2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <asm/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/module.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
55 /* Data structures. */
57 static struct lock_class_key rcu_node_class
[NUM_RCU_LVLS
];
59 #define RCU_STATE_INITIALIZER(structname) { \
60 .level = { &structname.node[0] }, \
62 NUM_RCU_LVL_0, /* root of hierarchy. */ \
66 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
68 .signaled = RCU_GP_IDLE, \
71 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname.onofflock), \
72 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname.fqslock), \
74 .n_force_qs_ngp = 0, \
75 .name = #structname, \
78 struct rcu_state rcu_sched_state
= RCU_STATE_INITIALIZER(rcu_sched_state
);
79 DEFINE_PER_CPU(struct rcu_data
, rcu_sched_data
);
81 struct rcu_state rcu_bh_state
= RCU_STATE_INITIALIZER(rcu_bh_state
);
82 DEFINE_PER_CPU(struct rcu_data
, rcu_bh_data
);
84 static struct rcu_state
*rcu_state
;
86 int rcu_scheduler_active __read_mostly
;
87 EXPORT_SYMBOL_GPL(rcu_scheduler_active
);
90 * Control variables for per-CPU and per-rcu_node kthreads. These
91 * handle all flavors of RCU.
93 static DEFINE_PER_CPU(struct task_struct
*, rcu_cpu_kthread_task
);
94 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status
);
95 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu
);
96 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops
);
97 static DEFINE_PER_CPU(wait_queue_head_t
, rcu_cpu_wq
);
98 DEFINE_PER_CPU(char, rcu_cpu_has_work
);
99 static char rcu_kthreads_spawnable
;
101 static void rcu_node_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
);
102 static void invoke_rcu_cpu_kthread(void);
104 #define RCU_KTHREAD_PRIO 1 /* RT priority for per-CPU kthreads. */
107 * Track the rcutorture test sequence number and the update version
108 * number within a given test. The rcutorture_testseq is incremented
109 * on every rcutorture module load and unload, so has an odd value
110 * when a test is running. The rcutorture_vernum is set to zero
111 * when rcutorture starts and is incremented on each rcutorture update.
112 * These variables enable correlating rcutorture output with the
113 * RCU tracing information.
115 unsigned long rcutorture_testseq
;
116 unsigned long rcutorture_vernum
;
119 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
120 * permit this function to be invoked without holding the root rcu_node
121 * structure's ->lock, but of course results can be subject to change.
123 static int rcu_gp_in_progress(struct rcu_state
*rsp
)
125 return ACCESS_ONCE(rsp
->completed
) != ACCESS_ONCE(rsp
->gpnum
);
129 * Note a quiescent state. Because we do not need to know
130 * how many quiescent states passed, just if there was at least
131 * one since the start of the grace period, this just sets a flag.
133 void rcu_sched_qs(int cpu
)
135 struct rcu_data
*rdp
= &per_cpu(rcu_sched_data
, cpu
);
137 rdp
->passed_quiesc_completed
= rdp
->gpnum
- 1;
139 rdp
->passed_quiesc
= 1;
142 void rcu_bh_qs(int cpu
)
144 struct rcu_data
*rdp
= &per_cpu(rcu_bh_data
, cpu
);
146 rdp
->passed_quiesc_completed
= rdp
->gpnum
- 1;
148 rdp
->passed_quiesc
= 1;
152 * Note a context switch. This is a quiescent state for RCU-sched,
153 * and requires special handling for preemptible RCU.
155 void rcu_note_context_switch(int cpu
)
158 rcu_preempt_note_context_switch(cpu
);
160 EXPORT_SYMBOL_GPL(rcu_note_context_switch
);
163 DEFINE_PER_CPU(struct rcu_dynticks
, rcu_dynticks
) = {
164 .dynticks_nesting
= 1,
167 #endif /* #ifdef CONFIG_NO_HZ */
169 static int blimit
= 10; /* Maximum callbacks per softirq. */
170 static int qhimark
= 10000; /* If this many pending, ignore blimit. */
171 static int qlowmark
= 100; /* Once only this many pending, use blimit. */
173 module_param(blimit
, int, 0);
174 module_param(qhimark
, int, 0);
175 module_param(qlowmark
, int, 0);
177 int rcu_cpu_stall_suppress __read_mostly
;
178 module_param(rcu_cpu_stall_suppress
, int, 0644);
180 static void force_quiescent_state(struct rcu_state
*rsp
, int relaxed
);
181 static int rcu_pending(int cpu
);
184 * Return the number of RCU-sched batches processed thus far for debug & stats.
186 long rcu_batches_completed_sched(void)
188 return rcu_sched_state
.completed
;
190 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched
);
193 * Return the number of RCU BH batches processed thus far for debug & stats.
195 long rcu_batches_completed_bh(void)
197 return rcu_bh_state
.completed
;
199 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh
);
202 * Force a quiescent state for RCU BH.
