2 * Real Time Clock interface for StrongARM SA1x00 and XScale PXA2xx
4 * Copyright (c) 2000 Nils Faerber
6 * Based on rtc.c by Paul Gortmaker
8 * Original Driver by Nils Faerber <nils@kernelconcepts.de>
11 * CIH <cih@coventive.com>
12 * Nicolas Pitre <nico@fluxnic.net>
13 * Andrew Christian <andrew.christian@hp.com>
15 * Converted to the RTC subsystem and Driver Model
16 * by Richard Purdie <rpurdie@rpsys.net>
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
24 #include <linux/platform_device.h>
25 #include <linux/module.h>
26 #include <linux/rtc.h>
27 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/string.h>
32 #include <linux/bitops.h>
34 #include <mach/hardware.h>
37 #ifdef CONFIG_ARCH_PXA
38 #include <mach/regs-rtc.h>
39 #include <mach/regs-ost.h>
42 #define RTC_DEF_DIVIDER 32768 - 1
43 #define RTC_DEF_TRIM 0
45 static unsigned long rtc_freq
= 1024;
46 static unsigned long timer_freq
;
47 static struct rtc_time rtc_alarm
;
48 static DEFINE_SPINLOCK(sa1100_rtc_lock
);
50 static inline int rtc_periodic_alarm(struct rtc_time
*tm
)
52 return (tm
->tm_year
== -1) ||
53 ((unsigned)tm
->tm_mon
>= 12) ||
54 ((unsigned)(tm
->tm_mday
- 1) >= 31) ||
55 ((unsigned)tm
->tm_hour
> 23) ||
56 ((unsigned)tm
->tm_min
> 59) ||
57 ((unsigned)tm
->tm_sec
> 59);
61 * Calculate the next alarm time given the requested alarm time mask
62 * and the current time.
64 static void rtc_next_alarm_time(struct rtc_time
*next
, struct rtc_time
*now
, struct rtc_time
*alrm
)
66 unsigned long next_time
;
67 unsigned long now_time
;
69 next
->tm_year
= now
->tm_year
;
70 next
->tm_mon
= now
->tm_mon
;
71 next
->tm_mday
= now
->tm_mday
;
72 next
->tm_hour
= alrm
->tm_hour
;
73 next
->tm_min
= alrm
->tm_min
;
74 next
->tm_sec
= alrm
->tm_sec
;
76 rtc_tm_to_time(now
, &now_time
);
77 rtc_tm_to_time(next
, &next_time
);
79 if (next_time
< now_time
) {
81 next_time
+= 60 * 60 * 24;
82 rtc_time_to_tm(next_time
, next
);
86 static int rtc_update_alarm(struct rtc_time
*alrm
)
88 struct rtc_time alarm_tm
, now_tm
;
89 unsigned long now
, time
;
94 rtc_time_to_tm(now
, &now_tm
);
95 rtc_next_alarm_time(&alarm_tm
, &now_tm
, alrm
);
96 ret
= rtc_tm_to_time(&alarm_tm
, &time
);
100 RTSR
= RTSR
& (RTSR_HZE
|RTSR_ALE
|RTSR_AL
);
102 } while (now
!= RCNR
);
107 static irqreturn_t
sa1100_rtc_interrupt(int irq
, void *dev_id
)
109 struct platform_device
*pdev
= to_platform_device(dev_id
);
110 struct rtc_device
*rtc
= platform_get_drvdata(pdev
);
112 unsigned long events
= 0;
114 spin_lock(&sa1100_rtc_lock
);
117 /* clear interrupt sources */
119 RTSR
= (RTSR_AL
| RTSR_HZ
) & (rtsr
>> 2);
121 /* clear alarm interrupt if it has occurred */
124 RTSR
= rtsr
& (RTSR_ALE
| RTSR_HZE
);
126 /* update irq data & counter */
128 events
|= RTC_AF
| RTC_IRQF
;
130 events
|= RTC_UF
| RTC_IRQF
;
132 rtc_update_irq(rtc
, 1, events
);
134 if (rtsr
& RTSR_AL
&& rtc_periodic_alarm(&rtc_alarm
))
135 rtc_update_alarm(&rtc_alarm
);
137 spin_unlock(&sa1100_rtc_lock
);
142 static int rtc_timer1_count
;
144 static irqreturn_t
timer1_interrupt(int irq
, void *dev_id
)
146 struct platform_device
*pdev
= to_platform_device(dev_id
);
147 struct rtc_device
*rtc
= platform_get_drvdata(pdev
);
150 * If we match for the first time, rtc_timer1_count will be 1.
