2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/pci.h>
21 #include <linux/pci-ats.h>
22 #include <linux/bitmap.h>
23 #include <linux/slab.h>
24 #include <linux/debugfs.h>
25 #include <linux/scatterlist.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/iommu-helper.h>
28 #include <linux/iommu.h>
29 #include <linux/delay.h>
30 #include <asm/proto.h>
31 #include <asm/iommu.h>
34 #include <asm/amd_iommu_proto.h>
35 #include <asm/amd_iommu_types.h>
36 #include <asm/amd_iommu.h>
38 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
40 #define LOOP_TIMEOUT 100000
42 static DEFINE_RWLOCK(amd_iommu_devtable_lock
);
44 /* A list of preallocated protection domains */
45 static LIST_HEAD(iommu_pd_list
);
46 static DEFINE_SPINLOCK(iommu_pd_list_lock
);
49 * Domain for untranslated devices - only allocated
50 * if iommu=pt passed on kernel cmd line.
52 static struct protection_domain
*pt_domain
;
54 static struct iommu_ops amd_iommu_ops
;
57 * general struct to manage commands send to an IOMMU
63 static void update_domain(struct protection_domain
*domain
);
65 /****************************************************************************
69 ****************************************************************************/
71 static inline u16
get_device_id(struct device
*dev
)
73 struct pci_dev
*pdev
= to_pci_dev(dev
);
75 return calc_devid(pdev
->bus
->number
, pdev
->devfn
);
78 static struct iommu_dev_data
*get_dev_data(struct device
*dev
)
80 return dev
->archdata
.iommu
;
84 * In this function the list of preallocated protection domains is traversed to
85 * find the domain for a specific device
87 static struct dma_ops_domain
*find_protection_domain(u16 devid
)
89 struct dma_ops_domain
*entry
, *ret
= NULL
;
91 u16 alias
= amd_iommu_alias_table
[devid
];
93 if (list_empty(&iommu_pd_list
))
96 spin_lock_irqsave(&iommu_pd_list_lock
, flags
);
98 list_for_each_entry(entry
, &iommu_pd_list
, list
) {
99 if (entry
->target_dev
== devid
||
100 entry
->target_dev
== alias
) {
106 spin_unlock_irqrestore(&iommu_pd_list_lock
, flags
);
112 * This function checks if the driver got a valid device from the caller to
113 * avoid dereferencing invalid pointers.
115 static bool check_device(struct device
*dev
)
119 if (!dev
|| !dev
->dma_mask
)
122 /* No device or no PCI device */
123 if (dev
->bus
!= &pci_bus_type
)
126 devid
= get_device_id(dev
);
128 /* Out of our scope? */
129 if (devid
> amd_iommu_last_bdf
)
132 if (amd_iommu_rlookup_table
[devid
] == NULL
)
138 static int iommu_init_device(struct device
*dev
)
140 struct iommu_dev_data
*dev_data
;
141 struct pci_dev
*pdev
;
144 if (dev
->archdata
.iommu
)
147 dev_data
= kzalloc(sizeof(*dev_data
), GFP_KERNEL
);
153 devid
= get_device_id(dev
);
154 alias
= amd_iommu_alias_table
[devid
];
155 pdev
= pci_get_bus_and_slot(PCI_BUS(alias
), alias
& 0xff);
157 dev_data
->alias
= &pdev
->dev
;
163 atomic_set(&dev_data
->bind
, 0);
165 dev
->archdata
.iommu
= dev_data
;
171 static void iommu_ignore_device(struct device
*dev
)
175 devid
= get_device_id(dev
);
176 alias
= amd_iommu_alias_table
[devid
];
178 memset(&amd_iommu_dev_table
[devid
], 0, sizeof(struct dev_table_entry
));
179 memset(&amd_iommu_dev_table
[alias
], 0, sizeof(struct dev_table_entry
));
181 amd_iommu_rlookup_table
[devid
] = NULL
;
182 amd_iommu_rlookup_table
[alias
] = NULL
;
185 static void iommu_uninit_device(struct device
*dev
)
187 kfree(dev
->archdata
.iommu
);
190 void __init
amd_iommu_uninit_devices(void)
192 struct pci_dev
*pdev
= NULL
;
194 for_each_pci_dev(pdev
) {
196 if (!check_device(&pdev
->dev
))
199 iommu_uninit_device(&pdev
->dev
);
203 int __init
amd_iommu_init_devices(void)
205 struct pci_dev
*pdev
= NULL
;
208 for_each_pci_dev(pdev
) {
210 if (!check_device(&pdev
->dev
))
213 ret
= iommu_init_device(&pdev
->dev
);
214 if (ret
== -ENOTSUPP
)
215 iommu_ignore_device(&pdev
->dev
);
224 amd_iommu_uninit_devices();
228 #ifdef CONFIG_AMD_IOMMU_STATS
231 * Initialization code for statistics collection
234 DECLARE_STATS_COUNTER(compl_wait
);
235 DECLARE_STATS_COUNTER(cnt_map_single
);
236 DECLARE_STATS_COUNTER(cnt_unmap_single
);
237 DECLARE_STATS_COUNTER(cnt_map_sg
);
238 DECLARE_STATS_COUNTER(cnt_unmap_sg
);
239 DECLARE_STATS_COUNTER(cnt_alloc_coherent
);
240 DECLARE_STATS_COUNTER(cnt_free_coherent
);
241 DECLARE_STATS_COUNTER(cross_page
);
242 DECLARE_STATS_COUNTER(domain_flush_single
);
243 DECLARE_STATS_COUNTER(domain_flush_all
);
244 DECLARE_STATS_COUNTER(alloced_io_mem
);
245 DECLARE_STATS_COUNTER(total_map_requests
);
247 static struct dentry
*stats_dir
;
248 static struct dentry
*de_fflush
;
250 static void amd_iommu_stats_add(struct __iommu_counter
*cnt
)
252 if (stats_dir
== NULL
)
255 cnt
->dent
= debugfs_create_u64(cnt
->name
, 0444, stats_dir
,
259 static void amd_iommu_stats_init(void)
261 stats_dir
= debugfs_create_dir("amd-iommu", NULL
);
262 if (stats_dir
== NULL
)
265 de_fflush
= debugfs_create_bool("fullflush", 0444, stats_dir
,
266 (u32
*)&amd_iommu_unmap_flush
);
268 amd_iommu_stats_add(&compl_wait
);
269 amd_iommu_stats_add(&cnt_map_single
);
270 amd_iommu_stats_add(&cnt_unmap_single
);
271 amd_iommu_stats_add(&cnt_map_sg
);
272 amd_iommu_stats_add(&cnt_unmap_sg
);
273 amd_iommu_stats_add(&cnt_alloc_coherent
);
274 amd_iommu_stats_add(&cnt_free_coherent
);
275 amd_iommu_stats_add(&cross_page
);
276 amd_iommu_stats_add(&domain_flush_single
);
277 amd_iommu_stats_add(&domain_flush_all
);
278 amd_iommu_stats_add(&alloced_io_mem
);
279 amd_iommu_stats_add(&total_map_requests
);
284 /****************************************************************************
286 * Interrupt handling functions
288 ****************************************************************************/
290 static void dump_dte_entry(u16 devid
)
294 for (i
= 0; i
< 8; ++i
)
295 pr_err("AMD-Vi: DTE[%d]: %08x\n", i
,
296 amd_iommu_dev_table
[devid
].data
[i
]);
299 static void dump_command(unsigned long phys_addr
)
301 struct iommu_cmd
*cmd
= phys_to_virt(phys_addr
);
304 for (i
= 0; i
< 4; ++i
)
305 pr_err("AMD-Vi: CMD[%d]: %08x\n", i
, cmd
->data
[i
]);
308 static void iommu_print_event(struct amd_iommu
*iommu
, void *__evt
)
311 int type
= (event
[1] >> EVENT_TYPE_SHIFT
) & EVENT_TYPE_MASK
;
312 int devid
= (event
[0] >> EVENT_DEVID_SHIFT
) & EVENT_DEVID_MASK
;
313 int domid
= (event
[1] >> EVENT_DOMID_SHIFT
) & EVENT_DOMID_MASK
;
314 int flags
= (event
[1] >> EVENT_FLAGS_SHIFT
) & EVENT_FLAGS_MASK
;
315 u64 address
= (u64
)(((u64
)event
[3]) << 32) | event
[2];
317 printk(KERN_ERR
"AMD-Vi: Event logged [");
320 case EVENT_TYPE_ILL_DEV
:
321 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
322 "address=0x%016llx flags=0x%04x]\n",
323 PCI_BUS(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
325 dump_dte_entry(devid
);
327 case EVENT_TYPE_IO_FAULT
:
328 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
329 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
330 PCI_BUS(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
331 domid
, address
, flags
);
333 case EVENT_TYPE_DEV_TAB_ERR
:
334 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
335 "address=0x%016llx flags=0x%04x]\n",
336 PCI_BUS(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
339 case EVENT_TYPE_PAGE_TAB_ERR
:
340 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
341 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
342 PCI_BUS(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
343 domid
, address
, flags
);
345 case EVENT_TYPE_ILL_CMD
:
346 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address
);
347 dump_command(address
);
349 case EVENT_TYPE_CMD_HARD_ERR
