[SCSI] Retrieve the Caching mode page (version 2)
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / dma / shdma.c
blobdcc1b2139fffdbe5809857abfe124f2a0e984a75
1 /*
2 * Renesas SuperH DMA Engine support
4 * base is drivers/dma/flsdma.c
6 * Copyright (C) 2009 Nobuhiro Iwamatsu <iwamatsu.nobuhiro@renesas.com>
7 * Copyright (C) 2009 Renesas Solutions, Inc. All rights reserved.
8 * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved.
10 * This is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * - DMA of SuperH does not have Hardware DMA chain mode.
16 * - MAX DMA size is 16MB.
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/slab.h>
23 #include <linux/interrupt.h>
24 #include <linux/dmaengine.h>
25 #include <linux/delay.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/sh_dma.h>
30 #include <linux/notifier.h>
31 #include <linux/kdebug.h>
32 #include <linux/spinlock.h>
33 #include <linux/rculist.h>
34 #include "shdma.h"
36 /* DMA descriptor control */
37 enum sh_dmae_desc_status {
38 DESC_IDLE,
39 DESC_PREPARED,
40 DESC_SUBMITTED,
41 DESC_COMPLETED, /* completed, have to call callback */
42 DESC_WAITING, /* callback called, waiting for ack / re-submit */
45 #define NR_DESCS_PER_CHANNEL 32
46 /* Default MEMCPY transfer size = 2^2 = 4 bytes */
47 #define LOG2_DEFAULT_XFER_SIZE 2
50 * Used for write-side mutual exclusion for the global device list,
51 * read-side synchronization by way of RCU, and per-controller data.
53 static DEFINE_SPINLOCK(sh_dmae_lock);
54 static LIST_HEAD(sh_dmae_devices);
56 /* A bitmask with bits enough for enum sh_dmae_slave_chan_id */
57 static unsigned long sh_dmae_slave_used[BITS_TO_LONGS(SH_DMA_SLAVE_NUMBER)];
59 static void sh_dmae_chan_ld_cleanup(struct sh_dmae_chan *sh_chan, bool all);
61 static void sh_dmae_writel(struct sh_dmae_chan *sh_dc, u32 data, u32 reg)
63 __raw_writel(data, sh_dc->base + reg / sizeof(u32));
66 static u32 sh_dmae_readl(struct sh_dmae_chan *sh_dc, u32 reg)
68 return __raw_readl(sh_dc->base + reg / sizeof(u32));
71 static u16 dmaor_read(struct sh_dmae_device *shdev)
73 return __raw_readw(shdev->chan_reg + DMAOR / sizeof(u32));
76 static void dmaor_write(struct sh_dmae_device *shdev, u16 data)
78 __raw_writew(data, shdev->chan_reg + DMAOR / sizeof(u32));
82 * Reset DMA controller
84 * SH7780 has two DMAOR register
86 static void sh_dmae_ctl_stop(struct sh_dmae_device *shdev)
88 unsigned short dmaor;
89 unsigned long flags;
91 spin_lock_irqsave(&sh_dmae_lock, flags);
93 dmaor = dmaor_read(shdev);
94 dmaor_write(shdev, dmaor & ~(DMAOR_NMIF | DMAOR_AE | DMAOR_DME));
96 spin_unlock_irqrestore(&sh_dmae_lock, flags);
99 static int sh_dmae_rst(struct sh_dmae_device *shdev)
101 unsigned short dmaor;
102 unsigned long flags;
104 spin_lock_irqsave(&sh_dmae_lock, flags);
106 dmaor = dmaor_read(shdev) & ~(DMAOR_NMIF | DMAOR_AE | DMAOR_DME);
108 dmaor_write(shdev, dmaor | shdev->pdata->dmaor_init);
110 dmaor = dmaor_read(shdev);
112 spin_unlock_irqrestore(&sh_dmae_lock, flags);
114 if (dmaor & (DMAOR_AE | DMAOR_NMIF)) {
115 dev_warn(shdev->common.dev, "Can't initialize DMAOR.\n");
116 return -EIO;
118 return 0;
121 static bool dmae_is_busy(struct sh_dmae_chan *sh_chan)
123 u32 chcr = sh_dmae_readl(sh_chan, CHCR);
125 if ((chcr & (CHCR_DE | CHCR_TE)) == CHCR_DE)
126 return true; /* working */
128 return false; /* waiting */
131 static unsigned int calc_xmit_shift(struct sh_dmae_chan *sh_chan, u32 chcr)
133 struct sh_dmae_device *shdev = container_of(sh_chan->common.device,
134 struct sh_dmae_device, common);
135 struct sh_dmae_pdata *pdata = shdev->pdata;
136 int cnt = ((chcr & pdata->ts_low_mask) >> pdata->ts_low_shift) |
137 ((chcr & pdata->ts_high_mask) >> pdata->ts_high_shift);
139 if (cnt >= pdata->ts_shift_num)
140 cnt = 0;
142 return pdata->ts_shift[cnt];
145 static u32 log2size_to_chcr(struct sh_dmae_chan *sh_chan, int l2size)
147 struct sh_dmae_device *shdev = container_of(sh_chan->common.device,
148 struct sh_dmae_device, common);
149 struct sh_dmae_pdata *pdata = shdev->pdata;
150 int i;
152 for (i = 0; i < pdata->ts_shift_num; i++)
153 if (pdata->ts_shift[i] == l2size)
154 break;
156 if (i == pdata->ts_shift_num)
157 i = 0;
159 return ((i << pdata->ts_low_shift) & pdata->ts_low_mask) |
160 ((i << pdata->ts_high_shift) & pdata->ts_high_mask);
163 static void dmae_set_reg(struct sh_dmae_chan *sh_chan, struct sh_dmae_regs *hw)
165 sh_dmae_writel(sh_chan, hw->sar, SAR);
166 sh_dmae_writel(sh_chan, hw->dar, DAR);
167 sh_dmae_writel(sh_chan, hw->tcr >> sh_chan->xmit_shift, TCR);
170 static void dmae_start(struct sh_dmae_chan *sh_chan)
172 u32 chcr = sh_dmae_readl(sh_chan, CHCR);
174 chcr |= CHCR_DE | CHCR_IE;
175 sh_dmae_writel(sh_chan, chcr & ~CHCR_TE, CHCR);
178 static void dmae_halt(struct sh_dmae_chan *sh_chan)
180 u32 chcr = sh_dmae_readl(sh_chan, CHCR);
182 chcr &= ~(CHCR_DE | CHCR_TE | CHCR_IE);
183 sh_dmae_writel(sh_chan, chcr, CHCR);
186 static void dmae_init(struct sh_dmae_chan *sh_chan)
189 * Default configuration for dual address memory-memory transfer.
