F_IP_CSUM;
1383 netdev->vlan_features |= NETIF_F_SG;
1385 if (pci_using_dac)
1386 netdev->features |= NETIF_F_HIGHDMA;
1388 if (adapter->hw.mac.type == e1000_82576)
1389 netdev->features |= NETIF_F_SCTP_CSUM;
1391 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1393 /* before reading the NVM, reset the controller to put the device in a
1394 * known good starting state */
1395 hw->mac.ops.reset_hw(hw);
1397 /* make sure the NVM is good */
1398 if (igb_validate_nvm_checksum(hw) < 0) {
1399 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1400 err = -EIO;
1401 goto err_eeprom;
1404 /* copy the MAC address out of the NVM */
1405 if (hw->mac.ops.read_mac_addr(hw))
1406 dev_err(&pdev->dev, "NVM Read Error\n");
1408 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1409 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1411 if (!is_valid_ether_addr(netdev->perm_addr)) {
1412 dev_err(&pdev->dev, "Invalid MAC Address\n");
1413 err = -EIO;
1414 goto err_eeprom;
1417 setup_timer(&adapter->watchdog_timer, &igb_watchdog,
1418 (unsigned long) adapter);
1419 setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
1420 (unsigned long) adapter);
1422 INIT_WORK(&adapter->reset_task, igb_reset_task);
1423 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1425 /* Initialize link properties that are user-changeable */
1426 adapter->fc_autoneg = true;
1427 hw->mac.autoneg = true;
1428 hw->phy.autoneg_advertised = 0x2f;
1430 hw->fc.requested_mode = e1000_fc_default;
1431 hw->fc.current_mode = e1000_fc_default;
1433 adapter->itr_setting = IGB_DEFAULT_ITR;
1434 adapter->itr = IGB_START_ITR;
1436 igb_validate_mdi_setting(hw);
1438 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1439 * enable the ACPI Magic Packet filter
1442 if (hw->bus.func == 0)
1443 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1444 else if (hw->bus.func == 1)
1445 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1447 if (eeprom_data & eeprom_apme_mask)
1448 adapter->eeprom_wol |= E1000_WUFC_MAG;
1450 /* now that we have the eeprom settings, apply the special cases where
1451 * the eeprom may be wrong or the board simply won't support wake on
1452 * lan on a particular port */
1453 switch (pdev->device) {
1454 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1455 adapter->eeprom_wol = 0;
1456 break;
1457 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1458 case E1000_DEV_ID_82576_FIBER:
1459 case E1000_DEV_ID_82576_SERDES:
1460 /* Wake events only supported on port A for dual fiber
1461 * regardless of eeprom setting */
1462 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1463 adapter->eeprom_wol = 0;
1464 break;
1465 case E1000_DEV_ID_82576_QUAD_COPPER:
1466 /* if quad port adapter, disable WoL on all but port A */
1467 if (global_quad_port_a != 0)
1468 adapter->eeprom_wol = 0;
1469 else
1470 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1471 /* Reset for multiple quad port adapters */
1472 if (++global_quad_port_a == 4)
1473 global_quad_port_a = 0;
1474 break;
1477 /* initialize the wol settings based on the eeprom settings */
1478 adapter->wol = adapter->eeprom_wol;
1479 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1481 /* reset the hardware with the new settings */
1482 igb_reset(adapter);
1484 /* let the f/w know that the h/w is now under the control of the
1485 * driver. */
1486 igb_get_hw_control(adapter);
1488 strcpy(netdev->name, "eth%d");
1489 err = register_netdev(netdev);
1490 if (err)
1491 goto err_register;
1493 /* carrier off reporting is important to ethtool even BEFORE open */
1494 netif_carrier_off(netdev);
1496 #ifdef CONFIG_IGB_DCA
1497 if (dca_add_requester(&pdev->dev) == 0) {
1498 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1499 dev_info(&pdev->dev, "DCA enabled\n");
1500 igb_setup_dca(adapter);
1502 #endif
1505 * Initialize hardware timer: we keep it running just in case
1506 * that some program needs it later on.
1508 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1509 adapter->cycles.read = igb_read_clock;
1510 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1511 adapter->cycles.mult = 1;
1512 adapter->cycles.shift = IGB_TSYNC_SHIFT;
1513 wr32(E1000_TIMINCA,
1514 (1<<24) |
1515 IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS * IGB_TSYNC_SCALE);
1516 #if 0
1518 * Avoid rollover while we initialize by resetting the time counter.
1520 wr32(E1000_SYSTIML, 0x00000000);
1521 wr32(E1000_SYSTIMH, 0x00000000);
1522 #else
1524 * Set registers so that rollover occurs soon to test this.
1526 wr32(E1000_SYSTIML, 0x00000000);
1527 wr32(E1000_SYSTIMH, 0xFF800000);
1528 #endif
1529 wrfl();
1530 timecounter_init(&adapter->clock,
1531 &adapter->cycles,
1532 ktime_to_ns(ktime_get_real()));
1535 * Synchronize our NIC clock against system wall clock. NIC
1536 * time stamp reading requires ~3us per sample, each sample
1537 * was pretty stable even under load => only require 10
1538 * samples for each offset comparison.
1540 memset(&adapter->compare, 0, sizeof(adapter->compare));
1541 adapter->compare.source = &adapter->clock;
1542 adapter->compare.target = ktime_get_real;
1543 adapter->compare.num_samples = 10;
1544 timecompare_update(&adapter->compare, 0);
1546 #ifdef DEBUG
1548 char buffer[160];
1549 printk(KERN_DEBUG
1550 "igb: %s: hw %p initialized timer\n",
1551 igb_get_time_str(adapter, buffer),
1552 &adapter->hw);
1554 #endif
1556 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1557 /* print bus type/speed/width info */
1558 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1559 netdev->name,
1560 ((hw->bus.speed == e1000_bus_speed_2500)
1561 ? "2.5Gb/s" : "unknown"),
1562 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1563 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1564 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1565 "unknown"),
1566 netdev->dev_addr);
1568 igb_read_part_num(hw, &part_num);
1569 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1570 (part_num >> 8), (part_num & 0xff));
1572 dev_info(&pdev->dev,
1573 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1574 adapter->msix_entries ? "MSI-X" :
1575 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1576 adapter->num_rx_queues, adapter->num_tx_queues);
1578 return 0;
1580 err_register:
1581 igb_release_hw_control(adapter);
1582 err_eeprom:
1583 if (!igb_check_reset_block(hw))
1584 igb_reset_phy(hw);
1586 if (hw->flash_address)
1587 iounmap(hw->flash_address);
1589 igb_free_queues(adapter);
1590 err_sw_init:
1591 iounmap(hw->hw_addr);
1592 err_ioremap:
1593 free_netdev(netdev);
1594 err_alloc_etherdev:
1595 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1596 IORESOURCE_MEM));
1597 err_pci_reg:
1598 err_dma:
1599 pci_disable_device(pdev);
1600 return err;
1604 * igb_remove - Device Removal Routine
1605 * @pdev: PCI device information struct
1607 * igb_remove is called by the PCI subsystem to alert the driver
1608 * that it should release a PCI device. The could be caused by a
1609 * Hot-Plug event, or because the driver is going to be removed from
1610 * memory.
1612 static void __devexit igb_remove(struct pci_dev *pdev)
1614 struct net_device *netdev = pci_get_drvdata(pdev);
1615 struct igb_adapter *adapter = netdev_priv(netdev);
1616 struct e1000_hw *hw = &adapter->hw;
1617 int err;
1619 /* flush_scheduled work may reschedule our watchdog task, so
1620 * explicitly disable watchdog tasks from being rescheduled */
1621 set_bit(__IGB_DOWN, &adapter->state);
1622 del_timer_sync(&adapter->watchdog_timer);
1623 del_timer_sync(&adapter->phy_info_timer);
1625 flush_scheduled_work();
1627 #ifdef CONFIG_IGB_DCA
1628 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1629 dev_info(&pdev->dev, "DCA disabled\n");
1630 dca_remove_requester(&pdev->dev);
1631 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1632 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
1634 #endif
1636 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1637 * would have already happened in close and is redundant. */
1638 igb_release_hw_control(adapter);
1640 unregister_netdev(netdev);
1642 if (!igb_check_reset_block(&adapter->hw))
1643 igb_reset_phy(&adapter->hw);
1645 igb_reset_interrupt_capability(adapter);
1647 igb_free_queues(adapter);
1649 #ifdef CONFIG_PCI_IOV
1650 /* reclaim resources allocated to VFs */
1651 if (adapter->vf_data) {
1652 /* disable iov and allow time for transactions to clear */
1653 pci_disable_sriov(pdev);
1654 msleep(500);
1656 kfree(adapter->vf_data);
1657 adapter->vf_data = NULL;
1658 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1659 msleep(100);
1660 dev_info(&pdev->dev, "IOV Disabled\n");
1662 #endif
1663 iounmap(hw->hw_addr);
1664 if (hw->flash_address)
1665 iounmap(hw->flash_address);
1666 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1667 IORESOURCE_MEM));
1669 free_netdev(netdev);
1671 err = pci_disable_pcie_error_reporting(pdev);
1672 if (err)
1673 dev_err(&pdev->dev,
1674 "pci_disable_pcie_error_reporting failed 0x%x\n", err);
1676 pci_disable_device(pdev);
1680 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1681 * @adapter: board private structure to initialize
1683 * igb_sw_init initializes the Adapter private data structure.
1684 * Fields are initialized based on PCI device information and
1685 * OS network device settings (MTU size).
1687 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1689 struct e1000_hw *hw = &adapter->hw;
1690 struct net_device *netdev = adapter->netdev;
1691 struct pci_dev *pdev = adapter->pdev;
1693 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1695 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1696 adapter->rx_ring_count = IGB_DEFAULT_RXD;
1697 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1698 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1699 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1700 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1702 /* This call may decrease the number of queues depending on
1703 * interrupt mode. */
1704 igb_set_interrupt_capability(adapter);
1706 if (igb_alloc_queues(adapter)) {
1707 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1708 return -ENOMEM;
1711 /* Explicitly disable IRQ since the NIC can be in any state. */
1712 igb_irq_disable(adapter);
1714 set_bit(__IGB_DOWN, &adapter->state);
1715 return 0;
1719 * igb_open - Called when a network interface is made active
1720 * @netdev: network interface device structure
1722 * Returns 0 on success, negative value on failure
1724 * The open entry point is called when a network interface is made
1725 * active by the system (IFF_UP). At this point all resources needed
1726 * for transmit and receive operations are allocated, the interrupt
1727 * handler is registered with the OS, the watchdog timer is started,
1728 * and the stack is notified that the interface is ready.
1730 static int igb_open(struct net_device *netdev)
1732 struct igb_adapter *adapter = netdev_priv(netdev);
1733 struct e1000_hw *hw = &adapter->hw;
1734 int err;
1735 int i;
1737 /* disallow open during test */
1738 if (test_bit(__IGB_TESTING, &adapter->state))
1739 return -EBUSY;
1741 netif_carrier_off(netdev);
1743 /* allocate transmit descriptors */
1744 err = igb_setup_all_tx_resources(adapter);
1745 if (err)
1746 goto err_setup_tx;
1748 /* allocate receive descriptors */
1749 err = igb_setup_all_rx_resources(adapter);
1750 if (err)
1751 goto err_setup_rx;
1753 /* e1000_power_up_phy(adapter); */
1755 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1756 if ((adapter->hw.mng_cookie.status &
1757 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1758 igb_update_mng_vlan(adapter);
1760 /* before we allocate an interrupt, we must be ready to handle it.
1761 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1762 * as soon as we call pci_request_irq, so we have to setup our
1763 * clean_rx handler before we do so. */
1764 igb_configure(adapter);
1766 igb_vmm_control(adapter);
1767 igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
1768 igb_set_vmolr(hw, adapter->vfs_allocated_count);
1770 err = igb_request_irq(adapter);
1771 if (err)
1772 goto err_req_irq;
1774 /* From here on the code is the same as igb_up() */
1775 clear_bit(__IGB_DOWN, &adapter->state);
1777 for (i = 0; i < adapter->num_rx_queues; i++)
1778 napi_enable(&adapter->rx_ring[i].napi);
1780 /* Clear any pending interrupts. */
1781 rd32(E1000_ICR);
1783 igb_irq_enable(adapter);
1785 netif_tx_start_all_queues(netdev);
1787 /* Fire a link status change interrupt to start the watchdog. */
1788 wr32(E1000_ICS, E1000_ICS_LSC);
1790 return 0;
1792 err_req_irq:
1793 igb_release_hw_control(adapter);
1794 /* e1000_power_down_phy(adapter); */
1795 igb_free_all_rx_resources(adapter);
1796 err_setup_rx:
1797 igb_free_all_tx_resources(adapter);
1798 err_setup_tx:
1799 igb_reset(adapter);
1801 return err;
1805 * igb_close - Disables a network interface
1806 * @netdev: network interface device structure
1808 * Returns 0, this is not allowed to fail
1810 * The close entry point is called when an interface is de-activated
1811 * by the OS. The hardware is still under the driver's control, but
1812 * needs to be disabled. A global MAC reset is issued to stop the
1813 * hardware, and all transmit and receive resources are freed.
1815 static int igb_close(struct net_device *netdev)
1817 struct igb_adapter *adapter = netdev_priv(netdev);
1819 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1820 igb_down(adapter);
1822 igb_free_irq(adapter);
1824 igb_free_all_tx_resources(adapter);
1825 igb_free_all_rx_resources(adapter);
1827 /* kill manageability vlan ID if supported, but not if a vlan with
1828 * the same ID is registered on the host OS (let 8021q kill it) */
1829 if ((adapter->hw.mng_cookie.status &
1830 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1831 !(adapter->vlgrp &&
1832 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1833 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1835 return 0;
1839 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1840 * @adapter: board private structure
1841 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1843 * Return 0 on success, negative on failure
1845 int igb_setup_tx_resources(struct igb_adapter *adapter,
1846 struct igb_ring *tx_ring)
1848 struct pci_dev *pdev = adapter->pdev;
1849 int size;
1851 size = sizeof(struct igb_buffer) * tx_ring->count;
1852 tx_ring->buffer_info = vmalloc(size);
1853 if (!tx_ring->buffer_info)
1854 goto err;
1855 memset(tx_ring->buffer_info, 0, size);
1857 /* round up to nearest 4K */
1858 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
1859 tx_ring->size = ALIGN(tx_ring->size, 4096);
1861 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1862 &tx_ring->dma);
1864 if (!tx_ring->desc)
1865 goto err;
1867 tx_ring->adapter = adapter;
1868 tx_ring->next_to_use = 0;
1869 tx_ring->next_to_clean = 0;
1870 return 0;
1872 err:
1873 vfree(tx_ring->buffer_info);
1874 dev_err(&adapter->pdev->dev,
1875 "Unable to allocate memory for the transmit descriptor ring\n");
1876 return -ENOMEM;
1880 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1881 * (Descriptors) for all queues
1882 * @adapter: board private structure
1884 * Return 0 on success, negative on failure
1886 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1888 int i, err = 0;
1889 int r_idx;
1891 for (i = 0; i < adapter->num_tx_queues; i++) {
1892 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1893 if (err) {
1894 dev_err(&adapter->pdev->dev,
1895 "Allocation for Tx Queue %u failed\n", i);
1896 for (i--; i >= 0; i--)
1897 igb_free_tx_resources(&adapter->tx_ring[i]);
1898 break;
1902 for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1903 r_idx = i % adapter->num_tx_queues;
1904 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1906 return err;
1910 * igb_configure_tx - Configure transmit Unit after Reset
1911 * @adapter: board private structure
1913 * Configure the Tx unit of the MAC after a reset.