:
350 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
351 "flags=0x%04x]\n", address
, flags
);
353 case EVENT_TYPE_IOTLB_INV_TO
:
354 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
355 "address=0x%016llx]\n",
356 PCI_BUS(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
359 case EVENT_TYPE_INV_DEV_REQ
:
360 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
361 "address=0x%016llx flags=0x%04x]\n",
362 PCI_BUS(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
366 printk(KERN_ERR
"UNKNOWN type=0x%02x]\n", type
);
370 static void iommu_poll_events(struct amd_iommu
*iommu
)
375 spin_lock_irqsave(&iommu
->lock
, flags
);
377 head
= readl(iommu
->mmio_base
+ MMIO_EVT_HEAD_OFFSET
);
378 tail
= readl(iommu
->mmio_base
+ MMIO_EVT_TAIL_OFFSET
);
380 while (head
!= tail
) {
381 iommu_print_event(iommu
, iommu
->evt_buf
+ head
);
382 head
= (head
+ EVENT_ENTRY_SIZE
) % iommu
->evt_buf_size
;
385 writel(head
, iommu
->mmio_base
+ MMIO_EVT_HEAD_OFFSET
);
387 spin_unlock_irqrestore(&iommu
->lock
, flags
);
390 irqreturn_t
amd_iommu_int_thread(int irq
, void *data
)
392 struct amd_iommu
*iommu
;
394 for_each_iommu(iommu
)
395 iommu_poll_events(iommu
);
400 irqreturn_t
amd_iommu_int_handler(int irq
, void *data
)
402 return IRQ_WAKE_THREAD
;
405 /****************************************************************************
407 * IOMMU command queuing functions
409 ****************************************************************************/
411 static int wait_on_sem(volatile u64
*sem
)
415 while (*sem
== 0 && i
< LOOP_TIMEOUT
) {
420 if (i
== LOOP_TIMEOUT
) {
421 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
428 static void copy_cmd_to_buffer(struct amd_iommu
*iommu
,
429 struct iommu_cmd
*cmd
,
434 target
= iommu
->cmd_buf
+ tail
;
435 tail
= (tail
+ sizeof(*cmd
)) % iommu
->cmd_buf_size
;
437 /* Copy command to buffer */
438 memcpy(target
, cmd
, sizeof(*cmd
));
440 /* Tell the IOMMU about it */
441 writel(tail
, iommu
->mmio_base
+ MMIO_CMD_TAIL_OFFSET
);
444 static void build_completion_wait(struct iommu_cmd
*cmd
, u64 address
)
446 WARN_ON(address
& 0x7ULL
);
448 memset(cmd
, 0, sizeof(*cmd
));
449 cmd
->data
[0] = lower_32_bits(__pa(address
)) | CMD_COMPL_WAIT_STORE_MASK
;
450 cmd
->data
[1] = upper_32_bits(__pa(address
));
452 CMD_SET_TYPE(cmd
, CMD_COMPL_WAIT
);
455 static void build_inv_dte(struct iommu_cmd
*cmd
, u16 devid
)
457 memset(cmd
, 0, sizeof(*cmd
));
458 cmd
->data
[0] = devid
;
459 CMD_SET_TYPE(cmd
, CMD_INV_DEV_ENTRY
);
462 static void build_inv_iommu_pages(struct iommu_cmd
*cmd
, u64 address
,
463 size_t size
, u16 domid
, int pde
)
468 pages
= iommu_num_pages(address
, size
, PAGE_SIZE
);
473 * If we have to flush more than one page, flush all
474 * TLB entries for this domain
476 address
= CMD_INV_IOMMU_ALL_PAGES_ADDRESS
;
480 address
&= PAGE_MASK
;
482 memset(cmd
, 0, sizeof(*cmd
));
483 cmd
->data
[1] |= domid
;
484 cmd
->data
[2] = lower_32_bits(address
);
485 cmd
->data
[3] = upper_32_bits(address
);
486 CMD_SET_TYPE(cmd
, CMD_INV_IOMMU_PAGES
);
487 if (s
) /* size bit - we flush more than one 4kb page */
488 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
489 if (pde
) /* PDE bit - we wan't flush everything not only the PTEs */
490 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK
;
493 static void build_inv_iotlb_pages(struct iommu_cmd
*cmd
, u16 devid
, int qdep
,
494 u64 address
, size_t size
)
499 pages
= iommu_num_pages(address
, size
, PAGE_SIZE
);
504 * If we have to flush more than one page, flush all
505 * TLB entries for this domain
507 address
= CMD_INV_IOMMU_ALL_PAGES_ADDRESS
;
511 address
&= PAGE_MASK
;
513 memset(cmd
, 0, sizeof(*cmd
));
514 cmd
->data
[0] = devid
;
515 cmd
->data
[0] |= (qdep
& 0xff) << 24;
516 cmd
->data
[1] = devid
;
517 cmd
->data
[2] = lower_32_bits(address
);
518 cmd
->data
[3] = upper_32_bits(address
);
519 CMD_SET_TYPE(cmd
, CMD_INV_IOTLB_PAGES
);
521 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
524 static void build_inv_all(struct iommu_cmd
*cmd
)
526 memset(cmd
, 0, sizeof(*cmd
));
527 CMD_SET_TYPE(cmd
, CMD_INV_ALL
);
531 * Writes the command to the IOMMUs command buffer and informs the
532 * hardware about the new command.
534 static int iommu_queue_command(struct amd_iommu
*iommu
, struct iommu_cmd
*cmd
)
536 u32 left
, tail
, head
, next_tail
;
539 WARN_ON(iommu
->cmd_buf_size
& CMD_BUFFER_UNINITIALIZED
);
542 spin_lock_irqsave(&iommu
->lock
, flags
);
544 head
= readl(iommu
->mmio_base
+ MMIO_CMD_HEAD_OFFSET
);
545 tail
= readl(iommu
->mmio_base
+ MMIO_CMD_TAIL_OFFSET
);
546 next_tail
= (tail
+ sizeof(*cmd
)) % iommu
->cmd_buf_size
;
547 left
= (head
- next_tail
) % iommu
->cmd_buf_size
;
550 struct iommu_cmd sync_cmd
;
551 volatile u64 sem
= 0;
554 build_completion_wait(&sync_cmd
, (u64
)&sem
);
555 copy_cmd_to_buffer(iommu
, &sync_cmd
, tail
);
557 spin_unlock_irqrestore(&iommu
->lock
, flags
);
559 if ((ret
= wait_on_sem(&sem
)) != 0)
565 copy_cmd_to_buffer(iommu
, cmd
, tail
);
567 /* We need to sync now to make sure all commands are processed */
568 iommu
->need_sync
= true;
570 spin_unlock_irqrestore(&iommu
->lock
, flags
);
576 * This function queues a completion wait command into the command
579 static int iommu_completion_wait(struct amd_iommu
*iommu
)
581 struct iommu_cmd cmd
;
582 volatile u64 sem
= 0;
585 if (!iommu
->need_sync
)
588 build_completion_wait(&cmd
, (u64
)&sem
);
590 ret
= iommu_queue_command(iommu
, &cmd
);
594 return wait_on_sem(&sem
);
597 static int iommu_flush_dte(struct amd_iommu
*iommu
, u16 devid
)
599 struct iommu_cmd cmd
;
601 build_inv_dte(&cmd
, devid
);
603 return iommu_queue_command(iommu
, &cmd
);
606 static void iommu_flush_dte_all(struct amd_iommu
*iommu
)
610 for (devid
= 0; devid
<= 0xffff; ++devid
)
611 iommu_flush_dte(iommu
, devid
);
613 iommu_completion_wait(iommu
);
617 * This function uses heavy locking and may disable irqs for some time. But
618 * this is no issue because it is only called during resume.
620 static void iommu_flush_tlb_all(struct amd_iommu
*iommu
)
624 for (dom_id
= 0; dom_id
<= 0xffff; ++dom_id
) {
625 struct iommu_cmd cmd
;
626 build_inv_iommu_pages(&cmd
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
,
628 iommu_queue_command(iommu
, &cmd
);
631 iommu_completion_wait(iommu
);
634 static void iommu_flush_all(struct amd_iommu
*iommu
)
636 struct iommu_cmd cmd
;
640 iommu_queue_command(iommu
, &cmd
);
641 iommu_completion_wait(iommu
);
644 void iommu_flush_all_caches(struct amd_iommu
*iommu
)
646 if (iommu_feature(iommu
, FEATURE_IA
)) {
647 iommu_flush_all(iommu
);
649 iommu_flush_dte_all(iommu
);
650 iommu_flush_tlb_all(iommu
);
655 * Command send function for flushing on-device TLB
657 static int device_flush_iotlb(struct device
*dev
, u64 address
, size_t size
)
659 struct pci_dev
*pdev
= to_pci_dev(dev
);
660 struct amd_iommu
*iommu
;
661 struct iommu_cmd cmd
;
665 qdep
= pci_ats_queue_depth(pdev
);
666 devid
= get_device_id(dev
);
667 iommu
= amd_iommu_rlookup_table
[devid
];
669 build_inv_iotlb_pages(&cmd
, devid
, qdep
, address
, size
);
671 return iommu_queue_command(iommu
, &cmd
);
675 * Command send function for invalidating a device table entry
677 static int device_flush_dte(struct device
*dev
)
679 struct amd_iommu
*iommu
;
680 struct pci_dev
*pdev
;
684 pdev
= to_pci_dev(dev
);
685 devid
= get_device_id(dev
);
686 iommu
= amd_iommu_rlookup_table
[devid
];
688 ret
= iommu_flush_dte(iommu
, devid
);
692 if (pci_ats_enabled(pdev
))
693 ret
= device_flush_iotlb(dev
, 0, ~0UL);
699 * TLB invalidation function which is called from the mapping functions.
