ixgbe: add device support for 82598AT (copper 10GbE) adapters
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / skge.c
blob7911839f73754c4bb2b2973da1f0df1c94d0d832
1 /*
2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 #include <linux/in.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/if_vlan.h>
35 #include <linux/ip.h>
36 #include <linux/delay.h>
37 #include <linux/crc32.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/debugfs.h>
40 #include <linux/seq_file.h>
41 #include <linux/mii.h>
42 #include <asm/irq.h>
44 #include "skge.h"
46 #define DRV_NAME "skge"
47 #define DRV_VERSION "1.13"
48 #define PFX DRV_NAME " "
50 #define DEFAULT_TX_RING_SIZE 128
51 #define DEFAULT_RX_RING_SIZE 512
52 #define MAX_TX_RING_SIZE 1024
53 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
54 #define MAX_RX_RING_SIZE 4096
55 #define RX_COPY_THRESHOLD 128
56 #define RX_BUF_SIZE 1536
57 #define PHY_RETRIES 1000
58 #define ETH_JUMBO_MTU 9000
59 #define TX_WATCHDOG (5 * HZ)
60 #define NAPI_WEIGHT 64
61 #define BLINK_MS 250
62 #define LINK_HZ HZ
64 #define SKGE_EEPROM_MAGIC 0x9933aabb
67 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
68 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
69 MODULE_LICENSE("GPL");
70 MODULE_VERSION(DRV_VERSION);
72 static const u32 default_msg
73 = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
74 | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
76 static int debug = -1; /* defaults above */
77 module_param(debug, int, 0);
78 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
80 static const struct pci_device_id skge_id_table[] = {
81 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
82 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
83 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
84 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
85 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T) },
86 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
87 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
88 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
89 { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
90 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
91 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 },
92 { 0 }
94 MODULE_DEVICE_TABLE(pci, skge_id_table);
96 static int skge_up(struct net_device *dev);
97 static int skge_down(struct net_device *dev);
98 static void skge_phy_reset(struct skge_port *skge);
99 static void skge_tx_clean(struct net_device *dev);
100 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
101 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
102 static void genesis_get_stats(struct skge_port *skge, u64 *data);
103 static void yukon_get_stats(struct skge_port *skge, u64 *data);
104 static void yukon_init(struct skge_hw *hw, int port);
105 static void genesis_mac_init(struct skge_hw *hw, int port);
106 static void genesis_link_up(struct skge_port *skge);
108 /* Avoid conditionals by using array */
109 static const int txqaddr[] = { Q_XA1, Q_XA2 };
110 static const int rxqaddr[] = { Q_R1, Q_R2 };
111 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
112 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
113 static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
114 static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
116 static int skge_get_regs_len(struct net_device *dev)
118 return 0x4000;
122 * Returns copy of whole control register region
123 * Note: skip RAM address register because accessing it will
124 * cause bus hangs!
126 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
127 void *p)
129 const struct skge_port *skge = netdev_priv(dev);
130 const void __iomem *io = skge->hw->regs;
132 regs->version = 1;
133 memset(p, 0, regs->len);
134 memcpy_fromio(p, io, B3_RAM_ADDR);
136 memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
137 regs->len - B3_RI_WTO_R1);
140 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
141 static u32 wol_supported(const struct skge_hw *hw)
143 if (hw->chip_id == CHIP_ID_GENESIS)
144 return 0;
146 if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
147 return 0;
149 return WAKE_MAGIC | WAKE_PHY;
152 static void skge_wol_init(struct skge_port *skge)
154 struct skge_hw *hw = skge->hw;
155 int port = skge->port;
156 u16 ctrl;
158 skge_write16(hw, B0_CTST, CS_RST_CLR);
159 skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
161 /* Turn on Vaux */
162 skge_write8(hw, B0_POWER_CTRL,
163 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
165 /* WA code for COMA mode -- clear PHY reset */
166 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
167 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
168 u32 reg = skge_read32(hw, B2_GP_IO);
169 reg |= GP_DIR_9;
170 reg &= ~GP_IO_9;
171 skge_write32(hw, B2_GP_IO, reg);
174 skge_write32(hw, SK_REG(port, GPHY_CTRL),
175 GPC_DIS_SLEEP |
176 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
177 GPC_ANEG_1 | GPC_RST_SET);
179 skge_write32(hw, SK_REG(port, GPHY_CTRL),
180 GPC_DIS_SLEEP |
181 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
182 GPC_ANEG_1 | GPC_RST_CLR);
184 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
186 /* Force to 10/100 skge_reset will re-enable on resume */
187 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
188 PHY_AN_100FULL | PHY_AN_100HALF |
189 PHY_AN_10FULL | PHY_AN_10HALF| PHY_AN_CSMA);
190 /* no 1000 HD/FD */
191 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
192 gm_phy_write(hw, port, PHY_MARV_CTRL,
193 PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
194 PHY_CT_RE_CFG | PHY_CT_DUP_MD);
197 /* Set GMAC to no flow control and auto update for speed/duplex */
198 gma_write16(hw, port, GM_GP_CTRL,
199 GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
200 GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
202 /* Set WOL address */
203 memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
204 skge->netdev->dev_addr, ETH_ALEN);
206 /* Turn on appropriate WOL control bits */
207 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
208 ctrl = 0;
209 if (skge->wol & WAKE_PHY)
210 ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
211 else
212 ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
214 if (skge->wol & WAKE_MAGIC)
215 ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
216 else
217 ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;;
219 ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
220 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
222 /* block receiver */
223 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
226 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
228 struct skge_port *skge = netdev_priv(dev);
230 wol->supported = wol_supported(skge->hw);
231 wol->wolopts = skge->wol;
234 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
236 struct skge_port *skge = netdev_priv(dev);
237 struct skge_hw *hw = skge->hw;
239 if ((wol->wolopts & ~wol_supported(hw))
240 || !device_can_wakeup(&hw->pdev->dev))
241 return -EOPNOTSUPP;
243 skge->wol = wol->wolopts;
245 device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
247 return 0;
250 /* Determine supported/advertised modes based on hardware.
251 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
253 static u32 skge_supported_modes(const struct skge_hw *hw)
255 u32 supported;
257 if (hw->copper) {
258 supported = SUPPORTED_10baseT_Half
259 | SUPPORTED_10baseT_Full
260 | SUPPORTED_100baseT_Half
261 | SUPPORTED_100baseT_Full
262 | SUPPORTED_1000baseT_Half
263 | SUPPORTED_1000baseT_Full
264 | SUPPORTED_Autoneg| SUPPORTED_TP;
266 if (hw->chip_id == CHIP_ID_GENESIS)
267 supported &= ~(SUPPORTED_10baseT_Half
268 | SUPPORTED_10baseT_Full
269 | SUPPORTED_100baseT_Half
270 | SUPPORTED_100baseT_Full);
272 else if (hw->chip_id == CHIP_ID_YUKON)
273 supported &= ~SUPPORTED_1000baseT_Half;
274 } else
275 supported = SUPPORTED_1000baseT_Full | SUPPORTED_1000baseT_Half
276 | SUPPORTED_FIBRE | SUPPORTED_Autoneg;
278 return supported;
281 static int skge_get_settings(struct net_device *dev,
282 struct ethtool_cmd *ecmd)
284 struct skge_port *skge = netdev_priv(dev);
285 struct skge_hw *hw = skge->hw;
287 ecmd->transceiver = XCVR_INTERNAL;
288 ecmd->supported = skge_supported_modes(hw);
290 if (hw->copper) {
291 ecmd->port = PORT_TP;
292 ecmd->phy_address = hw->phy_addr;
293 } else
294 ecmd->port = PORT_FIBRE;
296 ecmd->advertising = skge->advertising;
297 ecmd->autoneg = skge->autoneg;
298 ecmd->speed = skge->speed;
299 ecmd->duplex = skge->duplex;
300 return 0;
303 static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
305 struct skge_port *skge = netdev_priv(dev);
306 const struct skge_hw *hw = skge->hw;
307 u32 supported = skge_supported_modes(hw);
308 int err = 0;
310 if (ecmd->autoneg == AUTONEG_ENABLE) {
311 ecmd->advertising = supported;
312 skge->duplex = -1;
313 skge->speed = -1;
314 } else {
315 u32 setting;
317 switch (ecmd->speed) {
318 case SPEED_1000:
319 if (ecmd->duplex == DUPLEX_FULL)
320 setting = SUPPORTED_1000baseT_Full;
321 else if (ecmd->duplex == DUPLEX_HALF)
322 setting = SUPPORTED_1000baseT_Half;
323 else
324 return -EINVAL;
325 break;
326 case SPEED_100:
327 if (ecmd->duplex == DUPLEX_FULL)
328 setting = SUPPORTED_100baseT_Full;
329 else if (ecmd->duplex == DUPLEX_HALF)
330 setting = SUPPORTED_100baseT_Half;
331 else
332 return -EINVAL;
333 break;
335 case SPEED_10:
336 if (ecmd->duplex == DUPLEX_FULL)
337 setting = SUPPORTED_10baseT_Full;
338 else if (ecmd->duplex == DUPLEX_HALF)
339 setting = SUPPORTED_10baseT_Half;
340 else
341 return -EINVAL;
342 break;
343 default:
344 return -EINVAL;
347 if ((setting & supported) == 0)
348 return -EINVAL;
350 skge->speed = ecmd->speed;
351 skge->duplex = ecmd->duplex;
354 skge->autoneg = ecmd->autoneg;
355 skge->advertising = ecmd->advertising;
357 if (netif_running(dev)) {
358 skge_down(dev);
359 err = skge_up(dev);
360 if (err) {
361 dev_close(dev);
362 return err;
366 return (0);
369 static void skge_get_drvinfo(struct net_device *dev,
370 struct ethtool_drvinfo *info)
372 struct skge_port *skge = netdev_priv(dev);
374 strcpy(info->driver, DRV_NAME);
375 strcpy(info->version, DRV_VERSION);
376 strcpy(info->fw_version, "N/A");
377 strcpy(info->bus_info, pci_name(skge->hw->pdev));
380 static const struct skge_stat {
381 char name[ETH_GSTRING_LEN];
382 u16 xmac_offset;
383 u16 gma_offset;
384 } skge_stats[] = {
385 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
386 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
388 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
389 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
390 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
391 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
392 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
393 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
394 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
395 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
397 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
398 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
399 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
400 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
401 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
402 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
404 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
405 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
406 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
407 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
408 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
411 static int skge_get_sset_count(struct net_device *dev, int sset)
413 switch (sset) {
414 case ETH_SS_STATS:
415 return ARRAY_SIZE(skge_stats);
416 default:
417 return -EOPNOTSUPP;
421 static void skge_get_ethtool_stats(struct net_device *dev,
422 struct ethtool_stats *stats, u64 *data)
424 struct skge_port *skge = netdev_priv(dev);
426 if (skge->hw->chip_id == CHIP_ID_GENESIS)
427 genesis_get_stats(skge, data);
428 else
429 yukon_get_stats(skge, data);
432 /* Use hardware MIB variables for critical path statistics and
433 * transmit feedback not reported at interrupt.
434 * Other errors are accounted for in interrupt handler.