204 void rcu_bh_force_quiescent_state(void)
206 force_quiescent_state(&rcu_bh_state
, 0);
208 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state
);
211 * Record the number of times rcutorture tests have been initiated and
212 * terminated. This information allows the debugfs tracing stats to be
213 * correlated to the rcutorture messages, even when the rcutorture module
214 * is being repeatedly loaded and unloaded. In other words, we cannot
215 * store this state in rcutorture itself.
217 void rcutorture_record_test_transition(void)
219 rcutorture_testseq
++;
220 rcutorture_vernum
= 0;
222 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition
);
225 * Record the number of writer passes through the current rcutorture test.
226 * This is also used to correlate debugfs tracing stats with the rcutorture
229 void rcutorture_record_progress(unsigned long vernum
)
233 EXPORT_SYMBOL_GPL(rcutorture_record_progress
);
236 * Force a quiescent state for RCU-sched.
238 void rcu_sched_force_quiescent_state(void)
240 force_quiescent_state(&rcu_sched_state
, 0);
242 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state
);
245 * Does the CPU have callbacks ready to be invoked?
248 cpu_has_callbacks_ready_to_invoke(struct rcu_data
*rdp
)
250 return &rdp
->nxtlist
!= rdp
->nxttail
[RCU_DONE_TAIL
];
254 * Does the current CPU require a yet-as-unscheduled grace period?
257 cpu_needs_another_gp(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
259 return *rdp
->nxttail
[RCU_DONE_TAIL
] && !rcu_gp_in_progress(rsp
);
263 * Return the root node of the specified rcu_state structure.
265 static struct rcu_node
*rcu_get_root(struct rcu_state
*rsp
)
267 return &rsp
->node
[0];
273 * If the specified CPU is offline, tell the caller that it is in
274 * a quiescent state. Otherwise, whack it with a reschedule IPI.
275 * Grace periods can end up waiting on an offline CPU when that
276 * CPU is in the process of coming online -- it will be added to the
277 * rcu_node bitmasks before it actually makes it online. The same thing
278 * can happen while a CPU is in the process of coming online. Because this
279 * race is quite rare, we check for it after detecting that the grace
280 * period has been delayed rather than checking each and every CPU
281 * each and every time we start a new grace period.
283 static int rcu_implicit_offline_qs(struct rcu_data
*rdp
)
286 * If the CPU is offline, it is in a quiescent state. We can
287 * trust its state not to change because interrupts are disabled.
289 if (cpu_is_offline(rdp
->cpu
)) {
294 /* If preemptible RCU, no point in sending reschedule IPI. */
295 if (rdp
->preemptible
)
298 /* The CPU is online, so send it a reschedule IPI. */
299 if (rdp
->cpu
!= smp_processor_id())
300 smp_send_reschedule(rdp
->cpu
);
307 #endif /* #ifdef CONFIG_SMP */
312 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
314 * Enter nohz mode, in other words, -leave- the mode in which RCU
315 * read-side critical sections can occur. (Though RCU read-side
316 * critical sections can occur in irq handlers in nohz mode, a possibility
317 * handled by rcu_irq_enter() and rcu_irq_exit()).
319 void rcu_enter_nohz(void)
322 struct rcu_dynticks
*rdtp
;
324 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
325 local_irq_save(flags
);
326 rdtp
= &__get_cpu_var(rcu_dynticks
);
328 rdtp
->dynticks_nesting
--;
329 WARN_ON_ONCE(rdtp
->dynticks
& 0x1);
330 local_irq_restore(flags
);
334 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
336 * Exit nohz mode, in other words, -enter- the mode in which RCU
337 * read-side critical sections normally occur.
339 void rcu_exit_nohz(void)
342 struct rcu_dynticks
*rdtp
;
344 local_irq_save(flags
);
345 rdtp
= &__get_cpu_var(rcu_dynticks
);
347 rdtp
->dynticks_nesting
++;
348 WARN_ON_ONCE(!(rdtp
->dynticks
& 0x1));
349 local_irq_restore(flags
);
350 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
354 * rcu_nmi_enter - inform RCU of entry to NMI context
356 * If the CPU was idle with dynamic ticks active, and there is no
357 * irq handler running, this updates rdtp->dynticks_nmi to let the
358 * RCU grace-period handling know that the CPU is active.
360 void rcu_nmi_enter(void)
362 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
364 if (rdtp
->dynticks
& 0x1)
366 rdtp
->dynticks_nmi
++;
367 WARN_ON_ONCE(!(rdtp
->dynticks_nmi
& 0x1));
368 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
372 * rcu_nmi_exit - inform RCU of exit from NMI context
374 * If the CPU was idle with dynamic ticks active, and there is no
375 * irq handler running, this updates rdtp->dynticks_nmi to let the
376 * RCU grace-period handling know that the CPU is no longer active.
378 void rcu_nmi_exit(void)
380 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
382 if (rdtp
->dynticks
& 0x1)
384 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
385 rdtp
->dynticks_nmi
++;
386 WARN_ON_ONCE(rdtp
->dynticks_nmi
& 0x1);
390 * rcu_irq_enter - inform RCU of entry to hard irq context
392 * If the CPU was idle with dynamic ticks active, this updates the
393 * rdtp->dynticks to let the RCU handling know that the CPU is active.