190 * 0x400 represents auto-request.
192 u32 chcr = DM_INC | SM_INC | 0x400 | log2size_to_chcr(sh_chan,
193 LOG2_DEFAULT_XFER_SIZE);
194 sh_chan->xmit_shift = calc_xmit_shift(sh_chan, chcr);
195 sh_dmae_writel(sh_chan, chcr, CHCR);
198 static int dmae_set_chcr(struct sh_dmae_chan *sh_chan, u32 val)
200 /* If DMA is active, cannot set CHCR. TODO: remove this superfluous check */
201 if (dmae_is_busy(sh_chan))
202 return -EBUSY;
204 sh_chan->xmit_shift = calc_xmit_shift(sh_chan, val);
205 sh_dmae_writel(sh_chan, val, CHCR);
207 return 0;
210 static int dmae_set_dmars(struct sh_dmae_chan *sh_chan, u16 val)
212 struct sh_dmae_device *shdev = container_of(sh_chan->common.device,
213 struct sh_dmae_device, common);
214 struct sh_dmae_pdata *pdata = shdev->pdata;
215 const struct sh_dmae_channel *chan_pdata = &pdata->channel[sh_chan->id];
216 u16 __iomem *addr = shdev->dmars + chan_pdata->dmars / sizeof(u16);
217 int shift = chan_pdata->dmars_bit;
219 if (dmae_is_busy(sh_chan))
220 return -EBUSY;
222 __raw_writew((__raw_readw(addr) & (0xff00 >> shift)) | (val << shift),
223 addr);
225 return 0;
228 static dma_cookie_t sh_dmae_tx_submit(struct dma_async_tx_descriptor *tx)
230 struct sh_desc *desc = tx_to_sh_desc(tx), *chunk, *last = desc, *c;
231 struct sh_dmae_chan *sh_chan = to_sh_chan(tx->chan);
232 dma_async_tx_callback callback = tx->callback;
233 dma_cookie_t cookie;
235 spin_lock_bh(&sh_chan->desc_lock);
237 cookie = sh_chan->common.cookie;
238 cookie++;
239 if (cookie < 0)
240 cookie = 1;
242 sh_chan->common.cookie = cookie;
243 tx->cookie = cookie;
245 /* Mark all chunks of this descriptor as submitted, move to the queue */
246 list_for_each_entry_safe(chunk, c, desc->node.prev, node) {
248 * All chunks are on the global ld_free, so, we have to find
249 * the end of the chain ourselves
251 if (chunk != desc && (chunk->mark == DESC_IDLE ||
252 chunk->async_tx.cookie > 0 ||
253 chunk->async_tx.cookie == -EBUSY ||
254 &chunk->node == &sh_chan->ld_free))
255 break;
256 chunk->mark = DESC_SUBMITTED;
257 /* Callback goes to the last chunk */
258 chunk->async_tx.callback = NULL;
259 chunk->cookie = cookie;
260 list_move_tail(&chunk->node, &sh_chan->ld_queue);
261 last = chunk;
264 last->async_tx.callback = callback;
265 last->async_tx.callback_param = tx->callback_param;
267 dev_dbg(sh_chan->dev, "submit #%d@%p on %d: %x[%d] -> %x\n",
268 tx->cookie, &last->async_tx, sh_chan->id,
269 desc->hw.sar, desc->hw.tcr, desc->hw.dar);
271 spin_unlock_bh(&sh_chan->desc_lock);
273 return cookie;
276 /* Called with desc_lock held */
277 static struct sh_desc *sh_dmae_get_desc(struct sh_dmae_chan *sh_chan)
279 struct sh_desc *desc;
281 list_for_each_entry(desc, &sh_chan->ld_free, node)
282 if (desc->mark != DESC_PREPARED) {
283 BUG_ON(desc->mark != DESC_IDLE);
284 list_del(&desc->node);
285 return desc;
288 return NULL;
291 static const struct sh_dmae_slave_config *sh_dmae_find_slave(
292 struct sh_dmae_chan *sh_chan, struct sh_dmae_slave *param)
294 struct dma_device *dma_dev = sh_chan->common.device;
295 struct sh_dmae_device *shdev = container_of(dma_dev,
296 struct sh_dmae_device, common);
297 struct sh_dmae_pdata *pdata = shdev->pdata;
298 int i;
300 if (param->slave_id >= SH_DMA_SLAVE_NUMBER)
301 return NULL;
303 for (i = 0; i < pdata->slave_num; i++)
304 if (pdata->slave[i].slave_id == param->slave_id)
305 return pdata->slave + i;
307 return NULL;
310 static int sh_dmae_alloc_chan_resources(struct dma_chan *chan)
312 struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
313 struct sh_desc *desc;
314 struct sh_dmae_slave *param = chan->private;
315 int ret;
317 pm_runtime_get_sync(sh_chan->dev);
320 * This relies on the guarantee from dmaengine that alloc_chan_resources
321 * never runs concurrently with itself or free_chan_resources.