436 static struct net_device_stats *skge_get_stats(struct net_device *dev)
438 struct skge_port *skge = netdev_priv(dev);
439 u64 data[ARRAY_SIZE(skge_stats)];
441 if (skge->hw->chip_id == CHIP_ID_GENESIS)
442 genesis_get_stats(skge, data);
443 else
444 yukon_get_stats(skge, data);
446 dev->stats.tx_bytes = data[0];
447 dev->stats.rx_bytes = data[1];
448 dev->stats.tx_packets = data[2] + data[4] + data[6];
449 dev->stats.rx_packets = data[3] + data[5] + data[7];
450 dev->stats.multicast = data[3] + data[5];
451 dev->stats.collisions = data[10];
452 dev->stats.tx_aborted_errors = data[12];
454 return &dev->stats;
457 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
459 int i;
461 switch (stringset) {
462 case ETH_SS_STATS:
463 for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
464 memcpy(data + i * ETH_GSTRING_LEN,
465 skge_stats[i].name, ETH_GSTRING_LEN);
466 break;
470 static void skge_get_ring_param(struct net_device *dev,
471 struct ethtool_ringparam *p)
473 struct skge_port *skge = netdev_priv(dev);
475 p->rx_max_pending = MAX_RX_RING_SIZE;
476 p->tx_max_pending = MAX_TX_RING_SIZE;
477 p->rx_mini_max_pending = 0;
478 p->rx_jumbo_max_pending = 0;
480 p->rx_pending = skge->rx_ring.count;
481 p->tx_pending = skge->tx_ring.count;
482 p->rx_mini_pending = 0;
483 p->rx_jumbo_pending = 0;
486 static int skge_set_ring_param(struct net_device *dev,
487 struct ethtool_ringparam *p)
489 struct skge_port *skge = netdev_priv(dev);
490 int err = 0;
492 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
493 p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
494 return -EINVAL;
496 skge->rx_ring.count = p->rx_pending;
497 skge->tx_ring.count = p->tx_pending;
499 if (netif_running(dev)) {
500 skge_down(dev);
501 err = skge_up(dev);
502 if (err)
503 dev_close(dev);
506 return err;
509 static u32 skge_get_msglevel(struct net_device *netdev)
511 struct skge_port *skge = netdev_priv(netdev);
512 return skge->msg_enable;
515 static void skge_set_msglevel(struct net_device *netdev, u32 value)
517 struct skge_port *skge = netdev_priv(netdev);
518 skge->msg_enable = value;
521 static int skge_nway_reset(struct net_device *dev)
523 struct skge_port *skge = netdev_priv(dev);
525 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
526 return -EINVAL;
528 skge_phy_reset(skge);
529 return 0;
532 static int skge_set_sg(struct net_device *dev, u32 data)
534 struct skge_port *skge = netdev_priv(dev);
535 struct skge_hw *hw = skge->hw;
537 if (hw->chip_id == CHIP_ID_GENESIS && data)
538 return -EOPNOTSUPP;
539 return ethtool_op_set_sg(dev, data);
542 static int skge_set_tx_csum(struct net_device *dev, u32 data)
544 struct skge_port *skge = netdev_priv(dev);
545 struct skge_hw *hw = skge->hw;
547 if (hw->chip_id == CHIP_ID_GENESIS && data)
548 return -EOPNOTSUPP;
550 return ethtool_op_set_tx_csum(dev, data);
553 static u32 skge_get_rx_csum(struct net_device *dev)
555 struct skge_port *skge = netdev_priv(dev);
557 return skge->rx_csum;
560 /* Only Yukon supports checksum offload. */
561 static int skge_set_rx_csum(struct net_device *dev, u32 data)
563 struct skge_port *skge = netdev_priv(dev);
565 if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
566 return -EOPNOTSUPP;
568 skge->rx_csum = data;
569 return 0;
572 static void skge_get_pauseparam(struct net_device *dev,
573 struct ethtool_pauseparam *ecmd)
575 struct skge_port *skge = netdev_priv(dev);
577 ecmd->rx_pause = (skge->flow_control == FLOW_MODE_SYMMETRIC)
578 || (skge->flow_control == FLOW_MODE_SYM_OR_REM);
579 ecmd->tx_pause = ecmd->rx_pause || (skge->flow_control == FLOW_MODE_LOC_SEND);
581 ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
584 static int skge_set_pauseparam(struct net_device *dev,
585 struct ethtool_pauseparam *ecmd)
587 struct skge_port *skge = netdev_priv(dev);
588 struct ethtool_pauseparam old;
589 int err = 0;
591 skge_get_pauseparam(dev, &old);
593 if (ecmd->autoneg != old.autoneg)
594 skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
595 else {
596 if (ecmd->rx_pause && ecmd->tx_pause)
597 skge->flow_control = FLOW_MODE_SYMMETRIC;
598 else if (ecmd->rx_pause && !ecmd->tx_pause)
599 skge->flow_control = FLOW_MODE_SYM_OR_REM;
600 else if (!ecmd->rx_pause && ecmd->tx_pause)
601 skge->flow_control = FLOW_MODE_LOC_SEND;
602 else
603 skge->flow_control = FLOW_MODE_NONE;
606 if (netif_running(dev)) {
607 skge_down(dev);
608 err = skge_up(dev);
609 if (err) {
610 dev_close(dev);
611 return err;
615 return 0;
618 /* Chip internal frequency for clock calculations */
619 static inline u32 hwkhz(const struct skge_hw *hw)
621 return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
624 /* Chip HZ to microseconds */
625 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
627 return (ticks * 1000) / hwkhz(hw);
630 /* Microseconds to chip HZ */
631 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
633 return hwkhz(hw) * usec / 1000;
636 static int skge_get_coalesce(struct net_device *dev,
637 struct ethtool_coalesce *ecmd)
639 struct skge_port *skge = netdev_priv(dev);
640 struct skge_hw *hw = skge->hw;
641 int port = skge->port;
643 ecmd->rx_coalesce_usecs = 0;
644 ecmd->tx_coalesce_usecs = 0;
646 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
647 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
648 u32 msk = skge_read32(hw, B2_IRQM_MSK);
650 if (msk & rxirqmask[port])
651 ecmd->rx_coalesce_usecs = delay;
652 if (msk & txirqmask[port])
653 ecmd->tx_coalesce_usecs = delay;
656 return 0;
659 /* Note: interrupt timer is per board, but can turn on/off per port */
660 static int skge_set_coalesce(struct net_device *dev,
661 struct ethtool_coalesce *ecmd)
663 struct skge_port *skge = netdev_priv(dev);
664 struct skge_hw *hw = skge->hw;
665 int port = skge->port;
666 u32 msk = skge_read32(hw, B2_IRQM_MSK);
667 u32 delay = 25;
669 if (ecmd->rx_coalesce_usecs == 0)
670 msk &= ~rxirqmask[port];
671 else if (ecmd->rx_coalesce_usecs < 25 ||
672 ecmd->rx_coalesce_usecs > 33333)
673 return -EINVAL;
674 else {
675 msk |= rxirqmask[port];
676 delay = ecmd->rx_coalesce_usecs;
679 if (ecmd->tx_coalesce_usecs == 0)
680 msk &= ~txirqmask[port];
681 else if (ecmd->tx_coalesce_usecs < 25 ||
682 ecmd->tx_coalesce_usecs > 33333)
683 return -EINVAL;
684 else {
685 msk |= txirqmask[port];
686 delay = min(delay, ecmd->rx_coalesce_usecs);
689 skge_write32(hw, B2_IRQM_MSK, msk);
690 if (msk == 0)
691 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
692 else {
693 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
694 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
696 return 0;
699 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
700 static void skge_led(struct skge_port *skge, enum led_mode mode)
702 struct skge_hw *hw = skge->hw;
703 int port = skge->port;
705 spin_lock_bh(&hw->phy_lock);
706 if (hw->chip_id == CHIP_ID_GENESIS) {
707 switch (mode) {
708 case LED_MODE_OFF:
709 if (hw->phy_type == SK_PHY_BCOM)
710 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
711 else {
712 skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
713 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
715 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
716 skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
717 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
718 break;
720 case LED_MODE_ON:
721 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
722 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
724 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
725 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
727 break;
729 case LED_MODE_TST:
730 skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
731 skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
732 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
734 if (hw->phy_type == SK_PHY_BCOM)
735 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
736 else {
737 skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
738 skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
739 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
743 } else {
744 switch (mode) {
745 case LED_MODE_OFF:
746 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
747 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
748 PHY_M_LED_MO_DUP(MO_LED_OFF) |
749 PHY_M_LED_MO_10(MO_LED_OFF) |
750 PHY_M_LED_MO_100(MO_LED_OFF) |
751 PHY_M_LED_MO_1000(MO_LED_OFF) |
752 PHY_M_LED_MO_RX(MO_LED_OFF));
753 break;
754 case LED_MODE_ON:
755 gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
756 PHY_M_LED_PULS_DUR(PULS_170MS) |
757 PHY_M_LED_BLINK_RT(BLINK_84MS) |
758 PHY_M_LEDC_TX_CTRL |
759 PHY_M_LEDC_DP_CTRL);
761 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
762 PHY_M_LED_MO_RX(MO_LED_OFF) |
763 (skge->speed == SPEED_100 ?
764 PHY_M_LED_MO_100(MO_LED_ON) : 0));
765 break;
766 case LED_MODE_TST:
767 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
768 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
769 PHY_M_LED_MO_DUP(MO_LED_ON) |
770 PHY_M_LED_MO_10(MO_LED_ON) |
771 PHY_M_LED_MO_100(MO_LED_ON) |
772 PHY_M_LED_MO_1000(MO_LED_ON) |
773 PHY_M_LED_MO_RX(MO_LED_ON));
776 spin_unlock_bh(&hw->phy_lock);
779 /* blink LED's for finding board */
780 static int skge_phys_id(struct net_device *dev, u32 data)
782 struct skge_port *skge = netdev_priv(dev);
783 unsigned long ms;
784 enum led_mode mode = LED_MODE_TST;
786 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
787 ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
788 else
789 ms = data * 1000;
791 while (ms > 0) {
792 skge_led(skge, mode);
793 mode ^= LED_MODE_TST;
795 if (msleep_interruptible(BLINK_MS))
796 break;
797 ms -= BLINK_MS;
800 /* back to regular LED state */
801 skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
803 return 0;
806 static int skge_get_eeprom_len(struct net_device *dev)
808 struct skge_port *skge = netdev_priv(dev);
809 u32 reg2;
811 pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
812 return 1 << ( ((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
815 static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
817 u32 val;
819 pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
821 do {
822 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
823 } while (!(offset & PCI_VPD_ADDR_F));
825 pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
826 return val;
829 static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
831 pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
832 pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
833 offset | PCI_VPD_ADDR_F);
835 do {
836 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
837 } while (offset & PCI_VPD_ADDR_F);
840 static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
841 u8 *data)
843 struct skge_port *skge = netdev_priv(dev);
844 struct pci_dev *pdev = skge->hw->pdev;
845 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
846 int length = eeprom->len;
847 u16 offset = eeprom->offset;
849 if (!cap)
850 return -EINVAL;
852 eeprom->magic = SKGE_EEPROM_MAGIC;
854 while (length > 0) {
855 u32 val = skge_vpd_read(pdev, cap, offset);
856 int n = min_t(int, length, sizeof(val));
858 memcpy(data, &val, n);
859 length -= n;
860 data += n;
861 offset += n;
863 return 0;
866 static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
867 u8 *data)
869 struct skge_port *skge = netdev_priv(dev);
870 struct pci_dev *pdev = skge->hw->pdev;
871 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
872 int length = eeprom->len;
873 u16 offset = eeprom->offset;
875 if (!cap)
876 return -EINVAL;
878 if (eeprom->magic != SKGE_EEPROM_MAGIC)
879 return -EINVAL;
881 while (length > 0) {
882 u32 val;
883 int n = min_t(int, length, sizeof(val));
885 if (n < sizeof(val))
886 val = skge_vpd_read(pdev, cap, offset);
887 memcpy(&val, data, n);
889 skge_vpd_write(pdev, cap, offset, val);
891 length -= n;
892 data += n;
893 offset += n;
895 return 0;
898 static const struct ethtool_ops skge_ethtool_ops = {
899 .get_settings = skge_get_settings,
900 .set_settings = skge_set_settings,
901 .get_drvinfo = skge_get_drvinfo,
902 .get_regs_len = skge_get_regs_len,
903 .get_regs = skge_get_regs,
904 .get_wol = skge_get_wol,
905 .set_wol = skge_set_wol,
906 .get_msglevel = skge_get_msglevel,
907 .set_msglevel = skge_set_msglevel,
908 .nway_reset = skge_nway_reset,
909 .get_link = ethtool_op_get_link,
910 .get_eeprom_len = skge_get_eeprom_len,
911 .get_eeprom = skge_get_eeprom,
912 .set_eeprom = skge_set_eeprom,
913 .get_ringparam = skge_get_ring_param,
914 .set_ringparam = skge_set_ring_param,
915 .get_pauseparam = skge_get_pauseparam,
916 .set_pauseparam = skge_set_pauseparam,
917 .get_coalesce = skge_get_coalesce,
918 .set_coalesce = skge_set_coalesce,
919 .set_sg = skge_set_sg,
920 .set_tx_csum = skge_set_tx_csum,
921 .get_rx_csum = skge_get_rx_csum,
922 .set_rx_csum = skge_set_rx_csum,
923 .get_strings = skge_get_strings,
924 .phys_id = skge_phys_id,
925 .get_sset_count = skge_get_sset_count,
926 .get_ethtool_stats = skge_get_ethtool_stats,
930 * Allocate ring elements and chain them together
931 * One-to-one association of board descriptors with ring elements
933 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
935 struct skge_tx_desc *d;
936 struct skge_element *e;
937 int i;
939 ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
940 if (!ring->start)
941 return -ENOMEM;
943 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
944 e->desc = d;
945 if (i == ring->count - 1) {
946 e->next = ring->start;
947 d->next_offset = base;
948 } else {
949 e->next = e + 1;
950 d->next_offset = base + (i+1) * sizeof(*d);
953 ring->to_use = ring->to_clean = ring->start;
955 return 0;
958 /* Allocate and setup a new buffer for receiving */
959 static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
960 struct sk_buff *skb, unsigned int bufsize)
962 struct skge_rx_desc *rd = e->desc;
963 u64 map;
965 map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
966 PCI_DMA_FROMDEVICE);
968 rd->dma_lo = map;
969 rd->dma_hi = map >> 32;
970 e->skb = skb;
971 rd->csum1_start = ETH_HLEN;
972 rd->csum2_start = ETH_HLEN;
973 rd->csum1 = 0;
974 rd->csum2 = 0;
976 wmb();
978 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
979 pci_unmap_addr_set(e, mapaddr, map);
980 pci_unmap_len_set(e, maplen, bufsize);
983 /* Resume receiving using existing skb,
984 * Note: DMA address is not changed by chip.
985 * MTU not changed while receiver active.
987 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
989 struct skge_rx_desc *rd = e->desc;
991 rd->csum2 = 0;
992 rd->csum2_start = ETH_HLEN;
994 wmb();
996 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
1000 /* Free all buffers in receive ring, assumes receiver stopped */
1001 static void skge_rx_clean(struct skge_port *skge)
1003 struct skge_hw *hw = skge->hw;
1004 struct skge_ring *ring = &skge->rx_ring;
1005 struct skge_element *e;
1007 e = ring->start;
1008 do {
1009 struct skge_rx_desc *rd = e->desc;
1010 rd->control = 0;
1011 if (e->skb) {
1012 pci_unmap_single(hw->pdev,
1013 pci_unmap_addr(e, mapaddr),
1014 pci_unmap_len(e, maplen),
1015 PCI_DMA_FROMDEVICE);
1016 dev_kfree_skb(e->skb);
1017 e->skb = NULL;
1019 } while ((e = e->next) != ring->start);
1023 /* Allocate buffers for receive ring
1024 * For receive: to_clean is next received frame.
