2 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
4 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
6 * Thanks to Essential Communication for providing us with hardware
7 * and very comprehensive documentation without which I would not have
8 * been able to write this driver. A special thank you to John Gibbon
9 * for sorting out the legal issues, with the NDA, allowing the code to
10 * be released under the GPL.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
18 * stupid bugs in my code.
20 * Softnet support and various other patches from Val Henson of
23 * PCI DMA mapping code partly based on work by Francois Romieu.
28 #define RX_DMA_SKBUFF 1
29 #define PKT_COPY_THRESHOLD 512
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/errno.h>
34 #include <linux/ioport.h>
35 #include <linux/pci.h>
36 #include <linux/kernel.h>
37 #include <linux/netdevice.h>
38 #include <linux/hippidevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/init.h>
41 #include <linux/delay.h>
45 #include <asm/system.h>
46 #include <asm/cache.h>
47 #include <asm/byteorder.h>
50 #include <asm/uaccess.h>
52 #define rr_if_busy(dev) netif_queue_stopped(dev)
53 #define rr_if_running(dev) netif_running(dev)
57 #define RUN_AT(x) (jiffies + (x))
60 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
61 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
62 MODULE_LICENSE("GPL");
64 static char version
[] __devinitdata
= "rrunner.c: v0.50 11/11/2002 Jes Sorensen (jes@wildopensource.com)\n";
67 * Implementation notes:
69 * The DMA engine only allows for DMA within physical 64KB chunks of
70 * memory. The current approach of the driver (and stack) is to use
71 * linear blocks of memory for the skbuffs. However, as the data block
72 * is always the first part of the skb and skbs are 2^n aligned so we
73 * are guarantted to get the whole block within one 64KB align 64KB
76 * On the long term, relying on being able to allocate 64KB linear
77 * chunks of memory is not feasible and the skb handling code and the
78 * stack will need to know about I/O vectors or something similar.
81 static int __devinit
rr_init_one(struct pci_dev
*pdev
,
82 const struct pci_device_id
*ent
)
84 struct net_device
*dev
;
85 static int version_disp
;
87 struct rr_private
*rrpriv
;
92 dev
= alloc_hippi_dev(sizeof(struct rr_private
));
96 ret
= pci_enable_device(pdev
);
102 rrpriv
= netdev_priv(dev
);
104 SET_NETDEV_DEV(dev
, &pdev
->dev
);
106 if (pci_request_regions(pdev
, "rrunner")) {
111 pci_set_drvdata(pdev
, dev
);
113 rrpriv
->pci_dev
= pdev
;
115 spin_lock_init(&rrpriv
->lock
);
117 dev
->irq
= pdev
->irq
;
118 dev
->open
= &rr_open
;
119 dev
->hard_start_xmit
= &rr_start_xmit
;
120 dev
->stop
= &rr_close
;
121 dev
->do_ioctl
= &rr_ioctl
;
123 dev
->base_addr
= pci_resource_start(pdev
, 0);
125 /* display version info if adapter is found */
127 /* set display flag to TRUE so that */
128 /* we only display this string ONCE */
133 pci_read_config_byte(pdev
, PCI_LATENCY_TIMER
, &pci_latency
);
134 if (pci_latency
<= 0x58){
136 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, pci_latency
);
139 pci_set_master(pdev
);
141 printk(KERN_INFO
"%s: Essential RoadRunner serial HIPPI "
142 "at 0x%08lx, irq %i, PCI latency %i\n", dev
->name
,
143 dev
->base_addr
, dev
->irq
, pci_latency
);
146 * Remap the regs into kernel space.
149 rrpriv
->regs
= ioremap(dev
->base_addr
, 0x1000);
152 printk(KERN_ERR
"%s: Unable to map I/O register, "
153 "RoadRunner will be disabled.\n", dev
->name
);
158 tmpptr
= pci_alloc_consistent(pdev
, TX_TOTAL_SIZE
, &ring_dma
);
159 rrpriv
->tx_ring
= tmpptr
;
160 rrpriv
->tx_ring_dma
= ring_dma
;
167 tmpptr
= pci_alloc_consistent(pdev
, RX_TOTAL_SIZE
, &ring_dma
);
168 rrpriv
->rx_ring
= tmpptr
;
169 rrpriv
->rx_ring_dma
= ring_dma
;
176 tmpptr
= pci_alloc_consistent(pdev
, EVT_RING_SIZE
, &ring_dma
);
177 rrpriv
->evt_ring
= tmpptr
;
178 rrpriv
->evt_ring_dma
= ring_dma
;
186 * Don't access any register before this point!
189 writel(readl(&rrpriv
->regs
->HostCtrl
) | NO_SWAP
,
190 &rrpriv
->regs
->HostCtrl
);
193 * Need to add a case for little-endian 64-bit hosts here.
200 ret
= register_netdev(dev
);
207 pci_free_consistent(pdev
, RX_TOTAL_SIZE
, rrpriv
->rx_ring
,
208 rrpriv
->rx_ring_dma
);
210 pci_free_consistent(pdev
, TX_TOTAL_SIZE
, rrpriv
->tx_ring
,
211 rrpriv
->tx_ring_dma
);
213 iounmap(rrpriv
->regs
);
215 pci_release_regions(pdev
);
216 pci_set_drvdata(pdev
, NULL
);
224 static void __devexit
rr_remove_one (struct pci_dev
*pdev
)
226 struct net_device
*dev
= pci_get_drvdata(pdev
);
229 struct rr_private
*rr
= netdev_priv(dev
);
231 if (!(readl(&rr
->regs
->HostCtrl
) & NIC_HALTED
)){
232 printk(KERN_ERR
"%s: trying to unload running NIC\n",
234 writel(HALT_NIC
, &rr
->regs
->HostCtrl
);
237 pci_free_consistent(pdev
, EVT_RING_SIZE
, rr
->evt_ring
,
239 pci_free_consistent(pdev
, RX_TOTAL_SIZE
, rr
->rx_ring
,
241 pci_free_consistent(pdev
, TX_TOTAL_SIZE
, rr
->tx_ring
,
243 unregister_netdev(dev
);
246 pci_release_regions(pdev
);
247 pci_disable_device(pdev
);
248 pci_set_drvdata(pdev
, NULL
);
254 * Commands are considered to be slow, thus there is no reason to
257 static void rr_issue_cmd(struct rr_private
*rrpriv
, struct cmd
*cmd
)
259 struct rr_regs __iomem
*regs
;
264 * This is temporary - it will go away in the final version.
265 * We probably also want to make this function inline.