700 * It invalidates a single PTE if the range to flush is within a single
701 * page. Otherwise it flushes the whole TLB of the IOMMU.
703 static void __domain_flush_pages(struct protection_domain
*domain
,
704 u64 address
, size_t size
, int pde
)
706 struct iommu_dev_data
*dev_data
;
707 struct iommu_cmd cmd
;
710 build_inv_iommu_pages(&cmd
, address
, size
, domain
->id
, pde
);
712 for (i
= 0; i
< amd_iommus_present
; ++i
) {
713 if (!domain
->dev_iommu
[i
])
717 * Devices of this domain are behind this IOMMU
718 * We need a TLB flush
720 ret
|= iommu_queue_command(amd_iommus
[i
], &cmd
);
723 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
724 struct pci_dev
*pdev
= to_pci_dev(dev_data
->dev
);
726 if (!pci_ats_enabled(pdev
))
729 ret
|= device_flush_iotlb(dev_data
->dev
, address
, size
);
735 static void domain_flush_pages(struct protection_domain
*domain
,
736 u64 address
, size_t size
)
738 __domain_flush_pages(domain
, address
, size
, 0);
741 /* Flush the whole IO/TLB for a given protection domain */
742 static void domain_flush_tlb(struct protection_domain
*domain
)
744 __domain_flush_pages(domain
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
, 0);
747 /* Flush the whole IO/TLB for a given protection domain - including PDE */
748 static void domain_flush_tlb_pde(struct protection_domain
*domain
)
750 __domain_flush_pages(domain
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
, 1);
753 static void domain_flush_complete(struct protection_domain
*domain
)
757 for (i
= 0; i
< amd_iommus_present
; ++i
) {
758 if (!domain
->dev_iommu
[i
])
762 * Devices of this domain are behind this IOMMU
763 * We need to wait for completion of all commands.
765 iommu_completion_wait(amd_iommus
[i
]);
771 * This function flushes the DTEs for all devices in domain
773 static void domain_flush_devices(struct protection_domain
*domain
)
775 struct iommu_dev_data
*dev_data
;
778 spin_lock_irqsave(&domain
->lock
, flags
);
780 list_for_each_entry(dev_data
, &domain
->dev_list
, list
)
781 device_flush_dte(dev_data
->dev
);
783 spin_unlock_irqrestore(&domain
->lock
, flags
);
786 /****************************************************************************
788 * The functions below are used the create the page table mappings for
789 * unity mapped regions.
791 ****************************************************************************/
794 * This function is used to add another level to an IO page table. Adding
795 * another level increases the size of the address space by 9 bits to a size up
798 static bool increase_address_space(struct protection_domain
*domain
,
803 if (domain
->mode
== PAGE_MODE_6_LEVEL
)
804 /* address space already 64 bit large */
807 pte
= (void *)get_zeroed_page(gfp
);
811 *pte
= PM_LEVEL_PDE(domain
->mode
,
812 virt_to_phys(domain
->pt_root
));
813 domain
->pt_root
= pte
;
815 domain
->updated
= true;
820 static u64
*alloc_pte(struct protection_domain
*domain
,
821 unsigned long address
,
822 unsigned long page_size
,
829 BUG_ON(!is_power_of_2(page_size
));
831 while (address
> PM_LEVEL_SIZE(domain
->mode
))
832 increase_address_space(domain
, gfp
);
834 level
= domain
->mode
- 1;
835 pte
= &domain
->pt_root
[PM_LEVEL_INDEX(level
, address
)];
836 address
= PAGE_SIZE_ALIGN(address
, page_size
);
837 end_lvl
= PAGE_SIZE_LEVEL(page_size
);
839 while (level
> end_lvl
) {
840 if (!IOMMU_PTE_PRESENT(*pte
)) {
841 page
= (u64
*)get_zeroed_page(gfp
);
844 *pte
= PM_LEVEL_PDE(level
, virt_to_phys(page
));
847 /* No level skipping support yet */
848 if (PM_PTE_LEVEL(*pte
) != level
)
853 pte
= IOMMU_PTE_PAGE(*pte
);
855 if (pte_page
&& level
== end_lvl
)
858 pte
= &pte
[PM_LEVEL_INDEX(level
, address
)];
865 * This function checks if there is a PTE for a given dma address. If
866 * there is one, it returns the pointer to it.
868 static u64
*fetch_pte(struct protection_domain
*domain
, unsigned long address
)
873 if (address
> PM_LEVEL_SIZE(domain
->mode
))
876 level
= domain
->mode
- 1;
877 pte
= &domain
->pt_root
[PM_LEVEL_INDEX(level
, address
)];
882 if (!IOMMU_PTE_PRESENT(*pte
))
886 if (PM_PTE_LEVEL(*pte
) == 0x07) {
887 unsigned long pte_mask
, __pte
;
890 * If we have a series of large PTEs, make
891 * sure to return a pointer to the first one.
893 pte_mask
= PTE_PAGE_SIZE(*pte
);
894 pte_mask
= ~((PAGE_SIZE_PTE_COUNT(pte_mask
) << 3) - 1);
895 __pte
= ((unsigned long)pte
) & pte_mask
;
900 /* No level skipping support yet */
901 if (PM_PTE_LEVEL(*pte
) != level
)
906 /* Walk to the next level */
907 pte
= IOMMU_PTE_PAGE(*pte
);
908 pte
= &pte
[PM_LEVEL_INDEX(level
, address
)];
915 * Generic mapping functions. It maps a physical address into a DMA
916 * address space. It allocates the page table pages if necessary.
917 * In the future it can be extended to a generic mapping function
918 * supporting all features of AMD IOMMU page tables like level skipping
919 * and full 64 bit address spaces.
921 static int iommu_map_page(struct protection_domain
*dom
,
922 unsigned long bus_addr
,
923 unsigned long phys_addr
,
925 unsigned long page_size
)
930 if (!(prot
& IOMMU_PROT_MASK
))
933 bus_addr
= PAGE_ALIGN(bus_addr
);
934 phys_addr
= PAGE_ALIGN(phys_addr
);
935 count
= PAGE_SIZE_PTE_COUNT(page_size
);
936 pte
= alloc_pte(dom
, bus_addr
, page_size
, NULL
, GFP_KERNEL
);
938 for (i
= 0; i
< count
; ++i
)
939 if (IOMMU_PTE_PRESENT(pte
[i
]))
942 if (page_size
> PAGE_SIZE
) {
943 __pte
= PAGE_SIZE_PTE(phys_addr
, page_size
);
944 __pte
|= PM_LEVEL_ENC(7) | IOMMU_PTE_P
| IOMMU_PTE_FC
;
946 __pte
= phys_addr
| IOMMU_PTE_P
| IOMMU_PTE_FC
;
948 if (prot
& IOMMU_PROT_IR
)
949 __pte
|= IOMMU_PTE_IR
;
950 if (prot
& IOMMU_PROT_IW
)
951 __pte
|= IOMMU_PTE_IW
;
953 for (i
= 0; i
< count
; ++i
)
961 static unsigned long iommu_unmap_page(struct protection_domain
*dom
,
962 unsigned long bus_addr
,
963 unsigned long page_size
)
965 unsigned long long unmap_size
, unmapped
;
968 BUG_ON(!is_power_of_2(page_size
));
972 while (unmapped
< page_size
) {
974 pte
= fetch_pte(dom
, bus_addr
);
978 * No PTE for this address
979 * move forward in 4kb steps
981 unmap_size
= PAGE_SIZE
;
982 } else if (PM_PTE_LEVEL(*pte
) == 0) {
983 /* 4kb PTE found for this address */
984 unmap_size
= PAGE_SIZE
;
989 /* Large PTE found which maps this address */
990 unmap_size
= PTE_PAGE_SIZE(*pte
);
991 count
= PAGE_SIZE_PTE_COUNT(unmap_size
);
992 for (i
= 0; i
< count
; i
++)
996 bus_addr
= (bus_addr
& ~(unmap_size
- 1)) + unmap_size
;
997 unmapped
+= unmap_size
;
1000 BUG_ON(!is_power_of_2(unmapped
));
1006 * This function checks if a specific unity mapping entry is needed for
1007 * this specific IOMMU.
1009 static int iommu_for_unity_map(struct amd_iommu
*iommu
,
1010 struct unity_map_entry
*entry
)
1014 for (i
= entry
->devid_start
; i
<= entry
->devid_end
; ++i
) {
1015 bdf
= amd_iommu_alias_table
[i
];
1016 if (amd_iommu_rlookup_table
[bdf
] == iommu
)
1024 * This function actually applies the mapping to the page table of the
1027 static int dma_ops_unity_map(struct dma_ops_domain
*dma_dom
,
1028 struct unity_map_entry
*e
)
1033 for (addr
= e
->address_start
; addr
< e
->address_end
;
1034 addr
+= PAGE_SIZE
) {
1035 ret
= iommu_map_page(&dma_dom
->domain
, addr
, addr
, e
->prot
,
1040 * if unity mapping is in aperture range mark the page
1041 * as allocated in the aperture
1043 if (addr
< dma_dom
->aperture_size
)
1044 __set_bit(addr
>> PAGE_SHIFT
,
1045 dma_dom
->aperture
[0]->bitmap
);
1052 * Init the unity mappings for a specific IOMMU in the system
1054 * Basically iterates over all unity mapping entries and applies them to
1055 * the default domain DMA of that IOMMU if necessary.
