rcu: Add memory barriers
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / rcutree.c
blob3731141d8ad7936b6ca537b5dae911a9989b4316
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <asm/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/module.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
53 #include "rcutree.h"
55 /* Data structures. */
57 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
59 #define RCU_STATE_INITIALIZER(structname) { \
60 .level = { &structname.node[0] }, \
61 .levelcnt = { \
62 NUM_RCU_LVL_0, /* root of hierarchy. */ \
63 NUM_RCU_LVL_1, \
64 NUM_RCU_LVL_2, \
65 NUM_RCU_LVL_3, \
66 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
67 }, \
68 .signaled = RCU_GP_IDLE, \
69 .gpnum = -300, \
70 .completed = -300, \
71 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname.onofflock), \
72 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname.fqslock), \
73 .n_force_qs = 0, \
74 .n_force_qs_ngp = 0, \
75 .name = #structname, \
78 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
79 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
81 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
82 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
84 static struct rcu_state *rcu_state;
86 int rcu_scheduler_active __read_mostly;
87 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
90 * Control variables for per-CPU and per-rcu_node kthreads. These
91 * handle all flavors of RCU.
93 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
94 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
95 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
96 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
97 static DEFINE_PER_CPU(wait_queue_head_t, rcu_cpu_wq);
98 DEFINE_PER_CPU(char, rcu_cpu_has_work);
99 static char rcu_kthreads_spawnable;
101 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
102 static void invoke_rcu_cpu_kthread(void);
104 #define RCU_KTHREAD_PRIO 1 /* RT priority for per-CPU kthreads. */
107 * Track the rcutorture test sequence number and the update version
108 * number within a given test. The rcutorture_testseq is incremented
109 * on every rcutorture module load and unload, so has an odd value
110 * when a test is running. The rcutorture_vernum is set to zero
111 * when rcutorture starts and is incremented on each rcutorture update.
112 * These variables enable correlating rcutorture output with the
113 * RCU tracing information.
115 unsigned long rcutorture_testseq;
116 unsigned long rcutorture_vernum;
119 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
120 * permit this function to be invoked without holding the root rcu_node
121 * structure's ->lock, but of course results can be subject to change.
123 static int rcu_gp_in_progress(struct rcu_state *rsp)
125 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
129 * Note a quiescent state. Because we do not need to know
130 * how many quiescent states passed, just if there was at least
131 * one since the start of the grace period, this just sets a flag.
133 void rcu_sched_qs(int cpu)
135 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
137 rdp->passed_quiesc_completed = rdp->gpnum - 1;
138 barrier();
139 rdp->passed_quiesc = 1;
142 void rcu_bh_qs(int cpu)
144 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
146 rdp->passed_quiesc_completed = rdp->gpnum - 1;
147 barrier();
148 rdp->passed_quiesc = 1;
152 * Note a context switch. This is a quiescent state for RCU-sched,
153 * and requires special handling for preemptible RCU.
155 void rcu_note_context_switch(int cpu)
157 rcu_sched_qs(cpu);
158 rcu_preempt_note_context_switch(cpu);
160 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
162 #ifdef CONFIG_NO_HZ
163 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
164 .dynticks_nesting = 1,
165 .dynticks = 1,
167 #endif /* #ifdef CONFIG_NO_HZ */
169 static int blimit = 10; /* Maximum callbacks per softirq. */
170 static int qhimark = 10000; /* If this many pending, ignore blimit. */
171 static int qlowmark = 100; /* Once only this many pending, use blimit. */
173 module_param(blimit, int, 0);
174 module_param(qhimark, int, 0);
175 module_param(qlowmark, int, 0);
177 int rcu_cpu_stall_suppress __read_mostly;
178 module_param(rcu_cpu_stall_suppress, int, 0644);
180 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
181 static int rcu_pending(int cpu);
184 * Return the number of RCU-sched batches processed thus far for debug & stats.
186 long rcu_batches_completed_sched(void)
188 return rcu_sched_state.completed;
190 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
193 * Return the number of RCU BH batches processed thus far for debug & stats.
195 long rcu_batches_completed_bh(void)
197 return rcu_bh_state.completed;
199 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
202 * Force a quiescent state for RCU BH.
204 void rcu_bh_force_quiescent_state(void)
206 force_quiescent_state(&rcu_bh_state, 0);
208 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
211 * Record the number of times rcutorture tests have been initiated and
212 * terminated. This information allows the debugfs tracing stats to be
213 * correlated to the rcutorture messages, even when the rcutorture module
214 * is being repeatedly loaded and unloaded. In other words, we cannot
215 * store this state in rcutorture itself.
217 void rcutorture_record_test_transition(void)
219 rcutorture_testseq++;
220 rcutorture_vernum = 0;
222 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
225 * Record the number of writer passes through the current rcutorture test.
226 * This is also used to correlate debugfs tracing stats with the rcutorture
227 * messages.
229 void rcutorture_record_progress(unsigned long vernum)
231 rcutorture_vernum++;
233 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
236 * Force a quiescent state for RCU-sched.
238 void rcu_sched_force_quiescent_state(void)
240 force_quiescent_state(&rcu_sched_state, 0);
242 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
245 * Does the CPU have callbacks ready to be invoked?
247 static int
248 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
250 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
254 * Does the current CPU require a yet-as-unscheduled grace period?
256 static int
257 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
259 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
263 * Return the root node of the specified rcu_state structure.
265 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
267 return &rsp->node[0];
270 #ifdef CONFIG_SMP
273 * If the specified CPU is offline, tell the caller that it is in
274 * a quiescent state. Otherwise, whack it with a reschedule IPI.
275 * Grace periods can end up waiting on an offline CPU when that
276 * CPU is in the process of coming online -- it will be added to the
277 * rcu_node bitmasks before it actually makes it online. The same thing
278 * can happen while a CPU is in the process of coming online. Because this
279 * race is quite rare, we check for it after detecting that the grace
280 * period has been delayed rather than checking each and every CPU
281 * each and every time we start a new grace period.
283 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
286 * If the CPU is offline, it is in a quiescent state. We can
287 * trust its state not to change because interrupts are disabled.
289 if (cpu_is_offline(rdp->cpu)) {
290 rdp->offline_fqs++;
291 return 1;
294 /* If preemptible RCU, no point in sending reschedule IPI. */
295 if (rdp->preemptible)
296 return 0;
298 /* The CPU is online, so send it a reschedule IPI. */
299 if (rdp->cpu != smp_processor_id())
300 smp_send_reschedule(rdp->cpu);
301 else
302 set_need_resched();
303 rdp->resched_ipi++;
304 return 0;
307 #endif /* #ifdef CONFIG_SMP */
309 #ifdef CONFIG_NO_HZ
312 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
314 * Enter nohz mode, in other words, -leave- the mode in which RCU
315 * read-side critical sections can occur. (Though RCU read-side
316 * critical sections can occur in irq handlers in nohz mode, a possibility
317 * handled by rcu_irq_enter() and rcu_irq_exit()).
319 void rcu_enter_nohz(void)
321 unsigned long flags;
322 struct rcu_dynticks *rdtp;
324 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
325 local_irq_save(flags);
326 rdtp = &__get_cpu_var(rcu_dynticks);
327 rdtp->dynticks++;
328 rdtp->dynticks_nesting--;
329 WARN_ON_ONCE(rdtp->dynticks & 0x1);
330 local_irq_restore(flags);
334 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
336 * Exit nohz mode, in other words, -enter- the mode in which RCU
337 * read-side critical sections normally occur.
339 void rcu_exit_nohz(void)
341 unsigned long flags;
342 struct rcu_dynticks *rdtp;
344 local_irq_save(flags);
345 rdtp = &__get_cpu_var(rcu_dynticks);
346 rdtp->dynticks++;
347 rdtp->dynticks_nesting++;
348 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
349 local_irq_restore(flags);
350 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
354 * rcu_nmi_enter - inform RCU of entry to NMI context
356 * If the CPU was idle with dynamic ticks active, and there is no
357 * irq handler running, this updates rdtp->dynticks_nmi to let the
358 * RCU grace-period handling know that the CPU is active.
360 void rcu_nmi_enter(void)
362 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
364 if (rdtp->dynticks & 0x1)
365 return;
366 rdtp->dynticks_nmi++;
367 WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
368 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
372 * rcu_nmi_exit - inform RCU of exit from NMI context
374 * If the CPU was idle with dynamic ticks active, and there is no
375 * irq handler running, this updates rdtp->dynticks_nmi to let the
376 * RCU grace-period handling know that the CPU is no longer active.