267 if (readl(®s
->HostCtrl
) & NIC_HALTED
){
268 printk("issuing command for halted NIC, code 0x%x, "
269 "HostCtrl %08x\n", cmd
->code
, readl(®s
->HostCtrl
));
270 if (readl(®s
->Mode
) & FATAL_ERR
)
271 printk("error codes Fail1 %02x, Fail2 %02x\n",
272 readl(®s
->Fail1
), readl(®s
->Fail2
));
275 idx
= rrpriv
->info
->cmd_ctrl
.pi
;
277 writel(*(u32
*)(cmd
), ®s
->CmdRing
[idx
]);
280 idx
= (idx
- 1) % CMD_RING_ENTRIES
;
281 rrpriv
->info
->cmd_ctrl
.pi
= idx
;
284 if (readl(®s
->Mode
) & FATAL_ERR
)
285 printk("error code %02x\n", readl(®s
->Fail1
));
290 * Reset the board in a sensible manner. The NIC is already halted
291 * when we get here and a spin-lock is held.
293 static int rr_reset(struct net_device
*dev
)
295 struct rr_private
*rrpriv
;
296 struct rr_regs __iomem
*regs
;
300 rrpriv
= netdev_priv(dev
);
303 rr_load_firmware(dev
);
305 writel(0x01000000, ®s
->TX_state
);
306 writel(0xff800000, ®s
->RX_state
);
307 writel(0, ®s
->AssistState
);
308 writel(CLEAR_INTA
, ®s
->LocalCtrl
);
309 writel(0x01, ®s
->BrkPt
);
310 writel(0, ®s
->Timer
);
311 writel(0, ®s
->TimerRef
);
312 writel(RESET_DMA
, ®s
->DmaReadState
);
313 writel(RESET_DMA
, ®s
->DmaWriteState
);
314 writel(0, ®s
->DmaWriteHostHi
);
315 writel(0, ®s
->DmaWriteHostLo
);
316 writel(0, ®s
->DmaReadHostHi
);
317 writel(0, ®s
->DmaReadHostLo
);
318 writel(0, ®s
->DmaReadLen
);
319 writel(0, ®s
->DmaWriteLen
);
320 writel(0, ®s
->DmaWriteLcl
);
321 writel(0, ®s
->DmaWriteIPchecksum
);
322 writel(0, ®s
->DmaReadLcl
);
323 writel(0, ®s
->DmaReadIPchecksum
);
324 writel(0, ®s
->PciState
);
325 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
326 writel(SWAP_DATA
| PTR64BIT
| PTR_WD_SWAP
, ®s
->Mode
);
327 #elif (BITS_PER_LONG == 64)
328 writel(SWAP_DATA
| PTR64BIT
| PTR_WD_NOSWAP
, ®s
->Mode
);
330 writel(SWAP_DATA
| PTR32BIT
| PTR_WD_NOSWAP
, ®s
->Mode
);
335 * Don't worry, this is just black magic.
337 writel(0xdf000, ®s
->RxBase
);
338 writel(0xdf000, ®s
->RxPrd
);
339 writel(0xdf000, ®s
->RxCon
);
340 writel(0xce000, ®s
->TxBase
);
341 writel(0xce000, ®s
->TxPrd
);
342 writel(0xce000, ®s
->TxCon
);
343 writel(0, ®s
->RxIndPro
);
344 writel(0, ®s
->RxIndCon
);
345 writel(0, ®s
->RxIndRef
);
346 writel(0, ®s
->TxIndPro
);
347 writel(0, ®s
->TxIndCon
);
348 writel(0, ®s
->TxIndRef
);
349 writel(0xcc000, ®s
->pad10
[0]);
350 writel(0, ®s
->DrCmndPro
);
351 writel(0, ®s
->DrCmndCon
);
352 writel(0, ®s
->DwCmndPro
);
353 writel(0, ®s
->DwCmndCon
);
354 writel(0, ®s
->DwCmndRef
);
355 writel(0, ®s
->DrDataPro
);
356 writel(0, ®s
->DrDataCon
);
357 writel(0, ®s
->DrDataRef
);
358 writel(0, ®s
->DwDataPro
);
359 writel(0, ®s
->DwDataCon
);
360 writel(0, ®s
->DwDataRef
);
363 writel(0xffffffff, ®s
->MbEvent
);
364 writel(0, ®s
->Event
);
366 writel(0, ®s
->TxPi
);
367 writel(0, ®s
->IpRxPi
);
369 writel(0, ®s
->EvtCon
);
370 writel(0, ®s
->EvtPrd
);
372 rrpriv
->info
->evt_ctrl
.pi
= 0;
374 for (i
= 0; i
< CMD_RING_ENTRIES
; i
++)
375 writel(0, ®s
->CmdRing
[i
]);
378 * Why 32 ? is this not cache line size dependent?
380 writel(RBURST_64
|WBURST_64
, ®s
->PciState
);
383 start_pc
= rr_read_eeprom_word(rrpriv
,
384 offsetof(struct eeprom
, rncd_info
.FwStart
));
387 printk("%s: Executing firmware at address 0x%06x\n",
388 dev
->name
, start_pc
);
391 writel(start_pc
+ 0x800, ®s
->Pc
);
395 writel(start_pc
, ®s
->Pc
);
403 * Read a string from the EEPROM.
405 static unsigned int rr_read_eeprom(struct rr_private
*rrpriv
,
406 unsigned long offset
,
408 unsigned long length
)
410 struct rr_regs __iomem
*regs
= rrpriv
->regs
;
411 u32 misc
, io
, host
, i
;
413 io
= readl(®s
->ExtIo
);
414 writel(0, ®s
->ExtIo
);
415 misc
= readl(®s
->LocalCtrl
);
416 writel(0, ®s
->LocalCtrl
);
417 host
= readl(®s
->HostCtrl
);
418 writel(host
| HALT_NIC
, ®s
->HostCtrl
);
421 for (i
= 0; i
< length
; i
++){
422 writel((EEPROM_BASE
+ ((offset
+i
) << 3)), ®s
->WinBase
);
424 buf
[i
] = (readl(®s
->WinData
) >> 24) & 0xff;
428 writel(host
, ®s
->HostCtrl
);
429 writel(misc
, ®s
->LocalCtrl
);
430 writel(io
, ®s
->ExtIo
);
437 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
438 * it to our CPU byte-order.
440 static u32
rr_read_eeprom_word(struct rr_private
*rrpriv
,
445 if ((rr_read_eeprom(rrpriv
, offset
,
446 (unsigned char *)&word
, 4) == 4))
447 return be32_to_cpu(word
);
453 * Write a string to the EEPROM.
455 * This is only called when the firmware is not running.