395 void rcu_irq_enter(void)
397 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
399 if (rdtp
->dynticks_nesting
++)
402 WARN_ON_ONCE(!(rdtp
->dynticks
& 0x1));
403 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
407 * rcu_irq_exit - inform RCU of exit from hard irq context
409 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
410 * to put let the RCU handling be aware that the CPU is going back to idle
413 void rcu_irq_exit(void)
415 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
417 if (--rdtp
->dynticks_nesting
)
419 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
421 WARN_ON_ONCE(rdtp
->dynticks
& 0x1);
423 /* If the interrupt queued a callback, get out of dyntick mode. */
424 if (__this_cpu_read(rcu_sched_data
.nxtlist
) ||
425 __this_cpu_read(rcu_bh_data
.nxtlist
))
432 * Snapshot the specified CPU's dynticks counter so that we can later
433 * credit them with an implicit quiescent state. Return 1 if this CPU
434 * is in dynticks idle mode, which is an extended quiescent state.
436 static int dyntick_save_progress_counter(struct rcu_data
*rdp
)
442 snap
= rdp
->dynticks
->dynticks
;
443 snap_nmi
= rdp
->dynticks
->dynticks_nmi
;
444 smp_mb(); /* Order sampling of snap with end of grace period. */
445 rdp
->dynticks_snap
= snap
;
446 rdp
->dynticks_nmi_snap
= snap_nmi
;
447 ret
= ((snap
& 0x1) == 0) && ((snap_nmi
& 0x1) == 0);
454 * Return true if the specified CPU has passed through a quiescent
455 * state by virtue of being in or having passed through an dynticks
456 * idle state since the last call to dyntick_save_progress_counter()
459 static int rcu_implicit_dynticks_qs(struct rcu_data
*rdp
)
466 curr
= rdp
->dynticks
->dynticks
;
467 snap
= rdp
->dynticks_snap
;
468 curr_nmi
= rdp
->dynticks
->dynticks_nmi
;
469 snap_nmi
= rdp
->dynticks_nmi_snap
;
470 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
473 * If the CPU passed through or entered a dynticks idle phase with
474 * no active irq/NMI handlers, then we can safely pretend that the CPU
475 * already acknowledged the request to pass through a quiescent
476 * state. Either way, that CPU cannot possibly be in an RCU
477 * read-side critical section that started before the beginning
478 * of the current RCU grace period.
480 if ((curr
!= snap
|| (curr
& 0x1) == 0) &&
481 (curr_nmi
!= snap_nmi
|| (curr_nmi
& 0x1) == 0)) {
486 /* Go check for the CPU being offline. */
487 return rcu_implicit_offline_qs(rdp
);
490 #endif /* #ifdef CONFIG_SMP */
492 #else /* #ifdef CONFIG_NO_HZ */
496 static int dyntick_save_progress_counter(struct rcu_data
*rdp
)
501 static int rcu_implicit_dynticks_qs(struct rcu_data
*rdp
)
503 return rcu_implicit_offline_qs(rdp
);
506 #endif /* #ifdef CONFIG_SMP */
508 #endif /* #else #ifdef CONFIG_NO_HZ */
510 int rcu_cpu_stall_suppress __read_mostly
;
512 static void record_gp_stall_check_time(struct rcu_state
*rsp
)
514 rsp
->gp_start
= jiffies
;
515 rsp
->jiffies_stall
= jiffies
+ RCU_SECONDS_TILL_STALL_CHECK
;
518 static void print_other_cpu_stall(struct rcu_state
*rsp
)
523 struct rcu_node
*rnp
= rcu_get_root(rsp
);
525 /* Only let one CPU complain about others per time interval. */
527 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
528 delta
= jiffies
- rsp
->jiffies_stall
;
529 if (delta
< RCU_STALL_RAT_DELAY
|| !rcu_gp_in_progress(rsp
)) {
530 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
533 rsp
->jiffies_stall
= jiffies
+ RCU_SECONDS_TILL_STALL_RECHECK
;
536 * Now rat on any tasks that got kicked up to the root rcu_node
537 * due to CPU offlining.
539 rcu_print_task_stall(rnp
);
540 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
543 * OK, time to rat on our buddy...
544 * See Documentation/RCU/stallwarn.txt for info on how to debug
545 * RCU CPU stall warnings.
547 printk(KERN_ERR
"INFO: %s detected stalls on CPUs/tasks: {",
549 rcu_for_each_leaf_node(rsp
, rnp
) {
550 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
551 rcu_print_task_stall(rnp
);
552 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
553 if (rnp
->qsmask
== 0)
555 for (cpu
= 0; cpu
<= rnp
->grphi
- rnp
->grplo
; cpu
++)
556 if (rnp
->qsmask
& (1UL << cpu
))
557 printk(" %d", rnp
->grplo
+ cpu
);
559 printk("} (detected by %d, t=%ld jiffies)\n",
560 smp_processor_id(), (long)(jiffies
- rsp
->gp_start
));
561 trigger_all_cpu_backtrace();
563 /* If so configured, complain about tasks blocking the grace period. */
565 rcu_print_detail_task_stall(rsp
);
567 force_quiescent_state(rsp
, 0); /* Kick them all. */
570 static void print_cpu_stall(struct rcu_state
*rsp
)
573 struct rcu_node
*rnp
= rcu_get_root(rsp
);
576 * OK, time to rat on ourselves...