1915 static void igb_configure_tx(struct igb_adapter *adapter)
1917 u64 tdba;
1918 struct e1000_hw *hw = &adapter->hw;
1919 u32 tctl;
1920 u32 txdctl, txctrl;
1921 int i, j;
1923 for (i = 0; i < adapter->num_tx_queues; i++) {
1924 struct igb_ring *ring = &adapter->tx_ring[i];
1925 j = ring->reg_idx;
1926 wr32(E1000_TDLEN(j),
1927 ring->count * sizeof(union e1000_adv_tx_desc));
1928 tdba = ring->dma;
1929 wr32(E1000_TDBAL(j),
1930 tdba & 0x00000000ffffffffULL);
1931 wr32(E1000_TDBAH(j), tdba >> 32);
1933 ring->head = E1000_TDH(j);
1934 ring->tail = E1000_TDT(j);
1935 writel(0, hw->hw_addr + ring->tail);
1936 writel(0, hw->hw_addr + ring->head);
1937 txdctl = rd32(E1000_TXDCTL(j));
1938 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1939 wr32(E1000_TXDCTL(j), txdctl);
1941 /* Turn off Relaxed Ordering on head write-backs. The
1942 * writebacks MUST be delivered in order or it will
1943 * completely screw up our bookeeping.
1945 txctrl = rd32(E1000_DCA_TXCTRL(j));
1946 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1947 wr32(E1000_DCA_TXCTRL(j), txctrl);
1950 /* disable queue 0 to prevent tail bump w/o re-configuration */
1951 if (adapter->vfs_allocated_count)
1952 wr32(E1000_TXDCTL(0), 0);
1954 /* Program the Transmit Control Register */
1955 tctl = rd32(E1000_TCTL);
1956 tctl &= ~E1000_TCTL_CT;
1957 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1958 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1960 igb_config_collision_dist(hw);
1962 /* Setup Transmit Descriptor Settings for eop descriptor */
1963 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1965 /* Enable transmits */
1966 tctl |= E1000_TCTL_EN;
1968 wr32(E1000_TCTL, tctl);
1972 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1973 * @adapter: board private structure
1974 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1976 * Returns 0 on success, negative on failure
1978 int igb_setup_rx_resources(struct igb_adapter *adapter,
1979 struct igb_ring *rx_ring)
1981 struct pci_dev *pdev = adapter->pdev;
1982 int size, desc_len;
1984 size = sizeof(struct igb_buffer) * rx_ring->count;
1985 rx_ring->buffer_info = vmalloc(size);
1986 if (!rx_ring->buffer_info)
1987 goto err;
1988 memset(rx_ring->buffer_info, 0, size);
1990 desc_len = sizeof(union e1000_adv_rx_desc);
1992 /* Round up to nearest 4K */
1993 rx_ring->size = rx_ring->count * desc_len;
1994 rx_ring->size = ALIGN(rx_ring->size, 4096);
1996 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1997 &rx_ring->dma);
1999 if (!rx_ring->desc)
2000 goto err;
2002 rx_ring->next_to_clean = 0;
2003 rx_ring->next_to_use = 0;
2005 rx_ring->adapter = adapter;
2007 return 0;
2009 err:
2010 vfree(rx_ring->buffer_info);
2011 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
2012 "the receive descriptor ring\n");
2013 return -ENOMEM;
2017 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2018 * (Descriptors) for all queues
2019 * @adapter: board private structure
2021 * Return 0 on success, negative on failure
2023 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2025 int i, err = 0;
2027 for (i = 0; i < adapter->num_rx_queues; i++) {
2028 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
2029 if (err) {
2030 dev_err(&adapter->pdev->dev,
2031 "Allocation for Rx Queue %u failed\n", i);
2032 for (i--; i >= 0; i--)
2033 igb_free_rx_resources(&adapter->rx_ring[i]);
2034 break;
2038 return err;
2042 * igb_setup_rctl - configure the receive control registers
2043 * @adapter: Board private structure
2045 static void igb_setup_rctl(struct igb_adapter *adapter)
2047 struct e1000_hw *hw = &adapter->hw;
2048 u32 rctl;
2049 u32 srrctl = 0;
2050 int i;
2052 rctl = rd32(E1000_RCTL);
2054 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2055 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2057 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2058 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2061 * enable stripping of CRC. It's unlikely this will break BMC
2062 * redirection as it did with e1000. Newer features require
2063 * that the HW strips the CRC.
2065 rctl |= E1000_RCTL_SECRC;
2068 * disable store bad packets and clear size bits.
2070 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2072 /* enable LPE when to prevent packets larger than max_frame_size */
2073 rctl |= E1000_RCTL_LPE;
2075 /* Setup buffer sizes */
2076 switch (adapter->rx_buffer_len) {
2077 case IGB_RXBUFFER_256:
2078 rctl |= E1000_RCTL_SZ_256;
2079 break;
2080 case IGB_RXBUFFER_512:
2081 rctl |= E1000_RCTL_SZ_512;
2082 break;
2083 default:
2084 srrctl = ALIGN(adapter->rx_buffer_len, 1024)
2085 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2086 break;
2089 /* 82575 and greater support packet-split where the protocol
2090 * header is placed in skb->data and the packet data is
2091 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2092 * In the case of a non-split, skb->data is linearly filled,
2093 * followed by the page buffers. Therefore, skb->data is
2094 * sized to hold the largest protocol header.
2096 /* allocations using alloc_page take too long for regular MTU
2097 * so only enable packet split for jumbo frames */
2098 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2099 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
2100 srrctl |= adapter->rx_ps_hdr_size <<
2101 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2102 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2103 } else {
2104 adapter->rx_ps_hdr_size = 0;
2105 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2108 /* Attention!!! For SR-IOV PF driver operations you must enable
2109 * queue drop for all VF and PF queues to prevent head of line blocking
2110 * if an un-trusted VF does not provide descriptors to hardware.
2112 if (adapter->vfs_allocated_count) {
2113 u32 vmolr;
2115 /* set all queue drop enable bits */
2116 wr32(E1000_QDE, ALL_QUEUES);
2117 srrctl |= E1000_SRRCTL_DROP_EN;
2119 /* disable queue 0 to prevent tail write w/o re-config */
2120 wr32(E1000_RXDCTL(0), 0);
2122 vmolr = rd32(E1000_VMOLR(adapter->vfs_allocated_count));
2123 if (rctl & E1000_RCTL_LPE)
2124 vmolr |= E1000_VMOLR_LPE;
2125 if (adapter->num_rx_queues > 1)
2126 vmolr |= E1000_VMOLR_RSSE;
2127 wr32(E1000_VMOLR(adapter->vfs_allocated_count), vmolr);
2130 for (i = 0; i < adapter->num_rx_queues; i++) {
2131 int j = adapter->rx_ring[i].reg_idx;
2132 wr32(E1000_SRRCTL(j), srrctl);
2135 wr32(E1000_RCTL, rctl);
2139 * igb_rlpml_set - set maximum receive packet size
2140 * @adapter: board private structure
2142 * Configure maximum receivable packet size.
2144 static void igb_rlpml_set(struct igb_adapter *adapter)
2146 u32 max_frame_size = adapter->max_frame_size;
2147 struct e1000_hw *hw = &adapter->hw;
2148 u16 pf_id = adapter->vfs_allocated_count;
2150 if (adapter->vlgrp)
2151 max_frame_size += VLAN_TAG_SIZE;
2153 /* if vfs are enabled we set RLPML to the largest possible request
2154 * size and set the VMOLR RLPML to the size we need */
2155 if (pf_id) {
2156 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2157 max_frame_size = MAX_STD_JUMBO_FRAME_SIZE + VLAN_TAG_SIZE;
2160 wr32(E1000_RLPML, max_frame_size);
2164 * igb_configure_vt_default_pool - Configure VT default pool
2165 * @adapter: board private structure
2167 * Configure the default pool
2169 static void igb_configure_vt_default_pool(struct igb_adapter *adapter)
2171 struct e1000_hw *hw = &adapter->hw;
2172 u16 pf_id = adapter->vfs_allocated_count;
2173 u32 vtctl;
2175 /* not in sr-iov mode - do nothing */
2176 if (!pf_id)
2177 return;
2179 vtctl = rd32(E1000_VT_CTL);
2180 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2181 E1000_VT_CTL_DISABLE_DEF_POOL);
2182 vtctl |= pf_id << E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2183 wr32(E1000_VT_CTL, vtctl);
2187 * igb_configure_rx - Configure receive Unit after Reset
2188 * @adapter: board private structure
2190 * Configure the Rx unit of the MAC after a reset.
2192 static void igb_configure_rx(struct igb_adapter *adapter)
2194 u64 rdba;
2195 struct e1000_hw *hw = &adapter->hw;
2196 u32 rctl, rxcsum;
2197 u32 rxdctl;
2198 int i;
2200 /* disable receives while setting up the descriptors */
2201 rctl = rd32(E1000_RCTL);
2202 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2203 wrfl();
2204 mdelay(10);
2206 if (adapter->itr_setting > 3)
2207 wr32(E1000_ITR, adapter->itr);
2209 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2210 * the Base and Length of the Rx Descriptor Ring */
2211 for (i = 0; i < adapter->num_rx_queues; i++) {
2212 struct igb_ring *ring = &adapter->rx_ring[i];
2213 int j = ring->reg_idx;
2214 rdba = ring->dma;
2215 wr32(E1000_RDBAL(j),
2216 rdba & 0x00000000ffffffffULL);
2217 wr32(E1000_RDBAH(j), rdba >> 32);
2218 wr32(E1000_RDLEN(j),
2219 ring->count * sizeof(union e1000_adv_rx_desc));
2221 ring->head = E1000_RDH(j);
2222 ring->tail = E1000_RDT(j);
2223 writel(0, hw->hw_addr + ring->tail);
2224 writel(0, hw->hw_addr + ring->head);
2226 rxdctl = rd32(E1000_RXDCTL(j));
2227 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2228 rxdctl &= 0xFFF00000;
2229 rxdctl |= IGB_RX_PTHRESH;
2230 rxdctl |= IGB_RX_HTHRESH << 8;
2231 rxdctl |= IGB_RX_WTHRESH << 16;
2232 wr32(E1000_RXDCTL(j), rxdctl);
2235 if (adapter->num_rx_queues > 1) {
2236 u32 random[10];
2237 u32 mrqc;
2238 u32 j, shift;
2239 union e1000_reta {
2240 u32 dword;
2241 u8 bytes[4];
2242 } reta;
2244 get_random_bytes(&random[0], 40);
2246 if (hw->mac.type >= e1000_82576)
2247 shift = 0;
2248 else
2249 shift = 6;
2250 for (j = 0; j < (32 * 4); j++) {
2251 reta.bytes[j & 3] =
2252 adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
2253 if ((j & 3) == 3)
2254 writel(reta.dword,
2255 hw->hw_addr + E1000_RETA(0) + (j & ~3));
2257 if (adapter->vfs_allocated_count)
2258 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2259 else
2260 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2262 /* Fill out hash function seeds */
2263 for (j = 0; j < 10; j++)
2264 array_wr32(E1000_RSSRK(0), j, random[j]);
2266 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2267 E1000_MRQC_RSS_FIELD_IPV4_TCP);
2268 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2269 E1000_MRQC_RSS_FIELD_IPV6_TCP);
2270 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2271 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2272 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2273 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2275 wr32(E1000_MRQC, mrqc);
2276 } else if (adapter->vfs_allocated_count) {
2277 /* Enable multi-queue for sr-iov */
2278 wr32(E1000_MRQC, E1000_MRQC_ENABLE_VMDQ);
2281 /* Enable Receive Checksum Offload for TCP and UDP */
2282 rxcsum = rd32(E1000_RXCSUM);
2283 /* Disable raw packet checksumming */
2284 rxcsum |= E1000_RXCSUM_PCSD;
2286 if (adapter->hw.mac.type == e1000_82576)
2287 /* Enable Receive Checksum Offload for SCTP */
2288 rxcsum |= E1000_RXCSUM_CRCOFL;
2290 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2291 wr32(E1000_RXCSUM, rxcsum);
2293 /* Set the default pool for the PF's first queue */
2294 igb_configure_vt_default_pool(adapter);
2296 igb_rlpml_set(adapter);
2298 /* Enable Receives */
2299 wr32(E1000_RCTL, rctl);
2303 * igb_free_tx_resources - Free Tx Resources per Queue
2304 * @tx_ring: Tx descriptor ring for a specific queue
2306 * Free all transmit software resources
2308 void igb_free_tx_resources(struct igb_ring *tx_ring)
2310 struct pci_dev *pdev = tx_ring->adapter->pdev;
2312 igb_clean_tx_ring(tx_ring);
2314 vfree(tx_ring->buffer_info);
2315 tx_ring->buffer_info = NULL;
2317 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2319 tx_ring->desc = NULL;
2323 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2324 * @adapter: board private structure
2326 * Free all transmit software resources
2328 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2330 int i;
2332 for (i = 0; i < adapter->num_tx_queues; i++)
2333 igb_free_tx_resources(&adapter->tx_ring[i]);
2336 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2337 struct igb_buffer *buffer_info)
2339 buffer_info->dma = 0;
2340 if (buffer_info->skb) {
2341 skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
2342 DMA_TO_DEVICE);
2343 dev_kfree_skb_any(buffer_info->skb);
2344 buffer_info->skb = NULL;
2346 buffer_info->time_stamp = 0;
2347 /* buffer_info must be completely set up in the transmit path */
2351 * igb_clean_tx_ring - Free Tx Buffers
2352 * @tx_ring: ring to be cleaned
2354 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2356 struct igb_adapter *adapter = tx_ring->adapter;
2357 struct igb_buffer *buffer_info;
2358 unsigned long size;
2359 unsigned int i;
2361 if (!tx_ring->buffer_info)
2362 return;
2363 /* Free all the Tx ring sk_buffs */
2365 for (i = 0; i < tx_ring->count; i++) {
2366 buffer_info = &tx_ring->buffer_info[i];
2367 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2370 size = sizeof(struct igb_buffer) * tx_ring->count;
2371 memset(tx_ring->buffer_info, 0, size);
2373 /* Zero out the descriptor ring */
2375 memset(tx_ring->desc, 0, tx_ring->size);
2377 tx_ring->next_to_use = 0;
2378 tx_ring->next_to_clean = 0;
2380 writel(0, adapter->hw.hw_addr + tx_ring->head);
2381 writel(0, adapter->hw.hw_addr + tx_ring->tail);
2385 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2386 * @adapter: board private structure
2388 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2390 int i;
2392 for (i = 0; i < adapter->num_tx_queues; i++)
2393 igb_clean_tx_ring(&adapter->tx_ring[i]);
2397 * igb_free_rx_resources - Free Rx Resources
2398 * @rx_ring: ring to clean the resources from
2400 * Free all receive software resources
2402 void igb_free_rx_resources(struct igb_ring *rx_ring)
2404 struct pci_dev *pdev = rx_ring->adapter->pdev;
2406 igb_clean_rx_ring(rx_ring);
2408 vfree(rx_ring->buffer_info);
2409 rx_ring->buffer_info = NULL;
2411 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2413 rx_ring->desc = NULL;
2417 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2418 * @adapter: board private structure
2420 * Free all receive software resources
2422 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2424 int i;
2426 for (i = 0; i < adapter->num_rx_queues; i++)
2427 igb_free_rx_resources(&adapter->rx_ring[i]);
2431 * igb_clean_rx_ring - Free Rx Buffers per Queue
2432 * @rx_ring: ring to free buffers from
2434 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2436 struct igb_adapter *adapter = rx_ring->adapter;
2437 struct igb_buffer *buffer_info;
2438 struct pci_dev *pdev = adapter->pdev;
2439 unsigned long size;
2440 unsigned int i;
2442 if (!rx_ring->buffer_info)
2443 return;
2444 /* Free all the Rx ring sk_buffs */
2445 for (i = 0; i < rx_ring->count; i++) {
2446 buffer_info = &rx_ring->buffer_info[i];
2447 if (buffer_info->dma) {
2448 if (adapter->rx_ps_hdr_size)
2449 pci_unmap_single(pdev, buffer_info->dma,
2450 adapter->rx_ps_hdr_size,
2451 PCI_DMA_FROMDEVICE);
2452 else
2453 pci_unmap_single(pdev, buffer_info->dma,
2454 adapter->rx_buffer_len,
2455 PCI_DMA_FROMDEVICE);
2456 buffer_info->dma = 0;
2459 if (buffer_info->skb) {
2460 dev_kfree_skb(buffer_info->skb);
2461 buffer_info->skb = NULL;
2463 if (buffer_info->page) {
2464 if (buffer_info->page_dma)
2465 pci_unmap_page(pdev, buffer_info->page_dma,
2466 PAGE_SIZE / 2,
2467 PCI_DMA_FROMDEVICE);
2468 put_page(buffer_info->page);
2469 buffer_info->page = NULL;
2470 buffer_info->page_dma = 0;
2471 buffer_info->page_offset = 0;
2475 size = sizeof(struct igb_buffer) * rx_ring->count;
2476 memset(rx_ring->buffer_info, 0, size);
2478 /* Zero out the descriptor ring */
2479 memset(rx_ring->desc, 0, rx_ring->size);
2481 rx_ring->next_to_clean = 0;
2482 rx_ring->next_to_use = 0;
2484 writel(0, adapter->hw.hw_addr + rx_ring->head);
2485 writel(0, adapter->hw.hw_addr + rx_ring->tail);
2489 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2490 * @adapter: board private structure
2492 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2494 int i;
2496 for (i = 0; i < adapter->num_rx_queues; i++)
2497 igb_clean_rx_ring(&adapter->rx_ring[i]);
2501 * igb_set_mac - Change the Ethernet Address of the NIC
2502 * @netdev: network interface device structure
2503 * @p: pointer to an address structure
2505 * Returns 0 on success, negative on failure
2507 static int igb_set_mac(struct net_device *netdev, void *p)
2509 struct igb_adapter *adapter = netdev_priv(netdev);
2510 struct e1000_hw *hw = &adapter->hw;
2511 struct sockaddr *addr = p;
2513 if (!is_valid_ether_addr(addr->sa_data))
2514 return -EADDRNOTAVAIL;
2516 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2517 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2519 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
2521 igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
2523 return 0;
2527 * igb_set_multi - Multicast and Promiscuous mode set
2528 * @netdev: network interface device structure
2530 * The set_multi entry point is called whenever the multicast address
2531 * list or the network interface flags are updated. This routine is
2532 * responsible for configuring the hardware for proper multicast,
2533 * promiscuous mode, and all-multi behavior.
