2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
8 * Alan Cox : Fixed the worst of the load
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/kmemcheck.h>
44 #include <linux/interrupt.h>
46 #include <linux/inet.h>
47 #include <linux/slab.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
61 #include <net/protocol.h>
64 #include <net/checksum.h>
67 #include <asm/uaccess.h>
68 #include <asm/system.h>
69 #include <trace/events/skb.h>
73 static struct kmem_cache
*skbuff_head_cache __read_mostly
;
74 static struct kmem_cache
*skbuff_fclone_cache __read_mostly
;
76 static void sock_pipe_buf_release(struct pipe_inode_info
*pipe
,
77 struct pipe_buffer
*buf
)
82 static void sock_pipe_buf_get(struct pipe_inode_info
*pipe
,
83 struct pipe_buffer
*buf
)
88 static int sock_pipe_buf_steal(struct pipe_inode_info
*pipe
,
89 struct pipe_buffer
*buf
)
95 /* Pipe buffer operations for a socket. */
96 static const struct pipe_buf_operations sock_pipe_buf_ops
= {
98 .map
= generic_pipe_buf_map
,
99 .unmap
= generic_pipe_buf_unmap
,
100 .confirm
= generic_pipe_buf_confirm
,
101 .release
= sock_pipe_buf_release
,
102 .steal
= sock_pipe_buf_steal
,
103 .get
= sock_pipe_buf_get
,
107 * Keep out-of-line to prevent kernel bloat.
108 * __builtin_return_address is not used because it is not always
113 * skb_over_panic - private function
118 * Out of line support code for skb_put(). Not user callable.
120 static void skb_over_panic(struct sk_buff
*skb
, int sz
, void *here
)
122 printk(KERN_EMERG
"skb_over_panic: text:%p len:%d put:%d head:%p "
123 "data:%p tail:%#lx end:%#lx dev:%s\n",
124 here
, skb
->len
, sz
, skb
->head
, skb
->data
,
125 (unsigned long)skb
->tail
, (unsigned long)skb
->end
,
126 skb
->dev
? skb
->dev
->name
: "<NULL>");
131 * skb_under_panic - private function
136 * Out of line support code for skb_push(). Not user callable.
139 static void skb_under_panic(struct sk_buff
*skb
, int sz
, void *here
)
141 printk(KERN_EMERG
"skb_under_panic: text:%p len:%d put:%d head:%p "
142 "data:%p tail:%#lx end:%#lx dev:%s\n",
143 here
, skb
->len
, sz
, skb
->head
, skb
->data
,
144 (unsigned long)skb
->tail
, (unsigned long)skb
->end
,
145 skb
->dev
? skb
->dev
->name
: "<NULL>");
149 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
150 * 'private' fields and also do memory statistics to find all the
156 * __alloc_skb - allocate a network buffer
157 * @size: size to allocate
158 * @gfp_mask: allocation mask
159 * @fclone: allocate from fclone cache instead of head cache
160 * and allocate a cloned (child) skb
161 * @node: numa node to allocate memory on
163 * Allocate a new &sk_buff. The returned buffer has no headroom and a
164 * tail room of size bytes. The object has a reference count of one.
165 * The return is the buffer. On a failure the return is %NULL.
167 * Buffers may only be allocated from interrupts using a @gfp_mask of
170 struct sk_buff
*__alloc_skb(unsigned int size
, gfp_t gfp_mask
,
171 int fclone
, int node
)
173 struct kmem_cache
*cache
;
174 struct skb_shared_info
*shinfo
;
178 cache
= fclone
? skbuff_fclone_cache
: skbuff_head_cache
;
181 skb
= kmem_cache_alloc_node(cache
, gfp_mask
& ~__GFP_DMA
, node
);
186 size
= SKB_DATA_ALIGN(size
);
187 data
= kmalloc_node_track_caller(size
+ sizeof(struct skb_shared_info
),
191 prefetchw(data
+ size
);
194 * Only clear those fields we need to clear, not those that we will
195 * actually initialise below. Hence, don't put any more fields after
196 * the tail pointer in struct sk_buff!
198 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
199 skb
->truesize
= size
+ sizeof(struct sk_buff
);
200 atomic_set(&skb
->users
, 1);
203 skb_reset_tail_pointer(skb
);
204 skb
->end
= skb
->tail
+ size
;
205 #ifdef NET_SKBUFF_DATA_USES_OFFSET
206 skb
->mac_header
= ~0U;
209 /* make sure we initialize shinfo sequentially */
210 shinfo
= skb_shinfo(skb
);
211 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
212 atomic_set(&shinfo
->dataref
, 1);
213 kmemcheck_annotate_variable(shinfo
->destructor_arg
);
216 struct sk_buff
*child
= skb
+ 1;
217 atomic_t
*fclone_ref
= (atomic_t
*) (child
+ 1);
219 kmemcheck_annotate_bitfield(child
, flags1
);
220 kmemcheck_annotate_bitfield(child
, flags2
);
221 skb
->fclone
= SKB_FCLONE_ORIG
;
222 atomic_set(fclone_ref
, 1);
224 child
->fclone
= SKB_FCLONE_UNAVAILABLE
;
229 kmem_cache_free(cache
, skb
);
233 EXPORT_SYMBOL(__alloc_skb
);
236 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
237 * @dev: network device to receive on
238 * @length: length to allocate
239 * @gfp_mask: get_free_pages mask, passed to alloc_skb
241 * Allocate a new &sk_buff and assign it a usage count of one. The
242 * buffer has unspecified headroom built in. Users should allocate
243 * the headroom they think they need without accounting for the
244 * built in space. The built in space is used for optimisations.
246 * %NULL is returned if there is no free memory.
248 struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
,
249 unsigned int length
, gfp_t gfp_mask
)
253 skb
= __alloc_skb(length
+ NET_SKB_PAD
, gfp_mask
, 0, NUMA_NO_NODE
);
255 skb_reserve(skb
, NET_SKB_PAD
);
260 EXPORT_SYMBOL(__netdev_alloc_skb
);
262 void skb_add_rx_frag(struct sk_buff
*skb
, int i
, struct page
*page
, int off
,
265 skb_fill_page_desc(skb
, i
, page
, off
, size
);
267 skb
->data_len
+= size
;
268 skb
->truesize
+= size
;
270 EXPORT_SYMBOL(skb_add_rx_frag
);
273 * dev_alloc_skb - allocate an skbuff for receiving
274 * @length: length to allocate
276 * Allocate a new &sk_buff and assign it a usage count of one. The
277 * buffer has unspecified headroom built in. Users should allocate
278 * the headroom they think they need without accounting for the
279 * built in space. The built in space is used for optimisations.
281 * %NULL is returned if there is no free memory. Although this function
282 * allocates memory it can be called from an interrupt.
284 struct sk_buff
*dev_alloc_skb(unsigned int length
)
287 * There is more code here than it seems:
288 * __dev_alloc_skb is an inline
290 return __dev_alloc_skb(length
, GFP_ATOMIC
);
292 EXPORT_SYMBOL(dev_alloc_skb
);
294 static void skb_drop_list(struct sk_buff
**listp
)
296 struct sk_buff
*list
= *listp
;
301 struct sk_buff
*this = list
;
307 static inline void skb_drop_fraglist(struct sk_buff
*skb
)
309 skb_drop_list(&skb_shinfo(skb
)->frag_list
);
312 static void skb_clone_fraglist(struct sk_buff
*skb
)
314 struct sk_buff
*list
;
316 skb_walk_frags(skb
, list
)
320 static void skb_release_data(struct sk_buff
*skb
)
323 !atomic_sub_return(skb
->nohdr
? (1 << SKB_DATAREF_SHIFT
) + 1 : 1,
324 &skb_shinfo(skb
)->dataref
)) {
325 if (skb_shinfo(skb
)->nr_frags
) {
327 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
328 put_page(skb_shinfo(skb
)->frags
[i
].page
);
331 if (skb_has_frag_list(skb
))
332 skb_drop_fraglist(skb
);
339 * Free an skbuff by memory without cleaning the state.
341 static void kfree_skbmem(struct sk_buff
*skb
)
343 struct sk_buff
*other
;
344 atomic_t
*fclone_ref
;
346 switch (skb
->fclone
) {
347 case SKB_FCLONE_UNAVAILABLE
:
348 kmem_cache_free(skbuff_head_cache
, skb
);
351 case SKB_FCLONE_ORIG
:
352 fclone_ref
= (atomic_t
*) (skb
+ 2);
353 if (atomic_dec_and_test(fclone_ref
))
354 kmem_cache_free(skbuff_fclone_cache
, skb
);
357 case SKB_FCLONE_CLONE
:
358 fclone_ref
= (atomic_t
*) (skb
+ 1);
361 /* The clone portion is available for
362 * fast-cloning again.
364 skb
->fclone
= SKB_FCLONE_UNAVAILABLE
;
366 if (atomic_dec_and_test(fclone_ref
))
367 kmem_cache_free(skbuff_fclone_cache
, other
);
372 static void skb_release_head_state(struct sk_buff
*skb
)
376 secpath_put(skb
->sp
);
378 if (skb
->destructor
) {
380 skb
->destructor(skb
);
382 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
383 nf_conntrack_put(skb
->nfct
);
385 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
386 nf_conntrack_put_reasm(skb
->nfct_reasm
);
388 #ifdef CONFIG_BRIDGE_NETFILTER
389 nf_bridge_put(skb
->nf_bridge
);
391 /* XXX: IS this still necessary? - JHS */
392 #ifdef CONFIG_NET_SCHED
394 #ifdef CONFIG_NET_CLS_ACT
400 /* Free everything but the sk_buff shell. */
401 static void skb_release_all(struct sk_buff
*skb
)
403 skb_release_head_state(skb
);
404 skb_release_data(skb
);
408 * __kfree_skb - private function
411 * Free an sk_buff. Release anything attached to the buffer.