457 static unsigned int write_eeprom(struct rr_private
*rrpriv
,
458 unsigned long offset
,
460 unsigned long length
)
462 struct rr_regs __iomem
*regs
= rrpriv
->regs
;
463 u32 misc
, io
, data
, i
, j
, ready
, error
= 0;
465 io
= readl(®s
->ExtIo
);
466 writel(0, ®s
->ExtIo
);
467 misc
= readl(®s
->LocalCtrl
);
468 writel(ENABLE_EEPROM_WRITE
, ®s
->LocalCtrl
);
471 for (i
= 0; i
< length
; i
++){
472 writel((EEPROM_BASE
+ ((offset
+i
) << 3)), ®s
->WinBase
);
476 * Only try to write the data if it is not the same
479 if ((readl(®s
->WinData
) & 0xff000000) != data
){
480 writel(data
, ®s
->WinData
);
486 if ((readl(®s
->WinData
) & 0xff000000) ==
491 printk("data mismatch: %08x, "
492 "WinData %08x\n", data
,
493 readl(®s
->WinData
));
501 writel(misc
, ®s
->LocalCtrl
);
502 writel(io
, ®s
->ExtIo
);
509 static int __devinit
rr_init(struct net_device
*dev
)
511 struct rr_private
*rrpriv
;
512 struct rr_regs __iomem
*regs
;
515 rrpriv
= netdev_priv(dev
);
518 rev
= readl(®s
->FwRev
);
519 rrpriv
->fw_rev
= rev
;
520 if (rev
> 0x00020024)
521 printk(" Firmware revision: %i.%i.%i\n", (rev
>> 16),
522 ((rev
>> 8) & 0xff), (rev
& 0xff));
523 else if (rev
>= 0x00020000) {
524 printk(" Firmware revision: %i.%i.%i (2.0.37 or "
525 "later is recommended)\n", (rev
>> 16),
526 ((rev
>> 8) & 0xff), (rev
& 0xff));
528 printk(" Firmware revision too old: %i.%i.%i, please "
529 "upgrade to 2.0.37 or later.\n",
530 (rev
>> 16), ((rev
>> 8) & 0xff), (rev
& 0xff));
534 printk(" Maximum receive rings %i\n", readl(®s
->MaxRxRng
));
538 * Read the hardware address from the eeprom. The HW address
539 * is not really necessary for HIPPI but awfully convenient.
540 * The pointer arithmetic to put it in dev_addr is ugly, but
541 * Donald Becker does it this way for the GigE version of this
542 * card and it's shorter and more portable than any
543 * other method I've seen. -VAL
546 *(__be16
*)(dev
->dev_addr
) =
547 htons(rr_read_eeprom_word(rrpriv
, offsetof(struct eeprom
, manf
.BoardULA
)));
548 *(__be32
*)(dev
->dev_addr
+2) =
549 htonl(rr_read_eeprom_word(rrpriv
, offsetof(struct eeprom
, manf
.BoardULA
[4])));
551 printk(" MAC: %pM\n", dev
->dev_addr
);
553 sram_size
= rr_read_eeprom_word(rrpriv
, 8);
554 printk(" SRAM size 0x%06x\n", sram_size
);
560 static int rr_init1(struct net_device
*dev
)
562 struct rr_private
*rrpriv
;
563 struct rr_regs __iomem
*regs
;
564 unsigned long myjif
, flags
;
570 rrpriv
= netdev_priv(dev
);
573 spin_lock_irqsave(&rrpriv
->lock
, flags
);
575 hostctrl
= readl(®s
->HostCtrl
);
576 writel(hostctrl
| HALT_NIC
| RR_CLEAR_INT
, ®s
->HostCtrl
);
579 if (hostctrl
& PARITY_ERR
){
580 printk("%s: Parity error halting NIC - this is serious!\n",
582 spin_unlock_irqrestore(&rrpriv
->lock
, flags
);
587 set_rxaddr(regs
, rrpriv
->rx_ctrl_dma
);
588 set_infoaddr(regs
, rrpriv
->info_dma
);
590 rrpriv
->info
->evt_ctrl
.entry_size
= sizeof(struct event
);
591 rrpriv
->info
->evt_ctrl
.entries
= EVT_RING_ENTRIES
;
592 rrpriv
->info
->evt_ctrl
.mode
= 0;
593 rrpriv
->info
->evt_ctrl
.pi
= 0;
594 set_rraddr(&rrpriv
->info
->evt_ctrl
.rngptr
, rrpriv
->evt_ring_dma
);
596 rrpriv
->info
->cmd_ctrl
.entry_size
= sizeof(struct cmd
);
597 rrpriv
->info
->cmd_ctrl
.entries
= CMD_RING_ENTRIES
;
598 rrpriv
->info
->cmd_ctrl
.mode
= 0;
599 rrpriv
->info
->cmd_ctrl
.pi
= 15;
601 for (i
= 0; i
< CMD_RING_ENTRIES
; i
++) {
602 writel(0, ®s
->CmdRing
[i
]);
605 for (i
= 0; i
< TX_RING_ENTRIES
; i
++) {
606 rrpriv
->tx_ring
[i
].size
= 0;
607 set_rraddr(&rrpriv
->tx_ring
[i
].addr
, 0);
608 rrpriv
->tx_skbuff
[i
] = NULL
;
610 rrpriv
->info
->tx_ctrl
.entry_size
= sizeof(struct tx_desc
);
611 rrpriv
->info
->tx_ctrl
.entries
= TX_RING_ENTRIES
;
612 rrpriv
->info
->tx_ctrl
.mode
= 0;
613 rrpriv
->info
->tx_ctrl
.pi
= 0;
614 set_rraddr(&rrpriv
->info
->tx_ctrl
.rngptr
, rrpriv
->tx_ring_dma
);
617 * Set dirty_tx before we start receiving interrupts, otherwise
618 * the interrupt handler might think it is supposed to process
619 * tx ints before we are up and running, which may cause a null
620 * pointer access in the int handler.
624 rrpriv
->dirty_rx
= rrpriv
->dirty_tx
= 0;
629 writel(0x5000, ®s
->ConRetry
);
630 writel(0x100, ®s
->ConRetryTmr
);
631 writel(0x500000, ®s
->ConTmout
);
632 writel(0x60, ®s
->IntrTmr
);
633 writel(0x500000, ®s
->TxDataMvTimeout
);
634 writel(0x200000, ®s
->RxDataMvTimeout
);
635 writel(0x80, ®s
->WriteDmaThresh
);
636 writel(0x80, ®s
->ReadDmaThresh
);
638 rrpriv
->fw_running
= 0;
641 hostctrl
&= ~(HALT_NIC
| INVALID_INST_B
| PARITY_ERR
);
642 writel(hostctrl
, ®s
->HostCtrl
);
645 spin_unlock_irqrestore(&rrpriv
->lock
, flags
);
647 for (i
= 0; i
< RX_RING_ENTRIES
; i
++) {
651 rrpriv
->rx_ring
[i
].mode
= 0;
652 skb
= alloc_skb(dev
->mtu
+ HIPPI_HLEN
, GFP_ATOMIC
);
654 printk(KERN_WARNING
"%s: Unable to allocate memory "
655 "for receive ring - halting NIC\n", dev
->name
);
659 rrpriv
->rx_skbuff
[i
] = skb
;
660 addr
= pci_map_single(rrpriv
->pci_dev
, skb
->data
,
661 dev
->mtu
+ HIPPI_HLEN
, PCI_DMA_FROMDEVICE
);
663 * Sanity test to see if we conflict with the DMA
664 * limitations of the Roadrunner.