1026 static int skge_rx_fill(struct net_device *dev)
1028 struct skge_port *skge = netdev_priv(dev);
1029 struct skge_ring *ring = &skge->rx_ring;
1030 struct skge_element *e;
1032 e = ring->start;
1033 do {
1034 struct sk_buff *skb;
1036 skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1037 GFP_KERNEL);
1038 if (!skb)
1039 return -ENOMEM;
1041 skb_reserve(skb, NET_IP_ALIGN);
1042 skge_rx_setup(skge, e, skb, skge->rx_buf_size);
1043 } while ( (e = e->next) != ring->start);
1045 ring->to_clean = ring->start;
1046 return 0;
1049 static const char *skge_pause(enum pause_status status)
1051 switch(status) {
1052 case FLOW_STAT_NONE:
1053 return "none";
1054 case FLOW_STAT_REM_SEND:
1055 return "rx only";
1056 case FLOW_STAT_LOC_SEND:
1057 return "tx_only";
1058 case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
1059 return "both";
1060 default:
1061 return "indeterminated";
1066 static void skge_link_up(struct skge_port *skge)
1068 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1069 LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
1071 netif_carrier_on(skge->netdev);
1072 netif_wake_queue(skge->netdev);
1074 if (netif_msg_link(skge)) {
1075 printk(KERN_INFO PFX
1076 "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
1077 skge->netdev->name, skge->speed,
1078 skge->duplex == DUPLEX_FULL ? "full" : "half",
1079 skge_pause(skge->flow_status));
1083 static void skge_link_down(struct skge_port *skge)
1085 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
1086 netif_carrier_off(skge->netdev);
1087 netif_stop_queue(skge->netdev);
1089 if (netif_msg_link(skge))
1090 printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
1094 static void xm_link_down(struct skge_hw *hw, int port)
1096 struct net_device *dev = hw->dev[port];
1097 struct skge_port *skge = netdev_priv(dev);
1099 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1101 if (netif_carrier_ok(dev))
1102 skge_link_down(skge);
1105 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1107 int i;
1109 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1110 *val = xm_read16(hw, port, XM_PHY_DATA);
1112 if (hw->phy_type == SK_PHY_XMAC)
1113 goto ready;
1115 for (i = 0; i < PHY_RETRIES; i++) {
1116 if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1117 goto ready;
1118 udelay(1);
1121 return -ETIMEDOUT;
1122 ready:
1123 *val = xm_read16(hw, port, XM_PHY_DATA);
1125 return 0;
1128 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1130 u16 v = 0;
1131 if (__xm_phy_read(hw, port, reg, &v))
1132 printk(KERN_WARNING PFX "%s: phy read timed out\n",
1133 hw->dev[port]->name);
1134 return v;
1137 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1139 int i;
1141 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1142 for (i = 0; i < PHY_RETRIES; i++) {
1143 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1144 goto ready;
1145 udelay(1);
1147 return -EIO;
1149 ready:
1150 xm_write16(hw, port, XM_PHY_DATA, val);
1151 for (i = 0; i < PHY_RETRIES; i++) {
1152 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1153 return 0;
1154 udelay(1);
1156 return -ETIMEDOUT;
1159 static void genesis_init(struct skge_hw *hw)
1161 /* set blink source counter */
1162 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1163 skge_write8(hw, B2_BSC_CTRL, BSC_START);
1165 /* configure mac arbiter */
1166 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1168 /* configure mac arbiter timeout values */
1169 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1170 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1171 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1172 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1174 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1175 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1176 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1177 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1179 /* configure packet arbiter timeout */
1180 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1181 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1182 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1183 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1184 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1187 static void genesis_reset(struct skge_hw *hw, int port)
1189 const u8 zero[8] = { 0 };
1190 u32 reg;
1192 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1194 /* reset the statistics module */
1195 xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1196 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1197 xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
1198 xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
1199 xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
1201 /* disable Broadcom PHY IRQ */
1202 if (hw->phy_type == SK_PHY_BCOM)
1203 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1205 xm_outhash(hw, port, XM_HSM, zero);
1207 /* Flush TX and RX fifo */
1208 reg = xm_read32(hw, port, XM_MODE);
1209 xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
1210 xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
1214 /* Convert mode to MII values */
1215 static const u16 phy_pause_map[] = {
1216 [FLOW_MODE_NONE] = 0,
1217 [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
1218 [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1219 [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1222 /* special defines for FIBER (88E1011S only) */
1223 static const u16 fiber_pause_map[] = {
1224 [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
1225 [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
1226 [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
1227 [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
1231 /* Check status of Broadcom phy link */
1232 static void bcom_check_link(struct skge_hw *hw, int port)
1234 struct net_device *dev = hw->dev[port];
1235 struct skge_port *skge = netdev_priv(dev);
1236 u16 status;
1238 /* read twice because of latch */
1239 xm_phy_read(hw, port, PHY_BCOM_STAT);
1240 status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1242 if ((status & PHY_ST_LSYNC) == 0) {
1243 xm_link_down(hw, port);
1244 return;
1247 if (skge->autoneg == AUTONEG_ENABLE) {
1248 u16 lpa, aux;
1250 if (!(status & PHY_ST_AN_OVER))
1251 return;
1253 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1254 if (lpa & PHY_B_AN_RF) {
1255 printk(KERN_NOTICE PFX "%s: remote fault\n",
1256 dev->name);
1257 return;
1260 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1262 /* Check Duplex mismatch */
1263 switch (aux & PHY_B_AS_AN_RES_MSK) {
1264 case PHY_B_RES_1000FD:
1265 skge->duplex = DUPLEX_FULL;
1266 break;
1267 case PHY_B_RES_1000HD:
1268 skge->duplex = DUPLEX_HALF;
1269 break;
1270 default:
1271 printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
1272 dev->name);
1273 return;
1276 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1277 switch (aux & PHY_B_AS_PAUSE_MSK) {
1278 case PHY_B_AS_PAUSE_MSK:
1279 skge->flow_status = FLOW_STAT_SYMMETRIC;
1280 break;
1281 case PHY_B_AS_PRR:
1282 skge->flow_status = FLOW_STAT_REM_SEND;
1283 break;
1284 case PHY_B_AS_PRT:
1285 skge->flow_status = FLOW_STAT_LOC_SEND;
1286 break;
1287 default:
1288 skge->flow_status = FLOW_STAT_NONE;
1290 skge->speed = SPEED_1000;
1293 if (!netif_carrier_ok(dev))
1294 genesis_link_up(skge);
1297 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1298 * Phy on for 100 or 10Mbit operation
1300 static void bcom_phy_init(struct skge_port *skge)
1302 struct skge_hw *hw = skge->hw;
1303 int port = skge->port;
1304 int i;
1305 u16 id1, r, ext, ctl;
1307 /* magic workaround patterns for Broadcom */
1308 static const struct {
1309 u16 reg;
1310 u16 val;
1311 } A1hack[] = {
1312 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1313 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1314 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1315 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1316 }, C0hack[] = {
1317 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1318 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1321 /* read Id from external PHY (all have the same address) */
1322 id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1324 /* Optimize MDIO transfer by suppressing preamble. */
1325 r = xm_read16(hw, port, XM_MMU_CMD);
1326 r |= XM_MMU_NO_PRE;
1327 xm_write16(hw, port, XM_MMU_CMD,r);
1329 switch (id1) {
1330 case PHY_BCOM_ID1_C0:
1332 * Workaround BCOM Errata for the C0 type.
1333 * Write magic patterns to reserved registers.
1335 for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1336 xm_phy_write(hw, port,
1337 C0hack[i].reg, C0hack[i].val);
1339 break;
1340 case PHY_BCOM_ID1_A1:
1342 * Workaround BCOM Errata for the A1 type.
1343 * Write magic patterns to reserved registers.
1345 for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1346 xm_phy_write(hw, port,
1347 A1hack[i].reg, A1hack[i].val);
1348 break;
1352 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1353 * Disable Power Management after reset.
1355 r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1356 r |= PHY_B_AC_DIS_PM;
1357 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1359 /* Dummy read */
1360 xm_read16(hw, port, XM_ISRC);
1362 ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1363 ctl = PHY_CT_SP1000; /* always 1000mbit */
1365 if (skge->autoneg == AUTONEG_ENABLE) {
1367 * Workaround BCOM Errata #1 for the C5 type.
1368 * 1000Base-T Link Acquisition Failure in Slave Mode
1369 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1371 u16 adv = PHY_B_1000C_RD;
1372 if (skge->advertising & ADVERTISED_1000baseT_Half)
1373 adv |= PHY_B_1000C_AHD;
1374 if (skge->advertising & ADVERTISED_1000baseT_Full)
1375 adv |= PHY_B_1000C_AFD;
1376 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1378 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1379 } else {
1380 if (skge->duplex == DUPLEX_FULL)
1381 ctl |= PHY_CT_DUP_MD;
1382 /* Force to slave */
1383 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1386 /* Set autonegotiation pause parameters */
1387 xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1388 phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1390 /* Handle Jumbo frames */
1391 if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1392 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1393 PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1395 ext |= PHY_B_PEC_HIGH_LA;
1399 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1400 xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1402 /* Use link status change interrupt */
1403 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1406 static void xm_phy_init(struct skge_port *skge)
1408 struct skge_hw *hw = skge->hw;
1409 int port = skge->port;
1410 u16 ctrl = 0;
1412 if (skge->autoneg == AUTONEG_ENABLE) {
1413 if (skge->advertising & ADVERTISED_1000baseT_Half)
1414 ctrl |= PHY_X_AN_HD;
1415 if (skge->advertising & ADVERTISED_1000baseT_Full)
1416 ctrl |= PHY_X_AN_FD;
1418 ctrl |= fiber_pause_map[skge->flow_control];
1420 xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1422 /* Restart Auto-negotiation */
1423 ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1424 } else {
1425 /* Set DuplexMode in Config register */
1426 if (skge->duplex == DUPLEX_FULL)
1427 ctrl |= PHY_CT_DUP_MD;
1429 * Do NOT enable Auto-negotiation here. This would hold
1430 * the link down because no IDLEs are transmitted
1434 xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1436 /* Poll PHY for status changes */
1437 mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1440 static int xm_check_link(struct net_device *dev)
1442 struct skge_port *skge = netdev_priv(dev);
1443 struct skge_hw *hw = skge->hw;
1444 int port = skge->port;
1445 u16 status;
1447 /* read twice because of latch */
1448 xm_phy_read(hw, port, PHY_XMAC_STAT);
1449 status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1451 if ((status & PHY_ST_LSYNC) == 0) {
1452 xm_link_down(hw, port);
1453 return 0;
1456 if (skge->autoneg == AUTONEG_ENABLE) {
1457 u16 lpa, res;
1459 if (!(status & PHY_ST_AN_OVER))
1460 return 0;
1462 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1463 if (lpa & PHY_B_AN_RF) {
1464 printk(KERN_NOTICE PFX "%s: remote fault\n",
1465 dev->name);
1466 return 0;
1469 res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1471 /* Check Duplex mismatch */
1472 switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1473 case PHY_X_RS_FD:
1474 skge->duplex = DUPLEX_FULL;
1475 break;
1476 case PHY_X_RS_HD:
1477 skge->duplex = DUPLEX_HALF;
1478 break;
1479 default:
1480 printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
1481 dev->name);
1482 return 0;
1485 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1486 if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1487 skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1488 (lpa & PHY_X_P_SYM_MD))
1489 skge->flow_status = FLOW_STAT_SYMMETRIC;
1490 else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1491 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1492 /* Enable PAUSE receive, disable PAUSE transmit */
1493 skge->flow_status = FLOW_STAT_REM_SEND;
1494 else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1495 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1496 /* Disable PAUSE receive, enable PAUSE transmit */
1497 skge->flow_status = FLOW_STAT_LOC_SEND;
1498 else
1499 skge->flow_status = FLOW_STAT_NONE;
1501 skge->speed = SPEED_1000;
1504 if (!netif_carrier_ok(dev))
1505 genesis_link_up(skge);
1506 return 1;
1509 /* Poll to check for link coming up.
1511 * Since internal PHY is wired to a level triggered pin, can't
1512 * get an interrupt when carrier is detected, need to poll for
1513 * link coming up.
1515 static void xm_link_timer(unsigned long arg)
1517 struct skge_port *skge = (struct skge_port *) arg;
1518 struct net_device *dev = skge->netdev;
1519 struct skge_hw *hw = skge->hw;
1520 int port = skge->port;
1521 int i;
1522 unsigned long flags;
1524 if (!netif_running(dev))
1525 return;
1527 spin_lock_irqsave(&hw->phy_lock, flags);
1530 * Verify that the link by checking GPIO register three times.
1531 * This pin has the signal from the link_sync pin connected to it.
1533 for (i = 0; i < 3; i++) {
1534 if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1535 goto link_down;
1538 /* Re-enable interrupt to detect link down */
1539 if (xm_check_link(dev)) {
1540 u16 msk = xm_read16(hw, port, XM_IMSK);
1541 msk &= ~XM_IS_INP_ASS;
1542 xm_write16(hw, port, XM_IMSK, msk);
1543 xm_read16(hw, port, XM_ISRC);
1544 } else {
1545 link_down:
1546 mod_timer(&skge->link_timer,
1547 round_jiffies(jiffies + LINK_HZ));
1549 spin_unlock_irqrestore(&hw->phy_lock, flags);
1552 static void genesis_mac_init(struct skge_hw *hw, int port)
1554 struct net_device *dev = hw->dev[port];
1555 struct skge_port *skge = netdev_priv(dev);
1556 int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1557 int i;
1558 u32 r;
1559 const u8 zero[6] = { 0 };
1561 for (i = 0; i < 10; i++) {
1562 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1563 MFF_SET_MAC_RST);
1564 if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1565 goto reset_ok;
1566 udelay(1);
1569 printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);
1571 reset_ok:
1572 /* Unreset the XMAC. */
1573 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1576 * Perform additional initialization for external PHYs,
1577 * namely for the 1000baseTX cards that use the XMAC's
1578 * GMII mode.