412 * Clean the state. This is an internal helper function. Users should
413 * always call kfree_skb
416 void __kfree_skb(struct sk_buff
*skb
)
418 skb_release_all(skb
);
421 EXPORT_SYMBOL(__kfree_skb
);
424 * kfree_skb - free an sk_buff
425 * @skb: buffer to free
427 * Drop a reference to the buffer and free it if the usage count has
430 void kfree_skb(struct sk_buff
*skb
)
434 if (likely(atomic_read(&skb
->users
) == 1))
436 else if (likely(!atomic_dec_and_test(&skb
->users
)))
438 trace_kfree_skb(skb
, __builtin_return_address(0));
441 EXPORT_SYMBOL(kfree_skb
);
444 * consume_skb - free an skbuff
445 * @skb: buffer to free
447 * Drop a ref to the buffer and free it if the usage count has hit zero
448 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
449 * is being dropped after a failure and notes that
451 void consume_skb(struct sk_buff
*skb
)
455 if (likely(atomic_read(&skb
->users
) == 1))
457 else if (likely(!atomic_dec_and_test(&skb
->users
)))
459 trace_consume_skb(skb
);
462 EXPORT_SYMBOL(consume_skb
);
465 * skb_recycle_check - check if skb can be reused for receive
467 * @skb_size: minimum receive buffer size
469 * Checks that the skb passed in is not shared or cloned, and
470 * that it is linear and its head portion at least as large as
471 * skb_size so that it can be recycled as a receive buffer.
472 * If these conditions are met, this function does any necessary
473 * reference count dropping and cleans up the skbuff as if it
474 * just came from __alloc_skb().
476 bool skb_recycle_check(struct sk_buff
*skb
, int skb_size
)
478 struct skb_shared_info
*shinfo
;
483 if (skb_is_nonlinear(skb
) || skb
->fclone
!= SKB_FCLONE_UNAVAILABLE
)
486 skb_size
= SKB_DATA_ALIGN(skb_size
+ NET_SKB_PAD
);
487 if (skb_end_pointer(skb
) - skb
->head
< skb_size
)
490 if (skb_shared(skb
) || skb_cloned(skb
))
493 skb_release_head_state(skb
);
495 shinfo
= skb_shinfo(skb
);
496 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
497 atomic_set(&shinfo
->dataref
, 1);
499 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
500 skb
->data
= skb
->head
+ NET_SKB_PAD
;
501 skb_reset_tail_pointer(skb
);
505 EXPORT_SYMBOL(skb_recycle_check
);
507 static void __copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
509 new->tstamp
= old
->tstamp
;
511 new->transport_header
= old
->transport_header
;
512 new->network_header
= old
->network_header
;
513 new->mac_header
= old
->mac_header
;
514 skb_dst_copy(new, old
);
515 new->rxhash
= old
->rxhash
;
517 new->sp
= secpath_get(old
->sp
);
519 memcpy(new->cb
, old
->cb
, sizeof(old
->cb
));
520 new->csum
= old
->csum
;
521 new->local_df
= old
->local_df
;
522 new->pkt_type
= old
->pkt_type
;
523 new->ip_summed
= old
->ip_summed
;
524 skb_copy_queue_mapping(new, old
);
525 new->priority
= old
->priority
;
526 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
527 new->ipvs_property
= old
->ipvs_property
;
529 new->protocol
= old
->protocol
;
530 new->mark
= old
->mark
;
531 new->skb_iif
= old
->skb_iif
;
533 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
534 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
535 new->nf_trace
= old
->nf_trace
;
537 #ifdef CONFIG_NET_SCHED
538 new->tc_index
= old
->tc_index
;
539 #ifdef CONFIG_NET_CLS_ACT
540 new->tc_verd
= old
->tc_verd
;
543 new->vlan_tci
= old
->vlan_tci
;
545 skb_copy_secmark(new, old
);
549 * You should not add any new code to this function. Add it to
550 * __copy_skb_header above instead.
552 static struct sk_buff
*__skb_clone(struct sk_buff
*n
, struct sk_buff
*skb
)
554 #define C(x) n->x = skb->x
556 n
->next
= n
->prev
= NULL
;
558 __copy_skb_header(n
, skb
);
563 n
->hdr_len
= skb
->nohdr
? skb_headroom(skb
) : skb
->hdr_len
;
566 n
->destructor
= NULL
;
572 atomic_set(&n
->users
, 1);
574 atomic_inc(&(skb_shinfo(skb
)->dataref
));
582 * skb_morph - morph one skb into another
583 * @dst: the skb to receive the contents
584 * @src: the skb to supply the contents
586 * This is identical to skb_clone except that the target skb is
587 * supplied by the user.
589 * The target skb is returned upon exit.
591 struct sk_buff
*skb_morph(struct sk_buff
*dst
, struct sk_buff
*src
)
593 skb_release_all(dst
);
594 return __skb_clone(dst
, src
);
596 EXPORT_SYMBOL_GPL(skb_morph
);
599 * skb_clone - duplicate an sk_buff
600 * @skb: buffer to clone
601 * @gfp_mask: allocation priority
603 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
604 * copies share the same packet data but not structure. The new
605 * buffer has a reference count of 1. If the allocation fails the
606 * function returns %NULL otherwise the new buffer is returned.
608 * If this function is called from an interrupt gfp_mask() must be
612 struct sk_buff
*skb_clone(struct sk_buff
*skb
, gfp_t gfp_mask
)
617 if (skb
->fclone
== SKB_FCLONE_ORIG
&&
618 n
->fclone
== SKB_FCLONE_UNAVAILABLE
) {
619 atomic_t
*fclone_ref
= (atomic_t
*) (n
+ 1);
620 n
->fclone
= SKB_FCLONE_CLONE
;
621 atomic_inc(fclone_ref
);
623 n
= kmem_cache_alloc(skbuff_head_cache
, gfp_mask
);
627 kmemcheck_annotate_bitfield(n
, flags1
);
628 kmemcheck_annotate_bitfield(n
, flags2
);
629 n
->fclone
= SKB_FCLONE_UNAVAILABLE
;
632 return __skb_clone(n
, skb
);
634 EXPORT_SYMBOL(skb_clone
);
636 static void copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
638 #ifndef NET_SKBUFF_DATA_USES_OFFSET
640 * Shift between the two data areas in bytes
642 unsigned long offset
= new->data
- old
->data
;
645 __copy_skb_header(new, old
);
647 #ifndef NET_SKBUFF_DATA_USES_OFFSET
648 /* {transport,network,mac}_header are relative to skb->head */
649 new->transport_header
+= offset
;
650 new->network_header
+= offset
;
651 if (skb_mac_header_was_set(new))
652 new->mac_header
+= offset
;
654 skb_shinfo(new)->gso_size
= skb_shinfo(old
)->gso_size
;
655 skb_shinfo(new)->gso_segs
= skb_shinfo(old
)->gso_segs
;
656 skb_shinfo(new)->gso_type
= skb_shinfo(old
)->gso_type
;
660 * skb_copy - create private copy of an sk_buff
661 * @skb: buffer to copy
662 * @gfp_mask: allocation priority
664 * Make a copy of both an &sk_buff and its data. This is used when the
665 * caller wishes to modify the data and needs a private copy of the
666 * data to alter. Returns %NULL on failure or the pointer to the buffer
667 * on success. The returned buffer has a reference count of 1.
669 * As by-product this function converts non-linear &sk_buff to linear
670 * one, so that &sk_buff becomes completely private and caller is allowed
671 * to modify all the data of returned buffer. This means that this
672 * function is not recommended for use in circumstances when only
673 * header is going to be modified. Use pskb_copy() instead.
676 struct sk_buff
*skb_copy(const struct sk_buff
*skb
, gfp_t gfp_mask
)
678 int headerlen
= skb_headroom(skb
);
679 unsigned int size
= (skb_end_pointer(skb
) - skb
->head
) + skb
->data_len
;
680 struct sk_buff
*n
= alloc_skb(size
, gfp_mask
);
685 /* Set the data pointer */
686 skb_reserve(n
, headerlen
);
687 /* Set the tail pointer and length */
688 skb_put(n
, skb
->len
);
690 if (skb_copy_bits(skb
, -headerlen
, n
->head
, headerlen
+ skb
->len
))
693 copy_skb_header(n
, skb
);
696 EXPORT_SYMBOL(skb_copy
);
699 * pskb_copy - create copy of an sk_buff with private head.
700 * @skb: buffer to copy
701 * @gfp_mask: allocation priority
703 * Make a copy of both an &sk_buff and part of its data, located
704 * in header. Fragmented data remain shared. This is used when
705 * the caller wishes to modify only header of &sk_buff and needs
706 * private copy of the header to alter. Returns %NULL on failure
707 * or the pointer to the buffer on success.
708 * The returned buffer has a reference count of 1.
711 struct sk_buff
*pskb_copy(struct sk_buff
*skb
, gfp_t gfp_mask
)
713 unsigned int size
= skb_end_pointer(skb
) - skb
->head
;
714 struct sk_buff
*n
= alloc_skb(size
, gfp_mask
);
719 /* Set the data pointer */
720 skb_reserve(n
, skb_headroom(skb
));
721 /* Set the tail pointer and length */
722 skb_put(n
, skb_headlen(skb
));
724 skb_copy_from_linear_data(skb
, n
->data
, n
->len
);
726 n
->truesize
+= skb
->data_len
;
727 n
->data_len
= skb
->data_len
;
730 if (skb_shinfo(skb
)->nr_frags
) {
733 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
734 skb_shinfo(n
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
735 get_page(skb_shinfo(n
)->frags
[i
].page
);
737 skb_shinfo(n
)->nr_frags
= i
;
740 if (skb_has_frag_list(skb
)) {
741 skb_shinfo(n
)->frag_list
= skb_shinfo(skb
)->frag_list
;
742 skb_clone_fraglist(n
);
745 copy_skb_header(n
, skb
);
749 EXPORT_SYMBOL(pskb_copy
);
752 * pskb_expand_head - reallocate header of &sk_buff
753 * @skb: buffer to reallocate
754 * @nhead: room to add at head
755 * @ntail: room to add at tail
756 * @gfp_mask: allocation priority
758 * Expands (or creates identical copy, if &nhead and &ntail are zero)
759 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
760 * reference count of 1. Returns zero in the case of success or error,
761 * if expansion failed. In the last case, &sk_buff is not changed.
763 * All the pointers pointing into skb header may change and must be
764 * reloaded after call to this function.