2535 static void igb_set_multi(struct net_device *netdev)
2537 struct igb_adapter *adapter = netdev_priv(netdev);
2538 struct e1000_hw *hw = &adapter->hw;
2539 struct dev_mc_list *mc_ptr;
2540 u8 *mta_list = NULL;
2541 u32 rctl;
2542 int i;
2544 /* Check for Promiscuous and All Multicast modes */
2546 rctl = rd32(E1000_RCTL);
2548 if (netdev->flags & IFF_PROMISC) {
2549 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2550 rctl &= ~E1000_RCTL_VFE;
2551 } else {
2552 if (netdev->flags & IFF_ALLMULTI) {
2553 rctl |= E1000_RCTL_MPE;
2554 rctl &= ~E1000_RCTL_UPE;
2555 } else
2556 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2557 rctl |= E1000_RCTL_VFE;
2559 wr32(E1000_RCTL, rctl);
2561 if (!netdev->mc_count) {
2562 /* nothing to program, so clear mc list */
2563 igb_update_mc_addr_list(hw, NULL, 0);
2564 igb_restore_vf_multicasts(adapter);
2565 return;
2568 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2569 if (!mta_list) {
2570 dev_err(&adapter->pdev->dev,
2571 "failed to allocate multicast filter list\n");
2572 return;
2575 /* The shared function expects a packed array of only addresses. */
2576 mc_ptr = netdev->mc_list;
2578 for (i = 0; i < netdev->mc_count; i++) {
2579 if (!mc_ptr)
2580 break;
2581 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2582 mc_ptr = mc_ptr->next;
2584 igb_update_mc_addr_list(hw, mta_list, i);
2585 kfree(mta_list);
2586 igb_restore_vf_multicasts(adapter);
2589 /* Need to wait a few seconds after link up to get diagnostic information from
2590 * the phy */
2591 static void igb_update_phy_info(unsigned long data)
2593 struct igb_adapter *adapter = (struct igb_adapter *) data;
2594 igb_get_phy_info(&adapter->hw);
2598 * igb_has_link - check shared code for link and determine up/down
2599 * @adapter: pointer to driver private info
2601 static bool igb_has_link(struct igb_adapter *adapter)
2603 struct e1000_hw *hw = &adapter->hw;
2604 bool link_active = false;
2605 s32 ret_val = 0;
2607 /* get_link_status is set on LSC (link status) interrupt or
2608 * rx sequence error interrupt. get_link_status will stay
2609 * false until the e1000_check_for_link establishes link
2610 * for copper adapters ONLY
2612 switch (hw->phy.media_type) {
2613 case e1000_media_type_copper:
2614 if (hw->mac.get_link_status) {
2615 ret_val = hw->mac.ops.check_for_link(hw);
2616 link_active = !hw->mac.get_link_status;
2617 } else {
2618 link_active = true;
2620 break;
2621 case e1000_media_type_internal_serdes:
2622 ret_val = hw->mac.ops.check_for_link(hw);
2623 link_active = hw->mac.serdes_has_link;
2624 break;
2625 default:
2626 case e1000_media_type_unknown:
2627 break;
2630 return link_active;
2634 * igb_watchdog - Timer Call-back
2635 * @data: pointer to adapter cast into an unsigned long
2637 static void igb_watchdog(unsigned long data)
2639 struct igb_adapter *adapter = (struct igb_adapter *)data;
2640 /* Do the rest outside of interrupt context */
2641 schedule_work(&adapter->watchdog_task);
2644 static void igb_watchdog_task(struct work_struct *work)
2646 struct igb_adapter *adapter = container_of(work,
2647 struct igb_adapter, watchdog_task);
2648 struct e1000_hw *hw = &adapter->hw;
2649 struct net_device *netdev = adapter->netdev;
2650 struct igb_ring *tx_ring = adapter->tx_ring;
2651 u32 link;
2652 u32 eics = 0;
2653 int i;
2655 link = igb_has_link(adapter);
2656 if ((netif_carrier_ok(netdev)) && link)
2657 goto link_up;
2659 if (link) {
2660 if (!netif_carrier_ok(netdev)) {
2661 u32 ctrl;
2662 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2663 &adapter->link_speed,
2664 &adapter->link_duplex);
2666 ctrl = rd32(E1000_CTRL);
2667 /* Links status message must follow this format */
2668 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2669 "Flow Control: %s\n",
2670 netdev->name,
2671 adapter->link_speed,
2672 adapter->link_duplex == FULL_DUPLEX ?
2673 "Full Duplex" : "Half Duplex",
2674 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2675 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2676 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2677 E1000_CTRL_TFCE) ? "TX" : "None")));
2679 /* tweak tx_queue_len according to speed/duplex and
2680 * adjust the timeout factor */
2681 netdev->tx_queue_len = adapter->tx_queue_len;
2682 adapter->tx_timeout_factor = 1;
2683 switch (adapter->link_speed) {
2684 case SPEED_10:
2685 netdev->tx_queue_len = 10;
2686 adapter->tx_timeout_factor = 14;
2687 break;
2688 case SPEED_100:
2689 netdev->tx_queue_len = 100;
2690 /* maybe add some timeout factor ? */
2691 break;
2694 netif_carrier_on(netdev);
2696 igb_ping_all_vfs(adapter);
2698 /* link state has changed, schedule phy info update */
2699 if (!test_bit(__IGB_DOWN, &adapter->state))
2700 mod_timer(&adapter->phy_info_timer,
2701 round_jiffies(jiffies + 2 * HZ));
2703 } else {
2704 if (netif_carrier_ok(netdev)) {
2705 adapter->link_speed = 0;
2706 adapter->link_duplex = 0;
2707 /* Links status message must follow this format */
2708 printk(KERN_INFO "igb: %s NIC Link is Down\n",
2709 netdev->name);
2710 netif_carrier_off(netdev);
2712 igb_ping_all_vfs(adapter);
2714 /* link state has changed, schedule phy info update */
2715 if (!test_bit(__IGB_DOWN, &adapter->state))
2716 mod_timer(&adapter->phy_info_timer,
2717 round_jiffies(jiffies + 2 * HZ));
2721 link_up:
2722 igb_update_stats(adapter);
2724 hw->mac.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2725 adapter->tpt_old = adapter->stats.tpt;
2726 hw->mac.collision_delta = adapter->stats.colc - adapter->colc_old;
2727 adapter->colc_old = adapter->stats.colc;
2729 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2730 adapter->gorc_old = adapter->stats.gorc;
2731 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2732 adapter->gotc_old = adapter->stats.gotc;
2734 igb_update_adaptive(&adapter->hw);
2736 if (!netif_carrier_ok(netdev)) {
2737 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
2738 /* We've lost link, so the controller stops DMA,
2739 * but we've got queued Tx work that's never going
2740 * to get done, so reset controller to flush Tx.
2741 * (Do the reset outside of interrupt context). */
2742 adapter->tx_timeout_count++;
2743 schedule_work(&adapter->reset_task);
2744 /* return immediately since reset is imminent */
2745 return;
2749 /* Cause software interrupt to ensure rx ring is cleaned */
2750 if (adapter->msix_entries) {
2751 for (i = 0; i < adapter->num_rx_queues; i++)
2752 eics |= adapter->rx_ring[i].eims_value;
2753 wr32(E1000_EICS, eics);
2754 } else {
2755 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2758 /* Force detection of hung controller every watchdog period */
2759 tx_ring->detect_tx_hung = true;
2761 /* Reset the timer */
2762 if (!test_bit(__IGB_DOWN, &adapter->state))
2763 mod_timer(&adapter->watchdog_timer,
2764 round_jiffies(jiffies + 2 * HZ));
2767 enum latency_range {
2768 lowest_latency = 0,
2769 low_latency = 1,
2770 bulk_latency = 2,
2771 latency_invalid = 255
2776 * igb_update_ring_itr - update the dynamic ITR value based on packet size
2778 * Stores a new ITR value based on strictly on packet size. This
2779 * algorithm is less sophisticated than that used in igb_update_itr,
2780 * due to the difficulty of synchronizing statistics across multiple
2781 * receive rings. The divisors and thresholds used by this fuction
2782 * were determined based on theoretical maximum wire speed and testing
2783 * data, in order to minimize response time while increasing bulk
2784 * throughput.
2785 * This functionality is controlled by the InterruptThrottleRate module
2786 * parameter (see igb_param.c)
2787 * NOTE: This function is called only when operating in a multiqueue
2788 * receive environment.
2789 * @rx_ring: pointer to ring
2791 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2793 int new_val = rx_ring->itr_val;
2794 int avg_wire_size = 0;
2795 struct igb_adapter *adapter = rx_ring->adapter;
2797 if (!rx_ring->total_packets)
2798 goto clear_counts; /* no packets, so don't do anything */
2800 /* For non-gigabit speeds, just fix the interrupt rate at 4000
2801 * ints/sec - ITR timer value of 120 ticks.
2803 if (adapter->link_speed != SPEED_1000) {
2804 new_val = 120;
2805 goto set_itr_val;
2807 avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2809 /* Add 24 bytes to size to account for CRC, preamble, and gap */
2810 avg_wire_size += 24;
2812 /* Don't starve jumbo frames */
2813 avg_wire_size = min(avg_wire_size, 3000);
2815 /* Give a little boost to mid-size frames */
2816 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2817 new_val = avg_wire_size / 3;
2818 else
2819 new_val = avg_wire_size / 2;
2821 set_itr_val:
2822 if (new_val != rx_ring->itr_val) {
2823 rx_ring->itr_val = new_val;
2824 rx_ring->set_itr = 1;
2826 clear_counts:
2827 rx_ring->total_bytes = 0;
2828 rx_ring->total_packets = 0;
2832 * igb_update_itr - update the dynamic ITR value based on statistics
2833 * Stores a new ITR value based on packets and byte
2834 * counts during the last interrupt. The advantage of per interrupt
2835 * computation is faster updates and more accurate ITR for the current
2836 * traffic pattern. Constants in this function were computed
2837 * based on theoretical maximum wire speed and thresholds were set based
2838 * on testing data as well as attempting to minimize response time
2839 * while increasing bulk throughput.
2840 * this functionality is controlled by the InterruptThrottleRate module
2841 * parameter (see igb_param.c)
2842 * NOTE: These calculations are only valid when operating in a single-
2843 * queue environment.
2844 * @adapter: pointer to adapter
2845 * @itr_setting: current adapter->itr
2846 * @packets: the number of packets during this measurement interval
2847 * @bytes: the number of bytes during this measurement interval
2849 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2850 int packets, int bytes)
2852 unsigned int retval = itr_setting;
2854 if (packets == 0)
2855 goto update_itr_done;
2857 switch (itr_setting) {
2858 case lowest_latency:
2859 /* handle TSO and jumbo frames */
2860 if (bytes/packets > 8000)
2861 retval = bulk_latency;
2862 else if ((packets < 5) && (bytes > 512))
2863 retval = low_latency;
2864 break;
2865 case low_latency: /* 50 usec aka 20000 ints/s */
2866 if (bytes > 10000) {
2867 /* this if handles the TSO accounting */
2868 if (bytes/packets > 8000) {
2869 retval = bulk_latency;
2870 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2871 retval = bulk_latency;
2872 } else if ((packets > 35)) {
2873 retval = lowest_latency;
2875 } else if (bytes/packets > 2000) {
2876 retval = bulk_latency;
2877 } else if (packets <= 2 && bytes < 512) {
2878 retval = lowest_latency;
2880 break;
2881 case bulk_latency: /* 250 usec aka 4000 ints/s */
2882 if (bytes > 25000) {
2883 if (packets > 35)
2884 retval = low_latency;
2885 } else if (bytes < 1500) {
2886 retval = low_latency;
2888 break;
2891 update_itr_done:
2892 return retval;
2895 static void igb_set_itr(struct igb_adapter *adapter)
2897 u16 current_itr;
2898 u32 new_itr = adapter->itr;
2900 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2901 if (adapter->link_speed != SPEED_1000) {
2902 current_itr = 0;
2903 new_itr = 4000;
2904 goto set_itr_now;
2907 adapter->rx_itr = igb_update_itr(adapter,
2908 adapter->rx_itr,
2909 adapter->rx_ring->total_packets,
2910 adapter->rx_ring->total_bytes);
2912 if (adapter->rx_ring->buddy) {
2913 adapter->tx_itr = igb_update_itr(adapter,
2914 adapter->tx_itr,
2915 adapter->tx_ring->total_packets,
2916 adapter->tx_ring->total_bytes);
2917 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2918 } else {
2919 current_itr = adapter->rx_itr;
2922 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2923 if (adapter->itr_setting == 3 && current_itr == lowest_latency)
2924 current_itr = low_latency;
2926 switch (current_itr) {
2927 /* counts and packets in update_itr are dependent on these numbers */
2928 case lowest_latency:
2929 new_itr = 56; /* aka 70,000 ints/sec */
2930 break;
2931 case low_latency:
2932 new_itr = 196; /* aka 20,000 ints/sec */
2933 break;
2934 case bulk_latency:
2935 new_itr = 980; /* aka 4,000 ints/sec */
2936 break;
2937 default:
2938 break;
2941 set_itr_now:
2942 adapter->rx_ring->total_bytes = 0;
2943 adapter->rx_ring->total_packets = 0;
2944 if (adapter->rx_ring->buddy) {
2945 adapter->rx_ring->buddy->total_bytes = 0;
2946 adapter->rx_ring->buddy->total_packets = 0;
2949 if (new_itr != adapter->itr) {
2950 /* this attempts to bias the interrupt rate towards Bulk
2951 * by adding intermediate steps when interrupt rate is
2952 * increasing */
2953 new_itr = new_itr > adapter->itr ?