666 if ((((unsigned long)skb
->data
) & 0xfff) > ~65320)
667 printk("skb alloc error\n");
669 set_rraddr(&rrpriv
->rx_ring
[i
].addr
, addr
);
670 rrpriv
->rx_ring
[i
].size
= dev
->mtu
+ HIPPI_HLEN
;
673 rrpriv
->rx_ctrl
[4].entry_size
= sizeof(struct rx_desc
);
674 rrpriv
->rx_ctrl
[4].entries
= RX_RING_ENTRIES
;
675 rrpriv
->rx_ctrl
[4].mode
= 8;
676 rrpriv
->rx_ctrl
[4].pi
= 0;
678 set_rraddr(&rrpriv
->rx_ctrl
[4].rngptr
, rrpriv
->rx_ring_dma
);
683 * Now start the FirmWare.
685 cmd
.code
= C_START_FW
;
689 rr_issue_cmd(rrpriv
, &cmd
);
692 * Give the FirmWare time to chew on the `get running' command.
694 myjif
= jiffies
+ 5 * HZ
;
695 while (time_before(jiffies
, myjif
) && !rrpriv
->fw_running
)
698 netif_start_queue(dev
);
704 * We might have gotten here because we are out of memory,
705 * make sure we release everything we allocated before failing
707 for (i
= 0; i
< RX_RING_ENTRIES
; i
++) {
708 struct sk_buff
*skb
= rrpriv
->rx_skbuff
[i
];
711 pci_unmap_single(rrpriv
->pci_dev
,
712 rrpriv
->rx_ring
[i
].addr
.addrlo
,
713 dev
->mtu
+ HIPPI_HLEN
,
715 rrpriv
->rx_ring
[i
].size
= 0;
716 set_rraddr(&rrpriv
->rx_ring
[i
].addr
, 0);
718 rrpriv
->rx_skbuff
[i
] = NULL
;
726 * All events are considered to be slow (RX/TX ints do not generate
727 * events) and are handled here, outside the main interrupt handler,
728 * to reduce the size of the handler.
730 static u32
rr_handle_event(struct net_device
*dev
, u32 prodidx
, u32 eidx
)
732 struct rr_private
*rrpriv
;
733 struct rr_regs __iomem
*regs
;
736 rrpriv
= netdev_priv(dev
);
739 while (prodidx
!= eidx
){
740 switch (rrpriv
->evt_ring
[eidx
].code
){
742 tmp
= readl(®s
->FwRev
);
743 printk(KERN_INFO
"%s: Firmware revision %i.%i.%i "
744 "up and running\n", dev
->name
,
745 (tmp
>> 16), ((tmp
>> 8) & 0xff), (tmp
& 0xff));
746 rrpriv
->fw_running
= 1;
747 writel(RX_RING_ENTRIES
- 1, ®s
->IpRxPi
);
751 printk(KERN_INFO
"%s: Optical link ON\n", dev
->name
);
754 printk(KERN_INFO
"%s: Optical link OFF\n", dev
->name
);
757 printk(KERN_WARNING
"%s: RX data not moving\n",
761 printk(KERN_INFO
"%s: The watchdog is here to see "
765 printk(KERN_ERR
"%s: HIPPI Internal NIC error\n",
767 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
772 printk(KERN_ERR
"%s: Host software error\n",
774 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
782 printk(KERN_WARNING
"%s: Connection rejected\n",
784 dev
->stats
.tx_aborted_errors
++;
787 printk(KERN_WARNING
"%s: Connection timeout\n",
791 printk(KERN_WARNING
"%s: HIPPI disconnect error\n",
793 dev
->stats
.tx_aborted_errors
++;
796 printk(KERN_ERR
"%s: HIPPI Internal Parity error\n",
798 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
803 printk(KERN_WARNING
"%s: Transmitter idle\n",
807 printk(KERN_WARNING
"%s: Link lost during transmit\n",
809 dev
->stats
.tx_aborted_errors
++;
810 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
815 printk(KERN_ERR
"%s: Invalid send ring block\n",
817 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
822 printk(KERN_ERR
"%s: Invalid send buffer address\n",
824 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
829 printk(KERN_ERR
"%s: Invalid descriptor address\n",
831 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
839 printk(KERN_INFO
"%s: Receive ring full\n", dev
->name
);
843 printk(KERN_WARNING
"%s: Receive parity error\n",
847 printk(KERN_WARNING
"%s: Receive LLRC error\n",
851 printk(KERN_WARNING
"%s: Receive packet length "
852 "error\n", dev
->name
);
855 printk(KERN_WARNING
"%s: Data checksum error\n",
859 printk(KERN_WARNING
"%s: Unexpected short burst "
860 "error\n", dev
->name
);
863 printk(KERN_WARNING
"%s: Recv. state transition"
864 " error\n", dev
->name
);
867 printk(KERN_WARNING
"%s: Unexpected data error\n",
871 printk(KERN_WARNING
"%s: Link lost error\n",
875 printk(KERN_WARNING
"%s: Framming Error\n",
879 printk(KERN_WARNING
"%s: Flag sync. lost during "
880 "packet\n", dev
->name
);
883 printk(KERN_ERR
"%s: Invalid receive buffer "
884 "address\n", dev
->name
);
885 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
890 printk(KERN_ERR
"%s: Invalid receive descriptor "
891 "address\n", dev
->name
);
892 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
897 printk(KERN_ERR
"%s: Invalid ring block\n",
899 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
904 /* Label packet to be dropped.