577 * See Documentation/RCU/stallwarn.txt for info on how to debug
578 * RCU CPU stall warnings.
580 printk(KERN_ERR
"INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
581 rsp
->name
, smp_processor_id(), jiffies
- rsp
->gp_start
);
582 trigger_all_cpu_backtrace();
584 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
585 if (ULONG_CMP_GE(jiffies
, rsp
->jiffies_stall
))
587 jiffies
+ RCU_SECONDS_TILL_STALL_RECHECK
;
588 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
590 set_need_resched(); /* kick ourselves to get things going. */
593 static void check_cpu_stall(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
597 struct rcu_node
*rnp
;
599 if (rcu_cpu_stall_suppress
)
601 j
= ACCESS_ONCE(jiffies
);
602 js
= ACCESS_ONCE(rsp
->jiffies_stall
);
604 if ((ACCESS_ONCE(rnp
->qsmask
) & rdp
->grpmask
) && ULONG_CMP_GE(j
, js
)) {
606 /* We haven't checked in, so go dump stack. */
607 print_cpu_stall(rsp
);
609 } else if (rcu_gp_in_progress(rsp
) &&
610 ULONG_CMP_GE(j
, js
+ RCU_STALL_RAT_DELAY
)) {
612 /* They had a few time units to dump stack, so complain. */
613 print_other_cpu_stall(rsp
);
617 static int rcu_panic(struct notifier_block
*this, unsigned long ev
, void *ptr
)
619 rcu_cpu_stall_suppress
= 1;
624 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
626 * Set the stall-warning timeout way off into the future, thus preventing
627 * any RCU CPU stall-warning messages from appearing in the current set of
630 * The caller must disable hard irqs.
632 void rcu_cpu_stall_reset(void)
634 rcu_sched_state
.jiffies_stall
= jiffies
+ ULONG_MAX
/ 2;
635 rcu_bh_state
.jiffies_stall
= jiffies
+ ULONG_MAX
/ 2;
636 rcu_preempt_stall_reset();
639 static struct notifier_block rcu_panic_block
= {
640 .notifier_call
= rcu_panic
,
643 static void __init
check_cpu_stall_init(void)
645 atomic_notifier_chain_register(&panic_notifier_list
, &rcu_panic_block
);
649 * Update CPU-local rcu_data state to record the newly noticed grace period.
650 * This is used both when we started the grace period and when we notice
651 * that someone else started the grace period. The caller must hold the
652 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
653 * and must have irqs disabled.
655 static void __note_new_gpnum(struct rcu_state
*rsp
, struct rcu_node
*rnp
, struct rcu_data
*rdp
)
657 if (rdp
->gpnum
!= rnp
->gpnum
) {
659 * If the current grace period is waiting for this CPU,
660 * set up to detect a quiescent state, otherwise don't
661 * go looking for one.
663 rdp
->gpnum
= rnp
->gpnum
;
664 if (rnp
->qsmask
& rdp
->grpmask
) {
666 rdp
->passed_quiesc
= 0;
672 static void note_new_gpnum(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
675 struct rcu_node
*rnp
;
677 local_irq_save(flags
);
679 if (rdp
->gpnum
== ACCESS_ONCE(rnp
->gpnum
) || /* outside lock. */
680 !raw_spin_trylock(&rnp
->lock
)) { /* irqs already off, so later. */
681 local_irq_restore(flags
);
684 __note_new_gpnum(rsp
, rnp
, rdp
);
685 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
689 * Did someone else start a new RCU grace period start since we last
690 * checked? Update local state appropriately if so. Must be called
691 * on the CPU corresponding to rdp.
694 check_for_new_grace_period(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
699 local_irq_save(flags
);
700 if (rdp
->gpnum
!= rsp
->gpnum
) {
701 note_new_gpnum(rsp
, rdp
);
704 local_irq_restore(flags
);
709 * Advance this CPU's callbacks, but only if the current grace period
710 * has ended. This may be called only from the CPU to whom the rdp
711 * belongs. In addition, the corresponding leaf rcu_node structure's
712 * ->lock must be held by the caller, with irqs disabled.
715 __rcu_process_gp_end(struct rcu_state
*rsp
, struct rcu_node
*rnp
, struct rcu_data
*rdp
)
717 /* Did another grace period end? */
718 if (rdp
->completed
!= rnp
->completed
) {
720 /* Advance callbacks. No harm if list empty. */
721 rdp
->nxttail
[RCU_DONE_TAIL
] = rdp
->nxttail
[RCU_WAIT_TAIL
];
722 rdp
->nxttail
[RCU_WAIT_TAIL
] = rdp
->nxttail
[RCU_NEXT_READY_TAIL
];
723 rdp
->nxttail
[RCU_NEXT_READY_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
725 /* Remember that we saw this grace-period completion. */
726 rdp
->completed
= rnp
->completed
;
729 * If we were in an extended quiescent state, we may have
730 * missed some grace periods that others CPUs handled on
731 * our behalf. Catch up with this state to avoid noting
732 * spurious new grace periods. If another grace period
733 * has started, then rnp->gpnum will have advanced, so
734 * we will detect this later on.