767 int pskb_expand_head(struct sk_buff
*skb
, int nhead
, int ntail
,
772 int size
= nhead
+ (skb_end_pointer(skb
) - skb
->head
) + ntail
;
781 size
= SKB_DATA_ALIGN(size
);
783 /* Check if we can avoid taking references on fragments if we own
784 * the last reference on skb->head. (see skb_release_data())
789 int delta
= skb
->nohdr
? (1 << SKB_DATAREF_SHIFT
) + 1 : 1;
791 fastpath
= atomic_read(&skb_shinfo(skb
)->dataref
) == delta
;
795 size
+ sizeof(struct skb_shared_info
) <= ksize(skb
->head
)) {
796 memmove(skb
->head
+ size
, skb_shinfo(skb
),
797 offsetof(struct skb_shared_info
,
798 frags
[skb_shinfo(skb
)->nr_frags
]));
799 memmove(skb
->head
+ nhead
, skb
->head
,
800 skb_tail_pointer(skb
) - skb
->head
);
805 data
= kmalloc(size
+ sizeof(struct skb_shared_info
), gfp_mask
);
809 /* Copy only real data... and, alas, header. This should be
810 * optimized for the cases when header is void.
812 memcpy(data
+ nhead
, skb
->head
, skb_tail_pointer(skb
) - skb
->head
);
814 memcpy((struct skb_shared_info
*)(data
+ size
),
816 offsetof(struct skb_shared_info
, frags
[skb_shinfo(skb
)->nr_frags
]));
821 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
822 get_page(skb_shinfo(skb
)->frags
[i
].page
);
824 if (skb_has_frag_list(skb
))
825 skb_clone_fraglist(skb
);
827 skb_release_data(skb
);
829 off
= (data
+ nhead
) - skb
->head
;
834 #ifdef NET_SKBUFF_DATA_USES_OFFSET
838 skb
->end
= skb
->head
+ size
;
840 /* {transport,network,mac}_header and tail are relative to skb->head */
842 skb
->transport_header
+= off
;
843 skb
->network_header
+= off
;
844 if (skb_mac_header_was_set(skb
))
845 skb
->mac_header
+= off
;
846 /* Only adjust this if it actually is csum_start rather than csum */
847 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
848 skb
->csum_start
+= nhead
;
852 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
858 EXPORT_SYMBOL(pskb_expand_head
);
860 /* Make private copy of skb with writable head and some headroom */
862 struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
, unsigned int headroom
)
864 struct sk_buff
*skb2
;
865 int delta
= headroom
- skb_headroom(skb
);
868 skb2
= pskb_copy(skb
, GFP_ATOMIC
);
870 skb2
= skb_clone(skb
, GFP_ATOMIC
);
871 if (skb2
&& pskb_expand_head(skb2
, SKB_DATA_ALIGN(delta
), 0,
879 EXPORT_SYMBOL(skb_realloc_headroom
);
882 * skb_copy_expand - copy and expand sk_buff
883 * @skb: buffer to copy
884 * @newheadroom: new free bytes at head
885 * @newtailroom: new free bytes at tail
886 * @gfp_mask: allocation priority
888 * Make a copy of both an &sk_buff and its data and while doing so
889 * allocate additional space.
891 * This is used when the caller wishes to modify the data and needs a
892 * private copy of the data to alter as well as more space for new fields.
893 * Returns %NULL on failure or the pointer to the buffer
894 * on success. The returned buffer has a reference count of 1.
896 * You must pass %GFP_ATOMIC as the allocation priority if this function
897 * is called from an interrupt.
899 struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
900 int newheadroom
, int newtailroom
,
904 * Allocate the copy buffer
906 struct sk_buff
*n
= alloc_skb(newheadroom
+ skb
->len
+ newtailroom
,
908 int oldheadroom
= skb_headroom(skb
);
909 int head_copy_len
, head_copy_off
;
915 skb_reserve(n
, newheadroom
);
917 /* Set the tail pointer and length */
918 skb_put(n
, skb
->len
);
920 head_copy_len
= oldheadroom
;
922 if (newheadroom
<= head_copy_len
)
923 head_copy_len
= newheadroom
;
925 head_copy_off
= newheadroom
- head_copy_len
;
927 /* Copy the linear header and data. */
928 if (skb_copy_bits(skb
, -head_copy_len
, n
->head
+ head_copy_off
,
929 skb
->len
+ head_copy_len
))
932 copy_skb_header(n
, skb
);
934 off
= newheadroom
- oldheadroom
;
935 if (n
->ip_summed
== CHECKSUM_PARTIAL
)
936 n
->csum_start
+= off
;
937 #ifdef NET_SKBUFF_DATA_USES_OFFSET
938 n
->transport_header
+= off
;
939 n
->network_header
+= off
;
940 if (skb_mac_header_was_set(skb
))
941 n
->mac_header
+= off
;
946 EXPORT_SYMBOL(skb_copy_expand
);
949 * skb_pad - zero pad the tail of an skb
950 * @skb: buffer to pad
953 * Ensure that a buffer is followed by a padding area that is zero
954 * filled. Used by network drivers which may DMA or transfer data
955 * beyond the buffer end onto the wire.
957 * May return error in out of memory cases. The skb is freed on error.
960 int skb_pad(struct sk_buff
*skb
, int pad
)
965 /* If the skbuff is non linear tailroom is always zero.. */
966 if (!skb_cloned(skb
) && skb_tailroom(skb
) >= pad
) {
967 memset(skb
->data
+skb
->len
, 0, pad
);
971 ntail
= skb
->data_len
+ pad
- (skb
->end
- skb
->tail
);
972 if (likely(skb_cloned(skb
) || ntail
> 0)) {
973 err
= pskb_expand_head(skb
, 0, ntail
, GFP_ATOMIC
);
978 /* FIXME: The use of this function with non-linear skb's really needs
981 err
= skb_linearize(skb
);
985 memset(skb
->data
+ skb
->len
, 0, pad
);
992 EXPORT_SYMBOL(skb_pad
);
995 * skb_put - add data to a buffer
996 * @skb: buffer to use
997 * @len: amount of data to add
999 * This function extends the used data area of the buffer. If this would
1000 * exceed the total buffer size the kernel will panic. A pointer to the
1001 * first byte of the extra data is returned.
1003 unsigned char *skb_put(struct sk_buff
*skb
, unsigned int len
)
1005 unsigned char *tmp
= skb_tail_pointer(skb
);
1006 SKB_LINEAR_ASSERT(skb
);
1009 if (unlikely(skb
->tail
> skb
->end
))
1010 skb_over_panic(skb
, len
, __builtin_return_address(0));
1013 EXPORT_SYMBOL(skb_put
);
1016 * skb_push - add data to the start of a buffer
1017 * @skb: buffer to use
1018 * @len: amount of data to add
1020 * This function extends the used data area of the buffer at the buffer
1021 * start. If this would exceed the total buffer headroom the kernel will
1022 * panic. A pointer to the first byte of the extra data is returned.
1024 unsigned char *skb_push(struct sk_buff
*skb
, unsigned int len
)
1028 if (unlikely(skb
->data
<skb
->head
))
1029 skb_under_panic(skb
, len
, __builtin_return_address(0));
1032 EXPORT_SYMBOL(skb_push
);
1035 * skb_pull - remove data from the start of a buffer
1036 * @skb: buffer to use
1037 * @len: amount of data to remove
1039 * This function removes data from the start of a buffer, returning
1040 * the memory to the headroom. A pointer to the next data in the buffer
1041 * is returned. Once the data has been pulled future pushes will overwrite
1044 unsigned char *skb_pull(struct sk_buff
*skb
, unsigned int len
)
1046 return skb_pull_inline(skb
, len
);
1048 EXPORT_SYMBOL(skb_pull
);
1051 * skb_trim - remove end from a buffer
1052 * @skb: buffer to alter
1055 * Cut the length of a buffer down by removing data from the tail. If
1056 * the buffer is already under the length specified it is not modified.
1057 * The skb must be linear.
1059 void skb_trim(struct sk_buff
*skb
, unsigned int len
)
1062 __skb_trim(skb
, len
);
1064 EXPORT_SYMBOL(skb_trim
);
1066 /* Trims skb to length len. It can change skb pointers.
1069 int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1071 struct sk_buff
**fragp
;
1072 struct sk_buff
*frag
;
1073 int offset
= skb_headlen(skb
);
1074 int nfrags
= skb_shinfo(skb
)->nr_frags
;
1078 if (skb_cloned(skb
) &&
1079 unlikely((err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))))
1086 for (; i
< nfrags
; i
++) {
1087 int end
= offset
+ skb_shinfo(skb
)->frags
[i
].size
;
1094 skb_shinfo(skb
)->frags
[i
++].size
= len
- offset
;
1097 skb_shinfo(skb
)->nr_frags
= i
;
1099 for (; i
< nfrags
; i
++)
1100 put_page(skb_shinfo(skb
)->frags
[i
].page
);
1102 if (skb_has_frag_list(skb
))
1103 skb_drop_fraglist(skb
);
1107 for (fragp
= &skb_shinfo(skb
)->frag_list
; (frag
= *fragp
);
1108 fragp
= &frag
->next
) {
1109 int end
= offset
+ frag
->len
;
1111 if (skb_shared(frag
)) {
1112 struct sk_buff
*nfrag
;
1114 nfrag
= skb_clone(frag
, GFP_ATOMIC
);
1115 if (unlikely(!nfrag
))
1118 nfrag
->next
= frag
->next
;
1130 unlikely((err
= pskb_trim(frag
, len
- offset
))))
1134 skb_drop_list(&frag
->next
);
1139 if (len
> skb_headlen(skb
)) {
1140 skb
->data_len
-= skb
->len
- len
;
1145 skb_set_tail_pointer(skb
, len
);
1150 EXPORT_SYMBOL(___pskb_trim
);
1153 * __pskb_pull_tail - advance tail of skb header
1154 * @skb: buffer to reallocate
1155 * @delta: number of bytes to advance tail
1157 * The function makes a sense only on a fragmented &sk_buff,
1158 * it expands header moving its tail forward and copying necessary
1159 * data from fragmented part.
1161 * &sk_buff MUST have reference count of 1.
1163 * Returns %NULL (and &sk_buff does not change) if pull failed
1164 * or value of new tail of skb in the case of success.
1166 * All the pointers pointing into skb header may change and must be
1167 * reloaded after call to this function.
1170 /* Moves tail of skb head forward, copying data from fragmented part,
1171 * when it is necessary.
1172 * 1. It may fail due to malloc failure.
1173 * 2. It may change skb pointers.