1057 static int iommu_init_unity_mappings(struct amd_iommu
*iommu
)
1059 struct unity_map_entry
*entry
;
1062 list_for_each_entry(entry
, &amd_iommu_unity_map
, list
) {
1063 if (!iommu_for_unity_map(iommu
, entry
))
1065 ret
= dma_ops_unity_map(iommu
->default_dom
, entry
);
1074 * Inits the unity mappings required for a specific device
1076 static int init_unity_mappings_for_device(struct dma_ops_domain
*dma_dom
,
1079 struct unity_map_entry
*e
;
1082 list_for_each_entry(e
, &amd_iommu_unity_map
, list
) {
1083 if (!(devid
>= e
->devid_start
&& devid
<= e
->devid_end
))
1085 ret
= dma_ops_unity_map(dma_dom
, e
);
1093 /****************************************************************************
1095 * The next functions belong to the address allocator for the dma_ops
1096 * interface functions. They work like the allocators in the other IOMMU
1097 * drivers. Its basically a bitmap which marks the allocated pages in
1098 * the aperture. Maybe it could be enhanced in the future to a more
1099 * efficient allocator.
1101 ****************************************************************************/
1104 * The address allocator core functions.
1106 * called with domain->lock held
1110 * Used to reserve address ranges in the aperture (e.g. for exclusion
1113 static void dma_ops_reserve_addresses(struct dma_ops_domain
*dom
,
1114 unsigned long start_page
,
1117 unsigned int i
, last_page
= dom
->aperture_size
>> PAGE_SHIFT
;
1119 if (start_page
+ pages
> last_page
)
1120 pages
= last_page
- start_page
;
1122 for (i
= start_page
; i
< start_page
+ pages
; ++i
) {
1123 int index
= i
/ APERTURE_RANGE_PAGES
;
1124 int page
= i
% APERTURE_RANGE_PAGES
;
1125 __set_bit(page
, dom
->aperture
[index
]->bitmap
);
1130 * This function is used to add a new aperture range to an existing
1131 * aperture in case of dma_ops domain allocation or address allocation
1134 static int alloc_new_range(struct dma_ops_domain
*dma_dom
,
1135 bool populate
, gfp_t gfp
)
1137 int index
= dma_dom
->aperture_size
>> APERTURE_RANGE_SHIFT
;
1138 struct amd_iommu
*iommu
;
1141 #ifdef CONFIG_IOMMU_STRESS
1145 if (index
>= APERTURE_MAX_RANGES
)
1148 dma_dom
->aperture
[index
] = kzalloc(sizeof(struct aperture_range
), gfp
);
1149 if (!dma_dom
->aperture
[index
])
1152 dma_dom
->aperture
[index
]->bitmap
= (void *)get_zeroed_page(gfp
);
1153 if (!dma_dom
->aperture
[index
]->bitmap
)
1156 dma_dom
->aperture
[index
]->offset
= dma_dom
->aperture_size
;
1159 unsigned long address
= dma_dom
->aperture_size
;
1160 int i
, num_ptes
= APERTURE_RANGE_PAGES
/ 512;
1161 u64
*pte
, *pte_page
;
1163 for (i
= 0; i
< num_ptes
; ++i
) {
1164 pte
= alloc_pte(&dma_dom
->domain
, address
, PAGE_SIZE
,
1169 dma_dom
->aperture
[index
]->pte_pages
[i
] = pte_page
;
1171 address
+= APERTURE_RANGE_SIZE
/ 64;
1175 dma_dom
->aperture_size
+= APERTURE_RANGE_SIZE
;
1177 /* Initialize the exclusion range if necessary */
1178 for_each_iommu(iommu
) {
1179 if (iommu
->exclusion_start
&&
1180 iommu
->exclusion_start
>= dma_dom
->aperture
[index
]->offset
1181 && iommu
->exclusion_start
< dma_dom
->aperture_size
) {
1182 unsigned long startpage
;
1183 int pages
= iommu_num_pages(iommu
->exclusion_start
,
1184 iommu
->exclusion_length
,
1186 startpage
= iommu
->exclusion_start
>> PAGE_SHIFT
;
1187 dma_ops_reserve_addresses(dma_dom
, startpage
, pages
);
1192 * Check for areas already mapped as present in the new aperture
1193 * range and mark those pages as reserved in the allocator. Such
1194 * mappings may already exist as a result of requested unity
1195 * mappings for devices.
1197 for (i
= dma_dom
->aperture
[index
]->offset
;
1198 i
< dma_dom
->aperture_size
;
1200 u64
*pte
= fetch_pte(&dma_dom
->domain
, i
);
1201 if (!pte
|| !IOMMU_PTE_PRESENT(*pte
))
1204 dma_ops_reserve_addresses(dma_dom
, i
<< PAGE_SHIFT
, 1);
1207 update_domain(&dma_dom
->domain
);
1212 update_domain(&dma_dom
->domain
);
1214 free_page((unsigned long)dma_dom
->aperture
[index
]->bitmap
);
1216 kfree(dma_dom
->aperture
[index
]);
1217 dma_dom
->aperture
[index
] = NULL
;
1222 static unsigned long dma_ops_area_alloc(struct device
*dev
,
1223 struct dma_ops_domain
*dom
,
1225 unsigned long align_mask
,
1227 unsigned long start
)
1229 unsigned long next_bit
= dom
->next_address
% APERTURE_RANGE_SIZE
;
1230 int max_index
= dom
->aperture_size
>> APERTURE_RANGE_SHIFT
;
1231 int i
= start
>> APERTURE_RANGE_SHIFT
;
1232 unsigned long boundary_size
;
1233 unsigned long address
= -1;
1234 unsigned long limit
;
1236 next_bit
>>= PAGE_SHIFT
;
1238 boundary_size
= ALIGN(dma_get_seg_boundary(dev
) + 1,
1239 PAGE_SIZE
) >> PAGE_SHIFT
;
1241 for (;i
< max_index
; ++i
) {
1242 unsigned long offset
= dom
->aperture
[i
]->offset
>> PAGE_SHIFT
;
1244 if (dom
->aperture
[i
]->offset
>= dma_mask
)
1247 limit
= iommu_device_max_index(APERTURE_RANGE_PAGES
, offset
,
1248 dma_mask
>> PAGE_SHIFT
);
1250 address
= iommu_area_alloc(dom
->aperture
[i
]->bitmap
,
1251 limit
, next_bit
, pages
, 0,
1252 boundary_size
, align_mask
);
1253 if (address
!= -1) {
1254 address
= dom
->aperture
[i
]->offset
+
1255 (address
<< PAGE_SHIFT
);
1256 dom
->next_address
= address
+ (pages
<< PAGE_SHIFT
);
1266 static unsigned long dma_ops_alloc_addresses(struct device
*dev
,
1267 struct dma_ops_domain
*dom
,
1269 unsigned long align_mask
,
1272 unsigned long address
;
1274 #ifdef CONFIG_IOMMU_STRESS
1275 dom
->next_address
= 0;
1276 dom
->need_flush
= true;
1279 address
= dma_ops_area_alloc(dev
, dom
, pages
, align_mask
,
1280 dma_mask
, dom
->next_address
);
1282 if (address
== -1) {
1283 dom
->next_address
= 0;
1284 address
= dma_ops_area_alloc(dev
, dom
, pages
, align_mask
,
1286 dom
->need_flush
= true;
1289 if (unlikely(address
== -1))
1290 address
= DMA_ERROR_CODE
;
1292 WARN_ON((address
+ (PAGE_SIZE
*pages
)) > dom
->aperture_size
);
1298 * The address free function.