736 if (ULONG_CMP_LT(rdp
->gpnum
, rdp
->completed
))
737 rdp
->gpnum
= rdp
->completed
;
740 * If RCU does not need a quiescent state from this CPU,
741 * then make sure that this CPU doesn't go looking for one.
743 if ((rnp
->qsmask
& rdp
->grpmask
) == 0)
749 * Advance this CPU's callbacks, but only if the current grace period
750 * has ended. This may be called only from the CPU to whom the rdp
754 rcu_process_gp_end(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
757 struct rcu_node
*rnp
;
759 local_irq_save(flags
);
761 if (rdp
->completed
== ACCESS_ONCE(rnp
->completed
) || /* outside lock. */
762 !raw_spin_trylock(&rnp
->lock
)) { /* irqs already off, so later. */
763 local_irq_restore(flags
);
766 __rcu_process_gp_end(rsp
, rnp
, rdp
);
767 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
771 * Do per-CPU grace-period initialization for running CPU. The caller
772 * must hold the lock of the leaf rcu_node structure corresponding to
776 rcu_start_gp_per_cpu(struct rcu_state
*rsp
, struct rcu_node
*rnp
, struct rcu_data
*rdp
)
778 /* Prior grace period ended, so advance callbacks for current CPU. */
779 __rcu_process_gp_end(rsp
, rnp
, rdp
);
782 * Because this CPU just now started the new grace period, we know
783 * that all of its callbacks will be covered by this upcoming grace
784 * period, even the ones that were registered arbitrarily recently.
785 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
787 * Other CPUs cannot be sure exactly when the grace period started.
788 * Therefore, their recently registered callbacks must pass through
789 * an additional RCU_NEXT_READY stage, so that they will be handled
790 * by the next RCU grace period.
792 rdp
->nxttail
[RCU_NEXT_READY_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
793 rdp
->nxttail
[RCU_WAIT_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
795 /* Set state so that this CPU will detect the next quiescent state. */
796 __note_new_gpnum(rsp
, rnp
, rdp
);
800 * Start a new RCU grace period if warranted, re-initializing the hierarchy
801 * in preparation for detecting the next grace period. The caller must hold
802 * the root node's ->lock, which is released before return. Hard irqs must
806 rcu_start_gp(struct rcu_state
*rsp
, unsigned long flags
)
807 __releases(rcu_get_root(rsp
)->lock
)
809 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
810 struct rcu_node
*rnp
= rcu_get_root(rsp
);
812 if (!cpu_needs_another_gp(rsp
, rdp
) || rsp
->fqs_active
) {
813 if (cpu_needs_another_gp(rsp
, rdp
))
814 rsp
->fqs_need_gp
= 1;
815 if (rnp
->completed
== rsp
->completed
) {
816 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
819 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
822 * Propagate new ->completed value to rcu_node structures
823 * so that other CPUs don't have to wait until the start
824 * of the next grace period to process their callbacks.
826 rcu_for_each_node_breadth_first(rsp
, rnp
) {
827 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
828 rnp
->completed
= rsp
->completed
;
829 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
831 local_irq_restore(flags
);
835 /* Advance to a new grace period and initialize state. */
837 WARN_ON_ONCE(rsp
->signaled
== RCU_GP_INIT
);
838 rsp
->signaled
= RCU_GP_INIT
; /* Hold off force_quiescent_state. */
839 rsp
->jiffies_force_qs
= jiffies
+ RCU_JIFFIES_TILL_FORCE_QS
;
840 record_gp_stall_check_time(rsp
);
842 /* Special-case the common single-level case. */
843 if (NUM_RCU_NODES
== 1) {
844 rcu_preempt_check_blocked_tasks(rnp
);
845 rnp
->qsmask
= rnp
->qsmaskinit
;
846 rnp
->gpnum
= rsp
->gpnum
;
847 rnp
->completed
= rsp
->completed
;
848 rsp
->signaled
= RCU_SIGNAL_INIT
; /* force_quiescent_state OK. */
849 rcu_start_gp_per_cpu(rsp
, rnp
, rdp
);
850 rcu_preempt_boost_start_gp(rnp
);
851 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
855 raw_spin_unlock(&rnp
->lock
); /* leave irqs disabled. */
858 /* Exclude any concurrent CPU-hotplug operations. */
859 raw_spin_lock(&rsp
->onofflock
); /* irqs already disabled. */
862 * Set the quiescent-state-needed bits in all the rcu_node
863 * structures for all currently online CPUs in breadth-first
864 * order, starting from the root rcu_node structure. This
865 * operation relies on the layout of the hierarchy within the
866 * rsp->node[] array. Note that other CPUs will access only
867 * the leaves of the hierarchy, which still indicate that no
868 * grace period is in progress, at least until the corresponding
869 * leaf node has been initialized. In addition, we have excluded
870 * CPU-hotplug operations.