1580 if (hw->phy_type != SK_PHY_XMAC) {
1581 /* Take external Phy out of reset */
1582 r = skge_read32(hw, B2_GP_IO);
1583 if (port == 0)
1584 r |= GP_DIR_0|GP_IO_0;
1585 else
1586 r |= GP_DIR_2|GP_IO_2;
1588 skge_write32(hw, B2_GP_IO, r);
1590 /* Enable GMII interface */
1591 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1595 switch(hw->phy_type) {
1596 case SK_PHY_XMAC:
1597 xm_phy_init(skge);
1598 break;
1599 case SK_PHY_BCOM:
1600 bcom_phy_init(skge);
1601 bcom_check_link(hw, port);
1604 /* Set Station Address */
1605 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1607 /* We don't use match addresses so clear */
1608 for (i = 1; i < 16; i++)
1609 xm_outaddr(hw, port, XM_EXM(i), zero);
1611 /* Clear MIB counters */
1612 xm_write16(hw, port, XM_STAT_CMD,
1613 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1614 /* Clear two times according to Errata #3 */
1615 xm_write16(hw, port, XM_STAT_CMD,
1616 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1618 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1619 xm_write16(hw, port, XM_RX_HI_WM, 1450);
1621 /* We don't need the FCS appended to the packet. */
1622 r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1623 if (jumbo)
1624 r |= XM_RX_BIG_PK_OK;
1626 if (skge->duplex == DUPLEX_HALF) {
1628 * If in manual half duplex mode the other side might be in
1629 * full duplex mode, so ignore if a carrier extension is not seen
1630 * on frames received
1632 r |= XM_RX_DIS_CEXT;
1634 xm_write16(hw, port, XM_RX_CMD, r);
1636 /* We want short frames padded to 60 bytes. */
1637 xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1639 /* Increase threshold for jumbo frames on dual port */
1640 if (hw->ports > 1 && jumbo)
1641 xm_write16(hw, port, XM_TX_THR, 1020);
1642 else
1643 xm_write16(hw, port, XM_TX_THR, 512);
1646 * Enable the reception of all error frames. This is is
1647 * a necessary evil due to the design of the XMAC. The
1648 * XMAC's receive FIFO is only 8K in size, however jumbo
1649 * frames can be up to 9000 bytes in length. When bad
1650 * frame filtering is enabled, the XMAC's RX FIFO operates
1651 * in 'store and forward' mode. For this to work, the
1652 * entire frame has to fit into the FIFO, but that means
1653 * that jumbo frames larger than 8192 bytes will be
1654 * truncated. Disabling all bad frame filtering causes
1655 * the RX FIFO to operate in streaming mode, in which
1656 * case the XMAC will start transferring frames out of the
1657 * RX FIFO as soon as the FIFO threshold is reached.
1659 xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1663 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1664 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1665 * and 'Octets Rx OK Hi Cnt Ov'.
1667 xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1670 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1671 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1672 * and 'Octets Tx OK Hi Cnt Ov'.
1674 xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1676 /* Configure MAC arbiter */
1677 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1679 /* configure timeout values */
1680 skge_write8(hw, B3_MA_TOINI_RX1, 72);
1681 skge_write8(hw, B3_MA_TOINI_RX2, 72);
1682 skge_write8(hw, B3_MA_TOINI_TX1, 72);
1683 skge_write8(hw, B3_MA_TOINI_TX2, 72);
1685 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1686 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1687 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1688 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1690 /* Configure Rx MAC FIFO */
1691 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1692 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1693 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1695 /* Configure Tx MAC FIFO */
1696 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1697 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1698 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1700 if (jumbo) {
1701 /* Enable frame flushing if jumbo frames used */
1702 skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
1703 } else {
1704 /* enable timeout timers if normal frames */
1705 skge_write16(hw, B3_PA_CTRL,
1706 (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1710 static void genesis_stop(struct skge_port *skge)
1712 struct skge_hw *hw = skge->hw;
1713 int port = skge->port;
1714 unsigned retries = 1000;
1715 u16 cmd;
1717 /* Disable Tx and Rx */
1718 cmd = xm_read16(hw, port, XM_MMU_CMD);
1719 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1720 xm_write16(hw, port, XM_MMU_CMD, cmd);
1722 genesis_reset(hw, port);
1724 /* Clear Tx packet arbiter timeout IRQ */
1725 skge_write16(hw, B3_PA_CTRL,
1726 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1728 /* Reset the MAC */
1729 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1730 do {
1731 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1732 if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1733 break;
1734 } while (--retries > 0);
1736 /* For external PHYs there must be special handling */
1737 if (hw->phy_type != SK_PHY_XMAC) {
1738 u32 reg = skge_read32(hw, B2_GP_IO);
1739 if (port == 0) {
1740 reg |= GP_DIR_0;
1741 reg &= ~GP_IO_0;
1742 } else {
1743 reg |= GP_DIR_2;
1744 reg &= ~GP_IO_2;
1746 skge_write32(hw, B2_GP_IO, reg);
1747 skge_read32(hw, B2_GP_IO);
1750 xm_write16(hw, port, XM_MMU_CMD,
1751 xm_read16(hw, port, XM_MMU_CMD)
1752 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1754 xm_read16(hw, port, XM_MMU_CMD);
1758 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1760 struct skge_hw *hw = skge->hw;
1761 int port = skge->port;
1762 int i;
1763 unsigned long timeout = jiffies + HZ;
1765 xm_write16(hw, port,
1766 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1768 /* wait for update to complete */
1769 while (xm_read16(hw, port, XM_STAT_CMD)
1770 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1771 if (time_after(jiffies, timeout))
1772 break;
1773 udelay(10);
1776 /* special case for 64 bit octet counter */
1777 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1778 | xm_read32(hw, port, XM_TXO_OK_LO);
1779 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1780 | xm_read32(hw, port, XM_RXO_OK_LO);
1782 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1783 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1786 static void genesis_mac_intr(struct skge_hw *hw, int port)
1788 struct net_device *dev = hw->dev[port];
1789 struct skge_port *skge = netdev_priv(dev);
1790 u16 status = xm_read16(hw, port, XM_ISRC);
1792 if (netif_msg_intr(skge))
1793 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
1794 dev->name, status);
1796 if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1797 xm_link_down(hw, port);
1798 mod_timer(&skge->link_timer, jiffies + 1);
1801 if (status & XM_IS_TXF_UR) {
1802 xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1803 ++dev->stats.tx_fifo_errors;
1807 static void genesis_link_up(struct skge_port *skge)
1809 struct skge_hw *hw = skge->hw;
1810 int port = skge->port;
1811 u16 cmd, msk;
1812 u32 mode;
1814 cmd = xm_read16(hw, port, XM_MMU_CMD);
1817 * enabling pause frame reception is required for 1000BT
1818 * because the XMAC is not reset if the link is going down
1820 if (skge->flow_status == FLOW_STAT_NONE ||
1821 skge->flow_status == FLOW_STAT_LOC_SEND)
1822 /* Disable Pause Frame Reception */
1823 cmd |= XM_MMU_IGN_PF;
1824 else
1825 /* Enable Pause Frame Reception */
1826 cmd &= ~XM_MMU_IGN_PF;
1828 xm_write16(hw, port, XM_MMU_CMD, cmd);
1830 mode = xm_read32(hw, port, XM_MODE);
1831 if (skge->flow_status== FLOW_STAT_SYMMETRIC ||
1832 skge->flow_status == FLOW_STAT_LOC_SEND) {
1834 * Configure Pause Frame Generation
1835 * Use internal and external Pause Frame Generation.
1836 * Sending pause frames is edge triggered.
1837 * Send a Pause frame with the maximum pause time if
1838 * internal oder external FIFO full condition occurs.
1839 * Send a zero pause time frame to re-start transmission.
1841 /* XM_PAUSE_DA = '010000C28001' (default) */
1842 /* XM_MAC_PTIME = 0xffff (maximum) */
1843 /* remember this value is defined in big endian (!) */
1844 xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1846 mode |= XM_PAUSE_MODE;
1847 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1848 } else {
1850 * disable pause frame generation is required for 1000BT
1851 * because the XMAC is not reset if the link is going down
1853 /* Disable Pause Mode in Mode Register */
1854 mode &= ~XM_PAUSE_MODE;
1856 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1859 xm_write32(hw, port, XM_MODE, mode);
1861 /* Turn on detection of Tx underrun */
1862 msk = xm_read16(hw, port, XM_IMSK);
1863 msk &= ~XM_IS_TXF_UR;
1864 xm_write16(hw, port, XM_IMSK, msk);
1866 xm_read16(hw, port, XM_ISRC);
1868 /* get MMU Command Reg. */
1869 cmd = xm_read16(hw, port, XM_MMU_CMD);
1870 if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1871 cmd |= XM_MMU_GMII_FD;
1874 * Workaround BCOM Errata (#10523) for all BCom Phys
1875 * Enable Power Management after link up
1877 if (hw->phy_type == SK_PHY_BCOM) {
1878 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1879 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1880 & ~PHY_B_AC_DIS_PM);
1881 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1884 /* enable Rx/Tx */
1885 xm_write16(hw, port, XM_MMU_CMD,
1886 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1887 skge_link_up(skge);
1891 static inline void bcom_phy_intr(struct skge_port *skge)
1893 struct skge_hw *hw = skge->hw;
1894 int port = skge->port;
1895 u16 isrc;
1897 isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1898 if (netif_msg_intr(skge))
1899 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
1900 skge->netdev->name, isrc);
1902 if (isrc & PHY_B_IS_PSE)
1903 printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
1904 hw->dev[port]->name);
1906 /* Workaround BCom Errata:
1907 * enable and disable loopback mode if "NO HCD" occurs.
1909 if (isrc & PHY_B_IS_NO_HDCL) {
1910 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1911 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1912 ctrl | PHY_CT_LOOP);
1913 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1914 ctrl & ~PHY_CT_LOOP);
1917 if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1918 bcom_check_link(hw, port);
1922 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1924 int i;
1926 gma_write16(hw, port, GM_SMI_DATA, val);
1927 gma_write16(hw, port, GM_SMI_CTRL,
1928 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1929 for (i = 0; i < PHY_RETRIES; i++) {
1930 udelay(1);
1932 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1933 return 0;
1936 printk(KERN_WARNING PFX "%s: phy write timeout\n",
1937 hw->dev[port]->name);
1938 return -EIO;
1941 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1943 int i;
1945 gma_write16(hw, port, GM_SMI_CTRL,
1946 GM_SMI_CT_PHY_AD(hw->phy_addr)
1947 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1949 for (i = 0; i < PHY_RETRIES; i++) {
1950 udelay(1);
1951 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1952 goto ready;
1955 return -ETIMEDOUT;
1956 ready:
1957 *val = gma_read16(hw, port, GM_SMI_DATA);
1958 return 0;
1961 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1963 u16 v = 0;
1964 if (__gm_phy_read(hw, port, reg, &v))
1965 printk(KERN_WARNING PFX "%s: phy read timeout\n",
1966 hw->dev[port]->name);
1967 return v;
1970 /* Marvell Phy Initialization */
1971 static void yukon_init(struct skge_hw *hw, int port)
1973 struct skge_port *skge = netdev_priv(hw->dev[port]);
1974 u16 ctrl, ct1000, adv;
1976 if (skge->autoneg == AUTONEG_ENABLE) {
1977 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1979 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1980 PHY_M_EC_MAC_S_MSK);
1981 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1983 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1985 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1988 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1989 if (skge->autoneg == AUTONEG_DISABLE)
1990 ctrl &= ~PHY_CT_ANE;
1992 ctrl |= PHY_CT_RESET;
1993 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1995 ctrl = 0;
1996 ct1000 = 0;
1997 adv = PHY_AN_CSMA;
1999 if (skge->autoneg == AUTONEG_ENABLE) {
2000 if (hw->copper) {
2001 if (skge->advertising & ADVERTISED_1000baseT_Full)
2002 ct1000 |= PHY_M_1000C_AFD;
2003 if (skge->advertising & ADVERTISED_1000baseT_Half)
2004 ct1000 |= PHY_M_1000C_AHD;
2005 if (skge->advertising & ADVERTISED_100baseT_Full)
2006 adv |= PHY_M_AN_100_FD;
2007 if (skge->advertising & ADVERTISED_100baseT_Half)
2008 adv |= PHY_M_AN_100_HD;
2009 if (skge->advertising & ADVERTISED_10baseT_Full)
2010 adv |= PHY_M_AN_10_FD;
2011 if (skge->advertising & ADVERTISED_10baseT_Half)
2012 adv |= PHY_M_AN_10_HD;
2014 /* Set Flow-control capabilities */
2015 adv |= phy_pause_map[skge->flow_control];
2016 } else {
2017 if (skge->advertising & ADVERTISED_1000baseT_Full)
2018 adv |= PHY_M_AN_1000X_AFD;
2019 if (skge->advertising & ADVERTISED_1000baseT_Half)
2020 adv |= PHY_M_AN_1000X_AHD;
2022 adv |= fiber_pause_map[skge->flow_control];
2025 /* Restart Auto-negotiation */
2026 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
2027 } else {
2028 /* forced speed/duplex settings */
2029 ct1000 = PHY_M_1000C_MSE;
2031 if (skge->duplex == DUPLEX_FULL)
2032 ctrl |= PHY_CT_DUP_MD;
2034 switch (skge->speed) {
2035 case SPEED_1000:
2036 ctrl |= PHY_CT_SP1000;
2037 break;
2038 case SPEED_100:
2039 ctrl |= PHY_CT_SP100;
2040 break;
2043 ctrl |= PHY_CT_RESET;
2046 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2048 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2049 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2051 /* Enable phy interrupt on autonegotiation complete (or link up) */
2052 if (skge->autoneg == AUTONEG_ENABLE)
2053 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2054 else
2055 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2058 static void yukon_reset(struct skge_hw *hw, int port)
2060 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2061 gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
2062 gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2063 gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2064 gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2066 gma_write16(hw, port, GM_RX_CTRL,
2067 gma_read16(hw, port, GM_RX_CTRL)
2068 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2071 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2072 static int is_yukon_lite_a0(struct skge_hw *hw)
2074 u32 reg;
2075 int ret;
2077 if (hw->chip_id != CHIP_ID_YUKON)
2078 return 0;
2080 reg = skge_read32(hw, B2_FAR);
2081 skge_write8(hw, B2_FAR + 3, 0xff);
2082 ret = (skge_read8(hw, B2_FAR + 3) != 0);
2083 skge_write32(hw, B2_FAR, reg);
2084 return ret;
2087 static void yukon_mac_init(struct skge_hw *hw, int port)
2089 struct skge_port *skge = netdev_priv(hw->dev[port]);
2090 int i;
2091 u32 reg;
2092 const u8 *addr = hw->dev[port]->dev_addr;
2094 /* WA code for COMA mode -- set PHY reset */
2095 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2096 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2097 reg = skge_read32(hw, B2_GP_IO);
2098 reg |= GP_DIR_9 | GP_IO_9;
2099 skge_write32(hw, B2_GP_IO, reg);
2102 /* hard reset */
2103 skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2104 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2106 /* WA code for COMA mode -- clear PHY reset */
2107 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2108 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2109 reg = skge_read32(hw, B2_GP_IO);
2110 reg |= GP_DIR_9;
2111 reg &= ~GP_IO_9;
2112 skge_write32(hw, B2_GP_IO, reg);
2115 /* Set hardware config mode */
2116 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2117 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2118 reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2120 /* Clear GMC reset */
2121 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2122 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2123 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2125 if (skge->autoneg == AUTONEG_DISABLE) {
2126 reg = GM_GPCR_AU_ALL_DIS;
2127 gma_write16(hw, port, GM_GP_CTRL,
2128 gma_read16(hw, port, GM_GP_CTRL) | reg);
2130 switch (skge->speed) {
2131 case SPEED_1000:
2132 reg &= ~GM_GPCR_SPEED_100;
2133 reg |= GM_GPCR_SPEED_1000;
2134 break;
2135 case SPEED_100:
2136 reg &= ~GM_GPCR_SPEED_1000;
2137 reg |= GM_GPCR_SPEED_100;
2138 break;
2139 case SPEED_10:
2140 reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2141 break;
2144 if (skge->duplex == DUPLEX_FULL)
2145 reg |= GM_GPCR_DUP_FULL;
2146 } else
2147 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2149 switch (skge->flow_control) {
2150 case FLOW_MODE_NONE:
2151 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2152 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2153 break;
2154 case FLOW_MODE_LOC_SEND:
2155 /* disable Rx flow-control */
2156 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2157 break;
2158 case FLOW_MODE_SYMMETRIC:
2159 case FLOW_MODE_SYM_OR_REM:
2160 /* enable Tx & Rx flow-control */
2161 break;
2164 gma_write16(hw, port, GM_GP_CTRL, reg);
2165 skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2167 yukon_init(hw, port);
2169 /* MIB clear */