1300 * called with domain->lock held
1302 static void dma_ops_free_addresses(struct dma_ops_domain
*dom
,
1303 unsigned long address
,
1306 unsigned i
= address
>> APERTURE_RANGE_SHIFT
;
1307 struct aperture_range
*range
= dom
->aperture
[i
];
1309 BUG_ON(i
>= APERTURE_MAX_RANGES
|| range
== NULL
);
1311 #ifdef CONFIG_IOMMU_STRESS
1316 if (address
>= dom
->next_address
)
1317 dom
->need_flush
= true;
1319 address
= (address
% APERTURE_RANGE_SIZE
) >> PAGE_SHIFT
;
1321 bitmap_clear(range
->bitmap
, address
, pages
);
1325 /****************************************************************************
1327 * The next functions belong to the domain allocation. A domain is
1328 * allocated for every IOMMU as the default domain. If device isolation
1329 * is enabled, every device get its own domain. The most important thing
1330 * about domains is the page table mapping the DMA address space they
1333 ****************************************************************************/
1336 * This function adds a protection domain to the global protection domain list
1338 static void add_domain_to_list(struct protection_domain
*domain
)
1340 unsigned long flags
;
1342 spin_lock_irqsave(&amd_iommu_pd_lock
, flags
);
1343 list_add(&domain
->list
, &amd_iommu_pd_list
);
1344 spin_unlock_irqrestore(&amd_iommu_pd_lock
, flags
);
1348 * This function removes a protection domain to the global
1349 * protection domain list
1351 static void del_domain_from_list(struct protection_domain
*domain
)
1353 unsigned long flags
;
1355 spin_lock_irqsave(&amd_iommu_pd_lock
, flags
);
1356 list_del(&domain
->list
);
1357 spin_unlock_irqrestore(&amd_iommu_pd_lock
, flags
);
1360 static u16
domain_id_alloc(void)
1362 unsigned long flags
;
1365 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
1366 id
= find_first_zero_bit(amd_iommu_pd_alloc_bitmap
, MAX_DOMAIN_ID
);
1368 if (id
> 0 && id
< MAX_DOMAIN_ID
)
1369 __set_bit(id
, amd_iommu_pd_alloc_bitmap
);
1372 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
1377 static void domain_id_free(int id
)
1379 unsigned long flags
;
1381 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
1382 if (id
> 0 && id
< MAX_DOMAIN_ID
)
1383 __clear_bit(id
, amd_iommu_pd_alloc_bitmap
);
1384 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
1387 static void free_pagetable(struct protection_domain
*domain
)
1392 p1
= domain
->pt_root
;
1397 for (i
= 0; i
< 512; ++i
) {
1398 if (!IOMMU_PTE_PRESENT(p1
[i
]))
1401 p2
= IOMMU_PTE_PAGE(p1
[i
]);
1402 for (j
= 0; j
< 512; ++j
) {
1403 if (!IOMMU_PTE_PRESENT(p2
[j
]))
1405 p3
= IOMMU_PTE_PAGE(p2
[j
]);
1406 free_page((unsigned long)p3
);
1409 free_page((unsigned long)p2
);
1412 free_page((unsigned long)p1
);
1414 domain
->pt_root
= NULL
;
1418 * Free a domain, only used if something went wrong in the
1419 * allocation path and we need to free an already allocated page table
1421 static void dma_ops_domain_free(struct dma_ops_domain
*dom
)
1428 del_domain_from_list(&dom
->domain
);
1430 free_pagetable(&dom
->domain
);
1432 for (i
= 0; i
< APERTURE_MAX_RANGES
; ++i
) {
1433 if (!dom
->aperture
[i
])
1435 free_page((unsigned long)dom
->aperture
[i
]->bitmap
);
1436 kfree(dom
->aperture
[i
]);
1443 * Allocates a new protection domain usable for the dma_ops functions.
1444 * It also initializes the page table and the address allocator data
1445 * structures required for the dma_ops interface
1447 static struct dma_ops_domain
*dma_ops_domain_alloc(void)
1449 struct dma_ops_domain
*dma_dom
;
1451 dma_dom
= kzalloc(sizeof(struct dma_ops_domain
), GFP_KERNEL
);
1455 spin_lock_init(&dma_dom
->domain
.lock
);
1457 dma_dom
->domain
.id
= domain_id_alloc();
1458 if (dma_dom
->domain
.id
== 0)
1460 INIT_LIST_HEAD(&dma_dom
->domain
.dev_list
);
1461 dma_dom
->domain
.mode
= PAGE_MODE_2_LEVEL
;
1462 dma_dom
->domain
.pt_root
= (void *)get_zeroed_page(GFP_KERNEL
);
1463 dma_dom
->domain
.flags
= PD_DMA_OPS_MASK
;
1464 dma_dom
->domain
.priv
= dma_dom
;
1465 if (!dma_dom
->domain
.pt_root
)
1468 dma_dom
->need_flush
= false;
1469 dma_dom
->target_dev
= 0xffff;
1471 add_domain_to_list(&dma_dom
->domain
);
1473 if (alloc_new_range(dma_dom
, true, GFP_KERNEL
))
1477 * mark the first page as allocated so we never return 0 as
1478 * a valid dma-address. So we can use 0 as error value
1480 dma_dom
->aperture
[0]->bitmap
[0] = 1;
1481 dma_dom
->next_address
= 0;
1487 dma_ops_domain_free(dma_dom
);
1493 * little helper function to check whether a given protection domain is a
1496 static bool dma_ops_domain(struct protection_domain
*domain
)
1498 return domain
->flags
& PD_DMA_OPS_MASK
;
1501 static void set_dte_entry(u16 devid
, struct protection_domain
*domain
, bool ats
)
1503 u64 pte_root
= virt_to_phys(domain
->pt_root
);
1506 pte_root
|= (domain
->mode
& DEV_ENTRY_MODE_MASK
)
1507 << DEV_ENTRY_MODE_SHIFT
;
1508 pte_root
|= IOMMU_PTE_IR
| IOMMU_PTE_IW
| IOMMU_PTE_P
| IOMMU_PTE_TV
;
1511 flags
|= DTE_FLAG_IOTLB
;
1513 amd_iommu_dev_table
[devid
].data
[3] |= flags
;
1514 amd_iommu_dev_table
[devid
].data
[2] = domain
->id
;
1515 amd_iommu_dev_table
[devid
].data
[1] = upper_32_bits(pte_root
);
1516 amd_iommu_dev_table
[devid
].data
[0] = lower_32_bits(pte_root
);
1519 static void clear_dte_entry(u16 devid
)
1521 /* remove entry from the device table seen by the hardware */
1522 amd_iommu_dev_table
[devid
].data
[0] = IOMMU_PTE_P
| IOMMU_PTE_TV
;
1523 amd_iommu_dev_table
[devid
].data
[1] = 0;
1524 amd_iommu_dev_table
[devid
].data
[2] = 0;
1526 amd_iommu_apply_erratum_63(devid
);
1529 static void do_attach(struct device
*dev
, struct protection_domain
*domain
)
1531 struct iommu_dev_data
*dev_data
;
1532 struct amd_iommu
*iommu
;
1533 struct pci_dev
*pdev
;
1537 devid
= get_device_id(dev
);
1538 iommu
= amd_iommu_rlookup_table
[devid
];
1539 dev_data
= get_dev_data(dev
);
1540 pdev
= to_pci_dev(dev
);
1542 if (amd_iommu_iotlb_sup
)
1543 ats
= pci_ats_enabled(pdev
);
1545 /* Update data structures */
1546 dev_data
->domain
= domain
;
1547 list_add(&dev_data
->list
, &domain
->dev_list
);
1548 set_dte_entry(devid
, domain
, ats
);
1550 /* Do reference counting */
1551 domain
->dev_iommu
[iommu
->index
] += 1;
1552 domain
->dev_cnt
+= 1;
1554 /* Flush the DTE entry */
1555 device_flush_dte(dev
);
1558 static void do_detach(struct device
*dev
)
1560 struct iommu_dev_data
*dev_data
;
1561 struct amd_iommu
*iommu
;
1564 devid
= get_device_id(dev
);
1565 iommu
= amd_iommu_rlookup_table
[devid
];
1566 dev_data
= get_dev_data(dev
);
1568 /* decrease reference counters */
1569 dev_data
->domain
->dev_iommu
[iommu
->index
] -= 1;
1570 dev_data
->domain
->dev_cnt
-= 1;
1572 /* Update data structures */
1573 dev_data
->domain
= NULL
;
1574 list_del(&dev_data
->list
);
1575 clear_dte_entry(devid
);
1577 /* Flush the DTE entry */
1578 device_flush_dte(dev
);
1582 * If a device is not yet associated with a domain, this function does
1583 * assigns it visible for the hardware
1585 static int __attach_device(struct device
*dev
,
1586 struct protection_domain
*domain
)
1588 struct iommu_dev_data
*dev_data
, *alias_data
;
1591 dev_data
= get_dev_data(dev
);
1592 alias_data
= get_dev_data(dev_data
->alias
);
1598 spin_lock(&domain
->lock
);
1600 /* Some sanity checks */
1602 if (alias_data
->domain
!= NULL
&&
1603 alias_data
->domain
!= domain
)
1606 if (dev_data
->domain
!= NULL
&&
1607 dev_data
->domain
!= domain
)
1610 /* Do real assignment */
1611 if (dev_data
->alias
!= dev
) {
1612 alias_data
= get_dev_data(dev_data
->alias
);
1613 if (alias_data
->domain
== NULL
)
1614 do_attach(dev_data
->alias
, domain
);
1616 atomic_inc(&alias_data
->bind
);
1619 if (dev_data
->domain
== NULL
)
1620 do_attach(dev
, domain
);
1622 atomic_inc(&dev_data
->bind
);
1629 spin_unlock(&domain
->lock
);
1635 * If a device is not yet associated with a domain, this function does
1636 * assigns it visible for the hardware
1638 static int attach_device(struct device
*dev
,
1639 struct protection_domain
*domain
)
1641 struct pci_dev
*pdev
= to_pci_dev(dev
);
1642 unsigned long flags
;
1645 if (amd_iommu_iotlb_sup
)
1646 pci_enable_ats(pdev
, PAGE_SHIFT
);
1648 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
1649 ret
= __attach_device(dev
, domain
);
1650 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
1653 * We might boot into a crash-kernel here. The crashed kernel
1654 * left the caches in the IOMMU dirty. So we have to flush
1655 * here to evict all dirty stuff.
1657 domain_flush_tlb_pde(domain
);
1663 * Removes a device from a protection domain (unlocked)
1665 static void __detach_device(struct device
*dev
)
1667 struct iommu_dev_data
*dev_data
= get_dev_data(dev
);
1668 struct iommu_dev_data
*alias_data
;
1669 struct protection_domain
*domain
;
1670 unsigned long flags
;
1672 BUG_ON(!dev_data
->domain
);
1674 domain
= dev_data
->domain
;
1676 spin_lock_irqsave(&domain
->lock
, flags
);
1678 if (dev_data
->alias
!= dev
) {
1679 alias_data
= get_dev_data(dev_data
->alias
);
1680 if (atomic_dec_and_test(&alias_data
->bind
))
1681 do_detach(dev_data
->alias
);
1684 if (atomic_dec_and_test(&dev_data
->bind
))
1687 spin_unlock_irqrestore(&domain
->lock
, flags
);
1690 * If we run in passthrough mode the device must be assigned to the
1691 * passthrough domain if it is detached from any other domain.