872 * Note that the grace period cannot complete until we finish
873 * the initialization process, as there will be at least one
874 * qsmask bit set in the root node until that time, namely the
875 * one corresponding to this CPU, due to the fact that we have
878 rcu_for_each_node_breadth_first(rsp
, rnp
) {
879 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
880 rcu_preempt_check_blocked_tasks(rnp
);
881 rnp
->qsmask
= rnp
->qsmaskinit
;
882 rnp
->gpnum
= rsp
->gpnum
;
883 rnp
->completed
= rsp
->completed
;
884 if (rnp
== rdp
->mynode
)
885 rcu_start_gp_per_cpu(rsp
, rnp
, rdp
);
886 rcu_preempt_boost_start_gp(rnp
);
887 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
890 rnp
= rcu_get_root(rsp
);
891 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
892 rsp
->signaled
= RCU_SIGNAL_INIT
; /* force_quiescent_state now OK. */
893 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
894 raw_spin_unlock_irqrestore(&rsp
->onofflock
, flags
);
898 * Report a full set of quiescent states to the specified rcu_state
899 * data structure. This involves cleaning up after the prior grace
900 * period and letting rcu_start_gp() start up the next grace period
901 * if one is needed. Note that the caller must hold rnp->lock, as
902 * required by rcu_start_gp(), which will release it.
904 static void rcu_report_qs_rsp(struct rcu_state
*rsp
, unsigned long flags
)
905 __releases(rcu_get_root(rsp
)->lock
)
907 unsigned long gp_duration
;
909 WARN_ON_ONCE(!rcu_gp_in_progress(rsp
));
912 * Ensure that all grace-period and pre-grace-period activity
913 * is seen before the assignment to rsp->completed.
915 smp_mb(); /* See above block comment. */
916 gp_duration
= jiffies
- rsp
->gp_start
;
917 if (gp_duration
> rsp
->gp_max
)
918 rsp
->gp_max
= gp_duration
;
919 rsp
->completed
= rsp
->gpnum
;
920 rsp
->signaled
= RCU_GP_IDLE
;
921 rcu_start_gp(rsp
, flags
); /* releases root node's rnp->lock. */
925 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
926 * Allows quiescent states for a group of CPUs to be reported at one go
927 * to the specified rcu_node structure, though all the CPUs in the group
928 * must be represented by the same rcu_node structure (which need not be
929 * a leaf rcu_node structure, though it often will be). That structure's
930 * lock must be held upon entry, and it is released before return.
933 rcu_report_qs_rnp(unsigned long mask
, struct rcu_state
*rsp
,
934 struct rcu_node
*rnp
, unsigned long flags
)
935 __releases(rnp
->lock
)
937 struct rcu_node
*rnp_c
;
939 /* Walk up the rcu_node hierarchy. */
941 if (!(rnp
->qsmask
& mask
)) {
943 /* Our bit has already been cleared, so done. */
944 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
947 rnp
->qsmask
&= ~mask
;
948 if (rnp
->qsmask
!= 0 || rcu_preempt_blocked_readers_cgp(rnp
)) {
950 /* Other bits still set at this level, so done. */
951 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
955 if (rnp
->parent
== NULL
) {
957 /* No more levels. Exit loop holding root lock. */
961 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
964 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
965 WARN_ON_ONCE(rnp_c
->qsmask
);
969 * Get here if we are the last CPU to pass through a quiescent
970 * state for this grace period. Invoke rcu_report_qs_rsp()
971 * to clean up and start the next grace period if one is needed.
973 rcu_report_qs_rsp(rsp
, flags
); /* releases rnp->lock. */
977 * Record a quiescent state for the specified CPU to that CPU's rcu_data
978 * structure. This must be either called from the specified CPU, or
979 * called when the specified CPU is known to be offline (and when it is
980 * also known that no other CPU is concurrently trying to help the offline
981 * CPU). The lastcomp argument is used to make sure we are still in the
982 * grace period of interest. We don't want to end the current grace period
983 * based on quiescent states detected in an earlier grace period!
986 rcu_report_qs_rdp(int cpu
, struct rcu_state
*rsp
, struct rcu_data
*rdp
, long lastcomp
)
990 struct rcu_node
*rnp
;
993 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
994 if (lastcomp
!= rnp
->completed
) {
997 * Someone beat us to it for this grace period, so leave.
998 * The race with GP start is resolved by the fact that we
999 * hold the leaf rcu_node lock, so that the per-CPU bits
1000 * cannot yet be initialized -- so we would simply find our
1001 * CPU's bit already cleared in rcu_report_qs_rnp() if this
1004 rdp
->passed_quiesc
= 0; /* try again later! */
1005 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1008 mask
= rdp
->grpmask
;
1009 if ((rnp
->qsmask
& mask
) == 0) {
1010 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1012 rdp
->qs_pending
= 0;
1015 * This GP can't end until cpu checks in, so all of our
1016 * callbacks can be processed during the next GP.