1175 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1177 unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
)
1179 /* If skb has not enough free space at tail, get new one
1180 * plus 128 bytes for future expansions. If we have enough
1181 * room at tail, reallocate without expansion only if skb is cloned.
1183 int i
, k
, eat
= (skb
->tail
+ delta
) - skb
->end
;
1185 if (eat
> 0 || skb_cloned(skb
)) {
1186 if (pskb_expand_head(skb
, 0, eat
> 0 ? eat
+ 128 : 0,
1191 if (skb_copy_bits(skb
, skb_headlen(skb
), skb_tail_pointer(skb
), delta
))
1194 /* Optimization: no fragments, no reasons to preestimate
1195 * size of pulled pages. Superb.
1197 if (!skb_has_frag_list(skb
))
1200 /* Estimate size of pulled pages. */
1202 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1203 if (skb_shinfo(skb
)->frags
[i
].size
>= eat
)
1205 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
1208 /* If we need update frag list, we are in troubles.
1209 * Certainly, it possible to add an offset to skb data,
1210 * but taking into account that pulling is expected to
1211 * be very rare operation, it is worth to fight against
1212 * further bloating skb head and crucify ourselves here instead.
1213 * Pure masohism, indeed. 8)8)
1216 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1217 struct sk_buff
*clone
= NULL
;
1218 struct sk_buff
*insp
= NULL
;
1223 if (list
->len
<= eat
) {
1224 /* Eaten as whole. */
1229 /* Eaten partially. */
1231 if (skb_shared(list
)) {
1232 /* Sucks! We need to fork list. :-( */
1233 clone
= skb_clone(list
, GFP_ATOMIC
);
1239 /* This may be pulled without
1243 if (!pskb_pull(list
, eat
)) {
1251 /* Free pulled out fragments. */
1252 while ((list
= skb_shinfo(skb
)->frag_list
) != insp
) {
1253 skb_shinfo(skb
)->frag_list
= list
->next
;
1256 /* And insert new clone at head. */
1259 skb_shinfo(skb
)->frag_list
= clone
;
1262 /* Success! Now we may commit changes to skb data. */
1267 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1268 if (skb_shinfo(skb
)->frags
[i
].size
<= eat
) {
1269 put_page(skb_shinfo(skb
)->frags
[i
].page
);
1270 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
1272 skb_shinfo(skb
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
1274 skb_shinfo(skb
)->frags
[k
].page_offset
+= eat
;
1275 skb_shinfo(skb
)->frags
[k
].size
-= eat
;
1281 skb_shinfo(skb
)->nr_frags
= k
;
1284 skb
->data_len
-= delta
;
1286 return skb_tail_pointer(skb
);
1288 EXPORT_SYMBOL(__pskb_pull_tail
);
1290 /* Copy some data bits from skb to kernel buffer. */
1292 int skb_copy_bits(const struct sk_buff
*skb
, int offset
, void *to
, int len
)
1294 int start
= skb_headlen(skb
);
1295 struct sk_buff
*frag_iter
;
1298 if (offset
> (int)skb
->len
- len
)
1302 if ((copy
= start
- offset
) > 0) {
1305 skb_copy_from_linear_data_offset(skb
, offset
, to
, copy
);
1306 if ((len
-= copy
) == 0)
1312 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1315 WARN_ON(start
> offset
+ len
);
1317 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1318 if ((copy
= end
- offset
) > 0) {
1324 vaddr
= kmap_skb_frag(&skb_shinfo(skb
)->frags
[i
]);
1326 vaddr
+ skb_shinfo(skb
)->frags
[i
].page_offset
+
1327 offset
- start
, copy
);
1328 kunmap_skb_frag(vaddr
);
1330 if ((len
-= copy
) == 0)
1338 skb_walk_frags(skb
, frag_iter
) {
1341 WARN_ON(start
> offset
+ len
);
1343 end
= start
+ frag_iter
->len
;
1344 if ((copy
= end
- offset
) > 0) {
1347 if (skb_copy_bits(frag_iter
, offset
- start
, to
, copy
))
1349 if ((len
-= copy
) == 0)
1362 EXPORT_SYMBOL(skb_copy_bits
);
1365 * Callback from splice_to_pipe(), if we need to release some pages
1366 * at the end of the spd in case we error'ed out in filling the pipe.
1368 static void sock_spd_release(struct splice_pipe_desc
*spd
, unsigned int i
)
1370 put_page(spd
->pages
[i
]);
1373 static inline struct page
*linear_to_page(struct page
*page
, unsigned int *len
,
1374 unsigned int *offset
,
1375 struct sk_buff
*skb
, struct sock
*sk
)
1377 struct page
*p
= sk
->sk_sndmsg_page
;
1382 p
= sk
->sk_sndmsg_page
= alloc_pages(sk
->sk_allocation
, 0);
1386 off
= sk
->sk_sndmsg_off
= 0;
1387 /* hold one ref to this page until it's full */
1391 off
= sk
->sk_sndmsg_off
;
1392 mlen
= PAGE_SIZE
- off
;
1393 if (mlen
< 64 && mlen
< *len
) {
1398 *len
= min_t(unsigned int, *len
, mlen
);
1401 memcpy(page_address(p
) + off
, page_address(page
) + *offset
, *len
);
1402 sk
->sk_sndmsg_off
+= *len
;
1410 * Fill page/offset/length into spd, if it can hold more pages.
1412 static inline int spd_fill_page(struct splice_pipe_desc
*spd
,
1413 struct pipe_inode_info
*pipe
, struct page
*page
,
1414 unsigned int *len
, unsigned int offset
,
1415 struct sk_buff
*skb
, int linear
,
1418 if (unlikely(spd
->nr_pages
== pipe
->buffers
))
1422 page
= linear_to_page(page
, len
, &offset
, skb
, sk
);
1428 spd
->pages
[spd
->nr_pages
] = page
;
1429 spd
->partial
[spd
->nr_pages
].len
= *len
;
1430 spd
->partial
[spd
->nr_pages
].offset
= offset
;
1436 static inline void __segment_seek(struct page
**page
, unsigned int *poff
,
1437 unsigned int *plen
, unsigned int off
)
1442 n
= *poff
/ PAGE_SIZE
;
1444 *page
= nth_page(*page
, n
);
1446 *poff
= *poff
% PAGE_SIZE
;
1450 static inline int __splice_segment(struct page
*page
, unsigned int poff
,
1451 unsigned int plen
, unsigned int *off
,
1452 unsigned int *len
, struct sk_buff
*skb
,
1453 struct splice_pipe_desc
*spd
, int linear
,
1455 struct pipe_inode_info
*pipe
)
1460 /* skip this segment if already processed */
1466 /* ignore any bits we already processed */
1468 __segment_seek(&page
, &poff
, &plen
, *off
);
1473 unsigned int flen
= min(*len
, plen
);
1475 /* the linear region may spread across several pages */
1476 flen
= min_t(unsigned int, flen
, PAGE_SIZE
- poff
);
1478 if (spd_fill_page(spd
, pipe
, page
, &flen
, poff
, skb
, linear
, sk
))
1481 __segment_seek(&page
, &poff
, &plen
, flen
);
1484 } while (*len
&& plen
);
1490 * Map linear and fragment data from the skb to spd. It reports failure if the
1491 * pipe is full or if we already spliced the requested length.
1493 static int __skb_splice_bits(struct sk_buff
*skb
, struct pipe_inode_info
*pipe
,
1494 unsigned int *offset
, unsigned int *len
,
1495 struct splice_pipe_desc
*spd
, struct sock
*sk
)
1500 * map the linear part
1502 if (__splice_segment(virt_to_page(skb
->data
),
1503 (unsigned long) skb
->data
& (PAGE_SIZE
- 1),
1505 offset
, len
, skb
, spd
, 1, sk
, pipe
))
1509 * then map the fragments
1511 for (seg
= 0; seg
< skb_shinfo(skb
)->nr_frags
; seg
++) {
1512 const skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[seg
];
1514 if (__splice_segment(f
->page
, f
->page_offset
, f
->size
,
1515 offset
, len
, skb
, spd
, 0, sk
, pipe
))
1523 * Map data from the skb to a pipe. Should handle both the linear part,
1524 * the fragments, and the frag list. It does NOT handle frag lists within
1525 * the frag list, if such a thing exists. We'd probably need to recurse to
1526 * handle that cleanly.
1528 int skb_splice_bits(struct sk_buff
*skb
, unsigned int offset
,
1529 struct pipe_inode_info
*pipe
, unsigned int tlen
,
1532 struct partial_page partial
[PIPE_DEF_BUFFERS
];
1533 struct page
*pages
[PIPE_DEF_BUFFERS
];
1534 struct splice_pipe_desc spd
= {
1538 .ops
= &sock_pipe_buf_ops
,
1539 .spd_release
= sock_spd_release
,
1541 struct sk_buff
*frag_iter
;
1542 struct sock
*sk
= skb
->sk
;
1545 if (splice_grow_spd(pipe
, &spd
))
1549 * __skb_splice_bits() only fails if the output has no room left,
1550 * so no point in going over the frag_list for the error case.
1552 if (__skb_splice_bits(skb
, pipe
, &offset
, &tlen
, &spd
, sk
))
1558 * now see if we have a frag_list to map
1560 skb_walk_frags(skb
, frag_iter
) {
1563 if (__skb_splice_bits(frag_iter
, pipe
, &offset
, &tlen
, &spd
, sk
))
1570 * Drop the socket lock, otherwise we have reverse
1571 * locking dependencies between sk_lock and i_mutex
1572 * here as compared to sendfile(). We enter here
1573 * with the socket lock held, and splice_to_pipe() will
1574 * grab the pipe inode lock. For sendfile() emulation,
1575 * we call into ->sendpage() with the i_mutex lock held
1576 * and networking will grab the socket lock.
1579 ret
= splice_to_pipe(pipe
, &spd
);
1583 splice_shrink_spd(pipe
, &spd
);
1588 * skb_store_bits - store bits from kernel buffer to skb
1589 * @skb: destination buffer
1590 * @offset: offset in destination
1591 * @from: source buffer
1592 * @len: number of bytes to copy
1594 * Copy the specified number of bytes from the source buffer to the
1595 * destination skb. This function handles all the messy bits of
1596 * traversing fragment lists and such.