905 * Actual dropping occurs in rx
908 * The index of packet we get to drop is
909 * the index of the packet following
910 * the bad packet. -kbf
913 u16 index
= rrpriv
->evt_ring
[eidx
].index
;
914 index
= (index
+ (RX_RING_ENTRIES
- 1)) %
916 rrpriv
->rx_ring
[index
].mode
|=
917 (PACKET_BAD
| PACKET_END
);
921 printk(KERN_WARNING
"%s: Unhandled event 0x%02x\n",
922 dev
->name
, rrpriv
->evt_ring
[eidx
].code
);
924 eidx
= (eidx
+ 1) % EVT_RING_ENTRIES
;
927 rrpriv
->info
->evt_ctrl
.pi
= eidx
;
933 static void rx_int(struct net_device
*dev
, u32 rxlimit
, u32 index
)
935 struct rr_private
*rrpriv
= netdev_priv(dev
);
936 struct rr_regs __iomem
*regs
= rrpriv
->regs
;
939 struct rx_desc
*desc
;
942 desc
= &(rrpriv
->rx_ring
[index
]);
943 pkt_len
= desc
->size
;
945 printk("index %i, rxlimit %i\n", index
, rxlimit
);
946 printk("len %x, mode %x\n", pkt_len
, desc
->mode
);
948 if ( (rrpriv
->rx_ring
[index
].mode
& PACKET_BAD
) == PACKET_BAD
){
949 dev
->stats
.rx_dropped
++;
954 struct sk_buff
*skb
, *rx_skb
;
956 rx_skb
= rrpriv
->rx_skbuff
[index
];
958 if (pkt_len
< PKT_COPY_THRESHOLD
) {
959 skb
= alloc_skb(pkt_len
, GFP_ATOMIC
);
961 printk(KERN_WARNING
"%s: Unable to allocate skb (%i bytes), deferring packet\n", dev
->name
, pkt_len
);
962 dev
->stats
.rx_dropped
++;
965 pci_dma_sync_single_for_cpu(rrpriv
->pci_dev
,
970 memcpy(skb_put(skb
, pkt_len
),
971 rx_skb
->data
, pkt_len
);
973 pci_dma_sync_single_for_device(rrpriv
->pci_dev
,
979 struct sk_buff
*newskb
;
981 newskb
= alloc_skb(dev
->mtu
+ HIPPI_HLEN
,
986 pci_unmap_single(rrpriv
->pci_dev
,
987 desc
->addr
.addrlo
, dev
->mtu
+
988 HIPPI_HLEN
, PCI_DMA_FROMDEVICE
);
990 skb_put(skb
, pkt_len
);
991 rrpriv
->rx_skbuff
[index
] = newskb
;
992 addr
= pci_map_single(rrpriv
->pci_dev
,
994 dev
->mtu
+ HIPPI_HLEN
,
996 set_rraddr(&desc
->addr
, addr
);
998 printk("%s: Out of memory, deferring "
999 "packet\n", dev
->name
);
1000 dev
->stats
.rx_dropped
++;
1004 skb
->protocol
= hippi_type_trans(skb
, dev
);
1006 netif_rx(skb
); /* send it up */
1008 dev
->last_rx
= jiffies
;
1009 dev
->stats
.rx_packets
++;
1010 dev
->stats
.rx_bytes
+= pkt_len
;
1014 desc
->size
= dev
->mtu
+ HIPPI_HLEN
;
1016 if ((index
& 7) == 7)
1017 writel(index
, ®s
->IpRxPi
);
1019 index
= (index
+ 1) % RX_RING_ENTRIES
;
1020 } while(index
!= rxlimit
);
1022 rrpriv
->cur_rx
= index
;
1027 static irqreturn_t
rr_interrupt(int irq
, void *dev_id
)
1029 struct rr_private
*rrpriv
;
1030 struct rr_regs __iomem
*regs
;
1031 struct net_device
*dev
= (struct net_device
*)dev_id
;
1032 u32 prodidx
, rxindex
, eidx
, txcsmr
, rxlimit
, txcon
;
1034 rrpriv
= netdev_priv(dev
);
1035 regs
= rrpriv
->regs
;
1037 if (!(readl(®s
->HostCtrl
) & RR_INT
))
1040 spin_lock(&rrpriv
->lock
);
1042 prodidx
= readl(®s
->EvtPrd
);
1043 txcsmr
= (prodidx
>> 8) & 0xff;
1044 rxlimit
= (prodidx
>> 16) & 0xff;
1048 printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev
->name
,
1049 prodidx
, rrpriv
->info
->evt_ctrl
.pi
);
1052 * Order here is important. We must handle events
1053 * before doing anything else in order to catch
1054 * such things as LLRC errors, etc -kbf
1057 eidx
= rrpriv
->info
->evt_ctrl
.pi
;
1058 if (prodidx
!= eidx
)
1059 eidx
= rr_handle_event(dev
, prodidx
, eidx
);
1061 rxindex
= rrpriv
->cur_rx
;
1062 if (rxindex
!= rxlimit
)
1063 rx_int(dev
, rxlimit
, rxindex
);
1065 txcon
= rrpriv
->dirty_tx
;
1066 if (txcsmr
!= txcon
) {
1068 /* Due to occational firmware TX producer/consumer out
1069 * of sync. error need to check entry in ring -kbf
1071 if(rrpriv
->tx_skbuff
[txcon
]){
1072 struct tx_desc
*desc
;
1073 struct sk_buff
*skb
;
1075 desc
= &(rrpriv
->tx_ring
[txcon
]);
1076 skb
= rrpriv
->tx_skbuff
[txcon
];
1078 dev
->stats
.tx_packets
++;
1079 dev
->stats
.tx_bytes
+= skb
->len
;
1081 pci_unmap_single(rrpriv
->pci_dev
,
1082 desc
->addr
.addrlo
, skb
->len
,
1084 dev_kfree_skb_irq(skb
);
1086 rrpriv
->tx_skbuff
[txcon
] = NULL
;
1088 set_rraddr(&rrpriv
->tx_ring
[txcon
].addr
, 0);
1091 txcon
= (txcon
+ 1) % TX_RING_ENTRIES
;
1092 } while (txcsmr
!= txcon
);
1095 rrpriv
->dirty_tx
= txcon
;
1096 if (rrpriv
->tx_full
&& rr_if_busy(dev
) &&
1097 (((rrpriv
->info
->tx_ctrl
.pi
+ 1) % TX_RING_ENTRIES
)
1098 != rrpriv
->dirty_tx
)){
1099 rrpriv
->tx_full
= 0;
1100 netif_wake_queue(dev
);
1104 eidx
|= ((txcsmr
<< 8) | (rxlimit
<< 16));
1105 writel(eidx
, ®s
->EvtCon
);
1108 spin_unlock(&rrpriv
->lock
);
1112 static inline void rr_raz_tx(struct rr_private
*rrpriv
,
1113 struct net_device
*dev
)
1117 for (i
= 0; i
< TX_RING_ENTRIES
; i
++) {
1118 struct sk_buff
*skb
= rrpriv
->tx_skbuff
[i
];
1121 struct tx_desc
*desc
= &(rrpriv
->tx_ring
[i
]);
1123 pci_unmap_single(rrpriv
->pci_dev
, desc
->addr
.addrlo
,
1124 skb
->len
, PCI_DMA_TODEVICE
);
1126 set_rraddr(&desc
->addr
, 0);
1128 rrpriv
->tx_skbuff
[i
] = NULL
;
1134 static inline void rr_raz_rx(struct rr_private
*rrpriv
,
1135 struct net_device
*dev
)
1139 for (i
= 0; i
< RX_RING_ENTRIES
; i
++) {
1140 struct sk_buff
*skb
= rrpriv
->rx_skbuff
[i
];
1143 struct rx_desc
*desc
= &(rrpriv
->rx_ring
[i
]);
1145 pci_unmap_single(rrpriv
->pci_dev
, desc
->addr
.addrlo
,
1146 dev
->mtu
+ HIPPI_HLEN