2170 reg = gma_read16(hw, port, GM_PHY_ADDR);
2171 gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2173 for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2174 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2175 gma_write16(hw, port, GM_PHY_ADDR, reg);
2177 /* transmit control */
2178 gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2180 /* receive control reg: unicast + multicast + no FCS */
2181 gma_write16(hw, port, GM_RX_CTRL,
2182 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2184 /* transmit flow control */
2185 gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2187 /* transmit parameter */
2188 gma_write16(hw, port, GM_TX_PARAM,
2189 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2190 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2191 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2193 /* configure the Serial Mode Register */
2194 reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
2195 | GM_SMOD_VLAN_ENA
2196 | IPG_DATA_VAL(IPG_DATA_DEF);
2198 if (hw->dev[port]->mtu > ETH_DATA_LEN)
2199 reg |= GM_SMOD_JUMBO_ENA;
2201 gma_write16(hw, port, GM_SERIAL_MODE, reg);
2203 /* physical address: used for pause frames */
2204 gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2205 /* virtual address for data */
2206 gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2208 /* enable interrupt mask for counter overflows */
2209 gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2210 gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2211 gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2213 /* Initialize Mac Fifo */
2215 /* Configure Rx MAC FIFO */
2216 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2217 reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2219 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2220 if (is_yukon_lite_a0(hw))
2221 reg &= ~GMF_RX_F_FL_ON;
2223 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2224 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2226 * because Pause Packet Truncation in GMAC is not working
2227 * we have to increase the Flush Threshold to 64 bytes
2228 * in order to flush pause packets in Rx FIFO on Yukon-1
2230 skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2232 /* Configure Tx MAC FIFO */
2233 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2234 skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2237 /* Go into power down mode */
2238 static void yukon_suspend(struct skge_hw *hw, int port)
2240 u16 ctrl;
2242 ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2243 ctrl |= PHY_M_PC_POL_R_DIS;
2244 gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2246 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2247 ctrl |= PHY_CT_RESET;
2248 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2250 /* switch IEEE compatible power down mode on */
2251 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2252 ctrl |= PHY_CT_PDOWN;
2253 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2256 static void yukon_stop(struct skge_port *skge)
2258 struct skge_hw *hw = skge->hw;
2259 int port = skge->port;
2261 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2262 yukon_reset(hw, port);
2264 gma_write16(hw, port, GM_GP_CTRL,
2265 gma_read16(hw, port, GM_GP_CTRL)
2266 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2267 gma_read16(hw, port, GM_GP_CTRL);
2269 yukon_suspend(hw, port);
2271 /* set GPHY Control reset */
2272 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2273 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2276 static void yukon_get_stats(struct skge_port *skge, u64 *data)
2278 struct skge_hw *hw = skge->hw;
2279 int port = skge->port;
2280 int i;
2282 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2283 | gma_read32(hw, port, GM_TXO_OK_LO);
2284 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2285 | gma_read32(hw, port, GM_RXO_OK_LO);
2287 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2288 data[i] = gma_read32(hw, port,
2289 skge_stats[i].gma_offset);
2292 static void yukon_mac_intr(struct skge_hw *hw, int port)
2294 struct net_device *dev = hw->dev[port];
2295 struct skge_port *skge = netdev_priv(dev);
2296 u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2298 if (netif_msg_intr(skge))
2299 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
2300 dev->name, status);
2302 if (status & GM_IS_RX_FF_OR) {
2303 ++dev->stats.rx_fifo_errors;
2304 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2307 if (status & GM_IS_TX_FF_UR) {
2308 ++dev->stats.tx_fifo_errors;
2309 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2314 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2316 switch (aux & PHY_M_PS_SPEED_MSK) {
2317 case PHY_M_PS_SPEED_1000:
2318 return SPEED_1000;
2319 case PHY_M_PS_SPEED_100:
2320 return SPEED_100;
2321 default:
2322 return SPEED_10;
2326 static void yukon_link_up(struct skge_port *skge)
2328 struct skge_hw *hw = skge->hw;
2329 int port = skge->port;
2330 u16 reg;
2332 /* Enable Transmit FIFO Underrun */
2333 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2335 reg = gma_read16(hw, port, GM_GP_CTRL);
2336 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2337 reg |= GM_GPCR_DUP_FULL;
2339 /* enable Rx/Tx */
2340 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2341 gma_write16(hw, port, GM_GP_CTRL, reg);
2343 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2344 skge_link_up(skge);
2347 static void yukon_link_down(struct skge_port *skge)
2349 struct skge_hw *hw = skge->hw;
2350 int port = skge->port;
2351 u16 ctrl;
2353 ctrl = gma_read16(hw, port, GM_GP_CTRL);
2354 ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2355 gma_write16(hw, port, GM_GP_CTRL, ctrl);
2357 if (skge->flow_status == FLOW_STAT_REM_SEND) {
2358 ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2359 ctrl |= PHY_M_AN_ASP;
2360 /* restore Asymmetric Pause bit */
2361 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2364 skge_link_down(skge);
2366 yukon_init(hw, port);
2369 static void yukon_phy_intr(struct skge_port *skge)
2371 struct skge_hw *hw = skge->hw;
2372 int port = skge->port;
2373 const char *reason = NULL;
2374 u16 istatus, phystat;
2376 istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2377 phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2379 if (netif_msg_intr(skge))
2380 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
2381 skge->netdev->name, istatus, phystat);
2383 if (istatus & PHY_M_IS_AN_COMPL) {
2384 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2385 & PHY_M_AN_RF) {
2386 reason = "remote fault";
2387 goto failed;
2390 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2391 reason = "master/slave fault";
2392 goto failed;
2395 if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2396 reason = "speed/duplex";
2397 goto failed;
2400 skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2401 ? DUPLEX_FULL : DUPLEX_HALF;
2402 skge->speed = yukon_speed(hw, phystat);
2404 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2405 switch (phystat & PHY_M_PS_PAUSE_MSK) {
2406 case PHY_M_PS_PAUSE_MSK:
2407 skge->flow_status = FLOW_STAT_SYMMETRIC;
2408 break;
2409 case PHY_M_PS_RX_P_EN:
2410 skge->flow_status = FLOW_STAT_REM_SEND;
2411 break;
2412 case PHY_M_PS_TX_P_EN:
2413 skge->flow_status = FLOW_STAT_LOC_SEND;
2414 break;
2415 default:
2416 skge->flow_status = FLOW_STAT_NONE;
2419 if (skge->flow_status == FLOW_STAT_NONE ||
2420 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2421 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2422 else
2423 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2424 yukon_link_up(skge);
2425 return;
2428 if (istatus & PHY_M_IS_LSP_CHANGE)
2429 skge->speed = yukon_speed(hw, phystat);
2431 if (istatus & PHY_M_IS_DUP_CHANGE)
2432 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2433 if (istatus & PHY_M_IS_LST_CHANGE) {
2434 if (phystat & PHY_M_PS_LINK_UP)
2435 yukon_link_up(skge);
2436 else
2437 yukon_link_down(skge);
2439 return;
2440 failed:
2441 printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
2442 skge->netdev->name, reason);
2444 /* XXX restart autonegotiation? */
2447 static void skge_phy_reset(struct skge_port *skge)
2449 struct skge_hw *hw = skge->hw;
2450 int port = skge->port;
2451 struct net_device *dev = hw->dev[port];
2453 netif_stop_queue(skge->netdev);
2454 netif_carrier_off(skge->netdev);
2456 spin_lock_bh(&hw->phy_lock);
2457 if (hw->chip_id == CHIP_ID_GENESIS) {
2458 genesis_reset(hw, port);
2459 genesis_mac_init(hw, port);
2460 } else {
2461 yukon_reset(hw, port);
2462 yukon_init(hw, port);
2464 spin_unlock_bh(&hw->phy_lock);
2466 dev->set_multicast_list(dev);
2469 /* Basic MII support */
2470 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2472 struct mii_ioctl_data *data = if_mii(ifr);
2473 struct skge_port *skge = netdev_priv(dev);
2474 struct skge_hw *hw = skge->hw;
2475 int err = -EOPNOTSUPP;
2477 if (!netif_running(dev))
2478 return -ENODEV; /* Phy still in reset */
2480 switch(cmd) {
2481 case SIOCGMIIPHY:
2482 data->phy_id = hw->phy_addr;
2484 /* fallthru */
2485 case SIOCGMIIREG: {
2486 u16 val = 0;
2487 spin_lock_bh(&hw->phy_lock);
2488 if (hw->chip_id == CHIP_ID_GENESIS)
2489 err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2490 else
2491 err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2492 spin_unlock_bh(&hw->phy_lock);
2493 data->val_out = val;
2494 break;
2497 case SIOCSMIIREG:
2498 if (!capable(CAP_NET_ADMIN))
2499 return -EPERM;
2501 spin_lock_bh(&hw->phy_lock);
2502 if (hw->chip_id == CHIP_ID_GENESIS)
2503 err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2504 data->val_in);
2505 else
2506 err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2507 data->val_in);
2508 spin_unlock_bh(&hw->phy_lock);
2509 break;
2511 return err;
2514 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2516 u32 end;
2518 start /= 8;
2519 len /= 8;
2520 end = start + len - 1;
2522 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2523 skge_write32(hw, RB_ADDR(q, RB_START), start);
2524 skge_write32(hw, RB_ADDR(q, RB_WP), start);
2525 skge_write32(hw, RB_ADDR(q, RB_RP), start);
2526 skge_write32(hw, RB_ADDR(q, RB_END), end);
2528 if (q == Q_R1 || q == Q_R2) {
2529 /* Set thresholds on receive queue's */
2530 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2531 start + (2*len)/3);
2532 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2533 start + (len/3));
2534 } else {
2535 /* Enable store & forward on Tx queue's because
2536 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2538 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2541 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2544 /* Setup Bus Memory Interface */
2545 static void skge_qset(struct skge_port *skge, u16 q,
2546 const struct skge_element *e)
2548 struct skge_hw *hw = skge->hw;
2549 u32 watermark = 0x600;
2550 u64 base = skge->dma + (e->desc - skge->mem);
2552 /* optimization to reduce window on 32bit/33mhz */
2553 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2554 watermark /= 2;
2556 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2557 skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2558 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2559 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2562 static int skge_up(struct net_device *dev)
2564 struct skge_port *skge = netdev_priv(dev);
2565 struct skge_hw *hw = skge->hw;
2566 int port = skge->port;
2567 u32 chunk, ram_addr;
2568 size_t rx_size, tx_size;
2569 int err;
2571 if (!is_valid_ether_addr(dev->dev_addr))
2572 return -EINVAL;
2574 if (netif_msg_ifup(skge))
2575 printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
2577 if (dev->mtu > RX_BUF_SIZE)
2578 skge->rx_buf_size = dev->mtu + ETH_HLEN;
2579 else
2580 skge->rx_buf_size = RX_BUF_SIZE;
2583 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2584 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2585 skge->mem_size = tx_size + rx_size;
2586 skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2587 if (!skge->mem)
2588 return -ENOMEM;
2590 BUG_ON(skge->dma & 7);
2592 if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
2593 dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
2594 err = -EINVAL;
2595 goto free_pci_mem;
2598 memset(skge->mem, 0, skge->mem_size);
2600 err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2601 if (err)
2602 goto free_pci_mem;
2604 err = skge_rx_fill(dev);
2605 if (err)
2606 goto free_rx_ring;
2608 err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2609 skge->dma + rx_size);
2610 if (err)
2611 goto free_rx_ring;
2613 /* Initialize MAC */
2614 spin_lock_bh(&hw->phy_lock);
2615 if (hw->chip_id == CHIP_ID_GENESIS)
2616 genesis_mac_init(hw, port);
2617 else
2618 yukon_mac_init(hw, port);
2619 spin_unlock_bh(&hw->phy_lock);
2621 /* Configure RAMbuffers - equally between ports and tx/rx */
2622 chunk = (hw->ram_size - hw->ram_offset) / (hw->ports * 2);
2623 ram_addr = hw->ram_offset + 2 * chunk * port;
2625 skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2626 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2628 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2629 skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2630 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2632 /* Start receiver BMU */
2633 wmb();
2634 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2635 skge_led(skge, LED_MODE_ON);
2637 spin_lock_irq(&hw->hw_lock);
2638 hw->intr_mask |= portmask[port];
2639 skge_write32(hw, B0_IMSK, hw->intr_mask);
2640 spin_unlock_irq(&hw->hw_lock);
2642 napi_enable(&skge->napi);
2643 return 0;
2645 free_rx_ring:
2646 skge_rx_clean(skge);
2647 kfree(skge->rx_ring.start);
2648 free_pci_mem:
2649 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2650 skge->mem = NULL;
2652 return err;
2655 /* stop receiver */
2656 static void skge_rx_stop(struct skge_hw *hw, int port)
2658 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2659 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2660 RB_RST_SET|RB_DIS_OP_MD);
2661 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2664 static int skge_down(struct net_device *dev)
2666 struct skge_port *skge = netdev_priv(dev);
2667 struct skge_hw *hw = skge->hw;
2668 int port = skge->port;
2670 if (skge->mem == NULL)
2671 return 0;
2673 if (netif_msg_ifdown(skge))
2674 printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
2676 netif_stop_queue(dev);
2678 if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
2679 del_timer_sync(&skge->link_timer);
2681 napi_disable(&skge->napi);
2682 netif_carrier_off(dev);
2684 spin_lock_irq(&hw->hw_lock);
2685 hw->intr_mask &= ~portmask[port];
2686 skge_write32(hw, B0_IMSK, hw->intr_mask);
2687 spin_unlock_irq(&hw->hw_lock);
2689 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
2690 if (hw->chip_id == CHIP_ID_GENESIS)
2691 genesis_stop(skge);
2692 else
2693 yukon_stop(skge);
2695 /* Stop transmitter */
2696 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2697 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2698 RB_RST_SET|RB_DIS_OP_MD);
2701 /* Disable Force Sync bit and Enable Alloc bit */
2702 skge_write8(hw, SK_REG(port, TXA_CTRL),
2703 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2705 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2706 skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2707 skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2709 /* Reset PCI FIFO */
2710 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2711 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2713 /* Reset the RAM Buffer async Tx queue */
2714 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2716 skge_rx_stop(hw, port);
2718 if (hw->chip_id == CHIP_ID_GENESIS) {
2719 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2720 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2721 } else {
2722 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2723 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2726 skge_led(skge, LED_MODE_OFF);
2728 netif_tx_lock_bh(dev);
2729 skge_tx_clean(dev);
2730 netif_tx_unlock_bh(dev);
2732 skge_rx_clean(skge);
2734 kfree(skge->rx_ring.start);
2735 kfree(skge->tx_ring.start);
2736 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2737 skge->mem = NULL;
2738 return 0;
2741 static inline int skge_avail(const struct skge_ring *ring)
2743 smp_mb();
2744 return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2745 + (ring->to_clean - ring->to_use) - 1;
2748 static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
2750 struct skge_port *skge = netdev_priv(dev);
2751 struct skge_hw *hw = skge->hw;
2752 struct skge_element *e;
2753 struct skge_tx_desc *td;
2754 int i;
2755 u32 control, len;
2756 u64 map;
2758 if (skb_padto(skb, ETH_ZLEN))
2759 return NETDEV_TX_OK;
2761 if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2762 return NETDEV_TX_BUSY;
2764 e = skge->tx_ring.to_use;
2765 td = e->desc;
2766 BUG_ON(td->control & BMU_OWN);
2767 e->skb = skb;
2768 len = skb_headlen(skb);
2769 map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2770 pci_unmap_addr_set(e, mapaddr, map);
2771 pci_unmap_len_set(e, maplen, len);
2773 td->dma_lo = map;
2774 td->dma_hi = map >> 32;
2776 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2777 const int offset = skb_transport_offset(skb);
2779 /* This seems backwards, but it is what the sk98lin
2780 * does. Looks like hardware is wrong?