323 if (param) {
324 const struct sh_dmae_slave_config *cfg;
326 cfg = sh_dmae_find_slave(sh_chan, param);
327 if (!cfg) {
328 ret = -EINVAL;
329 goto efindslave;
332 if (test_and_set_bit(param->slave_id, sh_dmae_slave_used)) {
333 ret = -EBUSY;
334 goto etestused;
337 param->config = cfg;
339 dmae_set_dmars(sh_chan, cfg->mid_rid);
340 dmae_set_chcr(sh_chan, cfg->chcr);
341 } else if ((sh_dmae_readl(sh_chan, CHCR) & 0xf00) != 0x400) {
342 dmae_init(sh_chan);
345 spin_lock_bh(&sh_chan->desc_lock);
346 while (sh_chan->descs_allocated < NR_DESCS_PER_CHANNEL) {
347 spin_unlock_bh(&sh_chan->desc_lock);
348 desc = kzalloc(sizeof(struct sh_desc), GFP_KERNEL);
349 if (!desc) {
350 spin_lock_bh(&sh_chan->desc_lock);
351 break;
353 dma_async_tx_descriptor_init(&desc->async_tx,
354 &sh_chan->common);
355 desc->async_tx.tx_submit = sh_dmae_tx_submit;
356 desc->mark = DESC_IDLE;
358 spin_lock_bh(&sh_chan->desc_lock);
359 list_add(&desc->node, &sh_chan->ld_free);
360 sh_chan->descs_allocated++;
362 spin_unlock_bh(&sh_chan->desc_lock);
364 if (!sh_chan->descs_allocated) {
365 ret = -ENOMEM;
366 goto edescalloc;
369 return sh_chan->descs_allocated;
371 edescalloc:
372 if (param)
373 clear_bit(param->slave_id, sh_dmae_slave_used);
374 etestused:
375 efindslave:
376 pm_runtime_put(sh_chan->dev);
377 return ret;
381 * sh_dma_free_chan_resources - Free all resources of the channel.
383 static void sh_dmae_free_chan_resources(struct dma_chan *chan)
385 struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
386 struct sh_desc *desc, *_desc;
387 LIST_HEAD(list);
388 int descs = sh_chan->descs_allocated;
390 /* Protect against ISR */
391 spin_lock_irq(&sh_chan->desc_lock);
392 dmae_halt(sh_chan);
393 spin_unlock_irq(&sh_chan->desc_lock);
395 /* Now no new interrupts will occur */
397 /* Prepared and not submitted descriptors can still be on the queue */
398 if (!list_empty(&sh_chan->ld_queue))
399 sh_dmae_chan_ld_cleanup(sh_chan, true);
401 if (chan->private) {
402 /* The caller is holding dma_list_mutex */
403 struct sh_dmae_slave *param = chan->private;
404 clear_bit(param->slave_id, sh_dmae_slave_used);
405 chan->private = NULL;
408 spin_lock_bh(&sh_chan->desc_lock);
410 list_splice_init(&sh_chan->ld_free, &list);
411 sh_chan->descs_allocated = 0;
413 spin_unlock_bh(&sh_chan->desc_lock);
415 if (descs > 0)
416 pm_runtime_put(sh_chan->dev);
418 list_for_each_entry_safe(desc, _desc, &list, node)
419 kfree(desc);
423 * sh_dmae_add_desc - get, set up and return one transfer descriptor
424 * @sh_chan: DMA channel
425 * @flags: DMA transfer flags
426 * @dest: destination DMA address, incremented when direction equals
427 * DMA_FROM_DEVICE or DMA_BIDIRECTIONAL
428 * @src: source DMA address, incremented when direction equals
429 * DMA_TO_DEVICE or DMA_BIDIRECTIONAL
430 * @len: DMA transfer length
431 * @first: if NULL, set to the current descriptor and cookie set to -EBUSY
432 * @direction: needed for slave DMA to decide which address to keep constant,
433 * equals DMA_BIDIRECTIONAL for MEMCPY
434 * Returns 0 or an error
435 * Locks: called with desc_lock held
437 static struct sh_desc *sh_dmae_add_desc(struct sh_dmae_chan *sh_chan,
438 unsigned long flags, dma_addr_t *dest, dma_addr_t *src, size_t *len,
439 struct sh_desc **first, enum dma_data_direction direction)
441 struct sh_desc *new;
442 size_t copy_size;
444 if (!*len)
445 return NULL;
447 /* Allocate the link descriptor from the free list */
448 new = sh_dmae_get_desc(sh_chan);
449 if (!new) {
450 dev_err(sh_chan->dev, "No free link descriptor available\n");
451 return NULL;
454 copy_size = min(*len, (size_t)SH_DMA_TCR_MAX + 1);
456 new->hw.sar = *src;
457 new->hw.dar = *dest;
458 new->hw.tcr = copy_size;
460 if (!*first) {
461 /* First desc */
462 new->async_tx.cookie = -EBUSY;
463 *first = new;
464 } else {
465 /* Other desc - invisible to the user */
466 new->async_tx.cookie = -EINVAL;
469 dev_dbg(sh_chan->dev,
470 "chaining (%u/%u)@%x -> %x with %p, cookie %d, shift %d\n",
471 copy_size, *len, *src, *dest, &new->async_tx,
472 new->async_tx.cookie, sh_chan->xmit_shift);
474 new->mark = DESC_PREPARED;
475 new->async_tx.flags = flags;
476 new->direction = direction;
478 *len -= copy_size;
479 if (direction == DMA_BIDIRECTIONAL || direction == DMA_TO_DEVICE)
480 *src += copy_size;
481 if (direction == DMA_BIDIRECTIONAL || direction == DMA_FROM_DEVICE)
482 *dest += copy_size;
484 return new;
488 * sh_dmae_prep_sg - prepare transfer descriptors from an SG list
490 * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also
491 * converted to scatter-gather to guarantee consistent locking and a correct
492 * list manipulation. For slave DMA direction carries the usual meaning, and,
493 * logically, the SG list is RAM and the addr variable contains slave address,
494 * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_BIDIRECTIONAL
495 * and the SG list contains only one element and points at the source buffer.