2954 max((new_itr * adapter->itr) /
2955 (new_itr + (adapter->itr >> 2)), new_itr) :
2956 new_itr;
2957 /* Don't write the value here; it resets the adapter's
2958 * internal timer, and causes us to delay far longer than
2959 * we should between interrupts. Instead, we write the ITR
2960 * value at the beginning of the next interrupt so the timing
2961 * ends up being correct.
2963 adapter->itr = new_itr;
2964 adapter->rx_ring->itr_val = new_itr;
2965 adapter->rx_ring->set_itr = 1;
2968 return;
2972 #define IGB_TX_FLAGS_CSUM 0x00000001
2973 #define IGB_TX_FLAGS_VLAN 0x00000002
2974 #define IGB_TX_FLAGS_TSO 0x00000004
2975 #define IGB_TX_FLAGS_IPV4 0x00000008
2976 #define IGB_TX_FLAGS_TSTAMP 0x00000010
2977 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2978 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2980 static inline int igb_tso_adv(struct igb_adapter *adapter,
2981 struct igb_ring *tx_ring,
2982 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2984 struct e1000_adv_tx_context_desc *context_desc;
2985 unsigned int i;
2986 int err;
2987 struct igb_buffer *buffer_info;
2988 u32 info = 0, tu_cmd = 0;
2989 u32 mss_l4len_idx, l4len;
2990 *hdr_len = 0;
2992 if (skb_header_cloned(skb)) {
2993 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2994 if (err)
2995 return err;
2998 l4len = tcp_hdrlen(skb);
2999 *hdr_len += l4len;
3001 if (skb->protocol == htons(ETH_P_IP)) {
3002 struct iphdr *iph = ip_hdr(skb);
3003 iph->tot_len = 0;
3004 iph->check = 0;
3005 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3006 iph->daddr, 0,
3007 IPPROTO_TCP,
3009 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3010 ipv6_hdr(skb)->payload_len = 0;
3011 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3012 &ipv6_hdr(skb)->daddr,
3013 0, IPPROTO_TCP, 0);
3016 i = tx_ring->next_to_use;
3018 buffer_info = &tx_ring->buffer_info[i];
3019 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3020 /* VLAN MACLEN IPLEN */
3021 if (tx_flags & IGB_TX_FLAGS_VLAN)
3022 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3023 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3024 *hdr_len += skb_network_offset(skb);
3025 info |= skb_network_header_len(skb);
3026 *hdr_len += skb_network_header_len(skb);
3027 context_desc->vlan_macip_lens = cpu_to_le32(info);
3029 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3030 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3032 if (skb->protocol == htons(ETH_P_IP))
3033 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3034 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3036 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3038 /* MSS L4LEN IDX */
3039 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3040 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3042 /* For 82575, context index must be unique per ring. */
3043 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
3044 mss_l4len_idx |= tx_ring->queue_index << 4;
3046 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3047 context_desc->seqnum_seed = 0;
3049 buffer_info->time_stamp = jiffies;
3050 buffer_info->next_to_watch = i;
3051 buffer_info->dma = 0;
3052 i++;
3053 if (i == tx_ring->count)
3054 i = 0;
3056 tx_ring->next_to_use = i;
3058 return true;
3061 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
3062 struct igb_ring *tx_ring,
3063 struct sk_buff *skb, u32 tx_flags)
3065 struct e1000_adv_tx_context_desc *context_desc;
3066 unsigned int i;
3067 struct igb_buffer *buffer_info;
3068 u32 info = 0, tu_cmd = 0;
3070 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3071 (tx_flags & IGB_TX_FLAGS_VLAN)) {
3072 i = tx_ring->next_to_use;
3073 buffer_info = &tx_ring->buffer_info[i];
3074 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3076 if (tx_flags & IGB_TX_FLAGS_VLAN)
3077 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3078 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3079 if (skb->ip_summed == CHECKSUM_PARTIAL)
3080 info |= skb_network_header_len(skb);
3082 context_desc->vlan_macip_lens = cpu_to_le32(info);
3084 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3086 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3087 __be16 protocol;
3089 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3090 const struct vlan_ethhdr *vhdr =
3091 (const struct vlan_ethhdr*)skb->data;
3093 protocol = vhdr->h_vlan_encapsulated_proto;
3094 } else {
3095 protocol = skb->protocol;
3098 switch (protocol) {
3099 case cpu_to_be16(ETH_P_IP):
3100 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3101 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3102 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3103 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3104 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3105 break;
3106 case cpu_to_be16(ETH_P_IPV6):
3107 /* XXX what about other V6 headers?? */
3108 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3109 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3110 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3111 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3112 break;
3113 default:
3114 if (unlikely(net_ratelimit()))
3115 dev_warn(&adapter->pdev->dev,
3116 "partial checksum but proto=%x!\n",
3117 skb->protocol);
3118 break;
3122 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3123 context_desc->seqnum_seed = 0;
3124 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
3125 context_desc->mss_l4len_idx =
3126 cpu_to_le32(tx_ring->queue_index << 4);
3127 else
3128 context_desc->mss_l4len_idx = 0;
3130 buffer_info->time_stamp = jiffies;
3131 buffer_info->next_to_watch = i;
3132 buffer_info->dma = 0;
3134 i++;
3135 if (i == tx_ring->count)
3136 i = 0;
3137 tx_ring->next_to_use = i;
3139 return true;
3141 return false;
3144 #define IGB_MAX_TXD_PWR 16
3145 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3147 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
3148 struct igb_ring *tx_ring, struct sk_buff *skb,
3149 unsigned int first)
3151 struct igb_buffer *buffer_info;
3152 unsigned int len = skb_headlen(skb);
3153 unsigned int count = 0, i;
3154 unsigned int f;
3155 dma_addr_t *map;
3157 i = tx_ring->next_to_use;
3159 if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
3160 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3161 return 0;
3164 map = skb_shinfo(skb)->dma_maps;
3166 buffer_info = &tx_ring->buffer_info[i];
3167 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3168 buffer_info->length = len;
3169 /* set time_stamp *before* dma to help avoid a possible race */
3170 buffer_info->time_stamp = jiffies;
3171 buffer_info->next_to_watch = i;
3172 buffer_info->dma = skb_shinfo(skb)->dma_head;
3174 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3175 struct skb_frag_struct *frag;
3177 i++;
3178 if (i == tx_ring->count)
3179 i = 0;
3181 frag = &skb_shinfo(skb)->frags[f];
3182 len = frag->size;
3184 buffer_info = &tx_ring->buffer_info[i];
3185 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3186 buffer_info->length = len;
3187 buffer_info->time_stamp = jiffies;
3188 buffer_info->next_to_watch = i;
3189 buffer_info->dma = map[count];
3190 count++;
3193 tx_ring->buffer_info[i].skb = skb;
3194 tx_ring->buffer_info[first].next_to_watch = i;
3196 return count + 1;
3199 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
3200 struct igb_ring *tx_ring,
3201 int tx_flags, int count, u32 paylen,
3202 u8 hdr_len)
3204 union e1000_adv_tx_desc *tx_desc = NULL;
3205 struct igb_buffer *buffer_info;
3206 u32 olinfo_status = 0, cmd_type_len;
3207 unsigned int i;
3209 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3210 E1000_ADVTXD_DCMD_DEXT);
3212 if (tx_flags & IGB_TX_FLAGS_VLAN)
3213 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3215 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3216 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3218 if (tx_flags & IGB_TX_FLAGS_TSO) {
3219 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3221 /* insert tcp checksum */
3222 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3224 /* insert ip checksum */
3225 if (tx_flags & IGB_TX_FLAGS_IPV4)
3226 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3228 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3229 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3232 if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
3233 (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
3234 IGB_TX_FLAGS_VLAN)))
3235 olinfo_status |= tx_ring->queue_index << 4;
3237 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3239 i = tx_ring->next_to_use;
3240 while (count--) {
3241 buffer_info = &tx_ring->buffer_info[i];
3242 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3243 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3244 tx_desc->read.cmd_type_len =
3245 cpu_to_le32(cmd_type_len | buffer_info->length);
3246 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3247 i++;
3248 if (i == tx_ring->count)
3249 i = 0;
3252 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
3253 /* Force memory writes to complete before letting h/w
3254 * know there are new descriptors to fetch. (Only
3255 * applicable for weak-ordered memory model archs,
3256 * such as IA-64). */
3257 wmb();
3259 tx_ring->next_to_use = i;
3260 writel(i, adapter->hw.hw_addr + tx_ring->tail);
3261 /* we need this if more than one processor can write to our tail
3262 * at a time, it syncronizes IO on IA64/Altix systems */
3263 mmiowb();
3266 static int __igb_maybe_stop_tx(struct net_device *netdev,
3267 struct igb_ring *tx_ring, int size)
3269 struct igb_adapter *adapter = netdev_priv(netdev);
3271 netif_stop_subqueue(netdev, tx_ring->queue_index);
3273 /* Herbert's original patch had:
3274 * smp_mb__after_netif_stop_queue();
3275 * but since that doesn't exist yet, just open code it. */
3276 smp_mb();
3278 /* We need to check again in a case another CPU has just
3279 * made room available. */
3280 if (igb_desc_unused(tx_ring) < size)
3281 return -EBUSY;
3283 /* A reprieve! */
3284 netif_wake_subqueue(netdev, tx_ring->queue_index);
3285 ++adapter->restart_queue;
3286 return 0;
3289 static int igb_maybe_stop_tx(struct net_device *netdev,
3290 struct igb_ring *tx_ring, int size)
3292 if (igb_desc_unused(tx_ring) >= size)
3293 return 0;
3294 return __igb_maybe_stop_tx(netdev, tx_ring, size);
3297 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
3298 struct net_device *netdev,
3299 struct igb_ring *tx_ring)
3301 struct igb_adapter *adapter = netdev_priv(netdev);
3302 unsigned int first;
3303 unsigned int tx_flags = 0;
3304 u8 hdr_len = 0;
3305 int count = 0;
3306 int tso = 0;
3307 union skb_shared_tx *shtx;
3309 if (test_bit(__IGB_DOWN, &adapter->state)) {
3310 dev_kfree_skb_any(skb);
3311 return NETDEV_TX_OK;
3314 if (skb->len <= 0) {
3315 dev_kfree_skb_any(skb);
3316 return NETDEV_TX_OK;
3319 /* need: 1 descriptor per page,
3320 * + 2 desc gap to keep tail from touching head,
3321 * + 1 desc for skb->data,
3322 * + 1 desc for context descriptor,
3323 * otherwise try next time */
3324 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3325 /* this is a hard error */
3326 return NETDEV_TX_BUSY;
3330 * TODO: check that there currently is no other packet with
3331 * time stamping in the queue
3333 * When doing time stamping, keep the connection to the socket
3334 * a while longer: it is still needed by skb_hwtstamp_tx(),
3335 * called either in igb_tx_hwtstamp() or by our caller when
3336 * doing software time stamping.
3338 shtx = skb_tx(skb);
3339 if (unlikely(shtx->hardware)) {
3340 shtx->in_progress = 1;
3341 tx_flags |= IGB_TX_FLAGS_TSTAMP;
3344 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3345 tx_flags |= IGB_TX_FLAGS_VLAN;
3346 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3349 if (skb->protocol == htons(ETH_P_IP))
3350 tx_flags |= IGB_TX_FLAGS_IPV4;
3352 first = tx_ring->next_to_use;
3353 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
3354 &hdr_len) : 0;
3356 if (tso < 0) {
3357 dev_kfree_skb_any(skb);
3358 return NETDEV_TX_OK;
3361 if (tso)
3362 tx_flags |= IGB_TX_FLAGS_TSO;
3363 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags) &&
3364 (skb->ip_summed == CHECKSUM_PARTIAL))
3365 tx_flags |= IGB_TX_FLAGS_CSUM;
3368 * count reflects descriptors mapped, if 0 then mapping error
3369 * has occured and we need to rewind the descriptor queue
3371 count = igb_tx_map_adv(adapter, tx_ring, skb, first);
3373 if (count) {
3374 igb_tx_queue_adv(adapter, tx_ring, tx_flags, count,
3375 skb->len, hdr_len);
3376 /* Make sure there is space in the ring for the next send. */
3377 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3378 } else {
3379 dev_kfree_skb_any(skb);
3380 tx_ring->buffer_info[first].time_stamp = 0;
3381 tx_ring->next_to_use = first;
3384 return NETDEV_TX_OK;
3387 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3389 struct igb_adapter *adapter = netdev_priv(netdev);
3390 struct igb_ring *tx_ring;
3392 int r_idx = 0;
3393 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
3394 tx_ring = adapter->multi_tx_table[r_idx];
3396 /* This goes back to the question of how to logically map a tx queue
3397 * to a flow. Right now, performance is impacted slightly negatively
3398 * if using multiple tx queues. If the stack breaks away from a
3399 * single qdisc implementation, we can look at this again. */
3400 return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3404 * igb_tx_timeout - Respond to a Tx Hang
3405 * @netdev: network interface device structure
3407 static void igb_tx_timeout(struct net_device *netdev)
3409 struct igb_adapter *adapter = netdev_priv(netdev);
3410 struct e1000_hw *hw = &adapter->hw;
3412 /* Do the reset outside of interrupt context */
3413 adapter->tx_timeout_count++;
3414 schedule_work(&adapter->reset_task);
3415 wr32(E1000_EICS,
3416 (adapter->eims_enable_mask & ~adapter->eims_other));
3419 static void igb_reset_task(struct work_struct *work)
3421 struct igb_adapter *adapter;
3422 adapter = container_of(work, struct igb_adapter, reset_task);
3424 igb_reinit_locked(adapter);
3428 * igb_get_stats - Get System Network Statistics
3429 * @netdev: network interface device structure
3431 * Returns the address of the device statistics structure.
3432 * The statistics are actually updated from the timer callback.
3434 static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3436 struct igb_adapter *adapter = netdev_priv(netdev);
3438 /* only return the current stats */
3439 return &adapter->net_stats;
3443 * igb_change_mtu - Change the Maximum Transfer Unit
3444 * @netdev: network interface device structure
3445 * @new_mtu: new value for maximum frame size
3447 * Returns 0 on success, negative on failure
3449 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3451 struct igb_adapter *adapter = netdev_priv(netdev);
3452 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3454 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3455 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3456 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3457 return -EINVAL;
3460 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3461 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3462 return -EINVAL;
3465 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3466 msleep(1);
3468 /* igb_down has a dependency on max_frame_size */
3469 adapter->max_frame_size = max_frame;
3470 if (netif_running(netdev))
3471 igb_down(adapter);
3473 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3474 * means we reserve 2 more, this pushes us to allocate from the next
3475 * larger slab size.