1599 int skb_store_bits(struct sk_buff
*skb
, int offset
, const void *from
, int len
)
1601 int start
= skb_headlen(skb
);
1602 struct sk_buff
*frag_iter
;
1605 if (offset
> (int)skb
->len
- len
)
1608 if ((copy
= start
- offset
) > 0) {
1611 skb_copy_to_linear_data_offset(skb
, offset
, from
, copy
);
1612 if ((len
-= copy
) == 0)
1618 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1619 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1622 WARN_ON(start
> offset
+ len
);
1624 end
= start
+ frag
->size
;
1625 if ((copy
= end
- offset
) > 0) {
1631 vaddr
= kmap_skb_frag(frag
);
1632 memcpy(vaddr
+ frag
->page_offset
+ offset
- start
,
1634 kunmap_skb_frag(vaddr
);
1636 if ((len
-= copy
) == 0)
1644 skb_walk_frags(skb
, frag_iter
) {
1647 WARN_ON(start
> offset
+ len
);
1649 end
= start
+ frag_iter
->len
;
1650 if ((copy
= end
- offset
) > 0) {
1653 if (skb_store_bits(frag_iter
, offset
- start
,
1656 if ((len
-= copy
) == 0)
1669 EXPORT_SYMBOL(skb_store_bits
);
1671 /* Checksum skb data. */
1673 __wsum
skb_checksum(const struct sk_buff
*skb
, int offset
,
1674 int len
, __wsum csum
)
1676 int start
= skb_headlen(skb
);
1677 int i
, copy
= start
- offset
;
1678 struct sk_buff
*frag_iter
;
1681 /* Checksum header. */
1685 csum
= csum_partial(skb
->data
+ offset
, copy
, csum
);
1686 if ((len
-= copy
) == 0)
1692 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1695 WARN_ON(start
> offset
+ len
);
1697 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1698 if ((copy
= end
- offset
) > 0) {
1701 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1705 vaddr
= kmap_skb_frag(frag
);
1706 csum2
= csum_partial(vaddr
+ frag
->page_offset
+
1707 offset
- start
, copy
, 0);
1708 kunmap_skb_frag(vaddr
);
1709 csum
= csum_block_add(csum
, csum2
, pos
);
1718 skb_walk_frags(skb
, frag_iter
) {
1721 WARN_ON(start
> offset
+ len
);
1723 end
= start
+ frag_iter
->len
;
1724 if ((copy
= end
- offset
) > 0) {
1728 csum2
= skb_checksum(frag_iter
, offset
- start
,
1730 csum
= csum_block_add(csum
, csum2
, pos
);
1731 if ((len
-= copy
) == 0)
1742 EXPORT_SYMBOL(skb_checksum
);
1744 /* Both of above in one bottle. */
1746 __wsum
skb_copy_and_csum_bits(const struct sk_buff
*skb
, int offset
,
1747 u8
*to
, int len
, __wsum csum
)
1749 int start
= skb_headlen(skb
);
1750 int i
, copy
= start
- offset
;
1751 struct sk_buff
*frag_iter
;
1758 csum
= csum_partial_copy_nocheck(skb
->data
+ offset
, to
,
1760 if ((len
-= copy
) == 0)
1767 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1770 WARN_ON(start
> offset
+ len
);
1772 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1773 if ((copy
= end
- offset
) > 0) {
1776 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1780 vaddr
= kmap_skb_frag(frag
);
1781 csum2
= csum_partial_copy_nocheck(vaddr
+
1785 kunmap_skb_frag(vaddr
);
1786 csum
= csum_block_add(csum
, csum2
, pos
);
1796 skb_walk_frags(skb
, frag_iter
) {
1800 WARN_ON(start
> offset
+ len
);
1802 end
= start
+ frag_iter
->len
;
1803 if ((copy
= end
- offset
) > 0) {
1806 csum2
= skb_copy_and_csum_bits(frag_iter
,
1809 csum
= csum_block_add(csum
, csum2
, pos
);
1810 if ((len
-= copy
) == 0)
1821 EXPORT_SYMBOL(skb_copy_and_csum_bits
);
1823 void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
)
1828 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
1829 csstart
= skb_checksum_start_offset(skb
);
1831 csstart
= skb_headlen(skb
);
1833 BUG_ON(csstart
> skb_headlen(skb
));
1835 skb_copy_from_linear_data(skb
, to
, csstart
);
1838 if (csstart
!= skb
->len
)
1839 csum
= skb_copy_and_csum_bits(skb
, csstart
, to
+ csstart
,
1840 skb
->len
- csstart
, 0);
1842 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1843 long csstuff
= csstart
+ skb
->csum_offset
;
1845 *((__sum16
*)(to
+ csstuff
)) = csum_fold(csum
);
1848 EXPORT_SYMBOL(skb_copy_and_csum_dev
);
1851 * skb_dequeue - remove from the head of the queue
1852 * @list: list to dequeue from
1854 * Remove the head of the list. The list lock is taken so the function
1855 * may be used safely with other locking list functions. The head item is
1856 * returned or %NULL if the list is empty.
1859 struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
)
1861 unsigned long flags
;
1862 struct sk_buff
*result
;
1864 spin_lock_irqsave(&list
->lock
, flags
);
1865 result
= __skb_dequeue(list
);
1866 spin_unlock_irqrestore(&list
->lock
, flags
);
1869 EXPORT_SYMBOL(skb_dequeue
);
1872 * skb_dequeue_tail - remove from the tail of the queue
1873 * @list: list to dequeue from
1875 * Remove the tail of the list. The list lock is taken so the function
1876 * may be used safely with other locking list functions. The tail item is
1877 * returned or %NULL if the list is empty.
1879 struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
)
1881 unsigned long flags
;
1882 struct sk_buff
*result
;
1884 spin_lock_irqsave(&list
->lock
, flags
);
1885 result
= __skb_dequeue_tail(list
);
1886 spin_unlock_irqrestore(&list
->lock
, flags
);
1889 EXPORT_SYMBOL(skb_dequeue_tail
);
1892 * skb_queue_purge - empty a list
1893 * @list: list to empty
1895 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1896 * the list and one reference dropped. This function takes the list
1897 * lock and is atomic with respect to other list locking functions.
1899 void skb_queue_purge(struct sk_buff_head
*list
)
1901 struct sk_buff
*skb
;
1902 while ((skb
= skb_dequeue(list
)) != NULL
)
1905 EXPORT_SYMBOL(skb_queue_purge
);
1908 * skb_queue_head - queue a buffer at the list head
1909 * @list: list to use
1910 * @newsk: buffer to queue
1912 * Queue a buffer at the start of the list. This function takes the
1913 * list lock and can be used safely with other locking &sk_buff functions
1916 * A buffer cannot be placed on two lists at the same time.
1918 void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
1920 unsigned long flags
;
1922 spin_lock_irqsave(&list
->lock
, flags
);
1923 __skb_queue_head(list
, newsk
);
1924 spin_unlock_irqrestore(&list
->lock
, flags
);
1926 EXPORT_SYMBOL(skb_queue_head
);
1929 * skb_queue_tail - queue a buffer at the list tail
1930 * @list: list to use
1931 * @newsk: buffer to queue
1933 * Queue a buffer at the tail of the list. This function takes the
1934 * list lock and can be used safely with other locking &sk_buff functions
1937 * A buffer cannot be placed on two lists at the same time.
1939 void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
1941 unsigned long flags
;
1943 spin_lock_irqsave(&list
->lock
, flags
);
1944 __skb_queue_tail(list
, newsk
);
1945 spin_unlock_irqrestore(&list
->lock
, flags
);
1947 EXPORT_SYMBOL(skb_queue_tail
);
1950 * skb_unlink - remove a buffer from a list
1951 * @skb: buffer to remove
1952 * @list: list to use
1954 * Remove a packet from a list. The list locks are taken and this
1955 * function is atomic with respect to other list locked calls
1957 * You must know what list the SKB is on.
1959 void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
1961 unsigned long flags
;
1963 spin_lock_irqsave(&list
->lock
, flags
);
1964 __skb_unlink(skb
, list
);
1965 spin_unlock_irqrestore(&list
->lock
, flags
);
1967 EXPORT_SYMBOL(skb_unlink
);
1970 * skb_append - append a buffer
1971 * @old: buffer to insert after
1972 * @newsk: buffer to insert
1973 * @list: list to use
1975 * Place a packet after a given packet in a list. The list locks are taken
1976 * and this function is atomic with respect to other list locked calls.
1977 * A buffer cannot be placed on two lists at the same time.
1979 void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
1981 unsigned long flags
;
1983 spin_lock_irqsave(&list
->lock
, flags
);
1984 __skb_queue_after(list
, old
, newsk
);
1985 spin_unlock_irqrestore(&list
->lock
, flags
);
1987 EXPORT_SYMBOL(skb_append
);
1990 * skb_insert - insert a buffer
1991 * @old: buffer to insert before
1992 * @newsk: buffer to insert
1993 * @list: list to use
1995 * Place a packet before a given packet in a list. The list locks are
1996 * taken and this function is atomic with respect to other list locked
1999 * A buffer cannot be placed on two lists at the same time.
2001 void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
2003 unsigned long flags
;
2005 spin_lock_irqsave(&list
->lock
, flags
);
2006 __skb_insert(newsk
, old
->prev
, old
, list
);
2007 spin_unlock_irqrestore(&list
->lock
, flags
);
2009 EXPORT_SYMBOL(skb_insert
);
2011 static inline void skb_split_inside_header(struct sk_buff
*skb
,
2012 struct sk_buff
* skb1
,
2013 const u32 len
, const int pos
)
2017 skb_copy_from_linear_data_offset(skb
, len
, skb_put(skb1
, pos
- len
),
2019 /* And move data appendix as is. */
2020 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
2021 skb_shinfo(skb1
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
2023 skb_shinfo(skb1
)->nr_frags
= skb_shinfo(skb
)->nr_frags
;
2024 skb_shinfo(skb
)->nr_frags
= 0;
2025 skb1
->data_len
= skb
->data_len
;
2026 skb1
->len
+= skb1
->data_len
;
2029 skb_set_tail_pointer(skb
, len
);
2032 static inline void skb_split_no_header(struct sk_buff
*skb
,
2033 struct sk_buff
* skb1
,
2034 const u32 len
, int pos
)
2037 const int nfrags
= skb_shinfo(skb
)->nr_frags
;
2039 skb_shinfo(skb
)->nr_frags
= 0;
2040 skb1
->len
= skb1
->data_len
= skb
->len
- len
;
2042 skb
->data_len
= len
- pos
;
2044 for (i
= 0; i
< nfrags
; i
++) {
2045 int size
= skb_shinfo(skb
)->frags
[i
].size
;
2047 if (pos
+ size
> len
) {
2048 skb_shinfo(skb1
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
2052 * We have two variants in this case:
2053 * 1. Move all the frag to the second
2054 * part, if it is possible. F.e.