497 static struct dma_async_tx_descriptor *sh_dmae_prep_sg(struct sh_dmae_chan *sh_chan,
498 struct scatterlist *sgl, unsigned int sg_len, dma_addr_t *addr,
499 enum dma_data_direction direction, unsigned long flags)
501 struct scatterlist *sg;
502 struct sh_desc *first = NULL, *new = NULL /* compiler... */;
503 LIST_HEAD(tx_list);
504 int chunks = 0;
505 int i;
507 if (!sg_len)
508 return NULL;
510 for_each_sg(sgl, sg, sg_len, i)
511 chunks += (sg_dma_len(sg) + SH_DMA_TCR_MAX) /
512 (SH_DMA_TCR_MAX + 1);
514 /* Have to lock the whole loop to protect against concurrent release */
515 spin_lock_bh(&sh_chan->desc_lock);
518 * Chaining:
519 * first descriptor is what user is dealing with in all API calls, its
520 * cookie is at first set to -EBUSY, at tx-submit to a positive
521 * number
522 * if more than one chunk is needed further chunks have cookie = -EINVAL
523 * the last chunk, if not equal to the first, has cookie = -ENOSPC
524 * all chunks are linked onto the tx_list head with their .node heads
525 * only during this function, then they are immediately spliced
526 * back onto the free list in form of a chain
528 for_each_sg(sgl, sg, sg_len, i) {
529 dma_addr_t sg_addr = sg_dma_address(sg);
530 size_t len = sg_dma_len(sg);
532 if (!len)
533 goto err_get_desc;
535 do {
536 dev_dbg(sh_chan->dev, "Add SG #%d@%p[%d], dma %llx\n",
537 i, sg, len, (unsigned long long)sg_addr);
539 if (direction == DMA_FROM_DEVICE)
540 new = sh_dmae_add_desc(sh_chan, flags,
541 &sg_addr, addr, &len, &first,
542 direction);
543 else
544 new = sh_dmae_add_desc(sh_chan, flags,
545 addr, &sg_addr, &len, &first,
546 direction);
547 if (!new)
548 goto err_get_desc;
550 new->chunks = chunks--;
551 list_add_tail(&new->node, &tx_list);
552 } while (len);
555 if (new != first)
556 new->async_tx.cookie = -ENOSPC;
558 /* Put them back on the free list, so, they don't get lost */
559 list_splice_tail(&tx_list, &sh_chan->ld_free);
561 spin_unlock_bh(&sh_chan->desc_lock);
563 return &first->async_tx;
565 err_get_desc:
566 list_for_each_entry(new, &tx_list, node)
567 new->mark = DESC_IDLE;
568 list_splice(&tx_list, &sh_chan->ld_free);
570 spin_unlock_bh(&sh_chan->desc_lock);
572 return NULL;
575 static struct dma_async_tx_descriptor *sh_dmae_prep_memcpy(
576 struct dma_chan *chan, dma_addr_t dma_dest, dma_addr_t dma_src,
577 size_t len, unsigned long flags)
579 struct sh_dmae_chan *sh_chan;
580 struct scatterlist sg;
582 if (!chan || !len)
583 return NULL;
585 sh_chan = to_sh_chan(chan);
587 sg_init_table(&sg, 1);
588 sg_set_page(&sg, pfn_to_page(PFN_DOWN(dma_src)), len,
589 offset_in_page(dma_src));
590 sg_dma_address(&sg) = dma_src;
591 sg_dma_len(&sg) = len;
593 return sh_dmae_prep_sg(sh_chan, &sg, 1, &dma_dest, DMA_BIDIRECTIONAL,
594 flags);
597 static struct dma_async_tx_descriptor *sh_dmae_prep_slave_sg(
598 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
599 enum dma_data_direction direction, unsigned long flags)
601 struct sh_dmae_slave *param;
602 struct sh_dmae_chan *sh_chan;
603 dma_addr_t slave_addr;
605 if (!chan)
606 return NULL;
608 sh_chan = to_sh_chan(chan);
609 param = chan->private;
611 /* Someone calling slave DMA on a public channel? */
612 if (!param || !sg_len) {
613 dev_warn(sh_chan->dev, "%s: bad parameter: %p, %d, %d\n",
614 __func__, param, sg_len, param ? param->slave_id : -1);
615 return NULL;
618 slave_addr = param->config->addr;
621 * if (param != NULL), this is a successfully requested slave channel,
622 * therefore param->config != NULL too.
624 return sh_dmae_prep_sg(sh_chan, sgl, sg_len, &slave_addr,
625 direction, flags);
628 static int sh_dmae_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
629 unsigned long arg)
631 struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
633 /* Only supports DMA_TERMINATE_ALL */
634 if (cmd != DMA_TERMINATE_ALL)
635 return -ENXIO;
637 if (!chan)
638 return -EINVAL;
640 spin_lock_bh(&sh_chan->desc_lock);
641 dmae_halt(sh_chan);
643 if (!list_empty(&sh_chan->ld_queue)) {
644 /* Record partial transfer */
645 struct sh_desc *desc = list_entry(sh_chan->ld_queue.next,
646 struct sh_desc, node);
647 desc->partial = (desc->hw.tcr - sh_dmae_readl(sh_chan, TCR)) <<
648 sh_chan->xmit_shift;
651 spin_unlock_bh(&sh_chan->desc_lock);
653 sh_dmae_chan_ld_cleanup(sh_chan, true);
655 return 0;
658 static dma_async_tx_callback __ld_cleanup(struct sh_dmae_chan *sh_chan, bool all)
660 struct sh_desc *desc, *_desc;
661 /* Is the "exposed" head of a chain acked? */
662 bool head_acked = false;
663 dma_cookie_t cookie = 0;
664 dma_async_tx_callback callback = NULL;
665 void *param = NULL;
667 spin_lock_bh(&sh_chan->desc_lock);
668 list_for_each_entry_safe(desc, _desc, &sh_chan->ld_queue, node) {
669 struct dma_async_tx_descriptor *tx = &desc->async_tx;
671 BUG_ON(tx->cookie > 0 && tx->cookie != desc->cookie);
672 BUG_ON(desc->mark != DESC_SUBMITTED &&
673 desc->mark != DESC_COMPLETED &&
674 desc->mark != DESC_WAITING);
677 * queue is ordered, and we use this loop to (1) clean up all
678 * completed descriptors, and to (2) update descriptor flags of
679 * any chunks in a (partially) completed chain
681 if (!all && desc->mark == DESC_SUBMITTED &&
682 desc->cookie != cookie)
683 break;
685 if (tx->cookie > 0)
686 cookie = tx->cookie;
688 if (desc->mark == DESC_COMPLETED && desc->chunks == 1) {
689 if (sh_chan->completed_cookie != desc->cookie - 1)
690 dev_dbg(sh_chan->dev,
691 "Completing cookie %d, expected %d\n",
692 desc->cookie,
693 sh_chan->completed_cookie + 1);
694 sh_chan->completed_cookie = desc->cookie;
697 /* Call callback on the last chunk */
698 if (desc->mark == DESC_COMPLETED && tx->callback) {
699 desc->mark = DESC_WAITING;
700 callback = tx->callback;
701 param = tx->callback_param;
702 dev_dbg(sh_chan->dev, "descriptor #%d@%p on %d callback\n",
703 tx->cookie, tx, sh_chan->id);
704 BUG_ON(desc->chunks != 1);
705 break;
708 if (tx->cookie > 0 || tx->cookie == -EBUSY) {
709 if (desc->mark == DESC_COMPLETED) {
710 BUG_ON(tx->cookie < 0);
711 desc->mark = DESC_WAITING;
713 head_acked = async_tx_test_ack(tx);
714 } else {
715 switch (desc->mark) {
716 case DESC_COMPLETED:
717 desc->mark = DESC_WAITING;
718 /* Fall through */
719 case DESC_WAITING:
720 if (head_acked)
721 async_tx_ack(&desc->async_tx);
725 dev_dbg(sh_chan->dev, "descriptor %p #%d completed.\n",
726 tx, tx->cookie);
728 if (((desc->mark == DESC_COMPLETED ||
729 desc->mark == DESC_WAITING) &&
730 async_tx_test_ack(&desc->async_tx)) || all) {
731 /* Remove from ld_queue list */
732 desc->mark = DESC_IDLE;
733 list_move(&desc->node, &sh_chan->ld_free);
737 if (all && !callback)
739 * Terminating and the loop completed normally: forgive
740 * uncompleted cookies
742 sh_chan->completed_cookie = sh_chan->common.cookie;
744 spin_unlock_bh(&sh_chan->desc_lock);
746 if (callback)
747 callback(param);
749 return callback;
753 * sh_chan_ld_cleanup - Clean up link descriptors
755 * This function cleans up the ld_queue of DMA channel.