, PCI_DMA_FROMDEVICE
);
1148 set_rraddr(&desc
->addr
, 0);
1150 rrpriv
->rx_skbuff
[i
] = NULL
;
1155 static void rr_timer(unsigned long data
)
1157 struct net_device
*dev
= (struct net_device
*)data
;
1158 struct rr_private
*rrpriv
= netdev_priv(dev
);
1159 struct rr_regs __iomem
*regs
= rrpriv
->regs
;
1160 unsigned long flags
;
1162 if (readl(®s
->HostCtrl
) & NIC_HALTED
){
1163 printk("%s: Restarting nic\n", dev
->name
);
1164 memset(rrpriv
->rx_ctrl
, 0, 256 * sizeof(struct ring_ctrl
));
1165 memset(rrpriv
->info
, 0, sizeof(struct rr_info
));
1168 rr_raz_tx(rrpriv
, dev
);
1169 rr_raz_rx(rrpriv
, dev
);
1171 if (rr_init1(dev
)) {
1172 spin_lock_irqsave(&rrpriv
->lock
, flags
);
1173 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
1175 spin_unlock_irqrestore(&rrpriv
->lock
, flags
);
1178 rrpriv
->timer
.expires
= RUN_AT(5*HZ
);
1179 add_timer(&rrpriv
->timer
);
1183 static int rr_open(struct net_device
*dev
)
1185 struct rr_private
*rrpriv
= netdev_priv(dev
);
1186 struct pci_dev
*pdev
= rrpriv
->pci_dev
;
1187 struct rr_regs __iomem
*regs
;
1189 unsigned long flags
;
1190 dma_addr_t dma_addr
;
1192 regs
= rrpriv
->regs
;
1194 if (rrpriv
->fw_rev
< 0x00020000) {
1195 printk(KERN_WARNING
"%s: trying to configure device with "
1196 "obsolete firmware\n", dev
->name
);
1201 rrpriv
->rx_ctrl
= pci_alloc_consistent(pdev
,
1202 256 * sizeof(struct ring_ctrl
),
1204 if (!rrpriv
->rx_ctrl
) {
1208 rrpriv
->rx_ctrl_dma
= dma_addr
;
1209 memset(rrpriv
->rx_ctrl
, 0, 256*sizeof(struct ring_ctrl
));
1211 rrpriv
->info
= pci_alloc_consistent(pdev
, sizeof(struct rr_info
),
1213 if (!rrpriv
->info
) {
1217 rrpriv
->info_dma
= dma_addr
;
1218 memset(rrpriv
->info
, 0, sizeof(struct rr_info
));
1221 spin_lock_irqsave(&rrpriv
->lock
, flags
);
1222 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
, ®s
->HostCtrl
);
1223 readl(®s
->HostCtrl
);
1224 spin_unlock_irqrestore(&rrpriv
->lock
, flags
);
1226 if (request_irq(dev
->irq
, rr_interrupt
, IRQF_SHARED
, dev
->name
, dev
)) {
1227 printk(KERN_WARNING
"%s: Requested IRQ %d is busy\n",
1228 dev
->name
, dev
->irq
);
1233 if ((ecode
= rr_init1(dev
)))
1236 /* Set the timer to switch to check for link beat and perhaps switch
1237 to an alternate media type. */
1238 init_timer(&rrpriv
->timer
);
1239 rrpriv
->timer
.expires
= RUN_AT(5*HZ
); /* 5 sec. watchdog */
1240 rrpriv
->timer
.data
= (unsigned long)dev
;
1241 rrpriv
->timer
.function
= &rr_timer
; /* timer handler */
1242 add_timer(&rrpriv
->timer
);
1244 netif_start_queue(dev
);
1249 spin_lock_irqsave(&rrpriv
->lock
, flags
);
1250 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
, ®s
->HostCtrl
);
1251 spin_unlock_irqrestore(&rrpriv
->lock
, flags
);
1254 pci_free_consistent(pdev
, sizeof(struct rr_info
), rrpriv
->info
,
1256 rrpriv
->info
= NULL
;
1258 if (rrpriv
->rx_ctrl
) {
1259 pci_free_consistent(pdev
, sizeof(struct ring_ctrl
),
1260 rrpriv
->rx_ctrl
, rrpriv
->rx_ctrl_dma
);
1261 rrpriv
->rx_ctrl
= NULL
;
1264 netif_stop_queue(dev
);
1270 static void rr_dump(struct net_device
*dev
)
1272 struct rr_private
*rrpriv
;
1273 struct rr_regs __iomem
*regs
;
1278 rrpriv
= netdev_priv(dev
);
1279 regs
= rrpriv
->regs
;
1281 printk("%s: dumping NIC TX rings\n", dev
->name
);
1283 printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1284 readl(®s
->RxPrd
), readl(®s
->TxPrd
),
1285 readl(®s
->EvtPrd
), readl(®s
->TxPi
),
1286 rrpriv
->info
->tx_ctrl
.pi
);
1288 printk("Error code 0x%x\n", readl(®s
->Fail1
));
1290 index
= (((readl(®s
->EvtPrd
) >> 8) & 0xff ) - 1) % EVT_RING_ENTRIES
;
1291 cons
= rrpriv
->dirty_tx
;
1292 printk("TX ring index %i, TX consumer %i\n",
1295 if (rrpriv
->tx_skbuff
[index
]){
1296 len
= min_t(int, 0x80, rrpriv
->tx_skbuff
[index
]->len
);
1297 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index
, len
, rrpriv
->tx_ring
[index
].size
);
1298 for (i
= 0; i
< len
; i
++){
1301 printk("%02x ", (unsigned char) rrpriv
->tx_skbuff
[index
]->data
[i
]);
1306 if (rrpriv
->tx_skbuff
[cons
]){
1307 len
= min_t(int, 0x80, rrpriv
->tx_skbuff
[cons
]->len
);
1308 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons
, len
, rrpriv
->tx_skbuff
[cons
]->len
);
1309 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1310 rrpriv
->tx_ring
[cons
].mode
,
1311 rrpriv
->tx_ring
[cons
].size
,
1312 (unsigned long long) rrpriv
->tx_ring
[cons
].addr
.addrlo
,
1313 (unsigned long)rrpriv
->tx_skbuff
[cons
]->data
,
1314 (unsigned int)rrpriv
->tx_skbuff
[cons
]->truesize
);
1315 for (i
= 0; i
< len
; i
++){
1318 printk("%02x ", (unsigned char)rrpriv
->tx_ring
[cons
].size
);
1323 printk("dumping TX ring info:\n");
1324 for (i
= 0; i
< TX_RING_ENTRIES
; i
++)
1325 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1326 rrpriv
->tx_ring
[i
].mode
,
1327 rrpriv
->tx_ring
[i
].size
,
1328 (unsigned long long) rrpriv
->tx_ring
[i
].addr
.addrlo
);
1333 static int rr_close(struct net_device
*dev
)
1335 struct rr_private
*rrpriv
;
1336 struct rr_regs __iomem
*regs
;
1337 unsigned long flags
;
1341 netif_stop_queue(dev
);
1343 rrpriv
= netdev_priv(dev
);
1344 regs
= rrpriv
->regs
;
1347 * Lock to make sure we are not cleaning up while another CPU
1348 * is handling interrupts.