3476 * i.e. RXBUFFER_2048 --> size-4096 slab
3479 if (max_frame <= IGB_RXBUFFER_256)
3480 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3481 else if (max_frame <= IGB_RXBUFFER_512)
3482 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3483 else if (max_frame <= IGB_RXBUFFER_1024)
3484 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3485 else if (max_frame <= IGB_RXBUFFER_2048)
3486 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3487 else
3488 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3489 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3490 #else
3491 adapter->rx_buffer_len = PAGE_SIZE / 2;
3492 #endif
3494 /* if sr-iov is enabled we need to force buffer size to 1K or larger */
3495 if (adapter->vfs_allocated_count &&
3496 (adapter->rx_buffer_len < IGB_RXBUFFER_1024))
3497 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3499 /* adjust allocation if LPE protects us, and we aren't using SBP */
3500 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3501 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3502 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3504 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3505 netdev->mtu, new_mtu);
3506 netdev->mtu = new_mtu;
3508 if (netif_running(netdev))
3509 igb_up(adapter);
3510 else
3511 igb_reset(adapter);
3513 clear_bit(__IGB_RESETTING, &adapter->state);
3515 return 0;
3519 * igb_update_stats - Update the board statistics counters
3520 * @adapter: board private structure
3523 void igb_update_stats(struct igb_adapter *adapter)
3525 struct e1000_hw *hw = &adapter->hw;
3526 struct pci_dev *pdev = adapter->pdev;
3527 u16 phy_tmp;
3529 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3532 * Prevent stats update while adapter is being reset, or if the pci
3533 * connection is down.
3535 if (adapter->link_speed == 0)
3536 return;
3537 if (pci_channel_offline(pdev))
3538 return;
3540 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3541 adapter->stats.gprc += rd32(E1000_GPRC);
3542 adapter->stats.gorc += rd32(E1000_GORCL);
3543 rd32(E1000_GORCH); /* clear GORCL */
3544 adapter->stats.bprc += rd32(E1000_BPRC);
3545 adapter->stats.mprc += rd32(E1000_MPRC);
3546 adapter->stats.roc += rd32(E1000_ROC);
3548 adapter->stats.prc64 += rd32(E1000_PRC64);
3549 adapter->stats.prc127 += rd32(E1000_PRC127);
3550 adapter->stats.prc255 += rd32(E1000_PRC255);
3551 adapter->stats.prc511 += rd32(E1000_PRC511);
3552 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3553 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3554 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3555 adapter->stats.sec += rd32(E1000_SEC);
3557 adapter->stats.mpc += rd32(E1000_MPC);
3558 adapter->stats.scc += rd32(E1000_SCC);
3559 adapter->stats.ecol += rd32(E1000_ECOL);
3560 adapter->stats.mcc += rd32(E1000_MCC);
3561 adapter->stats.latecol += rd32(E1000_LATECOL);
3562 adapter->stats.dc += rd32(E1000_DC);
3563 adapter->stats.rlec += rd32(E1000_RLEC);
3564 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3565 adapter->stats.xontxc += rd32(E1000_XONTXC);
3566 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3567 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3568 adapter->stats.fcruc += rd32(E1000_FCRUC);
3569 adapter->stats.gptc += rd32(E1000_GPTC);
3570 adapter->stats.gotc += rd32(E1000_GOTCL);
3571 rd32(E1000_GOTCH); /* clear GOTCL */
3572 adapter->stats.rnbc += rd32(E1000_RNBC);
3573 adapter->stats.ruc += rd32(E1000_RUC);
3574 adapter->stats.rfc += rd32(E1000_RFC);
3575 adapter->stats.rjc += rd32(E1000_RJC);
3576 adapter->stats.tor += rd32(E1000_TORH);
3577 adapter->stats.tot += rd32(E1000_TOTH);
3578 adapter->stats.tpr += rd32(E1000_TPR);
3580 adapter->stats.ptc64 += rd32(E1000_PTC64);
3581 adapter->stats.ptc127 += rd32(E1000_PTC127);
3582 adapter->stats.ptc255 += rd32(E1000_PTC255);
3583 adapter->stats.ptc511 += rd32(E1000_PTC511);
3584 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3585 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3587 adapter->stats.mptc += rd32(E1000_MPTC);
3588 adapter->stats.bptc += rd32(E1000_BPTC);
3590 /* used for adaptive IFS */
3592 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3593 adapter->stats.tpt += hw->mac.tx_packet_delta;
3594 hw->mac.collision_delta = rd32(E1000_COLC);
3595 adapter->stats.colc += hw->mac.collision_delta;
3597 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3598 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3599 adapter->stats.tncrs += rd32(E1000_TNCRS);
3600 adapter->stats.tsctc += rd32(E1000_TSCTC);
3601 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3603 adapter->stats.iac += rd32(E1000_IAC);
3604 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3605 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3606 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3607 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3608 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3609 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3610 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3611 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3613 /* Fill out the OS statistics structure */
3614 adapter->net_stats.multicast = adapter->stats.mprc;
3615 adapter->net_stats.collisions = adapter->stats.colc;
3617 /* Rx Errors */
3619 if (hw->mac.type != e1000_82575) {
3620 u32 rqdpc_tmp;
3621 u64 rqdpc_total = 0;
3622 int i;
3623 /* Read out drops stats per RX queue. Notice RQDPC (Receive
3624 * Queue Drop Packet Count) stats only gets incremented, if
3625 * the DROP_EN but it set (in the SRRCTL register for that
3626 * queue). If DROP_EN bit is NOT set, then the some what
3627 * equivalent count is stored in RNBC (not per queue basis).
3628 * Also note the drop count is due to lack of available
3629 * descriptors.
3631 for (i = 0; i < adapter->num_rx_queues; i++) {
3632 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0xFFF;
3633 adapter->rx_ring[i].rx_stats.drops += rqdpc_tmp;
3634 rqdpc_total += adapter->rx_ring[i].rx_stats.drops;
3636 adapter->net_stats.rx_fifo_errors = rqdpc_total;
3639 /* Note RNBC (Receive No Buffers Count) is an not an exact
3640 * drop count as the hardware FIFO might save the day. Thats
3641 * one of the reason for saving it in rx_fifo_errors, as its
3642 * potentially not a true drop.
3644 adapter->net_stats.rx_fifo_errors += adapter->stats.rnbc;
3646 /* RLEC on some newer hardware can be incorrect so build
3647 * our own version based on RUC and ROC */
3648 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3649 adapter->stats.crcerrs + adapter->stats.algnerrc +
3650 adapter->stats.ruc + adapter->stats.roc +
3651 adapter->stats.cexterr;
3652 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3653 adapter->stats.roc;
3654 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3655 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3656 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3658 /* Tx Errors */
3659 adapter->net_stats.tx_errors = adapter->stats.ecol +
3660 adapter->stats.latecol;
3661 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3662 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3663 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3665 /* Tx Dropped needs to be maintained elsewhere */
3667 /* Phy Stats */
3668 if (hw->phy.media_type == e1000_media_type_copper) {
3669 if ((adapter->link_speed == SPEED_1000) &&
3670 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3671 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3672 adapter->phy_stats.idle_errors += phy_tmp;
3676 /* Management Stats */
3677 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3678 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3679 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3682 static irqreturn_t igb_msix_other(int irq, void *data)
3684 struct net_device *netdev = data;
3685 struct igb_adapter *adapter = netdev_priv(netdev);
3686 struct e1000_hw *hw = &adapter->hw;
3687 u32 icr = rd32(E1000_ICR);
3689 /* reading ICR causes bit 31 of EICR to be cleared */
3691 if(icr & E1000_ICR_DOUTSYNC) {
3692 /* HW is reporting DMA is out of sync */
3693 adapter->stats.doosync++;
3696 /* Check for a mailbox event */
3697 if (icr & E1000_ICR_VMMB)
3698 igb_msg_task(adapter);
3700 if (icr & E1000_ICR_LSC) {
3701 hw->mac.get_link_status = 1;
3702 /* guard against interrupt when we're going down */
3703 if (!test_bit(__IGB_DOWN, &adapter->state))
3704 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3707 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_VMMB);
3708 wr32(E1000_EIMS, adapter->eims_other);
3710 return IRQ_HANDLED;
3713 static irqreturn_t igb_msix_tx(int irq, void *data)
3715 struct igb_ring *tx_ring = data;
3716 struct igb_adapter *adapter = tx_ring->adapter;
3717 struct e1000_hw *hw = &adapter->hw;
3719 #ifdef CONFIG_IGB_DCA
3720 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3721 igb_update_tx_dca(tx_ring);
3722 #endif
3724 tx_ring->total_bytes = 0;
3725 tx_ring->total_packets = 0;
3727 /* auto mask will automatically reenable the interrupt when we write
3728 * EICS */
3729 if (!igb_clean_tx_irq(tx_ring))
3730 /* Ring was not completely cleaned, so fire another interrupt */
3731 wr32(E1000_EICS, tx_ring->eims_value);
3732 else
3733 wr32(E1000_EIMS, tx_ring->eims_value);
3735 return IRQ_HANDLED;
3738 static void igb_write_itr(struct igb_ring *ring)
3740 struct e1000_hw *hw = &ring->adapter->hw;
3741 if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3742 switch (hw->mac.type) {
3743 case e1000_82576:
3744 wr32(ring->itr_register, ring->itr_val |
3745 0x80000000);
3746 break;
3747 default:
3748 wr32(ring->itr_register, ring->itr_val |
3749 (ring->itr_val << 16));
3750 break;
3752 ring->set_itr = 0;
3756 static irqreturn_t igb_msix_rx(int irq, void *data)
3758 struct igb_ring *rx_ring = data;
3760 /* Write the ITR value calculated at the end of the
3761 * previous interrupt.
3764 igb_write_itr(rx_ring);
3766 if (napi_schedule_prep(&rx_ring->napi))
3767 __napi_schedule(&rx_ring->napi);
3769 #ifdef CONFIG_IGB_DCA
3770 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
3771 igb_update_rx_dca(rx_ring);
3772 #endif
3773 return IRQ_HANDLED;
3776 #ifdef CONFIG_IGB_DCA
3777 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3779 u32 dca_rxctrl;
3780 struct igb_adapter *adapter = rx_ring->adapter;
3781 struct e1000_hw *hw = &adapter->hw;
3782 int cpu = get_cpu();
3783 int q = rx_ring->reg_idx;
3785 if (rx_ring->cpu != cpu) {
3786 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3787 if (hw->mac.type == e1000_82576) {
3788 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3789 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
3790 E1000_DCA_RXCTRL_CPUID_SHIFT;
3791 } else {
3792 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3793 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
3795 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3796 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3797 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3798 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3799 rx_ring->cpu = cpu;
3801 put_cpu();
3804 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3806 u32 dca_txctrl;
3807 struct igb_adapter *adapter = tx_ring->adapter;
3808 struct e1000_hw *hw = &adapter->hw;
3809 int cpu = get_cpu();
3810 int q = tx_ring->reg_idx;
3812 if (tx_ring->cpu != cpu) {
3813 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3814 if (hw->mac.type == e1000_82576) {
3815 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3816 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
3817 E1000_DCA_TXCTRL_CPUID_SHIFT;
3818 } else {
3819 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3820 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
3822 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3823 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3824 tx_ring->cpu = cpu;
3826 put_cpu();
3829 static void igb_setup_dca(struct igb_adapter *adapter)
3831 struct e1000_hw *hw = &adapter->hw;
3832 int i;
3834 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3835 return;
3837 /* Always use CB2 mode, difference is masked in the CB driver. */
3838 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
3840 for (i = 0; i < adapter->num_tx_queues; i++) {
3841 adapter->tx_ring[i].cpu = -1;
3842 igb_update_tx_dca(&adapter->tx_ring[i]);
3844 for (i = 0; i < adapter->num_rx_queues; i++) {
3845 adapter->rx_ring[i].cpu = -1;
3846 igb_update_rx_dca(&adapter->rx_ring[i]);
3850 static int __igb_notify_dca(struct device *dev, void *data)
3852 struct net_device *netdev = dev_get_drvdata(dev);
3853 struct igb_adapter *adapter = netdev_priv(netdev);
3854 struct e1000_hw *hw = &adapter->hw;
3855 unsigned long event = *(unsigned long *)data;
3857 switch (event) {
3858 case DCA_PROVIDER_ADD:
3859 /* if already enabled, don't do it again */
3860 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3861 break;
3862 /* Always use CB2 mode, difference is masked
3863 * in the CB driver. */
3864 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
3865 if (dca_add_requester(dev) == 0) {
3866 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3867 dev_info(&adapter->pdev->dev, "DCA enabled\n");
3868 igb_setup_dca(adapter);
3869 break;
3871 /* Fall Through since DCA is disabled. */
3872 case DCA_PROVIDER_REMOVE:
3873 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3874 /* without this a class_device is left
3875 * hanging around in the sysfs model */
3876 dca_remove_requester(dev);
3877 dev_info(&adapter->pdev->dev, "DCA disabled\n");
3878 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3879 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3881 break;
3884 return 0;
3887 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3888 void *p)
3890 int ret_val;
3892 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3893 __igb_notify_dca);
3895 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3897 #endif /* CONFIG_IGB_DCA */
3899 static void igb_ping_all_vfs(struct igb_adapter *adapter)
3901 struct e1000_hw *hw = &adapter->hw;
3902 u32 ping;
3903 int i;
3905 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
3906 ping = E1000_PF_CONTROL_MSG;
3907 if (adapter->vf_data[i].clear_to_send)
3908 ping |= E1000_VT_MSGTYPE_CTS;
3909 igb_write_mbx(hw, &ping, 1, i);
3913 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
3914 u32 *msgbuf, u32 vf)
3916 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
3917 u16 *hash_list = (u16 *)&msgbuf[1];
3918 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
3919 int i;
3921 /* only up to 30 hash values supported */
3922 if (n > 30)
3923 n = 30;
3925 /* salt away the number of multi cast addresses assigned
3926 * to this VF for later use to restore when the PF multi cast
3927 * list changes
3929 vf_data->num_vf_mc_hashes = n;
3931 /* VFs are limited to using the MTA hash table for their multicast
3932 * addresses */
3933 for (i = 0; i < n; i++)
3934 vf_data->vf_mc_hashes[i] = hash_list[i];;
3936 /* Flush and reset the mta with the new values */
3937 igb_set_multi(adapter->netdev);
3939 return 0;
3942 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
3944 struct e1000_hw *hw = &adapter->hw;
3945 struct vf_data_storage *vf_data;
3946 int i, j;
3948 for (i = 0; i < adapter->vfs_allocated_count; i++) {
3949 vf_data = &adapter->vf_data[i];
3950 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
3951 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
3955 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
3957 struct e1000_hw *hw = &adapter->hw;
3958 u32 pool_mask, reg, vid;
3959 int i;
3961 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
3963 /* Find the vlan filter for this id */
3964 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3965 reg = rd32(E1000_VLVF(i));
3967 /* remove the vf from the pool */
3968 reg &= ~pool_mask;
3970 /* if pool is empty then remove entry from vfta */
3971 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
3972 (reg & E1000_VLVF_VLANID_ENABLE)) {
3973 reg = 0;
3974 vid = reg & E1000_VLVF_VLANID_MASK;
3975 igb_vfta_set(hw, vid, false);
3978 wr32(E1000_VLVF(i), reg);
3982 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
3984 struct e1000_hw *hw = &adapter->hw;
3985 u32 reg, i;
3987 /* It is an error to call this function when VFs are not enabled */
3988 if (!adapter->vfs_allocated_count)
3989 return -1;
3991 /* Find the vlan filter for this id */
3992 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3993 reg = rd32(E1000_VLVF(i));
3994 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
3995 vid == (reg & E1000_VLVF_VLANID_MASK))
3996 break;
3999 if (add) {
4000 if (i == E1000_VLVF_ARRAY_SIZE) {
4001 /* Did not find a matching VLAN ID entry that was
4002 * enabled. Search for a free filter entry, i.e.