2782 if (ipip_hdr(skb)->protocol == IPPROTO_UDP
2783 && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2784 control = BMU_TCP_CHECK;
2785 else
2786 control = BMU_UDP_CHECK;
2788 td->csum_offs = 0;
2789 td->csum_start = offset;
2790 td->csum_write = offset + skb->csum_offset;
2791 } else
2792 control = BMU_CHECK;
2794 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2795 control |= BMU_EOF| BMU_IRQ_EOF;
2796 else {
2797 struct skge_tx_desc *tf = td;
2799 control |= BMU_STFWD;
2800 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2801 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2803 map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
2804 frag->size, PCI_DMA_TODEVICE);
2806 e = e->next;
2807 e->skb = skb;
2808 tf = e->desc;
2809 BUG_ON(tf->control & BMU_OWN);
2811 tf->dma_lo = map;
2812 tf->dma_hi = (u64) map >> 32;
2813 pci_unmap_addr_set(e, mapaddr, map);
2814 pci_unmap_len_set(e, maplen, frag->size);
2816 tf->control = BMU_OWN | BMU_SW | control | frag->size;
2818 tf->control |= BMU_EOF | BMU_IRQ_EOF;
2820 /* Make sure all the descriptors written */
2821 wmb();
2822 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2823 wmb();
2825 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2827 if (unlikely(netif_msg_tx_queued(skge)))
2828 printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
2829 dev->name, e - skge->tx_ring.start, skb->len);
2831 skge->tx_ring.to_use = e->next;
2832 smp_wmb();
2834 if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2835 pr_debug("%s: transmit queue full\n", dev->name);
2836 netif_stop_queue(dev);
2839 dev->trans_start = jiffies;
2841 return NETDEV_TX_OK;
2845 /* Free resources associated with this reing element */
2846 static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
2847 u32 control)
2849 struct pci_dev *pdev = skge->hw->pdev;
2851 /* skb header vs. fragment */
2852 if (control & BMU_STF)
2853 pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
2854 pci_unmap_len(e, maplen),
2855 PCI_DMA_TODEVICE);
2856 else
2857 pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
2858 pci_unmap_len(e, maplen),
2859 PCI_DMA_TODEVICE);
2861 if (control & BMU_EOF) {
2862 if (unlikely(netif_msg_tx_done(skge)))
2863 printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
2864 skge->netdev->name, e - skge->tx_ring.start);
2866 dev_kfree_skb(e->skb);
2870 /* Free all buffers in transmit ring */
2871 static void skge_tx_clean(struct net_device *dev)
2873 struct skge_port *skge = netdev_priv(dev);
2874 struct skge_element *e;
2876 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2877 struct skge_tx_desc *td = e->desc;
2878 skge_tx_free(skge, e, td->control);
2879 td->control = 0;
2882 skge->tx_ring.to_clean = e;
2883 netif_wake_queue(dev);
2886 static void skge_tx_timeout(struct net_device *dev)
2888 struct skge_port *skge = netdev_priv(dev);
2890 if (netif_msg_timer(skge))
2891 printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
2893 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2894 skge_tx_clean(dev);
2897 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2899 int err;
2901 if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2902 return -EINVAL;
2904 if (!netif_running(dev)) {
2905 dev->mtu = new_mtu;
2906 return 0;
2909 skge_down(dev);
2911 dev->mtu = new_mtu;
2913 err = skge_up(dev);
2914 if (err)
2915 dev_close(dev);
2917 return err;
2920 static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2922 static void genesis_add_filter(u8 filter[8], const u8 *addr)
2924 u32 crc, bit;
2926 crc = ether_crc_le(ETH_ALEN, addr);
2927 bit = ~crc & 0x3f;
2928 filter[bit/8] |= 1 << (bit%8);
2931 static void genesis_set_multicast(struct net_device *dev)
2933 struct skge_port *skge = netdev_priv(dev);
2934 struct skge_hw *hw = skge->hw;
2935 int port = skge->port;
2936 int i, count = dev->mc_count;
2937 struct dev_mc_list *list = dev->mc_list;
2938 u32 mode;
2939 u8 filter[8];
2941 mode = xm_read32(hw, port, XM_MODE);
2942 mode |= XM_MD_ENA_HASH;
2943 if (dev->flags & IFF_PROMISC)
2944 mode |= XM_MD_ENA_PROM;
2945 else
2946 mode &= ~XM_MD_ENA_PROM;
2948 if (dev->flags & IFF_ALLMULTI)
2949 memset(filter, 0xff, sizeof(filter));
2950 else {
2951 memset(filter, 0, sizeof(filter));
2953 if (skge->flow_status == FLOW_STAT_REM_SEND
2954 || skge->flow_status == FLOW_STAT_SYMMETRIC)
2955 genesis_add_filter(filter, pause_mc_addr);
2957 for (i = 0; list && i < count; i++, list = list->next)
2958 genesis_add_filter(filter, list->dmi_addr);
2961 xm_write32(hw, port, XM_MODE, mode);
2962 xm_outhash(hw, port, XM_HSM, filter);
2965 static void yukon_add_filter(u8 filter[8], const u8 *addr)
2967 u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2968 filter[bit/8] |= 1 << (bit%8);
2971 static void yukon_set_multicast(struct net_device *dev)
2973 struct skge_port *skge = netdev_priv(dev);
2974 struct skge_hw *hw = skge->hw;
2975 int port = skge->port;
2976 struct dev_mc_list *list = dev->mc_list;
2977 int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND
2978 || skge->flow_status == FLOW_STAT_SYMMETRIC);
2979 u16 reg;
2980 u8 filter[8];
2982 memset(filter, 0, sizeof(filter));
2984 reg = gma_read16(hw, port, GM_RX_CTRL);
2985 reg |= GM_RXCR_UCF_ENA;
2987 if (dev->flags & IFF_PROMISC) /* promiscuous */
2988 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2989 else if (dev->flags & IFF_ALLMULTI) /* all multicast */
2990 memset(filter, 0xff, sizeof(filter));
2991 else if (dev->mc_count == 0 && !rx_pause)/* no multicast */
2992 reg &= ~GM_RXCR_MCF_ENA;
2993 else {
2994 int i;
2995 reg |= GM_RXCR_MCF_ENA;
2997 if (rx_pause)
2998 yukon_add_filter(filter, pause_mc_addr);
3000 for (i = 0; list && i < dev->mc_count; i++, list = list->next)
3001 yukon_add_filter(filter, list->dmi_addr);
3005 gma_write16(hw, port, GM_MC_ADDR_H1,
3006 (u16)filter[0] | ((u16)filter[1] << 8));
3007 gma_write16(hw, port, GM_MC_ADDR_H2,
3008 (u16)filter[2] | ((u16)filter[3] << 8));
3009 gma_write16(hw, port, GM_MC_ADDR_H3,
3010 (u16)filter[4] | ((u16)filter[5] << 8));
3011 gma_write16(hw, port, GM_MC_ADDR_H4,
3012 (u16)filter[6] | ((u16)filter[7] << 8));
3014 gma_write16(hw, port, GM_RX_CTRL, reg);
3017 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
3019 if (hw->chip_id == CHIP_ID_GENESIS)
3020 return status >> XMR_FS_LEN_SHIFT;
3021 else
3022 return status >> GMR_FS_LEN_SHIFT;
3025 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
3027 if (hw->chip_id == CHIP_ID_GENESIS)
3028 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
3029 else
3030 return (status & GMR_FS_ANY_ERR) ||
3031 (status & GMR_FS_RX_OK) == 0;
3035 /* Get receive buffer from descriptor.
3036 * Handles copy of small buffers and reallocation failures
3038 static struct sk_buff *skge_rx_get(struct net_device *dev,
3039 struct skge_element *e,
3040 u32 control, u32 status, u16 csum)
3042 struct skge_port *skge = netdev_priv(dev);
3043 struct sk_buff *skb;
3044 u16 len = control & BMU_BBC;
3046 if (unlikely(netif_msg_rx_status(skge)))
3047 printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
3048 dev->name, e - skge->rx_ring.start,
3049 status, len);
3051 if (len > skge->rx_buf_size)
3052 goto error;
3054 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3055 goto error;
3057 if (bad_phy_status(skge->hw, status))
3058 goto error;
3060 if (phy_length(skge->hw, status) != len)
3061 goto error;
3063 if (len < RX_COPY_THRESHOLD) {
3064 skb = netdev_alloc_skb(dev, len + 2);
3065 if (!skb)
3066 goto resubmit;
3068 skb_reserve(skb, 2);
3069 pci_dma_sync_single_for_cpu(skge->hw->pdev,
3070 pci_unmap_addr(e, mapaddr),
3071 len, PCI_DMA_FROMDEVICE);
3072 skb_copy_from_linear_data(e->skb, skb->data, len);
3073 pci_dma_sync_single_for_device(skge->hw->pdev,
3074 pci_unmap_addr(e, mapaddr),
3075 len, PCI_DMA_FROMDEVICE);
3076 skge_rx_reuse(e, skge->rx_buf_size);
3077 } else {
3078 struct sk_buff *nskb;
3079 nskb = netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN);
3080 if (!nskb)
3081 goto resubmit;
3083 skb_reserve(nskb, NET_IP_ALIGN);
3084 pci_unmap_single(skge->hw->pdev,
3085 pci_unmap_addr(e, mapaddr),
3086 pci_unmap_len(e, maplen),
3087 PCI_DMA_FROMDEVICE);
3088 skb = e->skb;
3089 prefetch(skb->data);
3090 skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
3093 skb_put(skb, len);
3094 if (skge->rx_csum) {
3095 skb->csum = csum;
3096 skb->ip_summed = CHECKSUM_COMPLETE;
3099 skb->protocol = eth_type_trans(skb, dev);
3101 return skb;
3102 error:
3104 if (netif_msg_rx_err(skge))
3105 printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
3106 dev->name, e - skge->rx_ring.start,
3107 control, status);
3109 if (skge->hw->chip_id == CHIP_ID_GENESIS) {
3110 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3111 dev->stats.rx_length_errors++;
3112 if (status & XMR_FS_FRA_ERR)
3113 dev->stats.rx_frame_errors++;
3114 if (status & XMR_FS_FCS_ERR)
3115 dev->stats.rx_crc_errors++;
3116 } else {
3117 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3118 dev->stats.rx_length_errors++;
3119 if (status & GMR_FS_FRAGMENT)
3120 dev->stats.rx_frame_errors++;
3121 if (status & GMR_FS_CRC_ERR)
3122 dev->stats.rx_crc_errors++;
3125 resubmit:
3126 skge_rx_reuse(e, skge->rx_buf_size);
3127 return NULL;
3130 /* Free all buffers in Tx ring which are no longer owned by device */
3131 static void skge_tx_done(struct net_device *dev)
3133 struct skge_port *skge = netdev_priv(dev);
3134 struct skge_ring *ring = &skge->tx_ring;
3135 struct skge_element *e;
3137 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3139 for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3140 u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3142 if (control & BMU_OWN)
3143 break;
3145 skge_tx_free(skge, e, control);
3147 skge->tx_ring.to_clean = e;
3149 /* Can run lockless until we need to synchronize to restart queue. */
3150 smp_mb();
3152 if (unlikely(netif_queue_stopped(dev) &&
3153 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3154 netif_tx_lock(dev);
3155 if (unlikely(netif_queue_stopped(dev) &&
3156 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3157 netif_wake_queue(dev);
3160 netif_tx_unlock(dev);
3164 static int skge_poll(struct napi_struct *napi, int to_do)
3166 struct skge_port *skge = container_of(napi, struct skge_port, napi);
3167 struct net_device *dev = skge->netdev;
3168 struct skge_hw *hw = skge->hw;
3169 struct skge_ring *ring = &skge->rx_ring;
3170 struct skge_element *e;
3171 int work_done = 0;
3173 skge_tx_done(dev);
3175 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3177 for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
3178 struct skge_rx_desc *rd = e->desc;
3179 struct sk_buff *skb;
3180 u32 control;
3182 rmb();
3183 control = rd->control;
3184 if (control & BMU_OWN)
3185 break;
3187 skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3188 if (likely(skb)) {
3189 dev->last_rx = jiffies;
3190 netif_receive_skb(skb);
3192 ++work_done;
3195 ring->to_clean = e;
3197 /* restart receiver */
3198 wmb();
3199 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3201 if (work_done < to_do) {
3202 unsigned long flags;
3204 spin_lock_irqsave(&hw->hw_lock, flags);
3205 __netif_rx_complete(dev, napi);
3206 hw->intr_mask |= napimask[skge->port];
3207 skge_write32(hw, B0_IMSK, hw->intr_mask);
3208 skge_read32(hw, B0_IMSK);
3209 spin_unlock_irqrestore(&hw->hw_lock, flags);
3212 return work_done;
3215 /* Parity errors seem to happen when Genesis is connected to a switch
3216 * with no other ports present. Heartbeat error??