757 static void sh_dmae_chan_ld_cleanup(struct sh_dmae_chan *sh_chan, bool all)
759 while (__ld_cleanup(sh_chan, all))
763 static void sh_chan_xfer_ld_queue(struct sh_dmae_chan *sh_chan)
765 struct sh_desc *desc;
767 spin_lock_bh(&sh_chan->desc_lock);
768 /* DMA work check */
769 if (dmae_is_busy(sh_chan)) {
770 spin_unlock_bh(&sh_chan->desc_lock);
771 return;
774 /* Find the first not transferred descriptor */
775 list_for_each_entry(desc, &sh_chan->ld_queue, node)
776 if (desc->mark == DESC_SUBMITTED) {
777 dev_dbg(sh_chan->dev, "Queue #%d to %d: %u@%x -> %x\n",
778 desc->async_tx.cookie, sh_chan->id,
779 desc->hw.tcr, desc->hw.sar, desc->hw.dar);
780 /* Get the ld start address from ld_queue */
781 dmae_set_reg(sh_chan, &desc->hw);
782 dmae_start(sh_chan);
783 break;
786 spin_unlock_bh(&sh_chan->desc_lock);
789 static void sh_dmae_memcpy_issue_pending(struct dma_chan *chan)
791 struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
792 sh_chan_xfer_ld_queue(sh_chan);
795 static enum dma_status sh_dmae_tx_status(struct dma_chan *chan,
796 dma_cookie_t cookie,
797 struct dma_tx_state *txstate)
799 struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
800 dma_cookie_t last_used;
801 dma_cookie_t last_complete;
802 enum dma_status status;
804 sh_dmae_chan_ld_cleanup(sh_chan, false);
806 /* First read completed cookie to avoid a skew */
807 last_complete = sh_chan->completed_cookie;
808 rmb();
809 last_used = chan->cookie;
810 BUG_ON(last_complete < 0);
811 dma_set_tx_state(txstate, last_complete, last_used, 0);
813 spin_lock_bh(&sh_chan->desc_lock);
815 status = dma_async_is_complete(cookie, last_complete, last_used);
818 * If we don't find cookie on the queue, it has been aborted and we have
819 * to report error
821 if (status != DMA_SUCCESS) {
822 struct sh_desc *desc;
823 status = DMA_ERROR;
824 list_for_each_entry(desc, &sh_chan->ld_queue, node)
825 if (desc->cookie == cookie) {
826 status = DMA_IN_PROGRESS;
827 break;
831 spin_unlock_bh(&sh_chan->desc_lock);
833 return status;
836 static irqreturn_t sh_dmae_interrupt(int irq, void *data)
838 irqreturn_t ret = IRQ_NONE;
839 struct sh_dmae_chan *sh_chan = data;
840 u32 chcr;
842 spin_lock(&sh_chan->desc_lock);
844 chcr = sh_dmae_readl(sh_chan, CHCR);
846 if (chcr & CHCR_TE) {
847 /* DMA stop */
848 dmae_halt(sh_chan);
850 ret = IRQ_HANDLED;
851 tasklet_schedule(&sh_chan->tasklet);
854 spin_unlock(&sh_chan->desc_lock);
856 return ret;
859 /* Called from error IRQ or NMI */
860 static bool sh_dmae_reset(struct sh_dmae_device *shdev)
862 unsigned int handled = 0;
863 int i;
865 /* halt the dma controller */
866 sh_dmae_ctl_stop(shdev);
868 /* We cannot detect, which channel caused the error, have to reset all */
869 for (i = 0; i < SH_DMAC_MAX_CHANNELS; i++) {
870 struct sh_dmae_chan *sh_chan = shdev->chan[i];
871 struct sh_desc *desc;
872 LIST_HEAD(dl);
874 if (!sh_chan)
875 continue;
877 spin_lock(&sh_chan->desc_lock);
879 /* Stop the channel */
880 dmae_halt(sh_chan);
882 list_splice_init(&sh_chan->ld_queue, &dl);
884 spin_unlock(&sh_chan->desc_lock);
886 /* Complete all */
887 list_for_each_entry(desc, &dl, node) {
888 struct dma_async_tx_descriptor *tx = &desc->async_tx;
889 desc->mark = DESC_IDLE;
890 if (tx->callback)
891 tx->callback(tx->callback_param);
894 spin_lock(&sh_chan->desc_lock);
895 list_splice(&dl, &sh_chan->ld_free);
896 spin_unlock(&sh_chan->desc_lock);
898 handled++;
901 sh_dmae_rst(shdev);
903 return !!handled;
906 static irqreturn_t sh_dmae_err(int irq, void *data)
908 struct sh_dmae_device *shdev = data;
910 if (!(dmaor_read(shdev) & DMAOR_AE))
911 return IRQ_NONE;
913 sh_dmae_reset(data);
914 return IRQ_HANDLED;
917 static void dmae_do_tasklet(unsigned long data)
919 struct sh_dmae_chan *sh_chan = (struct sh_dmae_chan *)data;
920 struct sh_desc *desc;
921 u32 sar_buf = sh_dmae_readl(sh_chan, SAR);
922 u32 dar_buf = sh_dmae_readl(sh_chan, DAR);
924 spin_lock(&sh_chan->desc_lock);
925 list_for_each_entry(desc, &sh_chan->ld_queue, node) {
926 if (desc->mark == DESC_SUBMITTED &&
927 ((desc->direction == DMA_FROM_DEVICE &&
928 (desc->hw.dar + desc->hw.tcr) == dar_buf) ||
929 (desc->hw.sar + desc->hw.tcr) == sar_buf)) {
930 dev_dbg(sh_chan->dev, "done #%d@%p dst %u\n",
931 desc->async_tx.cookie, &desc->async_tx,
932 desc->hw.dar);
933 desc->mark = DESC_COMPLETED;
934 break;
937 spin_unlock(&sh_chan->desc_lock);
939 /* Next desc */
940 sh_chan_xfer_ld_queue(sh_chan);
941 sh_dmae_chan_ld_cleanup(sh_chan, false);
944 static bool sh_dmae_nmi_notify(struct sh_dmae_device *shdev)