378 void rcu_nmi_exit(void)
380 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
382 if (rdtp->dynticks & 0x1)
383 return;
384 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
385 rdtp->dynticks_nmi++;
386 WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
390 * rcu_irq_enter - inform RCU of entry to hard irq context
392 * If the CPU was idle with dynamic ticks active, this updates the
393 * rdtp->dynticks to let the RCU handling know that the CPU is active.
395 void rcu_irq_enter(void)
397 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
399 if (rdtp->dynticks_nesting++)
400 return;
401 rdtp->dynticks++;
402 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
403 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
407 * rcu_irq_exit - inform RCU of exit from hard irq context
409 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
410 * to put let the RCU handling be aware that the CPU is going back to idle
411 * with no ticks.
413 void rcu_irq_exit(void)
415 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
417 if (--rdtp->dynticks_nesting)
418 return;
419 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
420 rdtp->dynticks++;
421 WARN_ON_ONCE(rdtp->dynticks & 0x1);
423 /* If the interrupt queued a callback, get out of dyntick mode. */
424 if (__this_cpu_read(rcu_sched_data.nxtlist) ||
425 __this_cpu_read(rcu_bh_data.nxtlist))
426 set_need_resched();
429 #ifdef CONFIG_SMP
432 * Snapshot the specified CPU's dynticks counter so that we can later
433 * credit them with an implicit quiescent state. Return 1 if this CPU
434 * is in dynticks idle mode, which is an extended quiescent state.
436 static int dyntick_save_progress_counter(struct rcu_data *rdp)
438 int ret;
439 int snap;
440 int snap_nmi;
442 snap = rdp->dynticks->dynticks;
443 snap_nmi = rdp->dynticks->dynticks_nmi;
444 smp_mb(); /* Order sampling of snap with end of grace period. */
445 rdp->dynticks_snap = snap;
446 rdp->dynticks_nmi_snap = snap_nmi;
447 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
448 if (ret)
449 rdp->dynticks_fqs++;
450 return ret;
454 * Return true if the specified CPU has passed through a quiescent
455 * state by virtue of being in or having passed through an dynticks
456 * idle state since the last call to dyntick_save_progress_counter()
457 * for this same CPU.
459 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
461 long curr;
462 long curr_nmi;
463 long snap;
464 long snap_nmi;
466 curr = rdp->dynticks->dynticks;
467 snap = rdp->dynticks_snap;
468 curr_nmi = rdp->dynticks->dynticks_nmi;
469 snap_nmi = rdp->dynticks_nmi_snap;
470 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
473 * If the CPU passed through or entered a dynticks idle phase with
474 * no active irq/NMI handlers, then we can safely pretend that the CPU
475 * already acknowledged the request to pass through a quiescent
476 * state. Either way, that CPU cannot possibly be in an RCU
477 * read-side critical section that started before the beginning
478 * of the current RCU grace period.
480 if ((curr != snap || (curr & 0x1) == 0) &&
481 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
482 rdp->dynticks_fqs++;
483 return 1;
486 /* Go check for the CPU being offline. */
487 return rcu_implicit_offline_qs(rdp);
490 #endif /* #ifdef CONFIG_SMP */
492 #else /* #ifdef CONFIG_NO_HZ */
494 #ifdef CONFIG_SMP
496 static int dyntick_save_progress_counter(struct rcu_data *rdp)
498 return 0;
501 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
503 return rcu_implicit_offline_qs(rdp);
506 #endif /* #ifdef CONFIG_SMP */
508 #endif /* #else #ifdef CONFIG_NO_HZ */
510 int rcu_cpu_stall_suppress __read_mostly;
512 static void record_gp_stall_check_time(struct rcu_state *rsp)
514 rsp->gp_start = jiffies;
515 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
518 static void print_other_cpu_stall(struct rcu_state *rsp)
520 int cpu;
521 long delta;
522 unsigned long flags;
523 struct rcu_node *rnp = rcu_get_root(rsp);
525 /* Only let one CPU complain about others per time interval. */
527 raw_spin_lock_irqsave(&rnp->lock, flags);
528 delta = jiffies - rsp->jiffies_stall;
529 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
530 raw_spin_unlock_irqrestore(&rnp->lock, flags);
531 return;
533 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
536 * Now rat on any tasks that got kicked up to the root rcu_node
537 * due to CPU offlining.
539 rcu_print_task_stall(rnp);
540 raw_spin_unlock_irqrestore(&rnp->lock, flags);
543 * OK, time to rat on our buddy...
544 * See Documentation/RCU/stallwarn.txt for info on how to debug
545 * RCU CPU stall warnings.
547 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
548 rsp->name);
549 rcu_for_each_leaf_node(rsp, rnp) {
550 raw_spin_lock_irqsave(&rnp->lock, flags);
551 rcu_print_task_stall(rnp);
552 raw_spin_unlock_irqrestore(&rnp->lock, flags);
553 if (rnp->qsmask == 0)
554 continue;
555 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
556 if (rnp->qsmask & (1UL << cpu))
557 printk(" %d", rnp->grplo + cpu);
559 printk("} (detected by %d, t=%ld jiffies)\n",
560 smp_processor_id(), (long)(jiffies - rsp->gp_start));
561 trigger_all_cpu_backtrace();
563 /* If so configured, complain about tasks blocking the grace period. */
565 rcu_print_detail_task_stall(rsp);
567 force_quiescent_state(rsp, 0); /* Kick them all. */
570 static void print_cpu_stall(struct rcu_state *rsp)
572 unsigned long flags;
573 struct rcu_node *rnp = rcu_get_root(rsp);
576 * OK, time to rat on ourselves...
577 * See Documentation/RCU/stallwarn.txt for info on how to debug
578 * RCU CPU stall warnings.
580 printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
581 rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
582 trigger_all_cpu_backtrace();
584 raw_spin_lock_irqsave(&rnp->lock, flags);
585 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
586 rsp->jiffies_stall =
587 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
588 raw_spin_unlock_irqrestore(&rnp->lock, flags);
590 set_need_resched(); /* kick ourselves to get things going. */
593 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
595 unsigned long j;
596 unsigned long js;
597 struct rcu_node *rnp;
599 if (rcu_cpu_stall_suppress)
600 return;
601 j = ACCESS_ONCE(jiffies);
602 js = ACCESS_ONCE(rsp->jiffies_stall);
603 rnp = rdp->mynode;
604 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
606 /* We haven't checked in, so go dump stack. */
607 print_cpu_stall(rsp);
609 } else if (rcu_gp_in_progress(rsp) &&
610 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
612 /* They had a few time units to dump stack, so complain. */
613 print_other_cpu_stall(rsp);
617 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
619 rcu_cpu_stall_suppress = 1;
620 return NOTIFY_DONE;
624 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
626 * Set the stall-warning timeout way off into the future, thus preventing
627 * any RCU CPU stall-warning messages from appearing in the current set of
628 * RCU grace periods.
630 * The caller must disable hard irqs.
632 void rcu_cpu_stall_reset(void)
634 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
635 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
636 rcu_preempt_stall_reset();
639 static struct notifier_block rcu_panic_block = {
640 .notifier_call = rcu_panic,
643 static void __init check_cpu_stall_init(void)
645 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
649 * Update CPU-local rcu_data state to record the newly noticed grace period.
650 * This is used both when we started the grace period and when we notice
651 * that someone else started the grace period. The caller must hold the
652 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
653 * and must have irqs disabled.
655 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
657 if (rdp->gpnum != rnp->gpnum) {
659 * If the current grace period is waiting for this CPU,
660 * set up to detect a quiescent state, otherwise don't
661 * go looking for one.
663 rdp->gpnum = rnp->gpnum;
664 if (rnp->qsmask & rdp->grpmask) {
665 rdp->qs_pending = 1;
666 rdp->passed_quiesc = 0;
667 } else
668 rdp->qs_pending = 0;
672 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
674 unsigned long flags;
675 struct rcu_node *rnp;
677 local_irq_save(flags);
678 rnp = rdp->mynode;
679 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
680 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
681 local_irq_restore(flags);
682 return;
684 __note_new_gpnum(rsp, rnp, rdp);
685 raw_spin_unlock_irqrestore(&rnp->lock, flags);
689 * Did someone else start a new RCU grace period start since we last
690 * checked? Update local state appropriately if so. Must be called
691 * on the CPU corresponding to rdp.
693 static int
694 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
696 unsigned long flags;
697 int ret = 0;
699 local_irq_save(flags);
700 if (rdp->gpnum != rsp->gpnum) {
701 note_new_gpnum(rsp, rdp);
702 ret = 1;
704 local_irq_restore(flags);
705 return ret;
709 * Advance this CPU's callbacks, but only if the current grace period
710 * has ended. This may be called only from the CPU to whom the rdp
711 * belongs. In addition, the corresponding leaf rcu_node structure's
712 * ->lock must be held by the caller, with irqs disabled.