151 * Otherwise, we wrapped around (very unlikely but
152 * still possible) so compute the amount of missed periods.
153 * The match reg is updated only when the data is actually retrieved
154 * to avoid unnecessary interrupts.
156 OSSR
= OSSR_M1
; /* clear match on timer1 */
158 rtc_update_irq(rtc
, rtc_timer1_count
, RTC_PF
| RTC_IRQF
);
160 if (rtc_timer1_count
== 1)
161 rtc_timer1_count
= (rtc_freq
* ((1 << 30) / (timer_freq
>> 2)));
166 static int sa1100_rtc_read_callback(struct device
*dev
, int data
)
169 /* interpolate missed periods and set match for the next */
170 unsigned long period
= timer_freq
/ rtc_freq
;
171 unsigned long oscr
= OSCR
;
172 unsigned long osmr1
= OSMR1
;
173 unsigned long missed
= (oscr
- osmr1
)/period
;
175 OSSR
= OSSR_M1
; /* clear match on timer 1 */
176 OSMR1
= osmr1
+ (missed
+ 1)*period
;
177 /* Ensure we didn't miss another match in the mean time.
178 * Here we compare (match - OSCR) 8 instead of 0 --
179 * see comment in pxa_timer_interrupt() for explanation.
181 while( (signed long)((osmr1
= OSMR1
) - OSCR
) <= 8 ) {
183 OSSR
= OSSR_M1
; /* clear match on timer 1 */
184 OSMR1
= osmr1
+ period
;
190 static int sa1100_rtc_open(struct device
*dev
)
194 ret
= request_irq(IRQ_RTC1Hz
, sa1100_rtc_interrupt
, IRQF_DISABLED
,
197 dev_err(dev
, "IRQ %d already in use.\n", IRQ_RTC1Hz
);
200 ret
= request_irq(IRQ_RTCAlrm
, sa1100_rtc_interrupt
, IRQF_DISABLED
,
203 dev_err(dev
, "IRQ %d already in use.\n", IRQ_RTCAlrm
);
206 ret
= request_irq(IRQ_OST1
, timer1_interrupt
, IRQF_DISABLED
,
209 dev_err(dev
, "IRQ %d already in use.\n", IRQ_OST1
);
215 free_irq(IRQ_RTCAlrm
, dev
);
217 free_irq(IRQ_RTC1Hz
, dev
);
222 static void sa1100_rtc_release(struct device
*dev
)
224 spin_lock_irq(&sa1100_rtc_lock
);
228 spin_unlock_irq(&sa1100_rtc_lock
);
230 free_irq(IRQ_OST1
, dev
);
231 free_irq(IRQ_RTCAlrm
, dev
);
232 free_irq(IRQ_RTC1Hz
, dev
);
236 static int sa1100_rtc_ioctl(struct device
*dev
, unsigned int cmd
,
241 spin_lock_irq(&sa1100_rtc_lock
);
243 spin_unlock_irq(&sa1100_rtc_lock
);
246 spin_lock_irq(&sa1100_rtc_lock
);
248 spin_unlock_irq(&sa1100_rtc_lock
);
251 spin_lock_irq(&sa1100_rtc_lock
);
253 spin_unlock_irq(&sa1100_rtc_lock
);
256 spin_lock_irq(&sa1100_rtc_lock
);
258 spin_unlock_irq(&sa1100_rtc_lock
);
261 spin_lock_irq(&sa1100_rtc_lock
);
263 spin_unlock_irq(&sa1100_rtc_lock
);
266 spin_lock_irq(&sa1100_rtc_lock
);
267 OSMR1
= timer_freq
/ rtc_freq
+ OSCR
;
269 rtc_timer1_count
= 1;
270 spin_unlock_irq(&sa1100_rtc_lock
);
273 return put_user(rtc_freq
, (unsigned long *)arg
);
275 if (arg
< 1 || arg
> timer_freq
)
283 static int sa1100_rtc_read_time(struct device
*dev
, struct rtc_time
*tm
)
285 rtc_time_to_tm(RCNR
, tm
);
289 static int sa1100_rtc_set_time(struct device
*dev
, struct rtc_time
*tm
)
294 ret
= rtc_tm_to_time(tm
, &time
);
300 static int sa1100_rtc_read_alarm(struct device
*dev
, struct rtc_wkalrm
*alrm
)
304 memcpy(&alrm
->time
, &rtc_alarm
, sizeof(struct rtc_time
));
306 alrm
->enabled
= (rtsr