946 /* Fast path out if NMIF is not asserted for this controller */
947 if ((dmaor_read(shdev) & DMAOR_NMIF) == 0)
948 return false;
950 return sh_dmae_reset(shdev);
953 static int sh_dmae_nmi_handler(struct notifier_block *self,
954 unsigned long cmd, void *data)
956 struct sh_dmae_device *shdev;
957 int ret = NOTIFY_DONE;
958 bool triggered;
961 * Only concern ourselves with NMI events.
963 * Normally we would check the die chain value, but as this needs
964 * to be architecture independent, check for NMI context instead.
966 if (!in_nmi())
967 return NOTIFY_DONE;
969 rcu_read_lock();
970 list_for_each_entry_rcu(shdev, &sh_dmae_devices, node) {
972 * Only stop if one of the controllers has NMIF asserted,
973 * we do not want to interfere with regular address error
974 * handling or NMI events that don't concern the DMACs.
976 triggered = sh_dmae_nmi_notify(shdev);
977 if (triggered == true)
978 ret = NOTIFY_OK;
980 rcu_read_unlock();
982 return ret;
985 static struct notifier_block sh_dmae_nmi_notifier __read_mostly = {
986 .notifier_call = sh_dmae_nmi_handler,
988 /* Run before NMI debug handler and KGDB */
989 .priority = 1,
992 static int __devinit sh_dmae_chan_probe(struct sh_dmae_device *shdev, int id,
993 int irq, unsigned long flags)
995 int err;
996 const struct sh_dmae_channel *chan_pdata = &shdev->pdata->channel[id];
997 struct platform_device *pdev = to_platform_device(shdev->common.dev);
998 struct sh_dmae_chan *new_sh_chan;
1000 /* alloc channel */
1001 new_sh_chan = kzalloc(sizeof(struct sh_dmae_chan), GFP_KERNEL);
1002 if (!new_sh_chan) {
1003 dev_err(shdev->common.dev,
1004 "No free memory for allocating dma channels!\n");
1005 return -ENOMEM;
1008 /* copy struct dma_device */
1009 new_sh_chan->common.device = &shdev->common;
1011 new_sh_chan->dev = shdev->common.dev;
1012 new_sh_chan->id = id;
1013 new_sh_chan->irq = irq;
1014 new_sh_chan->base = shdev->chan_reg + chan_pdata->offset / sizeof(u32);
1016 /* Init DMA tasklet */
1017 tasklet_init(&new_sh_chan->tasklet, dmae_do_tasklet,
1018 (unsigned long)new_sh_chan);
1020 spin_lock_init(&new_sh_chan->desc_lock);
1022 /* Init descripter manage list */
1023 INIT_LIST_HEAD(&new_sh_chan->ld_queue);
1024 INIT_LIST_HEAD(&new_sh_chan->ld_free);
1026 /* Add the channel to DMA device channel list */
1027 list_add_tail(&new_sh_chan->common.device_node,
1028 &shdev->common.channels);
1029 shdev->common.chancnt++;
1031 if (pdev->id >= 0)
1032 snprintf(new_sh_chan->dev_id, sizeof(new_sh_chan->dev_id),
1033 "sh-dmae%d.%d", pdev->id, new_sh_chan->id);
1034 else
1035 snprintf(new_sh_chan->dev_id, sizeof(new_sh_chan->dev_id),
1036 "sh-dma%d", new_sh_chan->id);
1038 /* set up channel irq */
1039 err = request_irq(irq, &sh_dmae_interrupt, flags,
1040 new_sh_chan->dev_id, new_sh_chan);
1041 if (err) {
1042 dev_err(shdev->common.dev, "DMA channel %d request_irq error "
1043 "with return %d\n", id, err);
1044 goto err_no_irq;
1047 shdev->chan[id] = new_sh_chan;
1048 return 0;
1050 err_no_irq:
1051 /* remove from dmaengine device node */
1052 list_del(&new_sh_chan->common.device_node);
1053 kfree(new_sh_chan);
1054 return err;
1057 static void sh_dmae_chan_remove(struct sh_dmae_device *shdev)
1059 int i;
1061 for (i = shdev->common.chancnt - 1 ; i >= 0 ; i--) {
1062 if (shdev->chan[i]) {
1063 struct sh_dmae_chan *sh_chan = shdev->chan[i];
1065 free_irq(sh_chan->irq, sh_chan);
1067 list_del(&sh_chan->common.device_node);
1068 kfree(sh_chan);
1069 shdev->chan[i] = NULL;
1072 shdev->common.chancnt = 0;
1075 static int __init sh_dmae_probe(struct platform_device *pdev)
1077 struct sh_dmae_pdata *pdata = pdev->dev.platform_data;
1078 unsigned long irqflags = IRQF_DISABLED,
1079 chan_flag[SH_DMAC_MAX_CHANNELS] = {};
1080 int errirq, chan_irq[SH_DMAC_MAX_CHANNELS];
1081 int err, i, irq_cnt = 0, irqres = 0;
1082 struct sh_dmae_device *shdev;
1083 struct resource *chan, *dmars, *errirq_res, *chanirq_res;
1085 /* get platform data */
1086 if (!pdata || !pdata->channel_num)
1087 return -ENODEV;
1089 chan = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1090 /* DMARS area is optional, if absent, this controller cannot do slave DMA */
1091 dmars = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1093 * IRQ resources:
1094 * 1. there always must be at least one IRQ IO-resource. On SH4 it is
1095 * the error IRQ, in which case it is the only IRQ in this resource:
1096 * start == end. If it is the only IRQ resource, all channels also
1097 * use the same IRQ.