714 static void
715 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
717 /* Did another grace period end? */
718 if (rdp->completed != rnp->completed) {
720 /* Advance callbacks. No harm if list empty. */
721 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
722 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
723 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
725 /* Remember that we saw this grace-period completion. */
726 rdp->completed = rnp->completed;
729 * If we were in an extended quiescent state, we may have
730 * missed some grace periods that others CPUs handled on
731 * our behalf. Catch up with this state to avoid noting
732 * spurious new grace periods. If another grace period
733 * has started, then rnp->gpnum will have advanced, so
734 * we will detect this later on.
736 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
737 rdp->gpnum = rdp->completed;
740 * If RCU does not need a quiescent state from this CPU,
741 * then make sure that this CPU doesn't go looking for one.
743 if ((rnp->qsmask & rdp->grpmask) == 0)
744 rdp->qs_pending = 0;
749 * Advance this CPU's callbacks, but only if the current grace period
750 * has ended. This may be called only from the CPU to whom the rdp
751 * belongs.
753 static void
754 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
756 unsigned long flags;
757 struct rcu_node *rnp;
759 local_irq_save(flags);
760 rnp = rdp->mynode;
761 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
762 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
763 local_irq_restore(flags);
764 return;
766 __rcu_process_gp_end(rsp, rnp, rdp);
767 raw_spin_unlock_irqrestore(&rnp->lock, flags);
771 * Do per-CPU grace-period initialization for running CPU. The caller
772 * must hold the lock of the leaf rcu_node structure corresponding to
773 * this CPU.
775 static void
776 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
778 /* Prior grace period ended, so advance callbacks for current CPU. */
779 __rcu_process_gp_end(rsp, rnp, rdp);
782 * Because this CPU just now started the new grace period, we know
783 * that all of its callbacks will be covered by this upcoming grace
784 * period, even the ones that were registered arbitrarily recently.
785 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
787 * Other CPUs cannot be sure exactly when the grace period started.
788 * Therefore, their recently registered callbacks must pass through
789 * an additional RCU_NEXT_READY stage, so that they will be handled
790 * by the next RCU grace period.
792 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
793 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
795 /* Set state so that this CPU will detect the next quiescent state. */
796 __note_new_gpnum(rsp, rnp, rdp);
800 * Start a new RCU grace period if warranted, re-initializing the hierarchy
801 * in preparation for detecting the next grace period. The caller must hold
802 * the root node's ->lock, which is released before return. Hard irqs must
803 * be disabled.
805 static void
806 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
807 __releases(rcu_get_root(rsp)->lock)
809 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
810 struct rcu_node *rnp = rcu_get_root(rsp);
812 if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
813 if (cpu_needs_another_gp(rsp, rdp))
814 rsp->fqs_need_gp = 1;
815 if (rnp->completed == rsp->completed) {
816 raw_spin_unlock_irqrestore(&rnp->lock, flags);
817 return;
819 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
822 * Propagate new ->completed value to rcu_node structures
823 * so that other CPUs don't have to wait until the start
824 * of the next grace period to process their callbacks.
826 rcu_for_each_node_breadth_first(rsp, rnp) {
827 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
828 rnp->completed = rsp->completed;
829 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
831 local_irq_restore(flags);
832 return;
835 /* Advance to a new grace period and initialize state. */
836 rsp->gpnum++;
837 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
838 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
839 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
840 record_gp_stall_check_time(rsp);
842 /* Special-case the common single-level case. */
843 if (NUM_RCU_NODES == 1) {
844 rcu_preempt_check_blocked_tasks(rnp);
845 rnp->qsmask = rnp->qsmaskinit;
846 rnp->gpnum = rsp->gpnum;
847 rnp->completed = rsp->completed;
848 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
849 rcu_start_gp_per_cpu(rsp, rnp, rdp);
850 rcu_preempt_boost_start_gp(rnp);
851 raw_spin_unlock_irqrestore(&rnp->lock, flags);
852 return;
855 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
858 /* Exclude any concurrent CPU-hotplug operations. */
859 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
862 * Set the quiescent-state-needed bits in all the rcu_node
863 * structures for all currently online CPUs in breadth-first
864 * order, starting from the root rcu_node structure. This
865 * operation relies on the layout of the hierarchy within the
866 * rsp->node[] array. Note that other CPUs will access only
867 * the leaves of the hierarchy, which still indicate that no
868 * grace period is in progress, at least until the corresponding
869 * leaf node has been initialized. In addition, we have excluded
870 * CPU-hotplug operations.
872 * Note that the grace period cannot complete until we finish
873 * the initialization process, as there will be at least one
874 * qsmask bit set in the root node until that time, namely the
875 * one corresponding to this CPU, due to the fact that we have
876 * irqs disabled.
878 rcu_for_each_node_breadth_first(rsp, rnp) {
879 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
880 rcu_preempt_check_blocked_tasks(rnp);
881 rnp->qsmask = rnp->qsmaskinit;
882 rnp->gpnum = rsp->gpnum;
883 rnp->completed = rsp->completed;
884 if (rnp == rdp->mynode)
885 rcu_start_gp_per_cpu(rsp, rnp, rdp);
886 rcu_preempt_boost_start_gp(rnp);
887 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
890 rnp = rcu_get_root(rsp);
891 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
892 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
893 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
894 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
898 * Report a full set of quiescent states to the specified rcu_state
899 * data structure. This involves cleaning up after the prior grace
900 * period and letting rcu_start_gp() start up the next grace period
901 * if one is needed. Note that the caller must hold rnp->lock, as
902 * required by rcu_start_gp(), which will release it.
904 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
905 __releases(rcu_get_root(rsp)->lock)
907 unsigned long gp_duration;
909 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
912 * Ensure that all grace-period and pre-grace-period activity
913 * is seen before the assignment to rsp->completed.
915 smp_mb(); /* See above block comment. */
916 gp_duration = jiffies - rsp->gp_start;
917 if (gp_duration > rsp->gp_max)
918 rsp->gp_max = gp_duration;
919 rsp->completed = rsp->gpnum;
920 rsp->signaled = RCU_GP_IDLE;
921 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
925 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
926 * Allows quiescent states for a group of CPUs to be reported at one go
927 * to the specified rcu_node structure, though all the CPUs in the group
928 * must be represented by the same rcu_node structure (which need not be
929 * a leaf rcu_node structure, though it often will be). That structure's
930 * lock must be held upon entry, and it is released before return.
932 static void
933 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
934 struct rcu_node *rnp, unsigned long flags)
935 __releases(rnp->lock)
937 struct rcu_node *rnp_c;
939 /* Walk up the rcu_node hierarchy. */
940 for (;;) {
941 if (!(rnp->qsmask & mask)) {
943 /* Our bit has already been cleared, so done. */
944 raw_spin_unlock_irqrestore(&rnp->lock, flags);
945 return;
947 rnp->qsmask &= ~mask;
948 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
950 /* Other bits still set at this level, so done. */
951 raw_spin_unlock_irqrestore(&rnp->lock, flags);
952 return;
954 mask = rnp->grpmask;
955 if (rnp->parent == NULL) {
957 /* No more levels. Exit loop holding root lock. */
959 break;
961 raw_spin_unlock_irqrestore(&rnp->lock, flags);
962 rnp_c = rnp;
963 rnp = rnp->parent;
964 raw_spin_lock_irqsave(&rnp->lock, flags);
965 WARN_ON_ONCE(rnp_c->qsmask);
969 * Get here if we are the last CPU to pass through a quiescent
970 * state for this grace period. Invoke rcu_report_qs_rsp()
971 * to clean up and start the next grace period if one is needed.
973 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
977 * Record a quiescent state for the specified CPU to that CPU's rcu_data
978 * structure. This must be either called from the specified CPU, or
979 * called when the specified CPU is known to be offline (and when it is
980 * also known that no other CPU is concurrently trying to help the offline
981 * CPU). The lastcomp argument is used to make sure we are still in the
982 * grace period of interest. We don't want to end the current grace period
983 * based on quiescent states detected in an earlier grace period!
985 static void
986 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
988 unsigned long flags;
989 unsigned long mask;
990 struct rcu_node *rnp;
992 rnp = rdp->mynode;
993 raw_spin_lock_irqsave(&rnp->lock, flags);
994 if (lastcomp != rnp->completed) {
997 * Someone beat us to it for this grace period, so leave.