1692 * Make sure we can deassign from the pt_domain itself.
1694 if (iommu_pass_through
&&
1695 (dev_data
->domain
== NULL
&& domain
!= pt_domain
))
1696 __attach_device(dev
, pt_domain
);
1700 * Removes a device from a protection domain (with devtable_lock held)
1702 static void detach_device(struct device
*dev
)
1704 struct pci_dev
*pdev
= to_pci_dev(dev
);
1705 unsigned long flags
;
1707 /* lock device table */
1708 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
1709 __detach_device(dev
);
1710 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
1712 if (amd_iommu_iotlb_sup
&& pci_ats_enabled(pdev
))
1713 pci_disable_ats(pdev
);
1717 * Find out the protection domain structure for a given PCI device. This
1718 * will give us the pointer to the page table root for example.
1720 static struct protection_domain
*domain_for_device(struct device
*dev
)
1722 struct protection_domain
*dom
;
1723 struct iommu_dev_data
*dev_data
, *alias_data
;
1724 unsigned long flags
;
1727 devid
= get_device_id(dev
);
1728 dev_data
= get_dev_data(dev
);
1729 alias_data
= get_dev_data(dev_data
->alias
);
1733 read_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
1734 dom
= dev_data
->domain
;
1736 alias_data
->domain
!= NULL
) {
1737 __attach_device(dev
, alias_data
->domain
);
1738 dom
= alias_data
->domain
;
1741 read_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
1746 static int device_change_notifier(struct notifier_block
*nb
,
1747 unsigned long action
, void *data
)
1749 struct device
*dev
= data
;
1751 struct protection_domain
*domain
;
1752 struct dma_ops_domain
*dma_domain
;
1753 struct amd_iommu
*iommu
;
1754 unsigned long flags
;
1756 if (!check_device(dev
))
1759 devid
= get_device_id(dev
);
1760 iommu
= amd_iommu_rlookup_table
[devid
];
1763 case BUS_NOTIFY_UNBOUND_DRIVER
:
1765 domain
= domain_for_device(dev
);
1769 if (iommu_pass_through
)
1773 case BUS_NOTIFY_ADD_DEVICE
:
1775 iommu_init_device(dev
);
1777 domain
= domain_for_device(dev
);
1779 /* allocate a protection domain if a device is added */
1780 dma_domain
= find_protection_domain(devid
);
1783 dma_domain
= dma_ops_domain_alloc();
1786 dma_domain
->target_dev
= devid
;
1788 spin_lock_irqsave(&iommu_pd_list_lock
, flags
);
1789 list_add_tail(&dma_domain
->list
, &iommu_pd_list
);
1790 spin_unlock_irqrestore(&iommu_pd_list_lock
, flags
);
1793 case BUS_NOTIFY_DEL_DEVICE
:
1795 iommu_uninit_device(dev
);
1801 device_flush_dte(dev
);
1802 iommu_completion_wait(iommu
);
1808 static struct notifier_block device_nb
= {
1809 .notifier_call
= device_change_notifier
,
1812 void amd_iommu_init_notifier(void)
1814 bus_register_notifier(&pci_bus_type
, &device_nb
);
1817 /*****************************************************************************
1819 * The next functions belong to the dma_ops mapping/unmapping code.
1821 *****************************************************************************/
1824 * In the dma_ops path we only have the struct device. This function
1825 * finds the corresponding IOMMU, the protection domain and the
1826 * requestor id for a given device.
1827 * If the device is not yet associated with a domain this is also done
1830 static struct protection_domain
*get_domain(struct device
*dev
)
1832 struct protection_domain
*domain
;
1833 struct dma_ops_domain
*dma_dom
;
1834 u16 devid
= get_device_id(dev
);
1836 if (!check_device(dev
))
1837 return ERR_PTR(-EINVAL
);
1839 domain
= domain_for_device(dev
);
1840 if (domain
!= NULL
&& !dma_ops_domain(domain
))
1841 return ERR_PTR(-EBUSY
);
1846 /* Device not bount yet - bind it */
1847 dma_dom
= find_protection_domain(devid
);
1849 dma_dom
= amd_iommu_rlookup_table
[devid
]->default_dom
;
1850 attach_device(dev
, &dma_dom
->domain
);
1851 DUMP_printk("Using protection domain %d for device %s\n",
1852 dma_dom
->domain
.id
, dev_name(dev
));
1854 return &dma_dom
->domain
;
1857 static void update_device_table(struct protection_domain
*domain
)
1859 struct iommu_dev_data
*dev_data
;
1861 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
1862 struct pci_dev
*pdev
= to_pci_dev(dev_data
->dev
);
1863 u16 devid
= get_device_id(dev_data
->dev
);
1864 set_dte_entry(devid
, domain
, pci_ats_enabled(pdev
));
1868 static void update_domain(struct protection_domain
*domain
)
1870 if (!domain
->updated
)
1873 update_device_table(domain
);
1875 domain_flush_devices(domain
);
1876 domain_flush_tlb_pde(domain
);
1878 domain
->updated
= false;
1882 * This function fetches the PTE for a given address in the aperture
1884 static u64
* dma_ops_get_pte(struct dma_ops_domain
*dom
,
1885 unsigned long address
)
1887 struct aperture_range
*aperture
;
1888 u64
*pte
, *pte_page
;
1890 aperture
= dom
->aperture
[APERTURE_RANGE_INDEX(address
)];
1894 pte
= aperture
->pte_pages
[APERTURE_PAGE_INDEX(address
)];
1896 pte
= alloc_pte(&dom
->domain
, address
, PAGE_SIZE
, &pte_page
,
1898 aperture
->pte_pages
[APERTURE_PAGE_INDEX(address
)] = pte_page
;
1900 pte
+= PM_LEVEL_INDEX(0, address
);
1902 update_domain(&dom
->domain
);
1908 * This is the generic map function. It maps one 4kb page at paddr to
1909 * the given address in the DMA address space for the domain.
1911 static dma_addr_t
dma_ops_domain_map(struct dma_ops_domain
*dom
,
1912 unsigned long address
,
1918 WARN_ON(address
> dom
->aperture_size
);
1922 pte
= dma_ops_get_pte(dom
, address
);
1924 return DMA_ERROR_CODE
;
1926 __pte
= paddr
| IOMMU_PTE_P
| IOMMU_PTE_FC
;
1928 if (direction
== DMA_TO_DEVICE
)
1929 __pte
|= IOMMU_PTE_IR
;
1930 else if (direction
== DMA_FROM_DEVICE
)
1931 __pte
|= IOMMU_PTE_IW
;
1932 else if (direction
== DMA_BIDIRECTIONAL
)
1933 __pte
|= IOMMU_PTE_IR
| IOMMU_PTE_IW
;
1939 return (dma_addr_t
)address
;
1943 * The generic unmapping function for on page in the DMA address space.
1945 static void dma_ops_domain_unmap(struct dma_ops_domain
*dom
,
1946 unsigned long address
)
1948 struct aperture_range
*aperture
;
1951 if (address
>= dom
->aperture_size
)
1954 aperture
= dom
->aperture
[APERTURE_RANGE_INDEX(address
)];
1958 pte
= aperture
->pte_pages
[APERTURE_PAGE_INDEX(address
)];
1962 pte
+= PM_LEVEL_INDEX(0, address
);
1970 * This function contains common code for mapping of a physically
1971 * contiguous memory region into DMA address space. It is used by all
1972 * mapping functions provided with this IOMMU driver.
1973 * Must be called with the domain lock held.
1975 static dma_addr_t
__map_single(struct device
*dev
,
1976 struct dma_ops_domain
*dma_dom
,
1983 dma_addr_t offset
= paddr
& ~PAGE_MASK
;
1984 dma_addr_t address
, start
, ret
;
1986 unsigned long align_mask
= 0;
1989 pages
= iommu_num_pages(paddr
, size
, PAGE_SIZE
);
1992 INC_STATS_COUNTER(total_map_requests
);
1995 INC_STATS_COUNTER(cross_page
);
1998 align_mask
= (1UL << get_order(size
)) - 1;
2001 address
= dma_ops_alloc_addresses(dev
, dma_dom
, pages
, align_mask
,
2003 if (unlikely(address
== DMA_ERROR_CODE
)) {
2005 * setting next_address here will let the address
2006 * allocator only scan the new allocated range in the
2007 * first run. This is a small optimization.