1098 * 2. DMA channel IRQ resources can be specified one per resource or in
1099 * ranges (start != end)
1100 * 3. iff all events (channels and, optionally, error) on this
1101 * controller use the same IRQ, only one IRQ resource can be
1102 * specified, otherwise there must be one IRQ per channel, even if
1103 * some of them are equal
1104 * 4. if all IRQs on this controller are equal or if some specific IRQs
1105 * specify IORESOURCE_IRQ_SHAREABLE in their resources, they will be
1106 * requested with the IRQF_SHARED flag
1108 errirq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1109 if (!chan || !errirq_res)
1110 return -ENODEV;
1112 if (!request_mem_region(chan->start, resource_size(chan), pdev->name)) {
1113 dev_err(&pdev->dev, "DMAC register region already claimed\n");
1114 return -EBUSY;
1117 if (dmars && !request_mem_region(dmars->start, resource_size(dmars), pdev->name)) {
1118 dev_err(&pdev->dev, "DMAC DMARS region already claimed\n");
1119 err = -EBUSY;
1120 goto ermrdmars;
1123 err = -ENOMEM;
1124 shdev = kzalloc(sizeof(struct sh_dmae_device), GFP_KERNEL);
1125 if (!shdev) {
1126 dev_err(&pdev->dev, "Not enough memory\n");
1127 goto ealloc;
1130 shdev->chan_reg = ioremap(chan->start, resource_size(chan));
1131 if (!shdev->chan_reg)
1132 goto emapchan;
1133 if (dmars) {
1134 shdev->dmars = ioremap(dmars->start, resource_size(dmars));
1135 if (!shdev->dmars)
1136 goto emapdmars;
1139 /* platform data */
1140 shdev->pdata = pdata;
1142 pm_runtime_enable(&pdev->dev);
1143 pm_runtime_get_sync(&pdev->dev);
1145 spin_lock_irq(&sh_dmae_lock);
1146 list_add_tail_rcu(&shdev->node, &sh_dmae_devices);
1147 spin_unlock_irq(&sh_dmae_lock);
1149 /* reset dma controller - only needed as a test */
1150 err = sh_dmae_rst(shdev);
1151 if (err)
1152 goto rst_err;
1154 INIT_LIST_HEAD(&shdev->common.channels);
1156 dma_cap_set(DMA_MEMCPY, shdev->common.cap_mask);
1157 if (dmars)
1158 dma_cap_set(DMA_SLAVE, shdev->common.cap_mask);
1160 shdev->common.device_alloc_chan_resources
1161 = sh_dmae_alloc_chan_resources;
1162 shdev->common.device_free_chan_resources = sh_dmae_free_chan_resources;
1163 shdev->common.device_prep_dma_memcpy = sh_dmae_prep_memcpy;
1164 shdev->common.device_tx_status = sh_dmae_tx_status;
1165 shdev->common.device_issue_pending = sh_dmae_memcpy_issue_pending;
1167 /* Compulsory for DMA_SLAVE fields */
1168 shdev->common.device_prep_slave_sg = sh_dmae_prep_slave_sg;
1169 shdev->common.device_control = sh_dmae_control;
1171 shdev->common.dev = &pdev->dev;
1172 /* Default transfer size of 32 bytes requires 32-byte alignment */
1173 shdev->common.copy_align = LOG2_DEFAULT_XFER_SIZE;
1175 #if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE)
1176 chanirq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
1178 if (!chanirq_res)
1179 chanirq_res = errirq_res;
1180 else
1181 irqres++;
1183 if (chanirq_res == errirq_res ||
1184 (errirq_res->flags & IORESOURCE_BITS) == IORESOURCE_IRQ_SHAREABLE)
1185 irqflags = IRQF_SHARED;
1187 errirq = errirq_res->start;
1189 err = request_irq(errirq, sh_dmae_err, irqflags,
1190 "DMAC Address Error", shdev);
1191 if (err) {
1192 dev_err(&pdev->dev,
1193 "DMA failed requesting irq #%d, error %d\n",
1194 errirq, err);
1195 goto eirq_err;
1198 #else
1199 chanirq_res = errirq_res;
1200 #endif /* CONFIG_CPU_SH4 || CONFIG_ARCH_SHMOBILE */
1202 if (chanirq_res->start == chanirq_res->end &&
1203 !platform_get_resource(pdev, IORESOURCE_IRQ, 1)) {
1204 /* Special case - all multiplexed */
1205 for (; irq_cnt < pdata->channel_num; irq_cnt++) {
1206 chan_irq[irq_cnt] = chanirq_res->start;
1207 chan_flag[irq_cnt] = IRQF_SHARED;
1209 } else {
1210 do {
1211 for (i = chanirq_res->start; i <= chanirq_res->end; i++) {
1212 if ((errirq_res->flags & IORESOURCE_BITS) ==
1213 IORESOURCE_IRQ_SHAREABLE)
1214 chan_flag[irq_cnt] = IRQF_SHARED;
1215 else
1216 chan_flag[irq_cnt] = IRQF_DISABLED;
1217 dev_dbg(&pdev->dev,
1218 "Found IRQ %d for channel %d\n",
1219 i, irq_cnt);
1220 chan_irq[irq_cnt++] = i;
1222 chanirq_res = platform_get_resource(pdev,
1223 IORESOURCE_IRQ, ++irqres);
1224 } while (irq_cnt < pdata->channel_num && chanirq_res);
1227 if (irq_cnt < pdata->channel_num)
1228 goto eirqres;
1230 /* Create DMA Channel */
1231 for (i = 0; i < pdata->channel_num; i++) {
1232 err = sh_dmae_chan_probe(shdev, i, chan_irq[i], chan_flag[i]);