998 * The race with GP start is resolved by the fact that we
999 * hold the leaf rcu_node lock, so that the per-CPU bits
1000 * cannot yet be initialized -- so we would simply find our
1001 * CPU's bit already cleared in rcu_report_qs_rnp() if this
1002 * race occurred.
1004 rdp->passed_quiesc = 0; /* try again later! */
1005 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1006 return;
1008 mask = rdp->grpmask;
1009 if ((rnp->qsmask & mask) == 0) {
1010 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1011 } else {
1012 rdp->qs_pending = 0;
1015 * This GP can't end until cpu checks in, so all of our
1016 * callbacks can be processed during the next GP.
1018 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1020 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1025 * Check to see if there is a new grace period of which this CPU
1026 * is not yet aware, and if so, set up local rcu_data state for it.
1027 * Otherwise, see if this CPU has just passed through its first
1028 * quiescent state for this grace period, and record that fact if so.
1030 static void
1031 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1033 /* If there is now a new grace period, record and return. */
1034 if (check_for_new_grace_period(rsp, rdp))
1035 return;
1038 * Does this CPU still need to do its part for current grace period?
1039 * If no, return and let the other CPUs do their part as well.
1041 if (!rdp->qs_pending)
1042 return;
1045 * Was there a quiescent state since the beginning of the grace
1046 * period? If no, then exit and wait for the next call.
1048 if (!rdp->passed_quiesc)
1049 return;
1052 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1053 * judge of that).
1055 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
1058 #ifdef CONFIG_HOTPLUG_CPU
1061 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1062 * Synchronization is not required because this function executes
1063 * in stop_machine() context.
1065 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1067 int i;
1068 /* current DYING CPU is cleared in the cpu_online_mask */
1069 int receive_cpu = cpumask_any(cpu_online_mask);
1070 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1071 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1073 if (rdp->nxtlist == NULL)
1074 return; /* irqs disabled, so comparison is stable. */
1076 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1077 receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1078 receive_rdp->qlen += rdp->qlen;
1079 receive_rdp->n_cbs_adopted += rdp->qlen;
1080 rdp->n_cbs_orphaned += rdp->qlen;
1082 rdp->nxtlist = NULL;
1083 for (i = 0; i < RCU_NEXT_SIZE; i++)
1084 rdp->nxttail[i] = &rdp->nxtlist;
1085 rdp->qlen = 0;
1089 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1090 * and move all callbacks from the outgoing CPU to the current one.
1091 * There can only be one CPU hotplug operation at a time, so no other
1092 * CPU can be attempting to update rcu_cpu_kthread_task.
1094 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
1096 unsigned long flags;
1097 unsigned long mask;
1098 int need_report = 0;
1099 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1100 struct rcu_node *rnp;
1101 struct task_struct *t;
1103 /* Stop the CPU's kthread. */
1104 t = per_cpu(rcu_cpu_kthread_task, cpu);
1105 if (t != NULL) {
1106 per_cpu(rcu_cpu_kthread_task, cpu) = NULL;
1107 kthread_stop(t);
1110 /* Exclude any attempts to start a new grace period. */
1111 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1113 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1114 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
1115 mask = rdp->grpmask; /* rnp->grplo is constant. */
1116 do {
1117 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1118 rnp->qsmaskinit &= ~mask;
1119 if (rnp->qsmaskinit != 0) {
1120 if (rnp != rdp->mynode)
1121 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1122 break;
1124 if (rnp == rdp->mynode)
1125 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1126 else
1127 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1128 mask = rnp->grpmask;
1129 rnp = rnp->parent;
1130 } while (rnp != NULL);
1133 * We still hold the leaf rcu_node structure lock here, and
1134 * irqs are still disabled. The reason for this subterfuge is
1135 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1136 * held leads to deadlock.
1138 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1139 rnp = rdp->mynode;
1140 if (need_report & RCU_OFL_TASKS_NORM_GP)
1141 rcu_report_unblock_qs_rnp(rnp, flags);
1142 else
1143 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1144 if (need_report & RCU_OFL_TASKS_EXP_GP)
1145 rcu_report_exp_rnp(rsp, rnp);
1146 rcu_node_kthread_setaffinity(rnp, -1);
1150 * Remove the specified CPU from the RCU hierarchy and move any pending
1151 * callbacks that it might have to the current CPU. This code assumes
1152 * that at least one CPU in the system will remain running at all times.
1153 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1155 static void rcu_offline_cpu(int cpu)
1157 __rcu_offline_cpu(cpu, &rcu_sched_state);
1158 __rcu_offline_cpu(cpu, &rcu_bh_state);
1159 rcu_preempt_offline_cpu(cpu);
1162 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1164 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1168 static void rcu_offline_cpu(int cpu)
1172 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1175 * Invoke any RCU callbacks that have made it to the end of their grace
1176 * period. Thottle as specified by rdp->blimit.
1178 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1180 unsigned long flags;
1181 struct rcu_head *next, *list, **tail;
1182 int count;
1184 /* If no callbacks are ready, just return.*/
1185 if (!cpu_has_callbacks_ready_to_invoke(rdp))
1186 return;
1189 * Extract the list of ready callbacks, disabling to prevent
1190 * races with call_rcu() from interrupt handlers.
1192 local_irq_save(flags);
1193 list = rdp->nxtlist;
1194 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1195 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1196 tail = rdp->nxttail[RCU_DONE_TAIL];
1197 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1198 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1199 rdp->nxttail[count] = &rdp->nxtlist;
1200 local_irq_restore(flags);
1202 /* Invoke callbacks. */
1203 count = 0;
1204 while (list) {
1205 next = list->next;
1206 prefetch(next);
1207 debug_rcu_head_unqueue(list);
1208 __rcu_reclaim(list);
1209 list = next;
1210 if (++count >= rdp->blimit)
1211 break;
1214 local_irq_save(flags);
1216 /* Update count, and requeue any remaining callbacks. */
1217 rdp->qlen -= count;
1218 rdp->n_cbs_invoked += count;
1219 if (list != NULL) {
1220 *tail = rdp->nxtlist;
1221 rdp->nxtlist = list;
1222 for (count = 0; count < RCU_NEXT_SIZE; count++)
1223 if (&rdp->nxtlist == rdp->nxttail[count])
1224 rdp->nxttail[count] = tail;
1225 else
1226 break;
1229 /* Reinstate batch limit if we have worked down the excess. */
1230 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1231 rdp->blimit = blimit;
1233 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1234 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1235 rdp->qlen_last_fqs_check = 0;
1236 rdp->n_force_qs_snap = rsp->n_force_qs;
1237 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1238 rdp->qlen_last_fqs_check = rdp->qlen;
1240 local_irq_restore(flags);
1242 /* Re-raise the RCU softirq if there are callbacks remaining. */
1243 if (cpu_has_callbacks_ready_to_invoke(rdp))
1244 invoke_rcu_cpu_kthread();
1248 * Check to see if this CPU is in a non-context-switch quiescent state
1249 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1250 * Also schedule the RCU softirq handler.
1252 * This function must be called with hardirqs disabled. It is normally
1253 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1254 * false, there is no point in invoking rcu_check_callbacks().
1256 void rcu_check_callbacks(int cpu, int user)
1258 if (user ||
1259 (idle_cpu(cpu) && rcu_scheduler_active &&
1260 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1263 * Get here if this CPU took its interrupt from user
1264 * mode or from the idle loop, and if this is not a
1265 * nested interrupt. In this case, the CPU is in
1266 * a quiescent state, so note it.
1268 * No memory barrier is required here because both
1269 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1270 * variables that other CPUs neither access nor modify,
1271 * at least not while the corresponding CPU is online.
1274 rcu_sched_qs(cpu);
1275 rcu_bh_qs(cpu);
1277 } else if (!in_softirq()) {
1280 * Get here if this CPU did not take its interrupt from
1281 * softirq, in other words, if it is not interrupting
1282 * a rcu_bh read-side critical section. This is an _bh
1283 * critical section, so note it.
1286 rcu_bh_qs(cpu);
1288 rcu_preempt_check_callbacks(cpu);
1289 if (rcu_pending(cpu))
1290 invoke_rcu_cpu_kthread();
1293 #ifdef CONFIG_SMP
1296 * Scan the leaf rcu_node structures, processing dyntick state for any that
1297 * have not yet encountered a quiescent state, using the function specified.
1298 * Also initiate boosting for any threads blocked on the root rcu_node.
1300 * The caller must have suppressed start of new grace periods.