3218 static void skge_mac_parity(struct skge_hw *hw, int port)
3220 struct net_device *dev = hw->dev[port];
3222 ++dev->stats.tx_heartbeat_errors;
3224 if (hw->chip_id == CHIP_ID_GENESIS)
3225 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3226 MFF_CLR_PERR);
3227 else
3228 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3229 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3230 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3231 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3234 static void skge_mac_intr(struct skge_hw *hw, int port)
3236 if (hw->chip_id == CHIP_ID_GENESIS)
3237 genesis_mac_intr(hw, port);
3238 else
3239 yukon_mac_intr(hw, port);
3242 /* Handle device specific framing and timeout interrupts */
3243 static void skge_error_irq(struct skge_hw *hw)
3245 struct pci_dev *pdev = hw->pdev;
3246 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3248 if (hw->chip_id == CHIP_ID_GENESIS) {
3249 /* clear xmac errors */
3250 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3251 skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3252 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3253 skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3254 } else {
3255 /* Timestamp (unused) overflow */
3256 if (hwstatus & IS_IRQ_TIST_OV)
3257 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3260 if (hwstatus & IS_RAM_RD_PAR) {
3261 dev_err(&pdev->dev, "Ram read data parity error\n");
3262 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3265 if (hwstatus & IS_RAM_WR_PAR) {
3266 dev_err(&pdev->dev, "Ram write data parity error\n");
3267 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3270 if (hwstatus & IS_M1_PAR_ERR)
3271 skge_mac_parity(hw, 0);
3273 if (hwstatus & IS_M2_PAR_ERR)
3274 skge_mac_parity(hw, 1);
3276 if (hwstatus & IS_R1_PAR_ERR) {
3277 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3278 hw->dev[0]->name);
3279 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3282 if (hwstatus & IS_R2_PAR_ERR) {
3283 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3284 hw->dev[1]->name);
3285 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3288 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3289 u16 pci_status, pci_cmd;
3291 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3292 pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3294 dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3295 pci_cmd, pci_status);
3297 /* Write the error bits back to clear them. */
3298 pci_status &= PCI_STATUS_ERROR_BITS;
3299 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3300 pci_write_config_word(pdev, PCI_COMMAND,
3301 pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3302 pci_write_config_word(pdev, PCI_STATUS, pci_status);
3303 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3305 /* if error still set then just ignore it */
3306 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3307 if (hwstatus & IS_IRQ_STAT) {
3308 dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3309 hw->intr_mask &= ~IS_HW_ERR;
3315 * Interrupt from PHY are handled in tasklet (softirq)
3316 * because accessing phy registers requires spin wait which might
3317 * cause excess interrupt latency.
3319 static void skge_extirq(unsigned long arg)
3321 struct skge_hw *hw = (struct skge_hw *) arg;
3322 int port;
3324 for (port = 0; port < hw->ports; port++) {
3325 struct net_device *dev = hw->dev[port];
3327 if (netif_running(dev)) {
3328 struct skge_port *skge = netdev_priv(dev);
3330 spin_lock(&hw->phy_lock);
3331 if (hw->chip_id != CHIP_ID_GENESIS)
3332 yukon_phy_intr(skge);
3333 else if (hw->phy_type == SK_PHY_BCOM)
3334 bcom_phy_intr(skge);
3335 spin_unlock(&hw->phy_lock);
3339 spin_lock_irq(&hw->hw_lock);
3340 hw->intr_mask |= IS_EXT_REG;
3341 skge_write32(hw, B0_IMSK, hw->intr_mask);
3342 skge_read32(hw, B0_IMSK);
3343 spin_unlock_irq(&hw->hw_lock);
3346 static irqreturn_t skge_intr(int irq, void *dev_id)
3348 struct skge_hw *hw = dev_id;
3349 u32 status;
3350 int handled = 0;
3352 spin_lock(&hw->hw_lock);
3353 /* Reading this register masks IRQ */
3354 status = skge_read32(hw, B0_SP_ISRC);
3355 if (status == 0 || status == ~0)
3356 goto out;
3358 handled = 1;
3359 status &= hw->intr_mask;
3360 if (status & IS_EXT_REG) {
3361 hw->intr_mask &= ~IS_EXT_REG;
3362 tasklet_schedule(&hw->phy_task);
3365 if (status & (IS_XA1_F|IS_R1_F)) {
3366 struct skge_port *skge = netdev_priv(hw->dev[0]);
3367 hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3368 netif_rx_schedule(hw->dev[0], &skge->napi);
3371 if (status & IS_PA_TO_TX1)
3372 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3374 if (status & IS_PA_TO_RX1) {
3375 ++hw->dev[0]->stats.rx_over_errors;
3376 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3380 if (status & IS_MAC1)
3381 skge_mac_intr(hw, 0);
3383 if (hw->dev[1]) {
3384 struct skge_port *skge = netdev_priv(hw->dev[1]);
3386 if (status & (IS_XA2_F|IS_R2_F)) {
3387 hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3388 netif_rx_schedule(hw->dev[1], &skge->napi);
3391 if (status & IS_PA_TO_RX2) {
3392 ++hw->dev[1]->stats.rx_over_errors;
3393 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3396 if (status & IS_PA_TO_TX2)
3397 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3399 if (status & IS_MAC2)
3400 skge_mac_intr(hw, 1);
3403 if (status & IS_HW_ERR)
3404 skge_error_irq(hw);
3406 skge_write32(hw, B0_IMSK, hw->intr_mask);
3407 skge_read32(hw, B0_IMSK);
3408 out:
3409 spin_unlock(&hw->hw_lock);
3411 return IRQ_RETVAL(handled);
3414 #ifdef CONFIG_NET_POLL_CONTROLLER
3415 static void skge_netpoll(struct net_device *dev)
3417 struct skge_port *skge = netdev_priv(dev);
3419 disable_irq(dev->irq);
3420 skge_intr(dev->irq, skge->hw);
3421 enable_irq(dev->irq);
3423 #endif
3425 static int skge_set_mac_address(struct net_device *dev, void *p)
3427 struct skge_port *skge = netdev_priv(dev);
3428 struct skge_hw *hw = skge->hw;
3429 unsigned port = skge->port;
3430 const struct sockaddr *addr = p;
3431 u16 ctrl;
3433 if (!is_valid_ether_addr(addr->sa_data))
3434 return -EADDRNOTAVAIL;
3436 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3438 if (!netif_running(dev)) {
3439 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3440 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3441 } else {
3442 /* disable Rx */
3443 spin_lock_bh(&hw->phy_lock);
3444 ctrl = gma_read16(hw, port, GM_GP_CTRL);
3445 gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3447 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3448 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3450 if (hw->chip_id == CHIP_ID_GENESIS)
3451 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3452 else {
3453 gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3454 gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3457 gma_write16(hw, port, GM_GP_CTRL, ctrl);
3458 spin_unlock_bh(&hw->phy_lock);
3461 return 0;
3464 static const struct {
3465 u8 id;
3466 const char *name;
3467 } skge_chips[] = {
3468 { CHIP_ID_GENESIS, "Genesis" },
3469 { CHIP_ID_YUKON, "Yukon" },
3470 { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
3471 { CHIP_ID_YUKON_LP, "Yukon-LP"},
3474 static const char *skge_board_name(const struct skge_hw *hw)
3476 int i;
3477 static char buf[16];
3479 for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3480 if (skge_chips[i].id == hw->chip_id)
3481 return skge_chips[i].name;
3483 snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
3484 return buf;
3489 * Setup the board data structure, but don't bring up
3490 * the port(s)
3492 static int skge_reset(struct skge_hw *hw)
3494 u32 reg;
3495 u16 ctst, pci_status;
3496 u8 t8, mac_cfg, pmd_type;
3497 int i;
3499 ctst = skge_read16(hw, B0_CTST);
3501 /* do a SW reset */
3502 skge_write8(hw, B0_CTST, CS_RST_SET);
3503 skge_write8(hw, B0_CTST, CS_RST_CLR);
3505 /* clear PCI errors, if any */
3506 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3507 skge_write8(hw, B2_TST_CTRL2, 0);
3509 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3510 pci_write_config_word(hw->pdev, PCI_STATUS,
3511 pci_status | PCI_STATUS_ERROR_BITS);
3512 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3513 skge_write8(hw, B0_CTST, CS_MRST_CLR);
3515 /* restore CLK_RUN bits (for Yukon-Lite) */
3516 skge_write16(hw, B0_CTST,
3517 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3519 hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3520 hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3521 pmd_type = skge_read8(hw, B2_PMD_TYP);
3522 hw->copper = (pmd_type == 'T' || pmd_type == '1');
3524 switch (hw->chip_id) {
3525 case CHIP_ID_GENESIS:
3526 switch (hw->phy_type) {
3527 case SK_PHY_XMAC:
3528 hw->phy_addr = PHY_ADDR_XMAC;
3529 break;
3530 case SK_PHY_BCOM:
3531 hw->phy_addr = PHY_ADDR_BCOM;
3532 break;
3533 default:
3534 dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3535 hw->phy_type);
3536 return -EOPNOTSUPP;
3538 break;
3540 case CHIP_ID_YUKON:
3541 case CHIP_ID_YUKON_LITE:
3542 case CHIP_ID_YUKON_LP:
3543 if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3544 hw->copper = 1;
3546 hw->phy_addr = PHY_ADDR_MARV;
3547 break;
3549 default:
3550 dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3551 hw->chip_id);
3552 return -EOPNOTSUPP;
3555 mac_cfg = skge_read8(hw, B2_MAC_CFG);
3556 hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3557 hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3559 /* read the adapters RAM size */
3560 t8 = skge_read8(hw, B2_E_0);
3561 if (hw->chip_id == CHIP_ID_GENESIS) {
3562 if (t8 == 3) {
3563 /* special case: 4 x 64k x 36, offset = 0x80000 */
3564 hw->ram_size = 0x100000;
3565 hw->ram_offset = 0x80000;
3566 } else
3567 hw->ram_size = t8 * 512;
3569 else if (t8 == 0)
3570 hw->ram_size = 0x20000;
3571 else
3572 hw->ram_size = t8 * 4096;
3574 hw->intr_mask = IS_HW_ERR;
3576 /* Use PHY IRQ for all but fiber based Genesis board */
3577 if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
3578 hw->intr_mask |= IS_EXT_REG;
3580 if (hw->chip_id == CHIP_ID_GENESIS)
3581 genesis_init(hw);
3582 else {
3583 /* switch power to VCC (WA for VAUX problem) */
3584 skge_write8(hw, B0_POWER_CTRL,
3585 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3587 /* avoid boards with stuck Hardware error bits */
3588 if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3589 (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3590 dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3591 hw->intr_mask &= ~IS_HW_ERR;
3594 /* Clear PHY COMA */
3595 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3596 pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3597 reg &= ~PCI_PHY_COMA;
3598 pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3599 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3602 for (i = 0; i < hw->ports; i++) {
3603 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3604 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3608 /* turn off hardware timer (unused) */
3609 skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3610 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3611 skge_write8(hw, B0_LED, LED_STAT_ON);
3613 /* enable the Tx Arbiters */
3614 for (i = 0; i < hw->ports; i++)
3615 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3617 /* Initialize ram interface */
3618 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3620 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3621 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3622 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3623 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3624 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3625 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3626 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3627 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3628 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3629 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3630 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3631 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3633 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3635 /* Set interrupt moderation for Transmit only
3636 * Receive interrupts avoided by NAPI
3638 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3639 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3640 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3642 skge_write32(hw, B0_IMSK, hw->intr_mask);