2009 dma_dom
->next_address
= dma_dom
->aperture_size
;
2011 if (alloc_new_range(dma_dom
, false, GFP_ATOMIC
))
2015 * aperture was successfully enlarged by 128 MB, try
2022 for (i
= 0; i
< pages
; ++i
) {
2023 ret
= dma_ops_domain_map(dma_dom
, start
, paddr
, dir
);
2024 if (ret
== DMA_ERROR_CODE
)
2032 ADD_STATS_COUNTER(alloced_io_mem
, size
);
2034 if (unlikely(dma_dom
->need_flush
&& !amd_iommu_unmap_flush
)) {
2035 domain_flush_tlb(&dma_dom
->domain
);
2036 dma_dom
->need_flush
= false;
2037 } else if (unlikely(amd_iommu_np_cache
))
2038 domain_flush_pages(&dma_dom
->domain
, address
, size
);
2045 for (--i
; i
>= 0; --i
) {
2047 dma_ops_domain_unmap(dma_dom
, start
);
2050 dma_ops_free_addresses(dma_dom
, address
, pages
);
2052 return DMA_ERROR_CODE
;
2056 * Does the reverse of the __map_single function. Must be called with
2057 * the domain lock held too
2059 static void __unmap_single(struct dma_ops_domain
*dma_dom
,
2060 dma_addr_t dma_addr
,
2064 dma_addr_t flush_addr
;
2065 dma_addr_t i
, start
;
2068 if ((dma_addr
== DMA_ERROR_CODE
) ||
2069 (dma_addr
+ size
> dma_dom
->aperture_size
))
2072 flush_addr
= dma_addr
;
2073 pages
= iommu_num_pages(dma_addr
, size
, PAGE_SIZE
);
2074 dma_addr
&= PAGE_MASK
;
2077 for (i
= 0; i
< pages
; ++i
) {
2078 dma_ops_domain_unmap(dma_dom
, start
);
2082 SUB_STATS_COUNTER(alloced_io_mem
, size
);
2084 dma_ops_free_addresses(dma_dom
, dma_addr
, pages
);
2086 if (amd_iommu_unmap_flush
|| dma_dom
->need_flush
) {
2087 domain_flush_pages(&dma_dom
->domain
, flush_addr
, size
);
2088 dma_dom
->need_flush
= false;
2093 * The exported map_single function for dma_ops.
2095 static dma_addr_t
map_page(struct device
*dev
, struct page
*page
,
2096 unsigned long offset
, size_t size
,
2097 enum dma_data_direction dir
,
2098 struct dma_attrs
*attrs
)
2100 unsigned long flags
;
2101 struct protection_domain
*domain
;
2104 phys_addr_t paddr
= page_to_phys(page
) + offset
;
2106 INC_STATS_COUNTER(cnt_map_single
);
2108 domain
= get_domain(dev
);
2109 if (PTR_ERR(domain
) == -EINVAL
)
2110 return (dma_addr_t
)paddr
;
2111 else if (IS_ERR(domain
))
2112 return DMA_ERROR_CODE
;
2114 dma_mask
= *dev
->dma_mask
;
2116 spin_lock_irqsave(&domain
->lock
, flags
);
2118 addr
= __map_single(dev
, domain
->priv
, paddr
, size
, dir
, false,
2120 if (addr
== DMA_ERROR_CODE
)
2123 domain_flush_complete(domain
);
2126 spin_unlock_irqrestore(&domain
->lock
, flags
);
2132 * The exported unmap_single function for dma_ops.
2134 static void unmap_page(struct device
*dev
, dma_addr_t dma_addr
, size_t size
,
2135 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
2137 unsigned long flags
;
2138 struct protection_domain
*domain
;
2140 INC_STATS_COUNTER(cnt_unmap_single
);
2142 domain
= get_domain(dev
);
2146 spin_lock_irqsave(&domain
->lock
, flags
);
2148 __unmap_single(domain
->priv
, dma_addr
, size
, dir
);
2150 domain_flush_complete(domain
);
2152 spin_unlock_irqrestore(&domain
->lock
, flags
);
2156 * This is a special map_sg function which is used if we should map a
2157 * device which is not handled by an AMD IOMMU in the system.
2159 static int map_sg_no_iommu(struct device
*dev
, struct scatterlist
*sglist
,
2160 int nelems
, int dir
)
2162 struct scatterlist
*s
;
2165 for_each_sg(sglist
, s
, nelems
, i
) {
2166 s
->dma_address
= (dma_addr_t
)sg_phys(s
);
2167 s
->dma_length
= s
->length
;
2174 * The exported map_sg function for dma_ops (handles scatter-gather
2177 static int map_sg(struct device
*dev
, struct scatterlist
*sglist
,
2178 int nelems
, enum dma_data_direction dir
,
2179 struct dma_attrs
*attrs
)
2181 unsigned long flags
;
2182 struct protection_domain
*domain
;
2184 struct scatterlist
*s
;
2186 int mapped_elems
= 0;
2189 INC_STATS_COUNTER(cnt_map_sg
);
2191 domain
= get_domain(dev
);
2192 if (PTR_ERR(domain
) == -EINVAL
)
2193 return map_sg_no_iommu(dev
, sglist
, nelems
, dir
);
2194 else if (IS_ERR(domain
))
2197 dma_mask
= *dev
->dma_mask
;
2199 spin_lock_irqsave(&domain
->lock
, flags
);
2201 for_each_sg(sglist
, s
, nelems
, i
) {
2204 s
->dma_address
= __map_single(dev
, domain
->priv
,
2205 paddr
, s
->length
, dir
, false,
2208 if (s
->dma_address
) {
2209 s
->dma_length
= s
->length
;
2215 domain_flush_complete(domain
);
2218 spin_unlock_irqrestore(&domain
->lock
, flags
);
2220 return mapped_elems
;
2222 for_each_sg(sglist
, s
, mapped_elems
, i
) {
2224 __unmap_single(domain
->priv
, s
->dma_address
,
2225 s
->dma_length
, dir
);
2226 s
->dma_address
= s
->dma_length
= 0;
2235 * The exported map_sg function for dma_ops (handles scatter-gather
2238 static void unmap_sg(struct device
*dev
, struct scatterlist
*sglist
,
2239 int nelems
, enum dma_data_direction dir
,
2240 struct dma_attrs
*attrs
)
2242 unsigned long flags
;
2243 struct protection_domain
*domain
;
2244 struct scatterlist
*s
;
2247 INC_STATS_COUNTER(cnt_unmap_sg
);
2249 domain
= get_domain(dev
);
2253 spin_lock_irqsave(&domain
->lock
, flags
);
2255 for_each_sg(sglist
, s
, nelems
, i
) {
2256 __unmap_single(domain
->priv
, s
->dma_address
,
2257 s
->dma_length
, dir
);
2258 s
->dma_address
= s
->dma_length
= 0;
2261 domain_flush_complete(domain
);
2263 spin_unlock_irqrestore(&domain
->lock
, flags
);
2267 * The exported alloc_coherent function for dma_ops.
2269 static void *alloc_coherent(struct device
*dev
, size_t size
,
2270 dma_addr_t
*dma_addr
, gfp_t flag
)
2272 unsigned long flags
;
2274 struct protection_domain
*domain
;
2276 u64 dma_mask
= dev
->coherent_dma_mask
;
2278 INC_STATS_COUNTER(cnt_alloc_coherent
);
2280 domain
= get_domain(dev
);
2281 if (PTR_ERR(domain
) == -EINVAL
) {
2282 virt_addr
= (void *)__get_free_pages(flag
, get_order(size
));
2283 *dma_addr
= __pa(virt_addr
);
2285 } else if (IS_ERR(domain
))
2288 dma_mask
= dev
->coherent_dma_mask
;
2289 flag
&= ~(__GFP_DMA
| __GFP_HIGHMEM
| __GFP_DMA32
);
2292 virt_addr
= (void *)__get_free_pages(flag
, get_order(size
));
2296 paddr
= virt_to_phys(virt_addr
);
2299 dma_mask
= *dev
->dma_mask
;
2301 spin_lock_irqsave(&domain
->lock
, flags
);
2303 *dma_addr
= __map_single(dev
, domain
->priv
, paddr
,
2304 size
, DMA_BIDIRECTIONAL
, true, dma_mask
);
2306 if (*dma_addr
== DMA_ERROR_CODE
) {
2307 spin_unlock_irqrestore(&domain
->lock
, flags
);
2311 domain_flush_complete(domain
);
2313 spin_unlock_irqrestore(&domain
->lock
, flags
);
2319 free_pages((unsigned long)virt_addr
, get_order(size
));
2325 * The exported free_coherent function for dma_ops.
2327 static void free_coherent(struct device
*dev
, size_t size
,
2328 void *virt_addr
, dma_addr_t dma_addr
)
2330 unsigned long flags
;
2331 struct protection_domain
*domain
;
2333 INC_STATS_COUNTER(cnt_free_coherent
);
2335 domain
= get_domain(dev
);
2339 spin_lock_irqsave(&domain
->lock
, flags
);
2341 __unmap_single(domain
->priv
, dma_addr
, size
, DMA_BIDIRECTIONAL
);
2343 domain_flush_complete(domain
);
2345 spin_unlock_irqrestore(&domain
->lock
, flags
);
2348 free_pages((unsigned long)virt_addr
, get_order(size
));
2352 * This function is called by the DMA layer to find out if we can handle a
2353 * particular device. It is part of the dma_ops.
2355 static int amd_iommu_dma_supported(struct device
*dev
, u64 mask
)
2357 return check_device(dev
);
2361 * The function for pre-allocating protection domains.
2363 * If the driver core informs the DMA layer if a driver grabs a device
2364 * we don't need to preallocate the protection domains anymore.
2365 * For now we have to.