1302 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1304 unsigned long bit;
1305 int cpu;
1306 unsigned long flags;
1307 unsigned long mask;
1308 struct rcu_node *rnp;
1310 rcu_for_each_leaf_node(rsp, rnp) {
1311 mask = 0;
1312 raw_spin_lock_irqsave(&rnp->lock, flags);
1313 if (!rcu_gp_in_progress(rsp)) {
1314 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1315 return;
1317 if (rnp->qsmask == 0) {
1318 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1319 continue;
1321 cpu = rnp->grplo;
1322 bit = 1;
1323 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1324 if ((rnp->qsmask & bit) != 0 &&
1325 f(per_cpu_ptr(rsp->rda, cpu)))
1326 mask |= bit;
1328 if (mask != 0) {
1330 /* rcu_report_qs_rnp() releases rnp->lock. */
1331 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1332 continue;
1334 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1336 rnp = rcu_get_root(rsp);
1337 if (rnp->qsmask == 0) {
1338 raw_spin_lock_irqsave(&rnp->lock, flags);
1339 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1344 * Force quiescent states on reluctant CPUs, and also detect which
1345 * CPUs are in dyntick-idle mode.
1347 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1349 unsigned long flags;
1350 struct rcu_node *rnp = rcu_get_root(rsp);
1352 if (!rcu_gp_in_progress(rsp))
1353 return; /* No grace period in progress, nothing to force. */
1354 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1355 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1356 return; /* Someone else is already on the job. */
1358 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1359 goto unlock_fqs_ret; /* no emergency and done recently. */
1360 rsp->n_force_qs++;
1361 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1362 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1363 if(!rcu_gp_in_progress(rsp)) {
1364 rsp->n_force_qs_ngp++;
1365 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1366 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1368 rsp->fqs_active = 1;
1369 switch (rsp->signaled) {
1370 case RCU_GP_IDLE:
1371 case RCU_GP_INIT:
1373 break; /* grace period idle or initializing, ignore. */
1375 case RCU_SAVE_DYNTICK:
1376 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1377 break; /* So gcc recognizes the dead code. */
1379 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1381 /* Record dyntick-idle state. */
1382 force_qs_rnp(rsp, dyntick_save_progress_counter);
1383 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1384 if (rcu_gp_in_progress(rsp))
1385 rsp->signaled = RCU_FORCE_QS;
1386 break;
1388 case RCU_FORCE_QS:
1390 /* Check dyntick-idle state, send IPI to laggarts. */
1391 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1392 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1394 /* Leave state in case more forcing is required. */
1396 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1397 break;
1399 rsp->fqs_active = 0;
1400 if (rsp->fqs_need_gp) {
1401 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1402 rsp->fqs_need_gp = 0;
1403 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1404 return;
1406 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1407 unlock_fqs_ret:
1408 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1411 #else /* #ifdef CONFIG_SMP */
1413 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1415 set_need_resched();
1418 #endif /* #else #ifdef CONFIG_SMP */
1421 * This does the RCU processing work from softirq context for the
1422 * specified rcu_state and rcu_data structures. This may be called
1423 * only from the CPU to whom the rdp belongs.
1425 static void
1426 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1428 unsigned long flags;
1430 WARN_ON_ONCE(rdp->beenonline == 0);
1433 * If an RCU GP has gone long enough, go check for dyntick
1434 * idle CPUs and, if needed, send resched IPIs.
1436 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1437 force_quiescent_state(rsp, 1);
1440 * Advance callbacks in response to end of earlier grace
1441 * period that some other CPU ended.
1443 rcu_process_gp_end(rsp, rdp);
1445 /* Update RCU state based on any recent quiescent states. */
1446 rcu_check_quiescent_state(rsp, rdp);
1448 /* Does this CPU require a not-yet-started grace period? */
1449 if (cpu_needs_another_gp(rsp, rdp)) {
1450 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1451 rcu_start_gp(rsp, flags); /* releases above lock */
1454 /* If there are callbacks ready, invoke them. */
1455 rcu_do_batch(rsp, rdp);
1459 * Do softirq processing for the current CPU.
1461 static void rcu_process_callbacks(void)
1464 * Memory references from any prior RCU read-side critical sections
1465 * executed by the interrupted code must be seen before any RCU
1466 * grace-period manipulations below.
1468 smp_mb(); /* See above block comment. */
1470 __rcu_process_callbacks(&rcu_sched_state,
1471 &__get_cpu_var(rcu_sched_data));
1472 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1473 rcu_preempt_process_callbacks();
1476 * Memory references from any later RCU read-side critical sections
1477 * executed by the interrupted code must be seen after any RCU
1478 * grace-period manipulations above.
1480 smp_mb(); /* See above block comment. */
1482 /* If we are last CPU on way to dyntick-idle mode, accelerate it. */
1483 rcu_needs_cpu_flush();
1487 * Wake up the current CPU's kthread. This replaces raise_softirq()
1488 * in earlier versions of RCU. Note that because we are running on
1489 * the current CPU with interrupts disabled, the rcu_cpu_kthread_task
1490 * cannot disappear out from under us.
1492 static void invoke_rcu_cpu_kthread(void)
1494 unsigned long flags;
1496 local_irq_save(flags);
1497 __this_cpu_write(rcu_cpu_has_work, 1);
1498 if (__this_cpu_read(rcu_cpu_kthread_task) == NULL) {
1499 local_irq_restore(flags);
1500 return;
1502 wake_up(&__get_cpu_var(rcu_cpu_wq));
1503 local_irq_restore(flags);
1507 * Wake up the specified per-rcu_node-structure kthread.
1508 * Because the per-rcu_node kthreads are immortal, we don't need
1509 * to do anything to keep them alive.
1511 static void invoke_rcu_node_kthread(struct rcu_node *rnp)
1513 struct task_struct *t;
1515 t = rnp->node_kthread_task;
1516 if (t != NULL)
1517 wake_up_process(t);
1521 * Set the specified CPU's kthread to run RT or not, as specified by
1522 * the to_rt argument. The CPU-hotplug locks are held, so the task
1523 * is not going away.
1525 static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1527 int policy;
1528 struct sched_param sp;
1529 struct task_struct *t;
1531 t = per_cpu(rcu_cpu_kthread_task, cpu);
1532 if (t == NULL)
1533 return;
1534 if (to_rt) {
1535 policy = SCHED_FIFO;
1536 sp.sched_priority = RCU_KTHREAD_PRIO;
1537 } else {
1538 policy = SCHED_NORMAL;
1539 sp.sched_priority = 0;
1541 sched_setscheduler_nocheck(t, policy, &sp);
1545 * Timer handler to initiate the waking up of per-CPU kthreads that
1546 * have yielded the CPU due to excess numbers of RCU callbacks.
1547 * We wake up the per-rcu_node kthread, which in turn will wake up
1548 * the booster kthread.
1550 static void rcu_cpu_kthread_timer(unsigned long arg)
1552 unsigned long flags;
1553 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, arg);
1554 struct rcu_node *rnp = rdp->mynode;
1556 raw_spin_lock_irqsave(&rnp->lock, flags);
1557 rnp->wakemask |= rdp->grpmask;
1558 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1559 invoke_rcu_node_kthread(rnp);
1563 * Drop to non-real-time priority and yield, but only after posting a
1564 * timer that will cause us to regain our real-time priority if we
1565 * remain preempted. Either way, we restore our real-time priority
1566 * before returning.
1568 static void rcu_yield(void (*f)(unsigned long), unsigned long arg)
1570 struct sched_param sp;
1571 struct timer_list yield_timer;
1573 setup_timer_on_stack(&yield_timer, f, arg);
1574 mod_timer(&yield_timer, jiffies + 2);
1575 sp.sched_priority = 0;
1576 sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp);
1577 set_user_nice(current, 19);
1578 schedule();
1579 sp.sched_priority = RCU_KTHREAD_PRIO;
1580 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1581 del_timer(&yield_timer);
1585 * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
1586 * This can happen while the corresponding CPU is either coming online
1587 * or going offline. We cannot wait until the CPU is fully online
1588 * before starting the kthread, because the various notifier functions
1589 * can wait for RCU grace periods. So we park rcu_cpu_kthread() until
1590 * the corresponding CPU is online.
1592 * Return 1 if the kthread needs to stop, 0 otherwise.
1594 * Caller must disable bh. This function can momentarily enable it.
1596 static int rcu_cpu_kthread_should_stop(int cpu)
1598 while (cpu_is_offline(cpu) ||
1599 !cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)) ||
1600 smp_processor_id() != cpu) {
1601 if (kthread_should_stop())
1602 return 1;
1603 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1604 per_cpu(rcu_cpu_kthread_cpu, cpu) = raw_smp_processor_id();
1605 local_bh_enable();
1606 schedule_timeout_uninterruptible(1);
1607 if (!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)))
1608 set_cpus_allowed_ptr(current, cpumask_of(cpu));
1609 local_bh_disable();
1611 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1612 return 0;
1616 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1617 * earlier RCU softirq.