& RTSR_ALE
) ? 1 : 0;
307 alrm
->pending
= (rtsr
& RTSR_AL
) ? 1 : 0;
311 static int sa1100_rtc_set_alarm(struct device
*dev
, struct rtc_wkalrm
*alrm
)
315 spin_lock_irq(&sa1100_rtc_lock
);
316 ret
= rtc_update_alarm(&alrm
->time
);
323 spin_unlock_irq(&sa1100_rtc_lock
);
328 static int sa1100_rtc_proc(struct device
*dev
, struct seq_file
*seq
)
330 seq_printf(seq
, "trim/divider\t: 0x%08x\n", (u32
) RTTR
);
331 seq_printf(seq
, "update_IRQ\t: %s\n",
332 (RTSR
& RTSR_HZE
) ? "yes" : "no");
333 seq_printf(seq
, "periodic_IRQ\t: %s\n",
334 (OIER
& OIER_E1
) ? "yes" : "no");
335 seq_printf(seq
, "periodic_freq\t: %ld\n", rtc_freq
);
340 static const struct rtc_class_ops sa1100_rtc_ops
= {
341 .open
= sa1100_rtc_open
,
342 .read_callback
= sa1100_rtc_read_callback
,
343 .release
= sa1100_rtc_release
,
344 .ioctl
= sa1100_rtc_ioctl
,
345 .read_time
= sa1100_rtc_read_time
,
346 .set_time
= sa1100_rtc_set_time
,
347 .read_alarm
= sa1100_rtc_read_alarm
,
348 .set_alarm
= sa1100_rtc_set_alarm
,
349 .proc
= sa1100_rtc_proc
,
352 static int sa1100_rtc_probe(struct platform_device
*pdev
)
354 struct rtc_device
*rtc
;
356 timer_freq
= get_clock_tick_rate();
359 * According to the manual we should be able to let RTTR be zero
360 * and then a default diviser for a 32.768KHz clock is used.
361 * Apparently this doesn't work, at least for my SA1110 rev 5.
362 * If the clock divider is uninitialized then reset it to the
363 * default value to get the 1Hz clock.
366 RTTR
= RTC_DEF_DIVIDER
+ (RTC_DEF_TRIM
<< 16);
367 dev_warn(&pdev
->dev
, "warning: initializing default clock divider/trim value\n");
368 /* The current RTC value probably doesn't make sense either */
372 device_init_wakeup(&pdev
->dev
, 1);
374 rtc
= rtc_device_register(pdev
->name
, &pdev
->dev
, &sa1100_rtc_ops
,
380 platform_set_drvdata(pdev
, rtc
);
385 static int sa1100_rtc_remove(struct platform_device
*pdev
)
387 struct rtc_device
*rtc
= platform_get_drvdata(pdev
);
390 rtc_device_unregister(rtc
);
396 static int sa1100_rtc_suspend(struct device
*dev
)
398 if (device_may_wakeup(dev
))
399 enable_irq_wake(IRQ_RTCAlrm
);
403 static int sa1100_rtc_resume(struct device
*dev
)
405 if (device_may_wakeup(dev
))
406 disable_irq_wake(IRQ_RTCAlrm
);
410 static const struct dev_pm_ops sa1100_rtc_pm_ops
= {
411 .suspend
= sa1100_rtc_suspend
,
412 .resume
= sa1100_rtc_resume
,
416 static struct platform_driver sa1100_rtc_driver
= {
417 .probe
= sa1100_rtc_probe
,
418 .remove
= sa1100_rtc_remove
,
420 .name
= "sa1100-rtc",
422 .pm
= &sa1100_rtc_pm_ops
,
427 static int __init
sa1100_rtc_init(void)
429 return platform_driver_register(&sa1100_rtc_driver
);
432 static void __exit
sa1100_rtc_exit(void)
434 platform_driver_unregister(&sa1100_rtc_driver
);
437 module_init(sa1100_rtc_init
);
438 module_exit(sa1100_rtc_exit
);
440 MODULE_AUTHOR("Richard Purdie <rpurdie@rpsys.net>");
441 MODULE_DESCRIPTION("SA11x0/PXA2xx Realtime Clock Driver (RTC)");
442 MODULE_LICENSE("GPL");
443 MODULE_ALIAS("platform:sa1100-rtc");