1350 spin_lock_irqsave(&rrpriv
->lock
, flags
);
1352 tmp
= readl(®s
->HostCtrl
);
1353 if (tmp
& NIC_HALTED
){
1354 printk("%s: NIC already halted\n", dev
->name
);
1357 tmp
|= HALT_NIC
| RR_CLEAR_INT
;
1358 writel(tmp
, ®s
->HostCtrl
);
1359 readl(®s
->HostCtrl
);
1362 rrpriv
->fw_running
= 0;
1364 del_timer_sync(&rrpriv
->timer
);
1366 writel(0, ®s
->TxPi
);
1367 writel(0, ®s
->IpRxPi
);
1369 writel(0, ®s
->EvtCon
);
1370 writel(0, ®s
->EvtPrd
);
1372 for (i
= 0; i
< CMD_RING_ENTRIES
; i
++)
1373 writel(0, ®s
->CmdRing
[i
]);
1375 rrpriv
->info
->tx_ctrl
.entries
= 0;
1376 rrpriv
->info
->cmd_ctrl
.pi
= 0;
1377 rrpriv
->info
->evt_ctrl
.pi
= 0;
1378 rrpriv
->rx_ctrl
[4].entries
= 0;
1380 rr_raz_tx(rrpriv
, dev
);
1381 rr_raz_rx(rrpriv
, dev
);
1383 pci_free_consistent(rrpriv
->pci_dev
, 256 * sizeof(struct ring_ctrl
),
1384 rrpriv
->rx_ctrl
, rrpriv
->rx_ctrl_dma
);
1385 rrpriv
->rx_ctrl
= NULL
;
1387 pci_free_consistent(rrpriv
->pci_dev
, sizeof(struct rr_info
),
1388 rrpriv
->info
, rrpriv
->info_dma
);
1389 rrpriv
->info
= NULL
;
1391 free_irq(dev
->irq
, dev
);
1392 spin_unlock_irqrestore(&rrpriv
->lock
, flags
);
1398 static int rr_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
1400 struct rr_private
*rrpriv
= netdev_priv(dev
);
1401 struct rr_regs __iomem
*regs
= rrpriv
->regs
;
1402 struct hippi_cb
*hcb
= (struct hippi_cb
*) skb
->cb
;
1403 struct ring_ctrl
*txctrl
;
1404 unsigned long flags
;
1405 u32 index
, len
= skb
->len
;
1407 struct sk_buff
*new_skb
;
1409 if (readl(®s
->Mode
) & FATAL_ERR
)
1410 printk("error codes Fail1 %02x, Fail2 %02x\n",
1411 readl(®s
->Fail1
), readl(®s
->Fail2
));
1414 * We probably need to deal with tbusy here to prevent overruns.
1417 if (skb_headroom(skb
) < 8){
1418 printk("incoming skb too small - reallocating\n");
1419 if (!(new_skb
= dev_alloc_skb(len
+ 8))) {
1421 netif_wake_queue(dev
);
1424 skb_reserve(new_skb
, 8);
1425 skb_put(new_skb
, len
);
1426 skb_copy_from_linear_data(skb
, new_skb
->data
, len
);
1431 ifield
= (u32
*)skb_push(skb
, 8);
1434 ifield
[1] = hcb
->ifield
;
1437 * We don't need the lock before we are actually going to start
1438 * fiddling with the control blocks.
1440 spin_lock_irqsave(&rrpriv
->lock
, flags
);
1442 txctrl
= &rrpriv
->info
->tx_ctrl
;
1446 rrpriv
->tx_skbuff
[index
] = skb
;
1447 set_rraddr(&rrpriv
->tx_ring
[index
].addr
, pci_map_single(
1448 rrpriv
->pci_dev
, skb
->data
, len
+ 8, PCI_DMA_TODEVICE
));
1449 rrpriv
->tx_ring
[index
].size
= len
+ 8; /* include IFIELD */
1450 rrpriv
->tx_ring
[index
].mode
= PACKET_START
| PACKET_END
;
1451 txctrl
->pi
= (index
+ 1) % TX_RING_ENTRIES
;
1453 writel(txctrl
->pi
, ®s
->TxPi
);
1455 if (txctrl
->pi
== rrpriv
->dirty_tx
){
1456 rrpriv
->tx_full
= 1;
1457 netif_stop_queue(dev
);
1460 spin_unlock_irqrestore(&rrpriv
->lock
, flags
);
1462 dev
->trans_start
= jiffies
;
1468 * Read the firmware out of the EEPROM and put it into the SRAM
1469 * (or from user space - later)
1471 * This operation requires the NIC to be halted and is performed with
1472 * interrupts disabled and with the spinlock hold.