2055 * this approach is mandatory for TUX,
2056 * where splitting is expensive.
2057 * 2. Split is accurately. We make this.
2059 get_page(skb_shinfo(skb
)->frags
[i
].page
);
2060 skb_shinfo(skb1
)->frags
[0].page_offset
+= len
- pos
;
2061 skb_shinfo(skb1
)->frags
[0].size
-= len
- pos
;
2062 skb_shinfo(skb
)->frags
[i
].size
= len
- pos
;
2063 skb_shinfo(skb
)->nr_frags
++;
2067 skb_shinfo(skb
)->nr_frags
++;
2070 skb_shinfo(skb1
)->nr_frags
= k
;
2074 * skb_split - Split fragmented skb to two parts at length len.
2075 * @skb: the buffer to split
2076 * @skb1: the buffer to receive the second part
2077 * @len: new length for skb
2079 void skb_split(struct sk_buff
*skb
, struct sk_buff
*skb1
, const u32 len
)
2081 int pos
= skb_headlen(skb
);
2083 if (len
< pos
) /* Split line is inside header. */
2084 skb_split_inside_header(skb
, skb1
, len
, pos
);
2085 else /* Second chunk has no header, nothing to copy. */
2086 skb_split_no_header(skb
, skb1
, len
, pos
);
2088 EXPORT_SYMBOL(skb_split
);
2090 /* Shifting from/to a cloned skb is a no-go.
2092 * Caller cannot keep skb_shinfo related pointers past calling here!
2094 static int skb_prepare_for_shift(struct sk_buff
*skb
)
2096 return skb_cloned(skb
) && pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2100 * skb_shift - Shifts paged data partially from skb to another
2101 * @tgt: buffer into which tail data gets added
2102 * @skb: buffer from which the paged data comes from
2103 * @shiftlen: shift up to this many bytes
2105 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2106 * the length of the skb, from tgt to skb. Returns number bytes shifted.
2107 * It's up to caller to free skb if everything was shifted.
2109 * If @tgt runs out of frags, the whole operation is aborted.
2111 * Skb cannot include anything else but paged data while tgt is allowed
2112 * to have non-paged data as well.
2114 * TODO: full sized shift could be optimized but that would need
2115 * specialized skb free'er to handle frags without up-to-date nr_frags.
2117 int skb_shift(struct sk_buff
*tgt
, struct sk_buff
*skb
, int shiftlen
)
2119 int from
, to
, merge
, todo
;
2120 struct skb_frag_struct
*fragfrom
, *fragto
;
2122 BUG_ON(shiftlen
> skb
->len
);
2123 BUG_ON(skb_headlen(skb
)); /* Would corrupt stream */
2127 to
= skb_shinfo(tgt
)->nr_frags
;
2128 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2130 /* Actual merge is delayed until the point when we know we can
2131 * commit all, so that we don't have to undo partial changes
2134 !skb_can_coalesce(tgt
, to
, fragfrom
->page
, fragfrom
->page_offset
)) {
2139 todo
-= fragfrom
->size
;
2141 if (skb_prepare_for_shift(skb
) ||
2142 skb_prepare_for_shift(tgt
))
2145 /* All previous frag pointers might be stale! */
2146 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2147 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2149 fragto
->size
+= shiftlen
;
2150 fragfrom
->size
-= shiftlen
;
2151 fragfrom
->page_offset
+= shiftlen
;
2159 /* Skip full, not-fitting skb to avoid expensive operations */
2160 if ((shiftlen
== skb
->len
) &&
2161 (skb_shinfo(skb
)->nr_frags
- from
) > (MAX_SKB_FRAGS
- to
))
2164 if (skb_prepare_for_shift(skb
) || skb_prepare_for_shift(tgt
))
2167 while ((todo
> 0) && (from
< skb_shinfo(skb
)->nr_frags
)) {
2168 if (to
== MAX_SKB_FRAGS
)
2171 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2172 fragto
= &skb_shinfo(tgt
)->frags
[to
];
2174 if (todo
>= fragfrom
->size
) {
2175 *fragto
= *fragfrom
;
2176 todo
-= fragfrom
->size
;
2181 get_page(fragfrom
->page
);
2182 fragto
->page
= fragfrom
->page
;
2183 fragto
->page_offset
= fragfrom
->page_offset
;
2184 fragto
->size
= todo
;
2186 fragfrom
->page_offset
+= todo
;
2187 fragfrom
->size
-= todo
;
2195 /* Ready to "commit" this state change to tgt */
2196 skb_shinfo(tgt
)->nr_frags
= to
;
2199 fragfrom
= &skb_shinfo(skb
)->frags
[0];
2200 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2202 fragto
->size
+= fragfrom
->size
;
2203 put_page(fragfrom
->page
);
2206 /* Reposition in the original skb */
2208 while (from
< skb_shinfo(skb
)->nr_frags
)
2209 skb_shinfo(skb
)->frags
[to
++] = skb_shinfo(skb
)->frags
[from
++];
2210 skb_shinfo(skb
)->nr_frags
= to
;
2212 BUG_ON(todo
> 0 && !skb_shinfo(skb
)->nr_frags
);
2215 /* Most likely the tgt won't ever need its checksum anymore, skb on
2216 * the other hand might need it if it needs to be resent
2218 tgt
->ip_summed
= CHECKSUM_PARTIAL
;
2219 skb
->ip_summed
= CHECKSUM_PARTIAL
;
2221 /* Yak, is it really working this way? Some helper please? */
2222 skb
->len
-= shiftlen
;
2223 skb
->data_len
-= shiftlen
;
2224 skb
->truesize
-= shiftlen
;
2225 tgt
->len
+= shiftlen
;
2226 tgt
->data_len
+= shiftlen
;
2227 tgt
->truesize
+= shiftlen
;
2233 * skb_prepare_seq_read - Prepare a sequential read of skb data
2234 * @skb: the buffer to read
2235 * @from: lower offset of data to be read
2236 * @to: upper offset of data to be read
2237 * @st: state variable
2239 * Initializes the specified state variable. Must be called before
2240 * invoking skb_seq_read() for the first time.
2242 void skb_prepare_seq_read(struct sk_buff
*skb
, unsigned int from
,
2243 unsigned int to
, struct skb_seq_state
*st
)
2245 st
->lower_offset
= from
;
2246 st
->upper_offset
= to
;
2247 st
->root_skb
= st
->cur_skb
= skb
;
2248 st
->frag_idx
= st
->stepped_offset
= 0;
2249 st
->frag_data
= NULL
;
2251 EXPORT_SYMBOL(skb_prepare_seq_read
);
2254 * skb_seq_read - Sequentially read skb data
2255 * @consumed: number of bytes consumed by the caller so far
2256 * @data: destination pointer for data to be returned
2257 * @st: state variable
2259 * Reads a block of skb data at &consumed relative to the
2260 * lower offset specified to skb_prepare_seq_read(). Assigns
2261 * the head of the data block to &data and returns the length
2262 * of the block or 0 if the end of the skb data or the upper
2263 * offset has been reached.
2265 * The caller is not required to consume all of the data
2266 * returned, i.e. &consumed is typically set to the number
2267 * of bytes already consumed and the next call to
2268 * skb_seq_read() will return the remaining part of the block.
2270 * Note 1: The size of each block of data returned can be arbitrary,
2271 * this limitation is the cost for zerocopy seqeuental
2272 * reads of potentially non linear data.
2274 * Note 2: Fragment lists within fragments are not implemented
2275 * at the moment, state->root_skb could be replaced with
2276 * a stack for this purpose.
2278 unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
2279 struct skb_seq_state
*st
)
2281 unsigned int block_limit
, abs_offset
= consumed
+ st
->lower_offset
;
2284 if (unlikely(abs_offset
>= st
->upper_offset
))
2288 block_limit
= skb_headlen(st
->cur_skb
) + st
->stepped_offset
;
2290 if (abs_offset
< block_limit
&& !st
->frag_data
) {
2291 *data
= st
->cur_skb
->data
+ (abs_offset
- st
->stepped_offset
);
2292 return block_limit
- abs_offset
;
2295 if (st
->frag_idx
== 0 && !st
->frag_data
)
2296 st
->stepped_offset
+= skb_headlen(st
->cur_skb
);
2298 while (st
->frag_idx
< skb_shinfo(st
->cur_skb
)->nr_frags
) {
2299 frag
= &skb_shinfo(st
->cur_skb
)->frags
[st
->frag_idx
];
2300 block_limit
= frag
->size
+ st
->stepped_offset
;
2302 if (abs_offset
< block_limit
) {
2304 st
->frag_data
= kmap_skb_frag(frag
);
2306 *data
= (u8
*) st
->frag_data
+ frag
->page_offset
+
2307 (abs_offset
- st
->stepped_offset
);
2309 return block_limit
- abs_offset
;
2312 if (st
->frag_data
) {
2313 kunmap_skb_frag(st
->frag_data
);
2314 st
->frag_data
= NULL
;
2318 st
->stepped_offset
+= frag
->size
;
2321 if (st
->frag_data
) {
2322 kunmap_skb_frag(st
->frag_data
);
2323 st
->frag_data
= NULL
;
2326 if (st
->root_skb
== st
->cur_skb
&& skb_has_frag_list(st
->root_skb
)) {
2327 st
->cur_skb
= skb_shinfo(st
->root_skb
)->frag_list
;
2330 } else if (st
->cur_skb
->next
) {
2331 st
->cur_skb
= st
->cur_skb
->next
;
2338 EXPORT_SYMBOL(skb_seq_read
);
2341 * skb_abort_seq_read - Abort a sequential read of skb data
2342 * @st: state variable
2344 * Must be called if skb_seq_read() was not called until it
2347 void skb_abort_seq_read(struct skb_seq_state
*st
)
2350 kunmap_skb_frag(st
->frag_data
);
2352 EXPORT_SYMBOL(skb_abort_seq_read
);
2354 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2356 static unsigned int skb_ts_get_next_block(unsigned int offset
, const u8
**text
,
2357 struct ts_config
*conf
,
2358 struct ts_state
*state
)
2360 return skb_seq_read(offset
, text
, TS_SKB_CB(state
));
2363 static void skb_ts_finish(struct ts_config
*conf
, struct ts_state
*state
)
2365 skb_abort_seq_read(TS_SKB_CB(state
));
2369 * skb_find_text - Find a text pattern in skb data
2370 * @skb: the buffer to look in
2371 * @from: search offset
2373 * @config: textsearch configuration
2374 * @state: uninitialized textsearch state variable
2376 * Finds a pattern in the skb data according to the specified
2377 * textsearch configuration. Use textsearch_next() to retrieve
2378 * subsequent occurrences of the pattern. Returns the offset
2379 * to the first occurrence or UINT_MAX if no match was found.