1619 static int rcu_cpu_kthread(void *arg)
1621 int cpu = (int)(long)arg;
1622 unsigned long flags;
1623 int spincnt = 0;
1624 unsigned int *statusp = &per_cpu(rcu_cpu_kthread_status, cpu);
1625 wait_queue_head_t *wqp = &per_cpu(rcu_cpu_wq, cpu);
1626 char work;
1627 char *workp = &per_cpu(rcu_cpu_has_work, cpu);
1629 for (;;) {
1630 *statusp = RCU_KTHREAD_WAITING;
1631 wait_event_interruptible(*wqp,
1632 *workp != 0 || kthread_should_stop());
1633 local_bh_disable();
1634 if (rcu_cpu_kthread_should_stop(cpu)) {
1635 local_bh_enable();
1636 break;
1638 *statusp = RCU_KTHREAD_RUNNING;
1639 per_cpu(rcu_cpu_kthread_loops, cpu)++;
1640 local_irq_save(flags);
1641 work = *workp;
1642 *workp = 0;
1643 local_irq_restore(flags);
1644 if (work)
1645 rcu_process_callbacks();
1646 local_bh_enable();
1647 if (*workp != 0)
1648 spincnt++;
1649 else
1650 spincnt = 0;
1651 if (spincnt > 10) {
1652 *statusp = RCU_KTHREAD_YIELDING;
1653 rcu_yield(rcu_cpu_kthread_timer, (unsigned long)cpu);
1654 spincnt = 0;
1657 *statusp = RCU_KTHREAD_STOPPED;
1658 return 0;
1662 * Spawn a per-CPU kthread, setting up affinity and priority.
1663 * Because the CPU hotplug lock is held, no other CPU will be attempting
1664 * to manipulate rcu_cpu_kthread_task. There might be another CPU
1665 * attempting to access it during boot, but the locking in kthread_bind()
1666 * will enforce sufficient ordering.
1668 static int __cpuinit rcu_spawn_one_cpu_kthread(int cpu)
1670 struct sched_param sp;
1671 struct task_struct *t;
1673 if (!rcu_kthreads_spawnable ||
1674 per_cpu(rcu_cpu_kthread_task, cpu) != NULL)
1675 return 0;
1676 t = kthread_create(rcu_cpu_kthread, (void *)(long)cpu, "rcuc%d", cpu);
1677 if (IS_ERR(t))
1678 return PTR_ERR(t);
1679 kthread_bind(t, cpu);
1680 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1681 WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task, cpu) != NULL);
1682 per_cpu(rcu_cpu_kthread_task, cpu) = t;
1683 wake_up_process(t);
1684 sp.sched_priority = RCU_KTHREAD_PRIO;
1685 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1686 return 0;
1690 * Per-rcu_node kthread, which is in charge of waking up the per-CPU
1691 * kthreads when needed. We ignore requests to wake up kthreads
1692 * for offline CPUs, which is OK because force_quiescent_state()
1693 * takes care of this case.
1695 static int rcu_node_kthread(void *arg)
1697 int cpu;
1698 unsigned long flags;
1699 unsigned long mask;
1700 struct rcu_node *rnp = (struct rcu_node *)arg;
1701 struct sched_param sp;
1702 struct task_struct *t;
1704 for (;;) {
1705 rnp->node_kthread_status = RCU_KTHREAD_WAITING;
1706 wait_event_interruptible(rnp->node_wq, rnp->wakemask != 0);
1707 rnp->node_kthread_status = RCU_KTHREAD_RUNNING;
1708 raw_spin_lock_irqsave(&rnp->lock, flags);
1709 mask = rnp->wakemask;
1710 rnp->wakemask = 0;
1711 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1712 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) {
1713 if ((mask & 0x1) == 0)
1714 continue;
1715 preempt_disable();
1716 t = per_cpu(rcu_cpu_kthread_task, cpu);
1717 if (!cpu_online(cpu) || t == NULL) {
1718 preempt_enable();
1719 continue;
1721 per_cpu(rcu_cpu_has_work, cpu) = 1;
1722 sp.sched_priority = RCU_KTHREAD_PRIO;
1723 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1724 preempt_enable();
1727 /* NOTREACHED */
1728 rnp->node_kthread_status = RCU_KTHREAD_STOPPED;
1729 return 0;
1733 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1734 * served by the rcu_node in question. The CPU hotplug lock is still
1735 * held, so the value of rnp->qsmaskinit will be stable.
1737 * We don't include outgoingcpu in the affinity set, use -1 if there is
1738 * no outgoing CPU. If there are no CPUs left in the affinity set,
1739 * this function allows the kthread to execute on any CPU.
1741 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1743 cpumask_var_t cm;
1744 int cpu;
1745 unsigned long mask = rnp->qsmaskinit;
1747 if (rnp->node_kthread_task == NULL)
1748 return;
1749 if (!alloc_cpumask_var(&cm, GFP_KERNEL))
1750 return;
1751 cpumask_clear(cm);
1752 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1753 if ((mask & 0x1) && cpu != outgoingcpu)
1754 cpumask_set_cpu(cpu, cm);
1755 if (cpumask_weight(cm) == 0) {
1756 cpumask_setall(cm);
1757 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1758 cpumask_clear_cpu(cpu, cm);
1759 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1761 set_cpus_allowed_ptr(rnp->node_kthread_task, cm);
1762 rcu_boost_kthread_setaffinity(rnp, cm);
1763 free_cpumask_var(cm);
1767 * Spawn a per-rcu_node kthread, setting priority and affinity.
1768 * Called during boot before online/offline can happen, or, if
1769 * during runtime, with the main CPU-hotplug locks held. So only
1770 * one of these can be executing at a time.
1772 static int __cpuinit rcu_spawn_one_node_kthread(struct rcu_state *rsp,
1773 struct rcu_node *rnp)
1775 unsigned long flags;
1776 int rnp_index = rnp - &rsp->node[0];
1777 struct sched_param sp;
1778 struct task_struct *t;
1780 if (!rcu_kthreads_spawnable ||
1781 rnp->qsmaskinit == 0)
1782 return 0;
1783 if (rnp->node_kthread_task == NULL) {
1784 t = kthread_create(rcu_node_kthread, (void *)rnp,
1785 "rcun%d", rnp_index);
1786 if (IS_ERR(t))
1787 return PTR_ERR(t);
1788 raw_spin_lock_irqsave(&rnp->lock, flags);
1789 rnp->node_kthread_task = t;
1790 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1791 wake_up_process(t);
1792 sp.sched_priority = 99;
1793 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1795 return rcu_spawn_one_boost_kthread(rsp, rnp, rnp_index);
1799 * Spawn all kthreads -- called as soon as the scheduler is running.
1801 static int __init rcu_spawn_kthreads(void)
1803 int cpu;
1804 struct rcu_node *rnp;
1806 rcu_kthreads_spawnable = 1;
1807 for_each_possible_cpu(cpu) {
1808 init_waitqueue_head(&per_cpu(rcu_cpu_wq, cpu));
1809 per_cpu(rcu_cpu_has_work, cpu) = 0;
1810 if (cpu_online(cpu))
1811 (void)rcu_spawn_one_cpu_kthread(cpu);
1813 rnp = rcu_get_root(rcu_state);
1814 init_waitqueue_head(&rnp->node_wq);
1815 rcu_init_boost_waitqueue(rnp);
1816 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1817 if (NUM_RCU_NODES > 1)
1818 rcu_for_each_leaf_node(rcu_state, rnp) {
1819 init_waitqueue_head(&rnp->node_wq);
1820 rcu_init_boost_waitqueue(rnp);
1821 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1823 return 0;
1825 early_initcall(rcu_spawn_kthreads);
1827 static void
1828 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1829 struct rcu_state *rsp)
1831 unsigned long flags;
1832 struct rcu_data *rdp;
1834 debug_rcu_head_queue(head);
1835 head->func = func;
1836 head->next = NULL;
1838 smp_mb(); /* Ensure RCU update seen before callback registry. */
1841 * Opportunistically note grace-period endings and beginnings.
1842 * Note that we might see a beginning right after we see an
1843 * end, but never vice versa, since this CPU has to pass through
1844 * a quiescent state betweentimes.
1846 local_irq_save(flags);
1847 rdp = this_cpu_ptr(rsp->rda);
1849 /* Add the callback to our list. */
1850 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1851 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1852 rdp->qlen++;
1854 /* If interrupts were disabled, don't dive into RCU core. */
1855 if (irqs_disabled_flags(flags)) {
1856 local_irq_restore(flags);
1857 return;
1861 * Force the grace period if too many callbacks or too long waiting.