1474 static int rr_load_firmware(struct net_device
*dev
)
1476 struct rr_private
*rrpriv
;
1477 struct rr_regs __iomem
*regs
;
1478 size_t eptr
, segptr
;
1480 u32 localctrl
, sptr
, len
, tmp
;
1481 u32 p2len
, p2size
, nr_seg
, revision
, io
, sram_size
;
1483 rrpriv
= netdev_priv(dev
);
1484 regs
= rrpriv
->regs
;
1486 if (dev
->flags
& IFF_UP
)
1489 if (!(readl(®s
->HostCtrl
) & NIC_HALTED
)){
1490 printk("%s: Trying to load firmware to a running NIC.\n",
1495 localctrl
= readl(®s
->LocalCtrl
);
1496 writel(0, ®s
->LocalCtrl
);
1498 writel(0, ®s
->EvtPrd
);
1499 writel(0, ®s
->RxPrd
);
1500 writel(0, ®s
->TxPrd
);
1503 * First wipe the entire SRAM, otherwise we might run into all
1504 * kinds of trouble ... sigh, this took almost all afternoon
1507 io
= readl(®s
->ExtIo
);
1508 writel(0, ®s
->ExtIo
);
1509 sram_size
= rr_read_eeprom_word(rrpriv
, 8);
1511 for (i
= 200; i
< sram_size
/ 4; i
++){
1512 writel(i
* 4, ®s
->WinBase
);
1514 writel(0, ®s
->WinData
);
1517 writel(io
, ®s
->ExtIo
);
1520 eptr
= rr_read_eeprom_word(rrpriv
,
1521 offsetof(struct eeprom
, rncd_info
.AddrRunCodeSegs
));
1522 eptr
= ((eptr
& 0x1fffff) >> 3);
1524 p2len
= rr_read_eeprom_word(rrpriv
, 0x83*4);
1525 p2len
= (p2len
<< 2);
1526 p2size
= rr_read_eeprom_word(rrpriv
, 0x84*4);
1527 p2size
= ((p2size
& 0x1fffff) >> 3);
1529 if ((eptr
< p2size
) || (eptr
> (p2size
+ p2len
))){
1530 printk("%s: eptr is invalid\n", dev
->name
);
1534 revision
= rr_read_eeprom_word(rrpriv
,
1535 offsetof(struct eeprom
, manf
.HeaderFmt
));
1538 printk("%s: invalid firmware format (%i)\n",
1539 dev
->name
, revision
);
1543 nr_seg
= rr_read_eeprom_word(rrpriv
, eptr
);
1546 printk("%s: nr_seg %i\n", dev
->name
, nr_seg
);
1549 for (i
= 0; i
< nr_seg
; i
++){
1550 sptr
= rr_read_eeprom_word(rrpriv
, eptr
);
1552 len
= rr_read_eeprom_word(rrpriv
, eptr
);
1554 segptr
= rr_read_eeprom_word(rrpriv
, eptr
);
1555 segptr
= ((segptr
& 0x1fffff) >> 3);
1558 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1559 dev
->name
, i
, sptr
, len
, segptr
);
1561 for (j
= 0; j
< len
; j
++){
1562 tmp
= rr_read_eeprom_word(rrpriv
, segptr
);
1563 writel(sptr
, ®s
->WinBase
);
1565 writel(tmp
, ®s
->WinData
);
1573 writel(localctrl
, ®s
->LocalCtrl
);
1579 static int rr_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1581 struct rr_private
*rrpriv
;
1582 unsigned char *image
, *oldimage
;
1583 unsigned long flags
;
1585 int error
= -EOPNOTSUPP
;
1587 rrpriv
= netdev_priv(dev
);
1591 if (!capable(CAP_SYS_RAWIO
)){
1595 image
= kmalloc(EEPROM_WORDS
* sizeof(u32
), GFP_KERNEL
);
1597 printk(KERN_ERR
"%s: Unable to allocate memory "
1598 "for EEPROM image\n", dev
->name
);
1603 if (rrpriv
->fw_running
){
1604 printk("%s: Firmware already running\n", dev
->name
);
1609 spin_lock_irqsave(&rrpriv
->lock
, flags
);
1610 i
= rr_read_eeprom(rrpriv
, 0, image
, EEPROM_BYTES
);
1611 spin_unlock_irqrestore(&rrpriv
->lock
, flags
);
1612 if (i
!= EEPROM_BYTES
){
1613 printk(KERN_ERR
"%s: Error reading EEPROM\n",
1618 error
= copy_to_user(rq
->ifr_data
, image
, EEPROM_BYTES
);
1626 if (!capable(CAP_SYS_RAWIO
)){
1630 image
= kmalloc(EEPROM_WORDS
* sizeof(u32
), GFP_KERNEL
);
1631 oldimage
= kmalloc(EEPROM_WORDS
* sizeof(u32
), GFP_KERNEL
);
1632 if (!image
|| !oldimage
) {
1633 printk(KERN_ERR
"%s: Unable to allocate memory "
1634 "for EEPROM image\n", dev
->name
);
1639 error
= copy_from_user(image
, rq
->ifr_data
, EEPROM_BYTES
);
1645 if (rrpriv
->fw_running
){
1646 printk("%s: Firmware already running\n", dev
->name
);
1651 printk("%s: Updating EEPROM firmware\n", dev
->name
);
1653 spin_lock_irqsave(&rrpriv
->lock
, flags
);
1654 error
= write_eeprom(rrpriv
, 0, image
, EEPROM_BYTES
);
1656 printk(KERN_ERR
"%s: Error writing EEPROM\n",
1659 i
= rr_read_eeprom(rrpriv
, 0, oldimage
, EEPROM_BYTES
);
1660 spin_unlock_irqrestore(&rrpriv
->lock
, flags
);
1662 if (i
!= EEPROM_BYTES
)
1663 printk(KERN_ERR
"%s: Error reading back EEPROM "
1664 "image\n", dev
->name
);
1666 error
= memcmp(image
, oldimage
, EEPROM_BYTES
);
1668 printk(KERN_ERR
"%s: Error verifying EEPROM image\n",
1678 return put_user(0x52523032, (int __user
*)rq
->ifr_data
);
1684 static struct pci_device_id rr_pci_tbl
[] = {
1685 { PCI_VENDOR_ID_ESSENTIAL
, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER
,
1686 PCI_ANY_ID
, PCI_ANY_ID
, },
1689 MODULE_DEVICE_TABLE(pci
, rr_pci_tbl
);
1691 static struct pci_driver rr_driver
= {
1693 .id_table
= rr_pci_tbl
,
1694 .probe
= rr_init_one
,
1695 .remove
= __devexit_p(rr_remove_one
),
1698 static int __init
rr_init_module(void)
1700 return pci_register_driver(&rr_driver
);
1703 static void __exit
rr_cleanup_module(void)
1705 pci_unregister_driver(&rr_driver
);
1708 module_init(rr_init_module
);
1709 module_exit(rr_cleanup_module
);
1713 * compile-command: "gcc -D__KERNEL__ -I../../include -Wall -Wstrict-prototypes -O2 -pipe -fomit-frame-pointer -fno-strength-reduce -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -DMODULE -DMODVERSIONS -include ../../include/linux/modversions.h -c rrunner.c"