1233 if (err)
1234 goto chan_probe_err;
1237 pm_runtime_put(&pdev->dev);
1239 platform_set_drvdata(pdev, shdev);
1240 dma_async_device_register(&shdev->common);
1242 return err;
1244 chan_probe_err:
1245 sh_dmae_chan_remove(shdev);
1246 eirqres:
1247 #if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE)
1248 free_irq(errirq, shdev);
1249 eirq_err:
1250 #endif
1251 rst_err:
1252 spin_lock_irq(&sh_dmae_lock);
1253 list_del_rcu(&shdev->node);
1254 spin_unlock_irq(&sh_dmae_lock);
1256 pm_runtime_put(&pdev->dev);
1257 pm_runtime_disable(&pdev->dev);
1259 if (dmars)
1260 iounmap(shdev->dmars);
1261 emapdmars:
1262 iounmap(shdev->chan_reg);
1263 synchronize_rcu();
1264 emapchan:
1265 kfree(shdev);
1266 ealloc:
1267 if (dmars)
1268 release_mem_region(dmars->start, resource_size(dmars));
1269 ermrdmars:
1270 release_mem_region(chan->start, resource_size(chan));
1272 return err;
1275 static int __exit sh_dmae_remove(struct platform_device *pdev)
1277 struct sh_dmae_device *shdev = platform_get_drvdata(pdev);
1278 struct resource *res;
1279 int errirq = platform_get_irq(pdev, 0);
1281 dma_async_device_unregister(&shdev->common);
1283 if (errirq > 0)
1284 free_irq(errirq, shdev);
1286 spin_lock_irq(&sh_dmae_lock);
1287 list_del_rcu(&shdev->node);
1288 spin_unlock_irq(&sh_dmae_lock);
1290 /* channel data remove */
1291 sh_dmae_chan_remove(shdev);
1293 pm_runtime_disable(&pdev->dev);
1295 if (shdev->dmars)
1296 iounmap(shdev->dmars);
1297 iounmap(shdev->chan_reg);
1299 synchronize_rcu();
1300 kfree(shdev);
1302 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1303 if (res)
1304 release_mem_region(res->start, resource_size(res));
1305 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1306 if (res)
1307 release_mem_region(res->start, resource_size(res));
1309 return 0;
1312 static void sh_dmae_shutdown(struct platform_device *pdev)
1314 struct sh_dmae_device *shdev = platform_get_drvdata(pdev);
1315 sh_dmae_ctl_stop(shdev);
1318 static int sh_dmae_runtime_suspend(struct device *dev)
1320 return 0;
1323 static int sh_dmae_runtime_resume(struct device *dev)
1325 struct sh_dmae_device *shdev = dev_get_drvdata(dev);
1327 return sh_dmae_rst(shdev);
1330 #ifdef CONFIG_PM
1331 static int sh_dmae_suspend(struct device *dev)
1333 struct sh_dmae_device *shdev = dev_get_drvdata(dev);
1334 int i;
1336 for (i = 0; i < shdev->pdata->channel_num; i++) {
1337 struct sh_dmae_chan *sh_chan = shdev->chan[i];
1338 if (sh_chan->descs_allocated)
1339 sh_chan->pm_error = pm_runtime_put_sync(dev);
1342 return 0;
1345 static int sh_dmae_resume(struct device *dev)
1347 struct sh_dmae_device *shdev = dev_get_drvdata(dev);
1348 int i;
1350 for (i = 0; i < shdev->pdata->channel_num; i++) {
1351 struct sh_dmae_chan *sh_chan = shdev->chan[i];
1352 struct sh_dmae_slave *param = sh_chan->common.private;
1354 if (!sh_chan->descs_allocated)
1355 continue;
1357 if (!sh_chan->pm_error)
1358 pm_runtime_get_sync(dev);
1360 if (param) {
1361 const struct sh_dmae_slave_config *cfg = param->config;
1362 dmae_set_dmars(sh_chan, cfg->mid_rid);
1363 dmae_set_chcr(sh_chan, cfg->chcr);
1364 } else {
1365 dmae_init(sh_chan);
1369 return 0;
1371 #else
1372 #define sh_dmae_suspend NULL
1373 #define sh_dmae_resume NULL
1374 #endif
1376 const struct dev_pm_ops sh_dmae_pm = {
1377 .suspend = sh_dmae_suspend,
1378 .resume = sh_dmae_resume,
1379 .runtime_suspend = sh_dmae_runtime_suspend,
1380 .runtime_resume = sh_dmae_runtime_resume,
1383 static struct platform_driver sh_dmae_driver = {
1384 .remove = __exit_p(sh_dmae_remove),
1385 .shutdown = sh_dmae_shutdown,
1386 .driver = {
1387 .owner = THIS_MODULE,
1388 .name = "sh-dma-engine",
1389 .pm = &sh_dmae_pm,
1393 static int __init sh_dmae_init(void)
1395 /* Wire up NMI handling */
1396 int err = register_die_notifier(&sh_dmae_nmi_notifier);
1397 if (err)
1398 return err;
1400 return platform_driver_probe(&sh_dmae_driver, sh_dmae_probe);
1402 module_init(sh_dmae_init);
1404 static void __exit sh_dmae_exit(void)
1406 platform_driver_unregister(&sh_dmae_driver);
1408 unregister_die_notifier(&sh_dmae_nmi_notifier);
1410 module_exit(sh_dmae_exit);
1412 MODULE_AUTHOR("Nobuhiro Iwamatsu <iwamatsu.nobuhiro@renesas.com>");
1413 MODULE_DESCRIPTION("Renesas SH DMA Engine driver");
1414 MODULE_LICENSE("GPL");
1415 MODULE_ALIAS("platform:sh-dma-engine");