1018 rdp
->nxttail
[RCU_NEXT_READY_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
1020 rcu_report_qs_rnp(mask
, rsp
, rnp
, flags
); /* rlses rnp->lock */
1025 * Check to see if there is a new grace period of which this CPU
1026 * is not yet aware, and if so, set up local rcu_data state for it.
1027 * Otherwise, see if this CPU has just passed through its first
1028 * quiescent state for this grace period, and record that fact if so.
1031 rcu_check_quiescent_state(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1033 /* If there is now a new grace period, record and return. */
1034 if (check_for_new_grace_period(rsp
, rdp
))
1038 * Does this CPU still need to do its part for current grace period?
1039 * If no, return and let the other CPUs do their part as well.
1041 if (!rdp
->qs_pending
)
1045 * Was there a quiescent state since the beginning of the grace
1046 * period? If no, then exit and wait for the next call.
1048 if (!rdp
->passed_quiesc
)
1052 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1055 rcu_report_qs_rdp(rdp
->cpu
, rsp
, rdp
, rdp
->passed_quiesc_completed
);
1058 #ifdef CONFIG_HOTPLUG_CPU
1061 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1062 * Synchronization is not required because this function executes
1063 * in stop_machine() context.
1065 static void rcu_send_cbs_to_online(struct rcu_state
*rsp
)
1068 /* current DYING CPU is cleared in the cpu_online_mask */
1069 int receive_cpu
= cpumask_any(cpu_online_mask
);
1070 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
1071 struct rcu_data
*receive_rdp
= per_cpu_ptr(rsp
->rda
, receive_cpu
);
1073 if (rdp
->nxtlist
== NULL
)
1074 return; /* irqs disabled, so comparison is stable. */
1076 *receive_rdp
->nxttail
[RCU_NEXT_TAIL
] = rdp
->nxtlist
;
1077 receive_rdp
->nxttail
[RCU_NEXT_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
1078 receive_rdp
->qlen
+= rdp
->qlen
;
1079 receive_rdp
->n_cbs_adopted
+= rdp
->qlen
;
1080 rdp
->n_cbs_orphaned
+= rdp
->qlen
;
1082 rdp
->nxtlist
= NULL
;
1083 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
1084 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
1089 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1090 * and move all callbacks from the outgoing CPU to the current one.
1091 * There can only be one CPU hotplug operation at a time, so no other
1092 * CPU can be attempting to update rcu_cpu_kthread_task.
1094 static void __rcu_offline_cpu(int cpu
, struct rcu_state
*rsp
)
1096 unsigned long flags
;
1098 int need_report
= 0;
1099 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
1100 struct rcu_node
*rnp
;
1101 struct task_struct
*t
;
1103 /* Stop the CPU's kthread. */
1104 t
= per_cpu(rcu_cpu_kthread_task
, cpu
);
1106 per_cpu(rcu_cpu_kthread_task
, cpu
) = NULL
;
1110 /* Exclude any attempts to start a new grace period. */
1111 raw_spin_lock_irqsave(&rsp
->onofflock
, flags
);
1113 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1114 rnp
= rdp
->mynode
; /* this is the outgoing CPU's rnp. */
1115 mask
= rdp
->grpmask
; /* rnp->grplo is constant. */
1117 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
1118 rnp
->qsmaskinit
&= ~mask
;
1119 if (rnp
->qsmaskinit
!= 0) {
1120 if (rnp
!= rdp
->mynode
)
1121 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
1124 if (rnp
== rdp
->mynode
)
1125 need_report
= rcu_preempt_offline_tasks(rsp
, rnp
, rdp
);
1127 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
1128 mask
= rnp
->grpmask
;
1130 } while (rnp
!= NULL
);
1133 * We still hold the leaf rcu_node structure lock here, and
1134 * irqs are still disabled. The reason for this subterfuge is
1135 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1136 * held leads to deadlock.
1138 raw_spin_unlock(&rsp
->onofflock
); /* irqs remain disabled. */
1140 if (need_report
& RCU_OFL_TASKS_NORM_GP
)
1141 rcu_report_unblock_qs_rnp(rnp
, flags
);
1143 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1144 if (need_report
& RCU_OFL_TASKS_EXP_GP
)
1145 rcu_report_exp_rnp(rsp
, rnp
);
1146 rcu_node_kthread_setaffinity(rnp
, -1);
1150 * Remove the specified CPU from the RCU hierarchy and move any pending
1151 * callbacks that it might have to the current CPU. This code assumes
1152 * that at least one CPU in the system will remain running at all times.
1153 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1155 static void rcu_offline_cpu(int cpu
)
1157 __rcu_offline_cpu(cpu
, &rcu_sched_state
);
1158 __rcu_offline_cpu(cpu
, &rcu_bh_state
);
1159 rcu_preempt_offline_cpu(cpu
);
1162 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1164 static void rcu_send_cbs_to_online(struct rcu_state
*rsp
)
1168 static void rcu_offline_cpu(int cpu
)
1172 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1175 * Invoke any RCU callbacks that have made it to the end of their grace
1176 * period. Thottle as specified by rdp->blimit.