1862 * Enforce hysteresis, and don't invoke force_quiescent_state()
1863 * if some other CPU has recently done so. Also, don't bother
1864 * invoking force_quiescent_state() if the newly enqueued callback
1865 * is the only one waiting for a grace period to complete.
1867 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1869 /* Are we ignoring a completed grace period? */
1870 rcu_process_gp_end(rsp, rdp);
1871 check_for_new_grace_period(rsp, rdp);
1873 /* Start a new grace period if one not already started. */
1874 if (!rcu_gp_in_progress(rsp)) {
1875 unsigned long nestflag;
1876 struct rcu_node *rnp_root = rcu_get_root(rsp);
1878 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1879 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1880 } else {
1881 /* Give the grace period a kick. */
1882 rdp->blimit = LONG_MAX;
1883 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1884 *rdp->nxttail[RCU_DONE_TAIL] != head)
1885 force_quiescent_state(rsp, 0);
1886 rdp->n_force_qs_snap = rsp->n_force_qs;
1887 rdp->qlen_last_fqs_check = rdp->qlen;
1889 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1890 force_quiescent_state(rsp, 1);
1891 local_irq_restore(flags);
1895 * Queue an RCU-sched callback for invocation after a grace period.
1897 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1899 __call_rcu(head, func, &rcu_sched_state);
1901 EXPORT_SYMBOL_GPL(call_rcu_sched);
1904 * Queue an RCU for invocation after a quicker grace period.
1906 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1908 __call_rcu(head, func, &rcu_bh_state);
1910 EXPORT_SYMBOL_GPL(call_rcu_bh);
1913 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1915 * Control will return to the caller some time after a full rcu-sched
1916 * grace period has elapsed, in other words after all currently executing
1917 * rcu-sched read-side critical sections have completed. These read-side
1918 * critical sections are delimited by rcu_read_lock_sched() and
1919 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1920 * local_irq_disable(), and so on may be used in place of
1921 * rcu_read_lock_sched().
1923 * This means that all preempt_disable code sequences, including NMI and
1924 * hardware-interrupt handlers, in progress on entry will have completed
1925 * before this primitive returns. However, this does not guarantee that
1926 * softirq handlers will have completed, since in some kernels, these
1927 * handlers can run in process context, and can block.
1929 * This primitive provides the guarantees made by the (now removed)
1930 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1931 * guarantees that rcu_read_lock() sections will have completed.
1932 * In "classic RCU", these two guarantees happen to be one and
1933 * the same, but can differ in realtime RCU implementations.
1935 void synchronize_sched(void)
1937 struct rcu_synchronize rcu;
1939 if (rcu_blocking_is_gp())
1940 return;
1942 init_rcu_head_on_stack(&rcu.head);
1943 init_completion(&rcu.completion);
1944 /* Will wake me after RCU finished. */
1945 call_rcu_sched(&rcu.head, wakeme_after_rcu);
1946 /* Wait for it. */
1947 wait_for_completion(&rcu.completion);
1948 destroy_rcu_head_on_stack(&rcu.head);
1950 EXPORT_SYMBOL_GPL(synchronize_sched);
1953 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1955 * Control will return to the caller some time after a full rcu_bh grace
1956 * period has elapsed, in other words after all currently executing rcu_bh
1957 * read-side critical sections have completed. RCU read-side critical
1958 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1959 * and may be nested.
1961 void synchronize_rcu_bh(void)
1963 struct rcu_synchronize rcu;
1965 if (rcu_blocking_is_gp())
1966 return;
1968 init_rcu_head_on_stack(&rcu.head);
1969 init_completion(&rcu.completion);
1970 /* Will wake me after RCU finished. */
1971 call_rcu_bh(&rcu.head, wakeme_after_rcu);
1972 /* Wait for it. */
1973 wait_for_completion(&rcu.completion);
1974 destroy_rcu_head_on_stack(&rcu.head);
1976 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1979 * Check to see if there is any immediate RCU-related work to be done
1980 * by the current CPU, for the specified type of RCU, returning 1 if so.
1981 * The checks are in order of increasing expense: checks that can be
1982 * carried out against CPU-local state are performed first. However,
1983 * we must check for CPU stalls first, else we might not get a chance.
1985 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1987 struct rcu_node *rnp = rdp->mynode;
1989 rdp->n_rcu_pending++;
1991 /* Check for CPU stalls, if enabled. */
1992 check_cpu_stall(rsp, rdp);
1994 /* Is the RCU core waiting for a quiescent state from this CPU? */
1995 if (rdp->qs_pending && !rdp->passed_quiesc) {
1998 * If force_quiescent_state() coming soon and this CPU
1999 * needs a quiescent state, and this is either RCU-sched
2000 * or RCU-bh, force a local reschedule.
2002 rdp->n_rp_qs_pending++;
2003 if (!rdp->preemptible &&
2004 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
2005 jiffies))
2006 set_need_resched();
2007 } else if (rdp->qs_pending && rdp->passed_quiesc) {
2008 rdp->n_rp_report_qs++;
2009 return 1;
2012 /* Does this CPU have callbacks ready to invoke? */
2013 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2014 rdp->n_rp_cb_ready++;
2015 return 1;
2018 /* Has RCU gone idle with this CPU needing another grace period? */
2019 if (cpu_needs_another_gp(rsp, rdp)) {
2020 rdp->n_rp_cpu_needs_gp++;
2021 return 1;
2024 /* Has another RCU grace period completed? */
2025 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2026 rdp->n_rp_gp_completed++;
2027 return 1;
2030 /* Has a new RCU grace period started? */
2031 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2032 rdp->n_rp_gp_started++;
2033 return 1;
2036 /* Has an RCU GP gone long enough to send resched IPIs &c? */
2037 if (rcu_gp_in_progress(rsp) &&
2038 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
2039 rdp->n_rp_need_fqs++;
2040 return 1;
2043 /* nothing to do */
2044 rdp->n_rp_need_nothing++;
2045 return 0;
2049 * Check to see if there is any immediate RCU-related work to be done
2050 * by the current CPU, returning 1 if so. This function is part of the
2051 * RCU implementation; it is -not- an exported member of the RCU API.
2053 static int rcu_pending(int cpu)
2055 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
2056 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
2057 rcu_preempt_pending(cpu);
2061 * Check to see if any future RCU-related work will need to be done
2062 * by the current CPU, even if none need be done immediately, returning
2063 * 1 if so.
2065 static int rcu_needs_cpu_quick_check(int cpu)
2067 /* RCU callbacks either ready or pending? */
2068 return per_cpu(rcu_sched_data, cpu).nxtlist ||
2069 per_cpu(rcu_bh_data, cpu).nxtlist ||
2070 rcu_preempt_needs_cpu(cpu);
2073 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
2074 static atomic_t rcu_barrier_cpu_count;
2075 static DEFINE_MUTEX(rcu_barrier_mutex);
2076 static struct completion rcu_barrier_completion;
2078 static void rcu_barrier_callback(struct rcu_head *notused)
2080 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2081 complete(&rcu_barrier_completion);
2085 * Called with preemption disabled, and from cross-cpu IRQ context.
2087 static void rcu_barrier_func(void *type)
2089 int cpu = smp_processor_id();
2090 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
2091 void (*call_rcu_func)(struct rcu_head *head,
2092 void (*func)(struct rcu_head *head));
2094 atomic_inc(&rcu_barrier_cpu_count);
2095 call_rcu_func = type;
2096 call_rcu_func(head, rcu_barrier_callback);
2100 * Orchestrate the specified type of RCU barrier, waiting for all
2101 * RCU callbacks of the specified type to complete.
2103 static void _rcu_barrier(struct rcu_state *rsp,
2104 void (*call_rcu_func)(struct rcu_head *head,
2105 void (*func)(struct rcu_head *head)))
2107 BUG_ON(in_interrupt());
2108 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2109 mutex_lock(&rcu_barrier_mutex);
2110 init_completion(&rcu_barrier_completion);
2112 * Initialize rcu_barrier_cpu_count to 1, then invoke
2113 * rcu_barrier_func() on each CPU, so that each CPU also has
2114 * incremented rcu_barrier_cpu_count. Only then is it safe to
2115 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
2116 * might complete its grace period before all of the other CPUs
2117 * did their increment, causing this function to return too
2118 * early. Note that on_each_cpu() disables irqs, which prevents
2119 * any CPUs from coming online or going offline until each online
2120 * CPU has queued its RCU-barrier callback.