4003 * one without the enable bit set
4005 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4006 reg = rd32(E1000_VLVF(i));
4007 if (!(reg & E1000_VLVF_VLANID_ENABLE))
4008 break;
4011 if (i < E1000_VLVF_ARRAY_SIZE) {
4012 /* Found an enabled/available entry */
4013 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4015 /* if !enabled we need to set this up in vfta */
4016 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
4017 /* add VID to filter table, if bit already set
4018 * PF must have added it outside of table */
4019 if (igb_vfta_set(hw, vid, true))
4020 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT +
4021 adapter->vfs_allocated_count);
4022 reg |= E1000_VLVF_VLANID_ENABLE;
4024 reg &= ~E1000_VLVF_VLANID_MASK;
4025 reg |= vid;
4027 wr32(E1000_VLVF(i), reg);
4028 return 0;
4030 } else {
4031 if (i < E1000_VLVF_ARRAY_SIZE) {
4032 /* remove vf from the pool */
4033 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4034 /* if pool is empty then remove entry from vfta */
4035 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4036 reg = 0;
4037 igb_vfta_set(hw, vid, false);
4039 wr32(E1000_VLVF(i), reg);
4040 return 0;
4043 return -1;
4046 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4048 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4049 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
4051 return igb_vlvf_set(adapter, vid, add, vf);
4054 static inline void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
4056 struct e1000_hw *hw = &adapter->hw;
4058 /* disable mailbox functionality for vf */
4059 adapter->vf_data[vf].clear_to_send = false;
4061 /* reset offloads to defaults */
4062 igb_set_vmolr(hw, vf);
4064 /* reset vlans for device */
4065 igb_clear_vf_vfta(adapter, vf);
4067 /* reset multicast table array for vf */
4068 adapter->vf_data[vf].num_vf_mc_hashes = 0;
4070 /* Flush and reset the mta with the new values */
4071 igb_set_multi(adapter->netdev);
4074 static inline void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4076 struct e1000_hw *hw = &adapter->hw;
4077 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4078 u32 reg, msgbuf[3];
4079 u8 *addr = (u8 *)(&msgbuf[1]);
4081 /* process all the same items cleared in a function level reset */
4082 igb_vf_reset_event(adapter, vf);
4084 /* set vf mac address */
4085 igb_rar_set(hw, vf_mac, vf + 1);
4086 igb_set_rah_pool(hw, vf, vf + 1);
4088 /* enable transmit and receive for vf */
4089 reg = rd32(E1000_VFTE);
4090 wr32(E1000_VFTE, reg | (1 << vf));
4091 reg = rd32(E1000_VFRE);
4092 wr32(E1000_VFRE, reg | (1 << vf));
4094 /* enable mailbox functionality for vf */
4095 adapter->vf_data[vf].clear_to_send = true;
4097 /* reply to reset with ack and vf mac address */
4098 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4099 memcpy(addr, vf_mac, 6);
4100 igb_write_mbx(hw, msgbuf, 3, vf);
4103 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4105 unsigned char *addr = (char *)&msg[1];
4106 int err = -1;
4108 if (is_valid_ether_addr(addr))
4109 err = igb_set_vf_mac(adapter, vf, addr);
4111 return err;
4115 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
4117 struct e1000_hw *hw = &adapter->hw;
4118 u32 msg = E1000_VT_MSGTYPE_NACK;
4120 /* if device isn't clear to send it shouldn't be reading either */
4121 if (!adapter->vf_data[vf].clear_to_send)
4122 igb_write_mbx(hw, &msg, 1, vf);
4126 static void igb_msg_task(struct igb_adapter *adapter)
4128 struct e1000_hw *hw = &adapter->hw;
4129 u32 vf;
4131 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4132 /* process any reset requests */
4133 if (!igb_check_for_rst(hw, vf)) {
4134 adapter->vf_data[vf].clear_to_send = false;
4135 igb_vf_reset_event(adapter, vf);
4138 /* process any messages pending */
4139 if (!igb_check_for_msg(hw, vf))
4140 igb_rcv_msg_from_vf(adapter, vf);
4142 /* process any acks */
4143 if (!igb_check_for_ack(hw, vf))
4144 igb_rcv_ack_from_vf(adapter, vf);
4149 static int igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4151 u32 mbx_size = E1000_VFMAILBOX_SIZE;
4152 u32 msgbuf[mbx_size];
4153 struct e1000_hw *hw = &adapter->hw;
4154 s32 retval;
4156 retval = igb_read_mbx(hw, msgbuf, mbx_size, vf);
4158 if (retval)
4159 dev_err(&adapter->pdev->dev,
4160 "Error receiving message from VF\n");
4162 /* this is a message we already processed, do nothing */
4163 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
4164 return retval;
4167 * until the vf completes a reset it should not be
4168 * allowed to start any configuration.
4171 if (msgbuf[0] == E1000_VF_RESET) {
4172 igb_vf_reset_msg(adapter, vf);
4174 return retval;
4177 if (!adapter->vf_data[vf].clear_to_send) {
4178 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4179 igb_write_mbx(hw, msgbuf, 1, vf);
4180 return retval;
4183 switch ((msgbuf[0] & 0xFFFF)) {
4184 case E1000_VF_SET_MAC_ADDR:
4185 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4186 break;
4187 case E1000_VF_SET_MULTICAST:
4188 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
4189 break;
4190 case E1000_VF_SET_LPE:
4191 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
4192 break;
4193 case E1000_VF_SET_VLAN:
4194 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4195 break;
4196 default:
4197 dev_err(&adapter->pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4198 retval = -1;
4199 break;
4202 /* notify the VF of the results of what it sent us */
4203 if (retval)
4204 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4205 else
4206 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
4208 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
4210 igb_write_mbx(hw, msgbuf, 1, vf);
4212 return retval;
4216 * igb_intr_msi - Interrupt Handler
4217 * @irq: interrupt number
4218 * @data: pointer to a network interface device structure
4220 static irqreturn_t igb_intr_msi(int irq, void *data)
4222 struct net_device *netdev = data;
4223 struct igb_adapter *adapter = netdev_priv(netdev);
4224 struct e1000_hw *hw = &adapter->hw;
4225 /* read ICR disables interrupts using IAM */
4226 u32 icr = rd32(E1000_ICR);
4228 igb_write_itr(adapter->rx_ring);
4230 if(icr & E1000_ICR_DOUTSYNC) {
4231 /* HW is reporting DMA is out of sync */
4232 adapter->stats.doosync++;
4235 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4236 hw->mac.get_link_status = 1;
4237 if (!test_bit(__IGB_DOWN, &adapter->state))
4238 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4241 napi_schedule(&adapter->rx_ring[0].napi);
4243 return IRQ_HANDLED;
4247 * igb_intr - Legacy Interrupt Handler
4248 * @irq: interrupt number
4249 * @data: pointer to a network interface device structure
4251 static irqreturn_t igb_intr(int irq, void *data)
4253 struct net_device *netdev = data;
4254 struct igb_adapter *adapter = netdev_priv(netdev);
4255 struct e1000_hw *hw = &adapter->hw;
4256 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
4257 * need for the IMC write */
4258 u32 icr = rd32(E1000_ICR);
4259 if (!icr)
4260 return IRQ_NONE; /* Not our interrupt */
4262 igb_write_itr(adapter->rx_ring);
4264 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4265 * not set, then the adapter didn't send an interrupt */
4266 if (!(icr & E1000_ICR_INT_ASSERTED))
4267 return IRQ_NONE;
4269 if(icr & E1000_ICR_DOUTSYNC) {
4270 /* HW is reporting DMA is out of sync */
4271 adapter->stats.doosync++;
4274 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4275 hw->mac.get_link_status = 1;
4276 /* guard against interrupt when we're going down */
4277 if (!test_bit(__IGB_DOWN, &adapter->state))
4278 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4281 napi_schedule(&adapter->rx_ring[0].napi);
4283 return IRQ_HANDLED;
4286 static inline void igb_rx_irq_enable(struct igb_ring *rx_ring)
4288 struct igb_adapter *adapter = rx_ring->adapter;
4289 struct e1000_hw *hw = &adapter->hw;
4291 if (adapter->itr_setting & 3) {
4292 if (adapter->num_rx_queues == 1)
4293 igb_set_itr(adapter);
4294 else
4295 igb_update_ring_itr(rx_ring);
4298 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4299 if (adapter->msix_entries)
4300 wr32(E1000_EIMS, rx_ring->eims_value);
4301 else
4302 igb_irq_enable(adapter);
4307 * igb_poll - NAPI Rx polling callback
4308 * @napi: napi polling structure
4309 * @budget: count of how many packets we should handle
4311 static int igb_poll(struct napi_struct *napi, int budget)
4313 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
4314 int work_done = 0;
4316 #ifdef CONFIG_IGB_DCA
4317 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
4318 igb_update_rx_dca(rx_ring);
4319 #endif
4320 igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
4322 if (rx_ring->buddy) {
4323 #ifdef CONFIG_IGB_DCA
4324 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
4325 igb_update_tx_dca(rx_ring->buddy);
4326 #endif
4327 if (!igb_clean_tx_irq(rx_ring->buddy))
4328 work_done = budget;
4331 /* If not enough Rx work done, exit the polling mode */
4332 if (work_done < budget) {
4333 napi_complete(napi);
4334 igb_rx_irq_enable(rx_ring);
4337 return work_done;
4341 * igb_hwtstamp - utility function which checks for TX time stamp
4342 * @adapter: board private structure
4343 * @skb: packet that was just sent
4345 * If we were asked to do hardware stamping and such a time stamp is
4346 * available, then it must have been for this skb here because we only
4347 * allow only one such packet into the queue.
4349 static void igb_tx_hwtstamp(struct igb_adapter *adapter, struct sk_buff *skb)
4351 union skb_shared_tx *shtx = skb_tx(skb);
4352 struct e1000_hw *hw = &adapter->hw;
4354 if (unlikely(shtx->hardware)) {
4355 u32 valid = rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID;
4356 if (valid) {
4357 u64 regval = rd32(E1000_TXSTMPL);
4358 u64 ns;
4359 struct skb_shared_hwtstamps shhwtstamps;
4361 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
4362 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
4363 ns = timecounter_cyc2time(&adapter->clock,
4364 regval);
4365 timecompare_update(&adapter->compare, ns);
4366 shhwtstamps.hwtstamp = ns_to_ktime(ns);
4367 shhwtstamps.syststamp =
4368 timecompare_transform(&adapter->compare, ns);
4369 skb_tstamp_tx(skb, &shhwtstamps);
4375 * igb_clean_tx_irq - Reclaim resources after transmit completes
4376 * @adapter: board private structure
4377 * returns true if ring is completely cleaned
4379 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
4381 struct igb_adapter *adapter = tx_ring->adapter;
4382 struct net_device *netdev = adapter->netdev;
4383 struct e1000_hw *hw = &adapter->hw;
4384 struct igb_buffer *buffer_info;
4385 struct sk_buff *skb;
4386 union e1000_adv_tx_desc *tx_desc, *eop_desc;
4387 unsigned int total_bytes = 0, total_packets = 0;
4388 unsigned int i, eop, count = 0;
4389 bool cleaned = false;
4391 i = tx_ring->next_to_clean;
4392 eop = tx_ring->buffer_info[i].next_to_watch;
4393 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4395 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
4396 (count < tx_ring->count)) {
4397 for (cleaned = false; !cleaned; count++) {
4398 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4399 buffer_info = &tx_ring->buffer_info[i];
4400 cleaned = (i == eop);
4401 skb = buffer_info->skb;
4403 if (skb) {
4404 unsigned int segs, bytecount;
4405 /* gso_segs is currently only valid for tcp */
4406 segs = skb_shinfo(skb)->gso_segs ?: 1;
4407 /* multiply data chunks by size of headers */
4408 bytecount = ((segs - 1) * skb_headlen(skb)) +
4409 skb->len;
4410 total_packets += segs;
4411 total_bytes += bytecount;
4413 igb_tx_hwtstamp(adapter, skb);
4416 igb_unmap_and_free_tx_resource(adapter, buffer_info);
4417 tx_desc->wb.status = 0;
4419 i++;
4420 if (i == tx_ring->count)
4421 i = 0;
4423 eop = tx_ring->buffer_info[i].next_to_watch;
4424 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4427 tx_ring->next_to_clean = i;
4429 if (unlikely(count &&
4430 netif_carrier_ok(netdev) &&
4431 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
4432 /* Make sure that anybody stopping the queue after this
4433 * sees the new next_to_clean.
4435 smp_mb();
4436 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
4437 !(test_bit(__IGB_DOWN, &adapter->state))) {
4438 netif_wake_subqueue(netdev, tx_ring->queue_index);
4439 ++adapter->restart_queue;
4443 if (tx_ring->detect_tx_hung) {
4444 /* Detect a transmit hang in hardware, this serializes the
4445 * check with the clearing of time_stamp and movement of i */
4446 tx_ring->detect_tx_hung = false;
4447 if (tx_ring->buffer_info[i].time_stamp &&
4448 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
4449 (adapter->tx_timeout_factor * HZ))
4450 && !(rd32(E1000_STATUS) &
4451 E1000_STATUS_TXOFF)) {
4453 /* detected Tx unit hang */
4454 dev_err(&adapter->pdev->dev,
4455 "Detected Tx Unit Hang\n"
4456 " Tx Queue <%d>\n"
4457 " TDH <%x>\n"
4458 " TDT <%x>\n"
4459 " next_to_use <%x>\n"
4460 " next_to_clean <%x>\n"
4461 "buffer_info[next_to_clean]\n"
4462 " time_stamp <%lx>\n"
4463 " next_to_watch <%x>\n"
4464 " jiffies <%lx>\n"
4465 " desc.status <%x>\n",
4466 tx_ring->queue_index,
4467 readl(adapter->hw.hw_addr + tx_ring->head),
4468 readl(adapter->hw.hw_addr + tx_ring->tail),
4469 tx_ring->next_to_use,
4470 tx_ring->next_to_clean,
4471 tx_ring->buffer_info[i].time_stamp,
4472 eop,
4473 jiffies,
4474 eop_desc->wb.status);
4475 netif_stop_subqueue(netdev, tx_ring->queue_index);
4478 tx_ring->total_bytes += total_bytes;
4479 tx_ring->total_packets += total_packets;
4480 tx_ring->tx_stats.bytes += total_bytes;
4481 tx_ring->tx_stats.packets += total_packets;
4482 adapter->net_stats.tx_bytes += total_bytes;
4483 adapter->net_stats.tx_packets += total_packets;
4484 return (count < tx_ring->count);
4488 * igb_receive_skb - helper function to handle rx indications
4489 * @ring: pointer to receive ring receving this packet
4490 * @status: descriptor status field as written by hardware
4491 * @rx_desc: receive descriptor containing vlan and type information.