3644 for (i = 0; i < hw->ports; i++) {
3645 if (hw->chip_id == CHIP_ID_GENESIS)
3646 genesis_reset(hw, i);
3647 else
3648 yukon_reset(hw, i);
3651 return 0;
3655 #ifdef CONFIG_SKGE_DEBUG
3657 static struct dentry *skge_debug;
3659 static int skge_debug_show(struct seq_file *seq, void *v)
3661 struct net_device *dev = seq->private;
3662 const struct skge_port *skge = netdev_priv(dev);
3663 const struct skge_hw *hw = skge->hw;
3664 const struct skge_element *e;
3666 if (!netif_running(dev))
3667 return -ENETDOWN;
3669 seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3670 skge_read32(hw, B0_IMSK));
3672 seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3673 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3674 const struct skge_tx_desc *t = e->desc;
3675 seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3676 t->control, t->dma_hi, t->dma_lo, t->status,
3677 t->csum_offs, t->csum_write, t->csum_start);
3680 seq_printf(seq, "\nRx Ring: \n");
3681 for (e = skge->rx_ring.to_clean; ; e = e->next) {
3682 const struct skge_rx_desc *r = e->desc;
3684 if (r->control & BMU_OWN)
3685 break;
3687 seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3688 r->control, r->dma_hi, r->dma_lo, r->status,
3689 r->timestamp, r->csum1, r->csum1_start);
3692 return 0;
3695 static int skge_debug_open(struct inode *inode, struct file *file)
3697 return single_open(file, skge_debug_show, inode->i_private);
3700 static const struct file_operations skge_debug_fops = {
3701 .owner = THIS_MODULE,
3702 .open = skge_debug_open,
3703 .read = seq_read,
3704 .llseek = seq_lseek,
3705 .release = single_release,
3709 * Use network device events to create/remove/rename
3710 * debugfs file entries
3712 static int skge_device_event(struct notifier_block *unused,
3713 unsigned long event, void *ptr)
3715 struct net_device *dev = ptr;
3716 struct skge_port *skge;
3717 struct dentry *d;
3719 if (dev->open != &skge_up || !skge_debug)
3720 goto done;
3722 skge = netdev_priv(dev);
3723 switch(event) {
3724 case NETDEV_CHANGENAME:
3725 if (skge->debugfs) {
3726 d = debugfs_rename(skge_debug, skge->debugfs,
3727 skge_debug, dev->name);
3728 if (d)
3729 skge->debugfs = d;
3730 else {
3731 pr_info(PFX "%s: rename failed\n", dev->name);
3732 debugfs_remove(skge->debugfs);
3735 break;
3737 case NETDEV_GOING_DOWN:
3738 if (skge->debugfs) {
3739 debugfs_remove(skge->debugfs);
3740 skge->debugfs = NULL;
3742 break;
3744 case NETDEV_UP:
3745 d = debugfs_create_file(dev->name, S_IRUGO,
3746 skge_debug, dev,
3747 &skge_debug_fops);
3748 if (!d || IS_ERR(d))
3749 pr_info(PFX "%s: debugfs create failed\n",
3750 dev->name);
3751 else
3752 skge->debugfs = d;
3753 break;
3756 done:
3757 return NOTIFY_DONE;
3760 static struct notifier_block skge_notifier = {
3761 .notifier_call = skge_device_event,
3765 static __init void skge_debug_init(void)
3767 struct dentry *ent;
3769 ent = debugfs_create_dir("skge", NULL);
3770 if (!ent || IS_ERR(ent)) {
3771 pr_info(PFX "debugfs create directory failed\n");
3772 return;
3775 skge_debug = ent;
3776 register_netdevice_notifier(&skge_notifier);
3779 static __exit void skge_debug_cleanup(void)
3781 if (skge_debug) {
3782 unregister_netdevice_notifier(&skge_notifier);
3783 debugfs_remove(skge_debug);
3784 skge_debug = NULL;
3788 #else
3789 #define skge_debug_init()
3790 #define skge_debug_cleanup()
3791 #endif
3793 /* Initialize network device */
3794 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3795 int highmem)
3797 struct skge_port *skge;
3798 struct net_device *dev = alloc_etherdev(sizeof(*skge));
3800 if (!dev) {
3801 dev_err(&hw->pdev->dev, "etherdev alloc failed\n");
3802 return NULL;
3805 SET_NETDEV_DEV(dev, &hw->pdev->dev);
3806 dev->open = skge_up;
3807 dev->stop = skge_down;
3808 dev->do_ioctl = skge_ioctl;
3809 dev->hard_start_xmit = skge_xmit_frame;
3810 dev->get_stats = skge_get_stats;
3811 if (hw->chip_id == CHIP_ID_GENESIS)
3812 dev->set_multicast_list = genesis_set_multicast;
3813 else
3814 dev->set_multicast_list = yukon_set_multicast;
3816 dev->set_mac_address = skge_set_mac_address;
3817 dev->change_mtu = skge_change_mtu;
3818 SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
3819 dev->tx_timeout = skge_tx_timeout;
3820 dev->watchdog_timeo = TX_WATCHDOG;
3821 #ifdef CONFIG_NET_POLL_CONTROLLER
3822 dev->poll_controller = skge_netpoll;
3823 #endif
3824 dev->irq = hw->pdev->irq;
3826 if (highmem)
3827 dev->features |= NETIF_F_HIGHDMA;
3829 skge = netdev_priv(dev);
3830 netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
3831 skge->netdev = dev;
3832 skge->hw = hw;
3833 skge->msg_enable = netif_msg_init(debug, default_msg);
3835 skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3836 skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3838 /* Auto speed and flow control */
3839 skge->autoneg = AUTONEG_ENABLE;
3840 skge->flow_control = FLOW_MODE_SYM_OR_REM;
3841 skge->duplex = -1;
3842 skge->speed = -1;
3843 skge->advertising = skge_supported_modes(hw);
3845 if (device_may_wakeup(&hw->pdev->dev))
3846 skge->wol = wol_supported(hw) & WAKE_MAGIC;
3848 hw->dev[port] = dev;
3850 skge->port = port;
3852 /* Only used for Genesis XMAC */
3853 setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
3855 if (hw->chip_id != CHIP_ID_GENESIS) {
3856 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3857 skge->rx_csum = 1;
3860 /* read the mac address */
3861 memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3862 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3864 /* device is off until link detection */
3865 netif_carrier_off(dev);
3866 netif_stop_queue(dev);
3868 return dev;
3871 static void __devinit skge_show_addr(struct net_device *dev)
3873 const struct skge_port *skge = netdev_priv(dev);
3875 if (netif_msg_probe(skge))
3876 printk(KERN_INFO PFX "%s: addr %pM\n",
3877 dev->name, dev->dev_addr);
3880 static int __devinit skge_probe(struct pci_dev *pdev,
3881 const struct pci_device_id *ent)
3883 struct net_device *dev, *dev1;
3884 struct skge_hw *hw;
3885 int err, using_dac = 0;
3887 err = pci_enable_device(pdev);
3888 if (err) {
3889 dev_err(&pdev->dev, "cannot enable PCI device\n");
3890 goto err_out;
3893 err = pci_request_regions(pdev, DRV_NAME);
3894 if (err) {
3895 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3896 goto err_out_disable_pdev;
3899 pci_set_master(pdev);
3901 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3902 using_dac = 1;
3903 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3904 } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
3905 using_dac = 0;
3906 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3909 if (err) {
3910 dev_err(&pdev->dev, "no usable DMA configuration\n");
3911 goto err_out_free_regions;
3914 #ifdef __BIG_ENDIAN
3915 /* byte swap descriptors in hardware */
3917 u32 reg;
3919 pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3920 reg |= PCI_REV_DESC;
3921 pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3923 #endif
3925 err = -ENOMEM;
3926 hw = kzalloc(sizeof(*hw), GFP_KERNEL);
3927 if (!hw) {
3928 dev_err(&pdev->dev, "cannot allocate hardware struct\n");
3929 goto err_out_free_regions;
3932 hw->pdev = pdev;
3933 spin_lock_init(&hw->hw_lock);
3934 spin_lock_init(&hw->phy_lock);
3935 tasklet_init(&hw->phy_task, &skge_extirq, (unsigned long) hw);
3937 hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3938 if (!hw->regs) {
3939 dev_err(&pdev->dev, "cannot map device registers\n");
3940 goto err_out_free_hw;
3943 err = skge_reset(hw);
3944 if (err)
3945 goto err_out_iounmap;
3947 printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n",
3948 (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3949 skge_board_name(hw), hw->chip_rev);
3951 dev = skge_devinit(hw, 0, using_dac);
3952 if (!dev)
3953 goto err_out_led_off;
3955 /* Some motherboards are broken and has zero in ROM. */
3956 if (!is_valid_ether_addr(dev->dev_addr))
3957 dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3959 err = register_netdev(dev);
3960 if (err) {
3961 dev_err(&pdev->dev, "cannot register net device\n");
3962 goto err_out_free_netdev;
3965 err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, dev->name, hw);
3966 if (err) {
3967 dev_err(&pdev->dev, "%s: cannot assign irq %d\n",
3968 dev->name, pdev->irq);
3969 goto err_out_unregister;
3971 skge_show_addr(dev);
3973 if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
3974 if (register_netdev(dev1) == 0)
3975 skge_show_addr(dev1);
3976 else {
3977 /* Failure to register second port need not be fatal */
3978 dev_warn(&pdev->dev, "register of second port failed\n");
3979 hw->dev[1] = NULL;
3980 free_netdev(dev1);
3983 pci_set_drvdata(pdev, hw);
3985 return 0;
3987 err_out_unregister:
3988 unregister_netdev(dev);
3989 err_out_free_netdev:
3990 free_netdev(dev);
3991 err_out_led_off:
3992 skge_write16(hw, B0_LED, LED_STAT_OFF);
3993 err_out_iounmap:
3994 iounmap(hw->regs);
3995 err_out_free_hw:
3996 kfree(hw);
3997 err_out_free_regions:
3998 pci_release_regions(pdev);
3999 err_out_disable_pdev:
4000 pci_disable_device(pdev);
4001 pci_set_drvdata(pdev, NULL);
4002 err_out:
4003 return err;
4006 static void __devexit skge_remove(struct pci_dev *pdev)
4008 struct skge_hw *hw = pci_get_drvdata(pdev);
4009 struct net_device *dev0, *dev1;
4011 if (!hw)
4012 return;
4014 flush_scheduled_work();
4016 if ((dev1 = hw->dev[1]))
4017 unregister_netdev(dev1);
4018 dev0 = hw->dev[0];
4019 unregister_netdev(dev0);
4021 tasklet_disable(&hw->phy_task);
4023 spin_lock_irq(&hw->hw_lock);
4024 hw->intr_mask = 0;
4025 skge_write32(hw, B0_IMSK, 0);
4026 skge_read32(hw, B0_IMSK);
4027 spin_unlock_irq(&hw->hw_lock);
4029 skge_write16(hw, B0_LED, LED_STAT_OFF);
4030 skge_write8(hw, B0_CTST, CS_RST_SET);
4032 free_irq(pdev->irq, hw);
4033 pci_release_regions(pdev);
4034 pci_disable_device(pdev);
4035 if (dev1)
4036 free_netdev(dev1);
4037 free_netdev(dev0);
4039 iounmap(hw->regs);
4040 kfree(hw);
4041 pci_set_drvdata(pdev, NULL);
4044 #ifdef CONFIG_PM
4045 static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
4047 struct skge_hw *hw = pci_get_drvdata(pdev);
4048 int i, err, wol = 0;
4050 if (!hw)
4051 return 0;
4053 err = pci_save_state(pdev);
4054 if (err)
4055 return err;
4057 for (i = 0; i < hw->ports; i++) {
4058 struct net_device *dev = hw->dev[i];
4059 struct skge_port *skge = netdev_priv(dev);
4061 if (netif_running(dev))
4062 skge_down(dev);
4063 if (skge->wol)
4064 skge_wol_init(skge);
4066 wol |= skge->wol;
4069 skge_write32(hw, B0_IMSK, 0);
4071 pci_prepare_to_sleep(pdev);
4073 return 0;
4076 static int skge_resume(struct pci_dev *pdev)
4078 struct skge_hw *hw = pci_get_drvdata(pdev);
4079 int i, err;
4081 if (!hw)
4082 return 0;
4084 err = pci_back_from_sleep(pdev);
4085 if (err)
4086 goto out;
4088 err = pci_restore_state(pdev);
4089 if (err)
4090 goto out;
4092 err = skge_reset(hw);
4093 if (err)
4094 goto out;
4096 for (i = 0; i < hw->ports; i++) {
4097 struct net_device *dev = hw->dev[i];
4099 if (netif_running(dev)) {
4100 err = skge_up(dev);
4102 if (err) {
4103 printk(KERN_ERR PFX "%s: could not up: %d\n",
4104 dev->name, err);
4105 dev_close(dev);
4106 goto out;
4110 out:
4111 return err;
4113 #endif
4115 static void skge_shutdown(struct pci_dev *pdev)
4117 struct skge_hw *hw = pci_get_drvdata(pdev);
4118 int i, wol = 0;
4120 if (!hw)
4121 return;
4123 for (i = 0; i < hw->ports; i++) {
4124 struct net_device *dev = hw->dev[i];
4125 struct skge_port *skge = netdev_priv(dev);
4127 if (skge->wol)
4128 skge_wol_init(skge);
4129 wol |= skge->wol;
4132 if (pci_enable_wake(pdev, PCI_D3cold, wol))
4133 pci_enable_wake(pdev, PCI_D3hot, wol);
4135 pci_disable_device(pdev);
4136 pci_set_power_state(pdev, PCI_D3hot);
4140 static struct pci_driver skge_driver = {
4141 .name = DRV_NAME,
4142 .id_table = skge_id_table,
4143 .probe = skge_probe,
4144 .remove = __devexit_p(skge_remove),
4145 #ifdef CONFIG_PM
4146 .suspend = skge_suspend,
4147 .resume = skge_resume,
4148 #endif
4149 .shutdown = skge_shutdown,
4152 static int __init skge_init_module(void)
4154 skge_debug_init();
4155 return pci_register_driver(&skge_driver);
4158 static void __exit skge_cleanup_module(void)
4160 pci_unregister_driver(&skge_driver);
4161 skge_debug_cleanup();
4164 module_init(skge_init_module);
4165 module_exit(skge_cleanup_module);