2122 atomic_set(&rcu_barrier_cpu_count, 1);
2123 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
2124 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2125 complete(&rcu_barrier_completion);
2126 wait_for_completion(&rcu_barrier_completion);
2127 mutex_unlock(&rcu_barrier_mutex);
2131 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2133 void rcu_barrier_bh(void)
2135 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
2137 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2140 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2142 void rcu_barrier_sched(void)
2144 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
2146 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2149 * Do boot-time initialization of a CPU's per-CPU RCU data.
2151 static void __init
2152 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2154 unsigned long flags;
2155 int i;
2156 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2157 struct rcu_node *rnp = rcu_get_root(rsp);
2159 /* Set up local state, ensuring consistent view of global state. */
2160 raw_spin_lock_irqsave(&rnp->lock, flags);
2161 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2162 rdp->nxtlist = NULL;
2163 for (i = 0; i < RCU_NEXT_SIZE; i++)
2164 rdp->nxttail[i] = &rdp->nxtlist;
2165 rdp->qlen = 0;
2166 #ifdef CONFIG_NO_HZ
2167 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2168 #endif /* #ifdef CONFIG_NO_HZ */
2169 rdp->cpu = cpu;
2170 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2174 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2175 * offline event can be happening at a given time. Note also that we
2176 * can accept some slop in the rsp->completed access due to the fact
2177 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2179 static void __cpuinit
2180 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2182 unsigned long flags;
2183 unsigned long mask;
2184 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2185 struct rcu_node *rnp = rcu_get_root(rsp);
2187 /* Set up local state, ensuring consistent view of global state. */
2188 raw_spin_lock_irqsave(&rnp->lock, flags);
2189 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
2190 rdp->qs_pending = 1; /* so set up to respond to current GP. */
2191 rdp->beenonline = 1; /* We have now been online. */
2192 rdp->preemptible = preemptible;
2193 rdp->qlen_last_fqs_check = 0;
2194 rdp->n_force_qs_snap = rsp->n_force_qs;
2195 rdp->blimit = blimit;
2196 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2199 * A new grace period might start here. If so, we won't be part
2200 * of it, but that is OK, as we are currently in a quiescent state.
2203 /* Exclude any attempts to start a new GP on large systems. */
2204 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
2206 /* Add CPU to rcu_node bitmasks. */
2207 rnp = rdp->mynode;
2208 mask = rdp->grpmask;
2209 do {
2210 /* Exclude any attempts to start a new GP on small systems. */
2211 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2212 rnp->qsmaskinit |= mask;
2213 mask = rnp->grpmask;
2214 if (rnp == rdp->mynode) {
2215 rdp->gpnum = rnp->completed; /* if GP in progress... */
2216 rdp->completed = rnp->completed;
2217 rdp->passed_quiesc_completed = rnp->completed - 1;
2219 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2220 rnp = rnp->parent;
2221 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2223 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2226 static void __cpuinit rcu_online_cpu(int cpu)
2228 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2229 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2230 rcu_preempt_init_percpu_data(cpu);
2233 static void __cpuinit rcu_online_kthreads(int cpu)
2235 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2236 struct rcu_node *rnp = rdp->mynode;
2238 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
2239 if (rcu_kthreads_spawnable) {
2240 (void)rcu_spawn_one_cpu_kthread(cpu);
2241 if (rnp->node_kthread_task == NULL)
2242 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
2247 * Handle CPU online/offline notification events.
2249 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2250 unsigned long action, void *hcpu)
2252 long cpu = (long)hcpu;
2253 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2254 struct rcu_node *rnp = rdp->mynode;
2256 switch (action) {
2257 case CPU_UP_PREPARE:
2258 case CPU_UP_PREPARE_FROZEN:
2259 rcu_online_cpu(cpu);
2260 rcu_online_kthreads(cpu);
2261 break;
2262 case CPU_ONLINE:
2263 case CPU_DOWN_FAILED:
2264 rcu_node_kthread_setaffinity(rnp, -1);
2265 rcu_cpu_kthread_setrt(cpu, 1);
2266 break;
2267 case CPU_DOWN_PREPARE:
2268 rcu_node_kthread_setaffinity(rnp, cpu);
2269 rcu_cpu_kthread_setrt(cpu, 0);
2270 break;
2271 case CPU_DYING:
2272 case CPU_DYING_FROZEN:
2274 * The whole machine is "stopped" except this CPU, so we can
2275 * touch any data without introducing corruption. We send the
2276 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2278 rcu_send_cbs_to_online(&rcu_bh_state);
2279 rcu_send_cbs_to_online(&rcu_sched_state);
2280 rcu_preempt_send_cbs_to_online();
2281 break;
2282 case CPU_DEAD:
2283 case CPU_DEAD_FROZEN:
2284 case CPU_UP_CANCELED:
2285 case CPU_UP_CANCELED_FROZEN:
2286 rcu_offline_cpu(cpu);
2287 break;
2288 default:
2289 break;
2291 return NOTIFY_OK;
2295 * This function is invoked towards the end of the scheduler's initialization
2296 * process. Before this is called, the idle task might contain
2297 * RCU read-side critical sections (during which time, this idle
2298 * task is booting the system). After this function is called, the
2299 * idle tasks are prohibited from containing RCU read-side critical
2300 * sections. This function also enables RCU lockdep checking.
2302 void rcu_scheduler_starting(void)
2304 WARN_ON(num_online_cpus() != 1);
2305 WARN_ON(nr_context_switches() > 0);
2306 rcu_scheduler_active = 1;
2310 * Compute the per-level fanout, either using the exact fanout specified
2311 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2313 #ifdef CONFIG_RCU_FANOUT_EXACT
2314 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2316 int i;
2318 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2319 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2320 rsp->levelspread[0] = RCU_FANOUT_LEAF;
2322 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2323 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2325 int ccur;
2326 int cprv;
2327 int i;
2329 cprv = NR_CPUS;
2330 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2331 ccur = rsp->levelcnt[i];
2332 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2333 cprv = ccur;
2336 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2339 * Helper function for rcu_init() that initializes one rcu_state structure.
2341 static void __init rcu_init_one(struct rcu_state *rsp,
2342 struct rcu_data __percpu *rda)
2344 static char *buf[] = { "rcu_node_level_0",
2345 "rcu_node_level_1",
2346 "rcu_node_level_2",
2347 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2348 int cpustride = 1;
2349 int i;
2350 int j;
2351 struct rcu_node *rnp;
2353 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2355 /* Initialize the level-tracking arrays. */
2357 for (i = 1; i < NUM_RCU_LVLS; i++)
2358 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2359 rcu_init_levelspread(rsp);
2361 /* Initialize the elements themselves, starting from the leaves. */
2363 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2364 cpustride *= rsp->levelspread[i];
2365 rnp = rsp->level[i];
2366 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2367 raw_spin_lock_init(&rnp->lock);
2368 lockdep_set_class_and_name(&rnp->lock,
2369 &rcu_node_class[i], buf[i]);
2370 rnp->gpnum = 0;
2371 rnp->qsmask = 0;
2372 rnp->qsmaskinit = 0;
2373 rnp->grplo = j * cpustride;
2374 rnp->grphi = (j + 1) * cpustride - 1;
2375 if (rnp->grphi >= NR_CPUS)
2376 rnp->grphi = NR_CPUS - 1;
2377 if (i == 0) {
2378 rnp->grpnum = 0;
2379 rnp->grpmask = 0;
2380 rnp->parent = NULL;
2381 } else {
2382 rnp->grpnum = j % rsp->levelspread[i - 1];
2383 rnp->grpmask = 1UL << rnp->grpnum;
2384 rnp->parent = rsp->level[i - 1] +
2385 j / rsp->levelspread[i - 1];
2387 rnp->level = i;
2388 INIT_LIST_HEAD(&rnp->blkd_tasks);
2392 rsp->rda = rda;
2393 rnp = rsp->level[NUM_RCU_LVLS - 1];
2394 for_each_possible_cpu(i) {
2395 while (i > rnp->grphi)
2396 rnp++;
2397 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2398 rcu_boot_init_percpu_data(i, rsp);
2402 void __init rcu_init(void)
2404 int cpu;
2406 rcu_bootup_announce();
2407 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2408 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2409 __rcu_init_preempt();
2412 * We don't need protection against CPU-hotplug here because
2413 * this is called early in boot, before either interrupts
2414 * or the scheduler are operational.
2416 cpu_notifier(rcu_cpu_notify, 0);
2417 for_each_online_cpu(cpu)
2418 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2419 check_cpu_stall_init();
2422 #include "rcutree_plugin.h"