4492 * @skb: pointer to sk_buff to be indicated to stack
4494 static void igb_receive_skb(struct igb_ring *ring, u8 status,
4495 union e1000_adv_rx_desc * rx_desc,
4496 struct sk_buff *skb)
4498 struct igb_adapter * adapter = ring->adapter;
4499 bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
4501 skb_record_rx_queue(skb, ring->queue_index);
4502 if (vlan_extracted)
4503 vlan_gro_receive(&ring->napi, adapter->vlgrp,
4504 le16_to_cpu(rx_desc->wb.upper.vlan),
4505 skb);
4506 else
4507 napi_gro_receive(&ring->napi, skb);
4510 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
4511 u32 status_err, struct sk_buff *skb)
4513 skb->ip_summed = CHECKSUM_NONE;
4515 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
4516 if ((status_err & E1000_RXD_STAT_IXSM) ||
4517 (adapter->flags & IGB_FLAG_RX_CSUM_DISABLED))
4518 return;
4519 /* TCP/UDP checksum error bit is set */
4520 if (status_err &
4521 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
4523 * work around errata with sctp packets where the TCPE aka
4524 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
4525 * packets, (aka let the stack check the crc32c)
4527 if (!((adapter->hw.mac.type == e1000_82576) &&
4528 (skb->len == 60)))
4529 adapter->hw_csum_err++;
4530 /* let the stack verify checksum errors */
4531 return;
4533 /* It must be a TCP or UDP packet with a valid checksum */
4534 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
4535 skb->ip_summed = CHECKSUM_UNNECESSARY;
4537 dev_dbg(&adapter->pdev->dev, "cksum success: bits %08X\n", status_err);
4538 adapter->hw_csum_good++;
4541 static inline u16 igb_get_hlen(struct igb_adapter *adapter,
4542 union e1000_adv_rx_desc *rx_desc)
4544 /* HW will not DMA in data larger than the given buffer, even if it
4545 * parses the (NFS, of course) header to be larger. In that case, it
4546 * fills the header buffer and spills the rest into the page.
4548 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
4549 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4550 if (hlen > adapter->rx_ps_hdr_size)
4551 hlen = adapter->rx_ps_hdr_size;
4552 return hlen;
4555 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
4556 int *work_done, int budget)
4558 struct igb_adapter *adapter = rx_ring->adapter;
4559 struct net_device *netdev = adapter->netdev;
4560 struct e1000_hw *hw = &adapter->hw;
4561 struct pci_dev *pdev = adapter->pdev;
4562 union e1000_adv_rx_desc *rx_desc , *next_rxd;
4563 struct igb_buffer *buffer_info , *next_buffer;
4564 struct sk_buff *skb;
4565 bool cleaned = false;
4566 int cleaned_count = 0;
4567 unsigned int total_bytes = 0, total_packets = 0;
4568 unsigned int i;
4569 u32 staterr;
4570 u16 length;
4572 i = rx_ring->next_to_clean;
4573 buffer_info = &rx_ring->buffer_info[i];
4574 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4575 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4577 while (staterr & E1000_RXD_STAT_DD) {
4578 if (*work_done >= budget)
4579 break;
4580 (*work_done)++;
4582 skb = buffer_info->skb;
4583 prefetch(skb->data - NET_IP_ALIGN);
4584 buffer_info->skb = NULL;
4586 i++;
4587 if (i == rx_ring->count)
4588 i = 0;
4589 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
4590 prefetch(next_rxd);
4591 next_buffer = &rx_ring->buffer_info[i];
4593 length = le16_to_cpu(rx_desc->wb.upper.length);
4594 cleaned = true;
4595 cleaned_count++;
4597 /* this is the fast path for the non-packet split case */
4598 if (!adapter->rx_ps_hdr_size) {
4599 pci_unmap_single(pdev, buffer_info->dma,
4600 adapter->rx_buffer_len,
4601 PCI_DMA_FROMDEVICE);
4602 buffer_info->dma = 0;
4603 skb_put(skb, length);
4604 goto send_up;
4607 if (buffer_info->dma) {
4608 u16 hlen = igb_get_hlen(adapter, rx_desc);
4609 pci_unmap_single(pdev, buffer_info->dma,
4610 adapter->rx_ps_hdr_size,
4611 PCI_DMA_FROMDEVICE);
4612 buffer_info->dma = 0;
4613 skb_put(skb, hlen);
4616 if (length) {
4617 pci_unmap_page(pdev, buffer_info->page_dma,
4618 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
4619 buffer_info->page_dma = 0;
4621 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
4622 buffer_info->page,
4623 buffer_info->page_offset,
4624 length);
4626 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
4627 (page_count(buffer_info->page) != 1))
4628 buffer_info->page = NULL;
4629 else
4630 get_page(buffer_info->page);
4632 skb->len += length;
4633 skb->data_len += length;
4635 skb->truesize += length;
4638 if (!(staterr & E1000_RXD_STAT_EOP)) {
4639 buffer_info->skb = next_buffer->skb;
4640 buffer_info->dma = next_buffer->dma;
4641 next_buffer->skb = skb;
4642 next_buffer->dma = 0;
4643 goto next_desc;
4645 send_up:
4647 * If this bit is set, then the RX registers contain
4648 * the time stamp. No other packet will be time
4649 * stamped until we read these registers, so read the
4650 * registers to make them available again. Because
4651 * only one packet can be time stamped at a time, we
4652 * know that the register values must belong to this
4653 * one here and therefore we don't need to compare
4654 * any of the additional attributes stored for it.
4656 * If nothing went wrong, then it should have a
4657 * skb_shared_tx that we can turn into a
4658 * skb_shared_hwtstamps.
4660 * TODO: can time stamping be triggered (thus locking
4661 * the registers) without the packet reaching this point
4662 * here? In that case RX time stamping would get stuck.
4664 * TODO: in "time stamp all packets" mode this bit is
4665 * not set. Need a global flag for this mode and then
4666 * always read the registers. Cannot be done without
4667 * a race condition.
4669 if (unlikely(staterr & E1000_RXD_STAT_TS)) {
4670 u64 regval;
4671 u64 ns;
4672 struct skb_shared_hwtstamps *shhwtstamps =
4673 skb_hwtstamps(skb);
4675 WARN(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID),
4676 "igb: no RX time stamp available for time stamped packet");
4677 regval = rd32(E1000_RXSTMPL);
4678 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
4679 ns = timecounter_cyc2time(&adapter->clock, regval);
4680 timecompare_update(&adapter->compare, ns);
4681 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
4682 shhwtstamps->hwtstamp = ns_to_ktime(ns);
4683 shhwtstamps->syststamp =
4684 timecompare_transform(&adapter->compare, ns);
4687 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
4688 dev_kfree_skb_irq(skb);
4689 goto next_desc;
4692 total_bytes += skb->len;
4693 total_packets++;
4695 igb_rx_checksum_adv(adapter, staterr, skb);
4697 skb->protocol = eth_type_trans(skb, netdev);
4699 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
4701 next_desc:
4702 rx_desc->wb.upper.status_error = 0;
4704 /* return some buffers to hardware, one at a time is too slow */
4705 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
4706 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4707 cleaned_count = 0;
4710 /* use prefetched values */
4711 rx_desc = next_rxd;
4712 buffer_info = next_buffer;
4713 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4716 rx_ring->next_to_clean = i;
4717 cleaned_count = igb_desc_unused(rx_ring);
4719 if (cleaned_count)
4720 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4722 rx_ring->total_packets += total_packets;
4723 rx_ring->total_bytes += total_bytes;
4724 rx_ring->rx_stats.packets += total_packets;
4725 rx_ring->rx_stats.bytes += total_bytes;
4726 adapter->net_stats.rx_bytes += total_bytes;
4727 adapter->net_stats.rx_packets += total_packets;
4728 return cleaned;
4732 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
4733 * @adapter: address of board private structure
4735 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
4736 int cleaned_count)
4738 struct igb_adapter *adapter = rx_ring->adapter;
4739 struct net_device *netdev = adapter->netdev;
4740 struct pci_dev *pdev = adapter->pdev;
4741 union e1000_adv_rx_desc *rx_desc;
4742 struct igb_buffer *buffer_info;
4743 struct sk_buff *skb;
4744 unsigned int i;
4745 int bufsz;
4747 i = rx_ring->next_to_use;
4748 buffer_info = &rx_ring->buffer_info[i];
4750 if (adapter->rx_ps_hdr_size)
4751 bufsz = adapter->rx_ps_hdr_size;
4752 else
4753 bufsz = adapter->rx_buffer_len;
4755 while (cleaned_count--) {
4756 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4758 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
4759 if (!buffer_info->page) {
4760 buffer_info->page = alloc_page(GFP_ATOMIC);
4761 if (!buffer_info->page) {
4762 adapter->alloc_rx_buff_failed++;
4763 goto no_buffers;
4765 buffer_info->page_offset = 0;
4766 } else {
4767 buffer_info->page_offset ^= PAGE_SIZE / 2;
4769 buffer_info->page_dma =
4770 pci_map_page(pdev, buffer_info->page,
4771 buffer_info->page_offset,
4772 PAGE_SIZE / 2,
4773 PCI_DMA_FROMDEVICE);
4776 if (!buffer_info->skb) {
4777 skb = netdev_alloc_skb(netdev, bufsz + NET_IP_ALIGN);
4778 if (!skb) {
4779 adapter->alloc_rx_buff_failed++;
4780 goto no_buffers;
4783 /* Make buffer alignment 2 beyond a 16 byte boundary
4784 * this will result in a 16 byte aligned IP header after
4785 * the 14 byte MAC header is removed
4787 skb_reserve(skb, NET_IP_ALIGN);
4789 buffer_info->skb = skb;
4790 buffer_info->dma = pci_map_single(pdev, skb->data,
4791 bufsz,
4792 PCI_DMA_FROMDEVICE);
4794 /* Refresh the desc even if buffer_addrs didn't change because
4795 * each write-back erases this info. */
4796 if (adapter->rx_ps_hdr_size) {
4797 rx_desc->read.pkt_addr =
4798 cpu_to_le64(buffer_info->page_dma);
4799 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4800 } else {
4801 rx_desc->read.pkt_addr =
4802 cpu_to_le64(buffer_info->dma);
4803 rx_desc->read.hdr_addr = 0;
4806 i++;
4807 if (i == rx_ring->count)
4808 i = 0;
4809 buffer_info = &rx_ring->buffer_info[i];
4812 no_buffers:
4813 if (rx_ring->next_to_use != i) {
4814 rx_ring->next_to_use = i;
4815 if (i == 0)
4816 i = (rx_ring->count - 1);
4817 else
4818 i--;
4820 /* Force memory writes to complete before letting h/w
4821 * know there are new descriptors to fetch. (Only
4822 * applicable for weak-ordered memory model archs,
4823 * such as IA-64). */
4824 wmb();
4825 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4830 * igb_mii_ioctl -
4831 * @netdev:
4832 * @ifreq:
4833 * @cmd:
4835 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4837 struct igb_adapter *adapter = netdev_priv(netdev);
4838 struct mii_ioctl_data *data = if_mii(ifr);
4840 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4841 return -EOPNOTSUPP;
4843 switch (cmd) {
4844 case SIOCGMIIPHY:
4845 data->phy_id = adapter->hw.phy.addr;
4846 break;
4847 case SIOCGMIIREG:
4848 if (!capable(CAP_NET_ADMIN))
4849 return -EPERM;
4850 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4851 &data->val_out))
4852 return -EIO;
4853 break;
4854 case SIOCSMIIREG:
4855 default:
4856 return -EOPNOTSUPP;
4858 return 0;
4862 * igb_hwtstamp_ioctl - control hardware time stamping
4863 * @netdev:
4864 * @ifreq:
4865 * @cmd:
4867 * Outgoing time stamping can be enabled and disabled. Play nice and
4868 * disable it when requested, although it shouldn't case any overhead
4869 * when no packet needs it. At most one packet in the queue may be
4870 * marked for time stamping, otherwise it would be impossible to tell
4871 * for sure to which packet the hardware time stamp belongs.
4873 * Incoming time stamping has to be configured via the hardware
4874 * filters. Not all combinations are supported, in particular event
4875 * type has to be specified. Matching the kind of event packet is
4876 * not supported, with the exception of "all V2 events regardless of
4877 * level 2 or 4".
4880 static int igb_hwtstamp_ioctl(struct net_device *netdev,
4881 struct ifreq *ifr, int cmd)
4883 struct igb_adapter *adapter = netdev_priv(netdev);
4884 struct e1000_hw *hw = &adapter->hw;
4885 struct hwtstamp_config config;
4886 u32 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
4887 u32 tsync_rx_ctl_bit = E1000_TSYNCRXCTL_ENABLED;
4888 u32 tsync_rx_ctl_type = 0;
4889 u32 tsync_rx_cfg = 0;
4890 int is_l4 = 0;
4891 int is_l2 = 0;
4892 short port = 319; /* PTP */
4893 u32 regval;
4895 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
4896 return -EFAULT;
4898 /* reserved for future extensions */
4899 if (config.flags)
4900 return -EINVAL;
4902 switch (config.tx_type) {
4903 case HWTSTAMP_TX_OFF:
4904 tsync_tx_ctl_bit = 0;
4905 break;
4906 case HWTSTAMP_TX_ON:
4907 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
4908 break;
4909 default:
4910 return -ERANGE;
4913 switch (config.rx_filter) {
4914 case HWTSTAMP_FILTER_NONE:
4915 tsync_rx_ctl_bit = 0;
4916 break;
4917 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
4918 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
4919 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
4920 case HWTSTAMP_FILTER_ALL:
4922 * register TSYNCRXCFG must be set, therefore it is not
4923 * possible to time stamp both Sync and Delay_Req messages
4924 * => fall back to time stamping all packets
4926 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_ALL;
4927 config.rx_filter = HWTSTAMP_FILTER_ALL;
4928 break;
4929 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
4930 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
4931 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
4932 is_l4 = 1;
4933 break;
4934 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
4935 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
4936 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
4937 is_l4 = 1;
4938 break;
4939 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
4940 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
4941 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
4942 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
4943 is_l2 = 1;
4944 is_l4 = 1;
4945 config.rx_filter = HWTSTAMP_FILTER_SOME;
4946 break;
4947 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
4948 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
4949 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
4950 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
4951 is_l2 = 1;
4952 is_l4 = 1;
4953 config.rx_filter = HWTSTAMP_FILTER_SOME;
4954 break;
4955 case HWTSTAMP_FILTER_PTP_V2_EVENT:
4956 case HWTSTAMP_FILTER_PTP_V2_SYNC:
4957 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
4958 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_EVENT_V2;
4959 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
4960 is_l2 = 1;
4961 break;
4962 default:
4963 return -ERANGE;
4966 /* enable/disable TX */
4967 regval = rd32(E1000_TSYNCTXCTL);
4968 regval = (regval & ~E1000_TSYNCTXCTL_ENABLED) | tsync_tx_ctl_bit;
4969 wr32(E1000_TSYNCTXCTL, regval);
4971 /* enable/disable RX, define which PTP packets are time stamped */
4972 regval = rd32(E1000_TSYNCRXCTL);
4973 regval = (regval & ~E1000_TSYNCRXCTL_ENABLED) | tsync_rx_ctl_bit;
4974 regval = (regval & ~0xE) | tsync_rx_ctl_type;
4975 wr32(E1000_TSYNCRXCTL, regval);
4976 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
4979 * Ethertype Filter Queue Filter[0][15:0] = 0x88F7
4980 * (Ethertype to filter on)
4981 * Ethertype Filter Queue Filter[0][26] = 0x1 (Enable filter)
4982 * Ethertype Filter Queue Filter[0][30] = 0x1 (Enable Timestamping)
4984 wr32(E1000_ETQF0, is_l2 ? 0x440088f7 : 0);
4986 /* L4 Queue Filter[0]: only filter by source and destination port */
4987 wr32(E1000_SPQF0, htons(port));
4988 wr32(E1000_IMIREXT(0), is_l4 ?