2381 unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
2382 unsigned int to
, struct ts_config
*config
,
2383 struct ts_state
*state
)
2387 config
->get_next_block
= skb_ts_get_next_block
;
2388 config
->finish
= skb_ts_finish
;
2390 skb_prepare_seq_read(skb
, from
, to
, TS_SKB_CB(state
));
2392 ret
= textsearch_find(config
, state
);
2393 return (ret
<= to
- from
? ret
: UINT_MAX
);
2395 EXPORT_SYMBOL(skb_find_text
);
2398 * skb_append_datato_frags: - append the user data to a skb
2399 * @sk: sock structure
2400 * @skb: skb structure to be appened with user data.
2401 * @getfrag: call back function to be used for getting the user data
2402 * @from: pointer to user message iov
2403 * @length: length of the iov message
2405 * Description: This procedure append the user data in the fragment part
2406 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2408 int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
2409 int (*getfrag
)(void *from
, char *to
, int offset
,
2410 int len
, int odd
, struct sk_buff
*skb
),
2411 void *from
, int length
)
2414 skb_frag_t
*frag
= NULL
;
2415 struct page
*page
= NULL
;
2421 /* Return error if we don't have space for new frag */
2422 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2423 if (frg_cnt
>= MAX_SKB_FRAGS
)
2426 /* allocate a new page for next frag */
2427 page
= alloc_pages(sk
->sk_allocation
, 0);
2429 /* If alloc_page fails just return failure and caller will
2430 * free previous allocated pages by doing kfree_skb()
2435 /* initialize the next frag */
2436 skb_fill_page_desc(skb
, frg_cnt
, page
, 0, 0);
2437 skb
->truesize
+= PAGE_SIZE
;
2438 atomic_add(PAGE_SIZE
, &sk
->sk_wmem_alloc
);
2440 /* get the new initialized frag */
2441 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2442 frag
= &skb_shinfo(skb
)->frags
[frg_cnt
- 1];
2444 /* copy the user data to page */
2445 left
= PAGE_SIZE
- frag
->page_offset
;
2446 copy
= (length
> left
)? left
: length
;
2448 ret
= getfrag(from
, (page_address(frag
->page
) +
2449 frag
->page_offset
+ frag
->size
),
2450 offset
, copy
, 0, skb
);
2454 /* copy was successful so update the size parameters */
2457 skb
->data_len
+= copy
;
2461 } while (length
> 0);
2465 EXPORT_SYMBOL(skb_append_datato_frags
);
2468 * skb_pull_rcsum - pull skb and update receive checksum
2469 * @skb: buffer to update
2470 * @len: length of data pulled
2472 * This function performs an skb_pull on the packet and updates
2473 * the CHECKSUM_COMPLETE checksum. It should be used on
2474 * receive path processing instead of skb_pull unless you know
2475 * that the checksum difference is zero (e.g., a valid IP header)
2476 * or you are setting ip_summed to CHECKSUM_NONE.
2478 unsigned char *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
)
2480 BUG_ON(len
> skb
->len
);
2482 BUG_ON(skb
->len
< skb
->data_len
);
2483 skb_postpull_rcsum(skb
, skb
->data
, len
);
2484 return skb
->data
+= len
;
2486 EXPORT_SYMBOL_GPL(skb_pull_rcsum
);
2489 * skb_segment - Perform protocol segmentation on skb.
2490 * @skb: buffer to segment
2491 * @features: features for the output path (see dev->features)
2493 * This function performs segmentation on the given skb. It returns
2494 * a pointer to the first in a list of new skbs for the segments.
2495 * In case of error it returns ERR_PTR(err).
2497 struct sk_buff
*skb_segment(struct sk_buff
*skb
, u32 features
)
2499 struct sk_buff
*segs
= NULL
;
2500 struct sk_buff
*tail
= NULL
;
2501 struct sk_buff
*fskb
= skb_shinfo(skb
)->frag_list
;
2502 unsigned int mss
= skb_shinfo(skb
)->gso_size
;
2503 unsigned int doffset
= skb
->data
- skb_mac_header(skb
);
2504 unsigned int offset
= doffset
;
2505 unsigned int headroom
;
2507 int sg
= !!(features
& NETIF_F_SG
);
2508 int nfrags
= skb_shinfo(skb
)->nr_frags
;
2513 __skb_push(skb
, doffset
);
2514 headroom
= skb_headroom(skb
);
2515 pos
= skb_headlen(skb
);
2518 struct sk_buff
*nskb
;
2523 len
= skb
->len
- offset
;
2527 hsize
= skb_headlen(skb
) - offset
;
2530 if (hsize
> len
|| !sg
)
2533 if (!hsize
&& i
>= nfrags
) {
2534 BUG_ON(fskb
->len
!= len
);
2537 nskb
= skb_clone(fskb
, GFP_ATOMIC
);
2540 if (unlikely(!nskb
))
2543 hsize
= skb_end_pointer(nskb
) - nskb
->head
;
2544 if (skb_cow_head(nskb
, doffset
+ headroom
)) {
2549 nskb
->truesize
+= skb_end_pointer(nskb
) - nskb
->head
-
2551 skb_release_head_state(nskb
);
2552 __skb_push(nskb
, doffset
);
2554 nskb
= alloc_skb(hsize
+ doffset
+ headroom
,
2557 if (unlikely(!nskb
))
2560 skb_reserve(nskb
, headroom
);
2561 __skb_put(nskb
, doffset
);
2570 __copy_skb_header(nskb
, skb
);
2571 nskb
->mac_len
= skb
->mac_len
;
2573 /* nskb and skb might have different headroom */
2574 if (nskb
->ip_summed
== CHECKSUM_PARTIAL
)
2575 nskb
->csum_start
+= skb_headroom(nskb
) - headroom
;
2577 skb_reset_mac_header(nskb
);
2578 skb_set_network_header(nskb
, skb
->mac_len
);
2579 nskb
->transport_header
= (nskb
->network_header
+
2580 skb_network_header_len(skb
));
2581 skb_copy_from_linear_data(skb
, nskb
->data
, doffset
);
2583 if (fskb
!= skb_shinfo(skb
)->frag_list
)
2587 nskb
->ip_summed
= CHECKSUM_NONE
;
2588 nskb
->csum
= skb_copy_and_csum_bits(skb
, offset
,
2594 frag
= skb_shinfo(nskb
)->frags
;
2596 skb_copy_from_linear_data_offset(skb
, offset
,
2597 skb_put(nskb
, hsize
), hsize
);
2599 while (pos
< offset
+ len
&& i
< nfrags
) {
2600 *frag
= skb_shinfo(skb
)->frags
[i
];
2601 get_page(frag
->page
);
2605 frag
->page_offset
+= offset
- pos
;
2606 frag
->size
-= offset
- pos
;
2609 skb_shinfo(nskb
)->nr_frags
++;
2611 if (pos
+ size
<= offset
+ len
) {
2615 frag
->size
-= pos
+ size
- (offset
+ len
);
2622 if (pos
< offset
+ len
) {
2623 struct sk_buff
*fskb2
= fskb
;
2625 BUG_ON(pos
+ fskb
->len
!= offset
+ len
);
2631 fskb2
= skb_clone(fskb2
, GFP_ATOMIC
);
2637 SKB_FRAG_ASSERT(nskb
);
2638 skb_shinfo(nskb
)->frag_list
= fskb2
;
2642 nskb
->data_len
= len
- hsize
;
2643 nskb
->len
+= nskb
->data_len
;
2644 nskb
->truesize
+= nskb
->data_len
;
2645 } while ((offset
+= len
) < skb
->len
);
2650 while ((skb
= segs
)) {
2654 return ERR_PTR(err
);
2656 EXPORT_SYMBOL_GPL(skb_segment
);
2658 int skb_gro_receive(struct sk_buff
**head
, struct sk_buff
*skb
)
2660 struct sk_buff
*p
= *head
;
2661 struct sk_buff
*nskb
;
2662 struct skb_shared_info
*skbinfo
= skb_shinfo(skb
);
2663 struct skb_shared_info
*pinfo
= skb_shinfo(p
);
2664 unsigned int headroom
;
2665 unsigned int len
= skb_gro_len(skb
);
2666 unsigned int offset
= skb_gro_offset(skb
);
2667 unsigned int headlen
= skb_headlen(skb
);
2669 if (p
->len
+ len
>= 65536)
2672 if (pinfo
->frag_list
)
2674 else if (headlen
<= offset
) {
2677 int i
= skbinfo
->nr_frags
;
2678 int nr_frags
= pinfo
->nr_frags
+ i
;
2682 if (nr_frags
> MAX_SKB_FRAGS
)
2685 pinfo
->nr_frags
= nr_frags
;
2686 skbinfo
->nr_frags
= 0;
2688 frag
= pinfo
->frags
+ nr_frags
;
2689 frag2
= skbinfo
->frags
+ i
;
2694 frag
->page_offset
+= offset
;
2695 frag
->size
-= offset
;
2697 skb
->truesize
-= skb
->data_len
;
2698 skb
->len
-= skb
->data_len
;
2701 NAPI_GRO_CB(skb
)->free
= 1;
2703 } else if (skb_gro_len(p
) != pinfo
->gso_size
)
2706 headroom
= skb_headroom(p
);
2707 nskb
= alloc_skb(headroom
+ skb_gro_offset(p
), GFP_ATOMIC
);
2708 if (unlikely(!nskb
))
2711 __copy_skb_header(nskb
, p
);
2712 nskb
->mac_len
= p
->mac_len
;
2714 skb_reserve(nskb
, headroom
);
2715 __skb_put(nskb
, skb_gro_offset(p
));
2717 skb_set_mac_header(nskb
, skb_mac_header(p
) - p
->data
);
2718 skb_set_network_header(nskb
, skb_network_offset(p
));
2719 skb_set_transport_header(nskb
, skb_transport_offset(p
));
2721 __skb_pull(p
, skb_gro_offset(p
));
2722 memcpy(skb_mac_header(nskb
), skb_mac_header(p
),
2723 p
->data
- skb_mac_header(p
));
2725 *NAPI_GRO_CB(nskb
) = *NAPI_GRO_CB(p
);
2726 skb_shinfo(nskb
)->frag_list
= p
;
2727 skb_shinfo(nskb
)->gso_size
= pinfo
->gso_size
;
2728 pinfo
->gso_size
= 0;
2729 skb_header_release(p
);
2732 nskb
->data_len
+= p
->len
;
2733 nskb
->truesize
+= p
->len
;
2734 nskb
->len
+= p
->len
;
2737 nskb
->next
= p
->next
;
2743 if (offset
> headlen
) {
2744 unsigned int eat
= offset
- headlen
;
2746 skbinfo
->frags
[0].page_offset
+= eat
;
2747 skbinfo
->frags
[0].size
-= eat
;
2748 skb
->data_len
-= eat
;
2753 __skb_pull(skb
, offset
);
2755 p
->prev
->next
= skb
;
2757 skb_header_release(skb
);
2760 NAPI_GRO_CB(p
)->count
++;
2765 NAPI_GRO_CB(skb
)->same_flow
= 1;
2768 EXPORT_SYMBOL_GPL(skb_gro_receive
);
2770 void __init
skb_init(void)
2772 skbuff_head_cache
= kmem_cache_create("skbuff_head_cache",
2773 sizeof(struct sk_buff
),
2775 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
2777 skbuff_fclone_cache
= kmem_cache_create("skbuff_fclone_cache",
2778 (2*sizeof(struct sk_buff
)) +
2781 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
2786 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2787 * @skb: Socket buffer containing the buffers to be mapped
2788 * @sg: The scatter-gather list to map into
2789 * @offset: The offset into the buffer's contents to start mapping
2790 * @len: Length of buffer space to be mapped
2792 * Fill the specified scatter-gather list with mappings/pointers into a
2793 * region of the buffer space attached to a socket buffer.