2367 static void prealloc_protection_domains(void)
2369 struct pci_dev
*dev
= NULL
;
2370 struct dma_ops_domain
*dma_dom
;
2373 for_each_pci_dev(dev
) {
2375 /* Do we handle this device? */
2376 if (!check_device(&dev
->dev
))
2379 /* Is there already any domain for it? */
2380 if (domain_for_device(&dev
->dev
))
2383 devid
= get_device_id(&dev
->dev
);
2385 dma_dom
= dma_ops_domain_alloc();
2388 init_unity_mappings_for_device(dma_dom
, devid
);
2389 dma_dom
->target_dev
= devid
;
2391 attach_device(&dev
->dev
, &dma_dom
->domain
);
2393 list_add_tail(&dma_dom
->list
, &iommu_pd_list
);
2397 static struct dma_map_ops amd_iommu_dma_ops
= {
2398 .alloc_coherent
= alloc_coherent
,
2399 .free_coherent
= free_coherent
,
2400 .map_page
= map_page
,
2401 .unmap_page
= unmap_page
,
2403 .unmap_sg
= unmap_sg
,
2404 .dma_supported
= amd_iommu_dma_supported
,
2407 static unsigned device_dma_ops_init(void)
2409 struct pci_dev
*pdev
= NULL
;
2410 unsigned unhandled
= 0;
2412 for_each_pci_dev(pdev
) {
2413 if (!check_device(&pdev
->dev
)) {
2418 pdev
->dev
.archdata
.dma_ops
= &amd_iommu_dma_ops
;
2425 * The function which clues the AMD IOMMU driver into dma_ops.
2428 void __init
amd_iommu_init_api(void)
2430 register_iommu(&amd_iommu_ops
);
2433 int __init
amd_iommu_init_dma_ops(void)
2435 struct amd_iommu
*iommu
;
2439 * first allocate a default protection domain for every IOMMU we
2440 * found in the system. Devices not assigned to any other
2441 * protection domain will be assigned to the default one.
2443 for_each_iommu(iommu
) {
2444 iommu
->default_dom
= dma_ops_domain_alloc();
2445 if (iommu
->default_dom
== NULL
)
2447 iommu
->default_dom
->domain
.flags
|= PD_DEFAULT_MASK
;
2448 ret
= iommu_init_unity_mappings(iommu
);
2454 * Pre-allocate the protection domains for each device.
2456 prealloc_protection_domains();
2461 /* Make the driver finally visible to the drivers */
2462 unhandled
= device_dma_ops_init();
2463 if (unhandled
&& max_pfn
> MAX_DMA32_PFN
) {
2464 /* There are unhandled devices - initialize swiotlb for them */
2468 amd_iommu_stats_init();
2474 for_each_iommu(iommu
) {
2475 if (iommu
->default_dom
)
2476 dma_ops_domain_free(iommu
->default_dom
);
2482 /*****************************************************************************
2484 * The following functions belong to the exported interface of AMD IOMMU
2486 * This interface allows access to lower level functions of the IOMMU
2487 * like protection domain handling and assignement of devices to domains
2488 * which is not possible with the dma_ops interface.
2490 *****************************************************************************/
2492 static void cleanup_domain(struct protection_domain
*domain
)
2494 struct iommu_dev_data
*dev_data
, *next
;
2495 unsigned long flags
;
2497 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
2499 list_for_each_entry_safe(dev_data
, next
, &domain
->dev_list
, list
) {
2500 struct device
*dev
= dev_data
->dev
;
2502 __detach_device(dev
);
2503 atomic_set(&dev_data
->bind
, 0);
2506 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
2509 static void protection_domain_free(struct protection_domain
*domain
)
2514 del_domain_from_list(domain
);
2517 domain_id_free(domain
->id
);
2522 static struct protection_domain
*protection_domain_alloc(void)
2524 struct protection_domain
*domain
;
2526 domain
= kzalloc(sizeof(*domain
), GFP_KERNEL
);
2530 spin_lock_init(&domain
->lock
);
2531 mutex_init(&domain
->api_lock
);
2532 domain
->id
= domain_id_alloc();
2535 INIT_LIST_HEAD(&domain
->dev_list
);
2537 add_domain_to_list(domain
);
2547 static int amd_iommu_domain_init(struct iommu_domain
*dom
)
2549 struct protection_domain
*domain
;
2551 domain
= protection_domain_alloc();
2555 domain
->mode
= PAGE_MODE_3_LEVEL
;
2556 domain
->pt_root
= (void *)get_zeroed_page(GFP_KERNEL
);
2557 if (!domain
->pt_root
)
2565 protection_domain_free(domain
);
2570 static void amd_iommu_domain_destroy(struct iommu_domain
*dom
)
2572 struct protection_domain
*domain
= dom
->priv
;
2577 if (domain
->dev_cnt
> 0)
2578 cleanup_domain(domain
);
2580 BUG_ON(domain
->dev_cnt
!= 0);
2582 free_pagetable(domain
);
2584 protection_domain_free(domain
);
2589 static void amd_iommu_detach_device(struct iommu_domain
*dom
,
2592 struct iommu_dev_data
*dev_data
= dev
->archdata
.iommu
;
2593 struct amd_iommu
*iommu
;
2596 if (!check_device(dev
))
2599 devid
= get_device_id(dev
);
2601 if (dev_data
->domain
!= NULL
)
2604 iommu
= amd_iommu_rlookup_table
[devid
];
2608 device_flush_dte(dev
);
2609 iommu_completion_wait(iommu
);
2612 static int amd_iommu_attach_device(struct iommu_domain
*dom
,
2615 struct protection_domain
*domain
= dom
->priv
;
2616 struct iommu_dev_data
*dev_data
;
2617 struct amd_iommu
*iommu
;
2621 if (!check_device(dev
))
2624 dev_data
= dev
->archdata
.iommu
;
2626 devid
= get_device_id(dev
);
2628 iommu
= amd_iommu_rlookup_table
[devid
];
2632 if (dev_data
->domain
)
2635 ret
= attach_device(dev
, domain
);
2637 iommu_completion_wait(iommu
);
2642 static int amd_iommu_map(struct iommu_domain
*dom
, unsigned long iova
,
2643 phys_addr_t paddr
, int gfp_order
, int iommu_prot
)
2645 unsigned long page_size
= 0x1000UL
<< gfp_order
;
2646 struct protection_domain
*domain
= dom
->priv
;
2650 if (iommu_prot
& IOMMU_READ
)
2651 prot
|= IOMMU_PROT_IR
;
2652 if (iommu_prot
& IOMMU_WRITE
)
2653 prot
|= IOMMU_PROT_IW
;
2655 mutex_lock(&domain
->api_lock
);
2656 ret
= iommu_map_page(domain
, iova
, paddr
, prot
, page_size
);
2657 mutex_unlock(&domain
->api_lock
);
2662 static int amd_iommu_unmap(struct iommu_domain
*dom
, unsigned long iova
,
2665 struct protection_domain
*domain
= dom
->priv
;
2666 unsigned long page_size
, unmap_size
;
2668 page_size
= 0x1000UL
<< gfp_order
;
2670 mutex_lock(&domain
->api_lock
);
2671 unmap_size
= iommu_unmap_page(domain
, iova
, page_size
);
2672 mutex_unlock(&domain
->api_lock
);
2674 domain_flush_tlb_pde(domain
);
2676 return get_order(unmap_size
);
2679 static phys_addr_t
amd_iommu_iova_to_phys(struct iommu_domain
*dom
,
2682 struct protection_domain
*domain
= dom
->priv
;
2683 unsigned long offset_mask
;
2687 pte
= fetch_pte(domain
, iova
);
2689 if (!pte
|| !IOMMU_PTE_PRESENT(*pte
))
2692 if (PM_PTE_LEVEL(*pte
) == 0)
2693 offset_mask
= PAGE_SIZE
- 1;
2695 offset_mask
= PTE_PAGE_SIZE(*pte
) - 1;
2697 __pte
= *pte
& PM_ADDR_MASK
;
2698 paddr
= (__pte
& ~offset_mask
) | (iova
& offset_mask
);
2703 static int amd_iommu_domain_has_cap(struct iommu_domain
*domain
,
2707 case IOMMU_CAP_CACHE_COHERENCY
:
2714 static struct iommu_ops amd_iommu_ops
= {
2715 .domain_init
= amd_iommu_domain_init
,
2716 .domain_destroy
= amd_iommu_domain_destroy
,
2717 .attach_dev
= amd_iommu_attach_device
,
2718 .detach_dev
= amd_iommu_detach_device
,
2719 .map
= amd_iommu_map
,
2720 .unmap
= amd_iommu_unmap
,
2721 .iova_to_phys
= amd_iommu_iova_to_phys
,
2722 .domain_has_cap
= amd_iommu_domain_has_cap
,
2725 /*****************************************************************************
2727 * The next functions do a basic initialization of IOMMU for pass through
2730 * In passthrough mode the IOMMU is initialized and enabled but not used for
2731 * DMA-API translation.
2733 *****************************************************************************/
2735 int __init
amd_iommu_init_passthrough(void)
2737 struct amd_iommu
*iommu
;
2738 struct pci_dev
*dev
= NULL
;
2741 /* allocate passthrough domain */
2742 pt_domain
= protection_domain_alloc();
2746 pt_domain
->mode
|= PAGE_MODE_NONE
;
2748 for_each_pci_dev(dev
) {
2749 if (!check_device(&dev
->dev
))
2752 devid
= get_device_id(&dev
->dev
);
2754 iommu
= amd_iommu_rlookup_table
[devid
];
2758 attach_device(&dev
->dev
, pt_domain
);
2761 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");