4989 ((1<<12) | (1<<19) /* bypass size and control flags */) : 0);
4990 wr32(E1000_IMIR(0), is_l4 ?
4991 (htons(port)
4992 | (0<<16) /* immediate interrupt disabled */
4993 | 0 /* (1<<17) bit cleared: do not bypass
4994 destination port check */)
4995 : 0);
4996 wr32(E1000_FTQF0, is_l4 ?
4997 (0x11 /* UDP */
4998 | (1<<15) /* VF not compared */
4999 | (1<<27) /* Enable Timestamping */
5000 | (7<<28) /* only source port filter enabled,
5001 source/target address and protocol
5002 masked */)
5003 : ((1<<15) | (15<<28) /* all mask bits set = filter not
5004 enabled */));
5006 wrfl();
5008 adapter->hwtstamp_config = config;
5010 /* clear TX/RX time stamp registers, just to be sure */
5011 regval = rd32(E1000_TXSTMPH);
5012 regval = rd32(E1000_RXSTMPH);
5014 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
5015 -EFAULT : 0;
5019 * igb_ioctl -
5020 * @netdev:
5021 * @ifreq:
5022 * @cmd:
5024 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5026 switch (cmd) {
5027 case SIOCGMIIPHY:
5028 case SIOCGMIIREG:
5029 case SIOCSMIIREG:
5030 return igb_mii_ioctl(netdev, ifr, cmd);
5031 case SIOCSHWTSTAMP:
5032 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
5033 default:
5034 return -EOPNOTSUPP;
5038 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5040 struct igb_adapter *adapter = hw->back;
5041 u16 cap_offset;
5043 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5044 if (!cap_offset)
5045 return -E1000_ERR_CONFIG;
5047 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
5049 return 0;
5052 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5054 struct igb_adapter *adapter = hw->back;
5055 u16 cap_offset;
5057 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5058 if (!cap_offset)
5059 return -E1000_ERR_CONFIG;
5061 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
5063 return 0;
5066 static void igb_vlan_rx_register(struct net_device *netdev,
5067 struct vlan_group *grp)
5069 struct igb_adapter *adapter = netdev_priv(netdev);
5070 struct e1000_hw *hw = &adapter->hw;
5071 u32 ctrl, rctl;
5073 igb_irq_disable(adapter);
5074 adapter->vlgrp = grp;
5076 if (grp) {
5077 /* enable VLAN tag insert/strip */
5078 ctrl = rd32(E1000_CTRL);
5079 ctrl |= E1000_CTRL_VME;
5080 wr32(E1000_CTRL, ctrl);
5082 /* enable VLAN receive filtering */
5083 rctl = rd32(E1000_RCTL);
5084 rctl &= ~E1000_RCTL_CFIEN;
5085 wr32(E1000_RCTL, rctl);
5086 igb_update_mng_vlan(adapter);
5087 } else {
5088 /* disable VLAN tag insert/strip */
5089 ctrl = rd32(E1000_CTRL);
5090 ctrl &= ~E1000_CTRL_VME;
5091 wr32(E1000_CTRL, ctrl);
5093 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
5094 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
5095 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
5099 igb_rlpml_set(adapter);
5101 if (!test_bit(__IGB_DOWN, &adapter->state))
5102 igb_irq_enable(adapter);
5105 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
5107 struct igb_adapter *adapter = netdev_priv(netdev);
5108 struct e1000_hw *hw = &adapter->hw;
5109 int pf_id = adapter->vfs_allocated_count;
5111 if ((hw->mng_cookie.status &
5112 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
5113 (vid == adapter->mng_vlan_id))
5114 return;
5116 /* add vid to vlvf if sr-iov is enabled,
5117 * if that fails add directly to filter table */
5118 if (igb_vlvf_set(adapter, vid, true, pf_id))
5119 igb_vfta_set(hw, vid, true);
5123 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
5125 struct igb_adapter *adapter = netdev_priv(netdev);
5126 struct e1000_hw *hw = &adapter->hw;
5127 int pf_id = adapter->vfs_allocated_count;
5129 igb_irq_disable(adapter);
5130 vlan_group_set_device(adapter->vlgrp, vid, NULL);
5132 if (!test_bit(__IGB_DOWN, &adapter->state))
5133 igb_irq_enable(adapter);
5135 if ((adapter->hw.mng_cookie.status &
5136 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
5137 (vid == adapter->mng_vlan_id)) {
5138 /* release control to f/w */
5139 igb_release_hw_control(adapter);
5140 return;
5143 /* remove vid from vlvf if sr-iov is enabled,
5144 * if not in vlvf remove from vfta */
5145 if (igb_vlvf_set(adapter, vid, false, pf_id))
5146 igb_vfta_set(hw, vid, false);
5149 static void igb_restore_vlan(struct igb_adapter *adapter)
5151 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5153 if (adapter->vlgrp) {
5154 u16 vid;
5155 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5156 if (!vlan_group_get_device(adapter->vlgrp, vid))
5157 continue;
5158 igb_vlan_rx_add_vid(adapter->netdev, vid);
5163 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
5165 struct e1000_mac_info *mac = &adapter->hw.mac;
5167 mac->autoneg = 0;
5169 switch (spddplx) {
5170 case SPEED_10 + DUPLEX_HALF:
5171 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5172 break;
5173 case SPEED_10 + DUPLEX_FULL:
5174 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5175 break;
5176 case SPEED_100 + DUPLEX_HALF:
5177 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5178 break;
5179 case SPEED_100 + DUPLEX_FULL:
5180 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5181 break;
5182 case SPEED_1000 + DUPLEX_FULL:
5183 mac->autoneg = 1;
5184 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5185 break;
5186 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5187 default:
5188 dev_err(&adapter->pdev->dev,
5189 "Unsupported Speed/Duplex configuration\n");
5190 return -EINVAL;
5192 return 0;
5195 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
5197 struct net_device *netdev = pci_get_drvdata(pdev);
5198 struct igb_adapter *adapter = netdev_priv(netdev);
5199 struct e1000_hw *hw = &adapter->hw;
5200 u32 ctrl, rctl, status;
5201 u32 wufc = adapter->wol;
5202 #ifdef CONFIG_PM
5203 int retval = 0;
5204 #endif
5206 netif_device_detach(netdev);
5208 if (netif_running(netdev))
5209 igb_close(netdev);
5211 igb_reset_interrupt_capability(adapter);
5213 igb_free_queues(adapter);
5215 #ifdef CONFIG_PM
5216 retval = pci_save_state(pdev);
5217 if (retval)
5218 return retval;
5219 #endif
5221 status = rd32(E1000_STATUS);
5222 if (status & E1000_STATUS_LU)
5223 wufc &= ~E1000_WUFC_LNKC;
5225 if (wufc) {
5226 igb_setup_rctl(adapter);
5227 igb_set_multi(netdev);
5229 /* turn on all-multi mode if wake on multicast is enabled */
5230 if (wufc & E1000_WUFC_MC) {
5231 rctl = rd32(E1000_RCTL);
5232 rctl |= E1000_RCTL_MPE;
5233 wr32(E1000_RCTL, rctl);
5236 ctrl = rd32(E1000_CTRL);
5237 /* advertise wake from D3Cold */
5238 #define E1000_CTRL_ADVD3WUC 0x00100000
5239 /* phy power management enable */
5240 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5241 ctrl |= E1000_CTRL_ADVD3WUC;
5242 wr32(E1000_CTRL, ctrl);
5244 /* Allow time for pending master requests to run */
5245 igb_disable_pcie_master(&adapter->hw);
5247 wr32(E1000_WUC, E1000_WUC_PME_EN);
5248 wr32(E1000_WUFC, wufc);
5249 } else {
5250 wr32(E1000_WUC, 0);
5251 wr32(E1000_WUFC, 0);
5254 *enable_wake = wufc || adapter->en_mng_pt;
5255 if (!*enable_wake)
5256 igb_shutdown_fiber_serdes_link_82575(hw);
5258 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5259 * would have already happened in close and is redundant. */
5260 igb_release_hw_control(adapter);
5262 pci_disable_device(pdev);
5264 return 0;
5267 #ifdef CONFIG_PM
5268 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
5270 int retval;
5271 bool wake;
5273 retval = __igb_shutdown(pdev, &wake);
5274 if (retval)
5275 return retval;
5277 if (wake) {
5278 pci_prepare_to_sleep(pdev);
5279 } else {
5280 pci_wake_from_d3(pdev, false);
5281 pci_set_power_state(pdev, PCI_D3hot);
5284 return 0;
5287 static int igb_resume(struct pci_dev *pdev)
5289 struct net_device *netdev = pci_get_drvdata(pdev);
5290 struct igb_adapter *adapter = netdev_priv(netdev);
5291 struct e1000_hw *hw = &adapter->hw;
5292 u32 err;
5294 pci_set_power_state(pdev, PCI_D0);
5295 pci_restore_state(pdev);
5297 err = pci_enable_device_mem(pdev);
5298 if (err) {
5299 dev_err(&pdev->dev,
5300 "igb: Cannot enable PCI device from suspend\n");
5301 return err;
5303 pci_set_master(pdev);
5305 pci_enable_wake(pdev, PCI_D3hot, 0);
5306 pci_enable_wake(pdev, PCI_D3cold, 0);
5308 igb_set_interrupt_capability(adapter);
5310 if (igb_alloc_queues(adapter)) {
5311 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
5312 return -ENOMEM;
5315 /* e1000_power_up_phy(adapter); */
5317 igb_reset(adapter);
5319 /* let the f/w know that the h/w is now under the control of the
5320 * driver. */
5321 igb_get_hw_control(adapter);
5323 wr32(E1000_WUS, ~0);
5325 if (netif_running(netdev)) {
5326 err = igb_open(netdev);
5327 if (err)
5328 return err;
5331 netif_device_attach(netdev);
5333 return 0;
5335 #endif
5337 static void igb_shutdown(struct pci_dev *pdev)
5339 bool wake;
5341 __igb_shutdown(pdev, &wake);
5343 if (system_state == SYSTEM_POWER_OFF) {
5344 pci_wake_from_d3(pdev, wake);
5345 pci_set_power_state(pdev, PCI_D3hot);
5349 #ifdef CONFIG_NET_POLL_CONTROLLER
5351 * Polling 'interrupt' - used by things like netconsole to send skbs
5352 * without having to re-enable interrupts. It's not called while
5353 * the interrupt routine is executing.
5355 static void igb_netpoll(struct net_device *netdev)
5357 struct igb_adapter *adapter = netdev_priv(netdev);
5358 struct e1000_hw *hw = &adapter->hw;
5359 int i;
5361 if (!adapter->msix_entries) {
5362 igb_irq_disable(adapter);
5363 napi_schedule(&adapter->rx_ring[0].napi);
5364 return;
5367 for (i = 0; i < adapter->num_tx_queues; i++) {
5368 struct igb_ring *tx_ring = &adapter->tx_ring[i];
5369 wr32(E1000_EIMC, tx_ring->eims_value);
5370 igb_clean_tx_irq(tx_ring);
5371 wr32(E1000_EIMS, tx_ring->eims_value);
5374 for (i = 0; i < adapter->num_rx_queues; i++) {
5375 struct igb_ring *rx_ring = &adapter->rx_ring[i];
5376 wr32(E1000_EIMC, rx_ring->eims_value);
5377 napi_schedule(&rx_ring->napi);
5380 #endif /* CONFIG_NET_POLL_CONTROLLER */
5383 * igb_io_error_detected - called when PCI error is detected
5384 * @pdev: Pointer to PCI device
5385 * @state: The current pci connection state
5387 * This function is called after a PCI bus error affecting
5388 * this device has been detected.
5390 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
5391 pci_channel_state_t state)
5393 struct net_device *netdev = pci_get_drvdata(pdev);
5394 struct igb_adapter *adapter = netdev_priv(netdev);
5396 netif_device_detach(netdev);
5398 if (state == pci_channel_io_perm_failure)
5399 return PCI_ERS_RESULT_DISCONNECT;
5401 if (netif_running(netdev))
5402 igb_down(adapter);
5403 pci_disable_device(pdev);
5405 /* Request a slot slot reset. */
5406 return PCI_ERS_RESULT_NEED_RESET;
5410 * igb_io_slot_reset - called after the pci bus has been reset.
5411 * @pdev: Pointer to PCI device
5413 * Restart the card from scratch, as if from a cold-boot. Implementation
5414 * resembles the first-half of the igb_resume routine.
5416 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
5418 struct net_device *netdev = pci_get_drvdata(pdev);
5419 struct igb_adapter *adapter = netdev_priv(netdev);
5420 struct e1000_hw *hw = &adapter->hw;
5421 pci_ers_result_t result;
5422 int err;
5424 if (pci_enable_device_mem(pdev)) {
5425 dev_err(&pdev->dev,
5426 "Cannot re-enable PCI device after reset.\n");
5427 result = PCI_ERS_RESULT_DISCONNECT;
5428 } else {
5429 pci_set_master(pdev);
5430 pci_restore_state(pdev);
5432 pci_enable_wake(pdev, PCI_D3hot, 0);
5433 pci_enable_wake(pdev, PCI_D3cold, 0);
5435 igb_reset(adapter);
5436 wr32(E1000_WUS, ~0);
5437 result = PCI_ERS_RESULT_RECOVERED;
5440 err = pci_cleanup_aer_uncorrect_error_status(pdev);
5441 if (err) {
5442 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
5443 "failed 0x%0x\n", err);
5444 /* non-fatal, continue */
5447 return result;
5451 * igb_io_resume - called when traffic can start flowing again.
5452 * @pdev: Pointer to PCI device
5454 * This callback is called when the error recovery driver tells us that
5455 * its OK to resume normal operation. Implementation resembles the
5456 * second-half of the igb_resume routine.
5458 static void igb_io_resume(struct pci_dev *pdev)
5460 struct net_device *netdev = pci_get_drvdata(pdev);
5461 struct igb_adapter *adapter = netdev_priv(netdev);
5463 if (netif_running(netdev)) {
5464 if (igb_up(adapter)) {
5465 dev_err(&pdev->dev, "igb_up failed after reset\n");
5466 return;
5470 netif_device_attach(netdev);
5472 /* let the f/w know that the h/w is now under the control of the
5473 * driver. */
5474 igb_get_hw_control(adapter);
5477 static int igb_set_vf_mac(struct igb_adapter *adapter,
5478 int vf, unsigned char *mac_addr)
5480 struct e1000_hw *hw = &adapter->hw;
5481 int rar_entry = vf + 1; /* VF MAC addresses start at entry 1 */
5483 igb_rar_set(hw, mac_addr, rar_entry);
5485 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
5487 igb_set_rah_pool(hw, vf, rar_entry);
5489 return 0;
5492 static void igb_vmm_control(struct igb_adapter *adapter)
5494 struct e1000_hw *hw = &adapter->hw;
5495 u32 reg_data;
5497 if (!adapter->vfs_allocated_count)
5498 return;
5500 /* VF's need PF reset indication before they
5501 * can send/receive mail */
5502 reg_data = rd32(E1000_CTRL_EXT);
5503 reg_data |= E1000_CTRL_EXT_PFRSTD;
5504 wr32(E1000_CTRL_EXT, reg_data);
5506 igb_vmdq_set_loopback_pf(hw, true);
5507 igb_vmdq_set_replication_pf(hw, true);
5510 /* igb_main.c */