2796 __skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
2798 int start
= skb_headlen(skb
);
2799 int i
, copy
= start
- offset
;
2800 struct sk_buff
*frag_iter
;
2806 sg_set_buf(sg
, skb
->data
+ offset
, copy
);
2808 if ((len
-= copy
) == 0)
2813 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2816 WARN_ON(start
> offset
+ len
);
2818 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
2819 if ((copy
= end
- offset
) > 0) {
2820 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2824 sg_set_page(&sg
[elt
], frag
->page
, copy
,
2825 frag
->page_offset
+offset
-start
);
2834 skb_walk_frags(skb
, frag_iter
) {
2837 WARN_ON(start
> offset
+ len
);
2839 end
= start
+ frag_iter
->len
;
2840 if ((copy
= end
- offset
) > 0) {
2843 elt
+= __skb_to_sgvec(frag_iter
, sg
+elt
, offset
- start
,
2845 if ((len
-= copy
) == 0)
2855 int skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
2857 int nsg
= __skb_to_sgvec(skb
, sg
, offset
, len
);
2859 sg_mark_end(&sg
[nsg
- 1]);
2863 EXPORT_SYMBOL_GPL(skb_to_sgvec
);
2866 * skb_cow_data - Check that a socket buffer's data buffers are writable
2867 * @skb: The socket buffer to check.
2868 * @tailbits: Amount of trailing space to be added
2869 * @trailer: Returned pointer to the skb where the @tailbits space begins
2871 * Make sure that the data buffers attached to a socket buffer are
2872 * writable. If they are not, private copies are made of the data buffers
2873 * and the socket buffer is set to use these instead.
2875 * If @tailbits is given, make sure that there is space to write @tailbits
2876 * bytes of data beyond current end of socket buffer. @trailer will be
2877 * set to point to the skb in which this space begins.
2879 * The number of scatterlist elements required to completely map the
2880 * COW'd and extended socket buffer will be returned.
2882 int skb_cow_data(struct sk_buff
*skb
, int tailbits
, struct sk_buff
**trailer
)
2886 struct sk_buff
*skb1
, **skb_p
;
2888 /* If skb is cloned or its head is paged, reallocate
2889 * head pulling out all the pages (pages are considered not writable
2890 * at the moment even if they are anonymous).
2892 if ((skb_cloned(skb
) || skb_shinfo(skb
)->nr_frags
) &&
2893 __pskb_pull_tail(skb
, skb_pagelen(skb
)-skb_headlen(skb
)) == NULL
)
2896 /* Easy case. Most of packets will go this way. */
2897 if (!skb_has_frag_list(skb
)) {
2898 /* A little of trouble, not enough of space for trailer.
2899 * This should not happen, when stack is tuned to generate
2900 * good frames. OK, on miss we reallocate and reserve even more
2901 * space, 128 bytes is fair. */
2903 if (skb_tailroom(skb
) < tailbits
&&
2904 pskb_expand_head(skb
, 0, tailbits
-skb_tailroom(skb
)+128, GFP_ATOMIC
))
2912 /* Misery. We are in troubles, going to mincer fragments... */
2915 skb_p
= &skb_shinfo(skb
)->frag_list
;
2918 while ((skb1
= *skb_p
) != NULL
) {
2921 /* The fragment is partially pulled by someone,
2922 * this can happen on input. Copy it and everything
2925 if (skb_shared(skb1
))
2928 /* If the skb is the last, worry about trailer. */
2930 if (skb1
->next
== NULL
&& tailbits
) {
2931 if (skb_shinfo(skb1
)->nr_frags
||
2932 skb_has_frag_list(skb1
) ||
2933 skb_tailroom(skb1
) < tailbits
)
2934 ntail
= tailbits
+ 128;
2940 skb_shinfo(skb1
)->nr_frags
||
2941 skb_has_frag_list(skb1
)) {
2942 struct sk_buff
*skb2
;
2944 /* Fuck, we are miserable poor guys... */
2946 skb2
= skb_copy(skb1
, GFP_ATOMIC
);
2948 skb2
= skb_copy_expand(skb1
,
2952 if (unlikely(skb2
== NULL
))
2956 skb_set_owner_w(skb2
, skb1
->sk
);
2958 /* Looking around. Are we still alive?
2959 * OK, link new skb, drop old one */
2961 skb2
->next
= skb1
->next
;
2968 skb_p
= &skb1
->next
;
2973 EXPORT_SYMBOL_GPL(skb_cow_data
);
2975 static void sock_rmem_free(struct sk_buff
*skb
)
2977 struct sock
*sk
= skb
->sk
;
2979 atomic_sub(skb
->truesize
, &sk
->sk_rmem_alloc
);
2983 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
2985 int sock_queue_err_skb(struct sock
*sk
, struct sk_buff
*skb
)
2987 if (atomic_read(&sk
->sk_rmem_alloc
) + skb
->truesize
>=
2988 (unsigned)sk
->sk_rcvbuf
)
2993 skb
->destructor
= sock_rmem_free
;
2994 atomic_add(skb
->truesize
, &sk
->sk_rmem_alloc
);
2996 skb_queue_tail(&sk
->sk_error_queue
, skb
);
2997 if (!sock_flag(sk
, SOCK_DEAD
))
2998 sk
->sk_data_ready(sk
, skb
->len
);
3001 EXPORT_SYMBOL(sock_queue_err_skb
);
3003 void skb_tstamp_tx(struct sk_buff
*orig_skb
,
3004 struct skb_shared_hwtstamps
*hwtstamps
)
3006 struct sock
*sk
= orig_skb
->sk
;
3007 struct sock_exterr_skb
*serr
;
3008 struct sk_buff
*skb
;
3014 skb
= skb_clone(orig_skb
, GFP_ATOMIC
);
3019 *skb_hwtstamps(skb
) =
3023 * no hardware time stamps available,
3024 * so keep the shared tx_flags and only
3025 * store software time stamp
3027 skb
->tstamp
= ktime_get_real();
3030 serr
= SKB_EXT_ERR(skb
);
3031 memset(serr
, 0, sizeof(*serr
));
3032 serr
->ee
.ee_errno
= ENOMSG
;
3033 serr
->ee
.ee_origin
= SO_EE_ORIGIN_TIMESTAMPING
;
3035 err
= sock_queue_err_skb(sk
, skb
);
3040 EXPORT_SYMBOL_GPL(skb_tstamp_tx
);
3044 * skb_partial_csum_set - set up and verify partial csum values for packet
3045 * @skb: the skb to set
3046 * @start: the number of bytes after skb->data to start checksumming.
3047 * @off: the offset from start to place the checksum.
3049 * For untrusted partially-checksummed packets, we need to make sure the values
3050 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3052 * This function checks and sets those values and skb->ip_summed: if this
3053 * returns false you should drop the packet.
3055 bool skb_partial_csum_set(struct sk_buff
*skb
, u16 start
, u16 off
)
3057 if (unlikely(start
> skb_headlen(skb
)) ||
3058 unlikely((int)start
+ off
> skb_headlen(skb
) - 2)) {
3059 if (net_ratelimit())
3061 "bad partial csum: csum=%u/%u len=%u\n",
3062 start
, off
, skb_headlen(skb
));
3065 skb
->ip_summed
= CHECKSUM_PARTIAL
;
3066 skb
->csum_start
= skb_headroom(skb
) + start
;
3067 skb
->csum_offset
= off
;
3070 EXPORT_SYMBOL_GPL(skb_partial_csum_set
);
3072 void __skb_warn_lro_forwarding(const struct sk_buff
*skb
)
3074 if (net_ratelimit())
3075 pr_warning("%s: received packets cannot be forwarded"
3076 " while LRO is enabled\n", skb
->dev
->name
);
3078 EXPORT_SYMBOL(__skb_warn_lro_forwarding
);