1178 static void rcu_do_batch(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1180 unsigned long flags
;
1181 struct rcu_head
*next
, *list
, **tail
;
1184 /* If no callbacks are ready, just return.*/
1185 if (!cpu_has_callbacks_ready_to_invoke(rdp
))
1189 * Extract the list of ready callbacks, disabling to prevent
1190 * races with call_rcu() from interrupt handlers.
1192 local_irq_save(flags
);
1193 list
= rdp
->nxtlist
;
1194 rdp
->nxtlist
= *rdp
->nxttail
[RCU_DONE_TAIL
];
1195 *rdp
->nxttail
[RCU_DONE_TAIL
] = NULL
;
1196 tail
= rdp
->nxttail
[RCU_DONE_TAIL
];
1197 for (count
= RCU_NEXT_SIZE
- 1; count
>= 0; count
--)
1198 if (rdp
->nxttail
[count
] == rdp
->nxttail
[RCU_DONE_TAIL
])
1199 rdp
->nxttail
[count
] = &rdp
->nxtlist
;
1200 local_irq_restore(flags
);
1202 /* Invoke callbacks. */
1207 debug_rcu_head_unqueue(list
);
1208 __rcu_reclaim(list
);
1210 if (++count
>= rdp
->blimit
)
1214 local_irq_save(flags
);
1216 /* Update count, and requeue any remaining callbacks. */
1218 rdp
->n_cbs_invoked
+= count
;
1220 *tail
= rdp
->nxtlist
;
1221 rdp
->nxtlist
= list
;
1222 for (count
= 0; count
< RCU_NEXT_SIZE
; count
++)
1223 if (&rdp
->nxtlist
== rdp
->nxttail
[count
])
1224 rdp
->nxttail
[count
] = tail
;
1229 /* Reinstate batch limit if we have worked down the excess. */
1230 if (rdp
->blimit
== LONG_MAX
&& rdp
->qlen
<= qlowmark
)
1231 rdp
->blimit
= blimit
;
1233 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1234 if (rdp
->qlen
== 0 && rdp
->qlen_last_fqs_check
!= 0) {
1235 rdp
->qlen_last_fqs_check
= 0;
1236 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
1237 } else if (rdp
->qlen
< rdp
->qlen_last_fqs_check
- qhimark
)
1238 rdp
->qlen_last_fqs_check
= rdp
->qlen
;
1240 local_irq_restore(flags
);
1242 /* Re-raise the RCU softirq if there are callbacks remaining. */
1243 if (cpu_has_callbacks_ready_to_invoke(rdp
))
1244 invoke_rcu_cpu_kthread();
1248 * Check to see if this CPU is in a non-context-switch quiescent state
1249 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1250 * Also schedule the RCU softirq handler.
1252 * This function must be called with hardirqs disabled. It is normally
1253 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1254 * false, there is no point in invoking rcu_check_callbacks().
1256 void rcu_check_callbacks(int cpu
, int user
)
1259 (idle_cpu(cpu
) && rcu_scheduler_active
&&
1260 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT
))) {
1263 * Get here if this CPU took its interrupt from user
1264 * mode or from the idle loop, and if this is not a
1265 * nested interrupt. In this case, the CPU is in
1266 * a quiescent state, so note it.
1268 * No memory barrier is required here because both
1269 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1270 * variables that other CPUs neither access nor modify,
1271 * at least not while the corresponding CPU is online.
1277 } else if (!in_softirq()) {
1280 * Get here if this CPU did not take its interrupt from
1281 * softirq, in other words, if it is not interrupting
1282 * a rcu_bh read-side critical section. This is an _bh
1283 * critical section, so note it.
1288 rcu_preempt_check_callbacks(cpu
);
1289 if (rcu_pending(cpu
))
1290 invoke_rcu_cpu_kthread();
1296 * Scan the leaf rcu_node structures, processing dyntick state for any that
1297 * have not yet encountered a quiescent state, using the function specified.
1298 * Also initiate boosting for any threads blocked on the root rcu_node.
1300 * The caller must have suppressed start of new grace periods.
1302 static void force_qs_rnp(struct rcu_state
*rsp
, int (*f
)(struct rcu_data
*))
1306 unsigned long flags
;
1308 struct rcu_node
*rnp
;
1310 rcu_for_each_leaf_node(rsp
, rnp
) {
1312 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1313 if (!rcu_gp_in_progress(rsp
)) {
1314 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1317 if (rnp
->qsmask
== 0) {
1318 rcu_initiate_boost(rnp
, flags
); /* releases rnp->lock */
1323 for (; cpu
<= rnp
->grphi
; cpu
++, bit
<<= 1) {
1324 if ((rnp
->qsmask
& bit
) != 0 &&
1325 f(per_cpu_ptr(rsp
->rda
, cpu
)))
1330 /* rcu_report_qs_rnp() releases rnp->lock. */
1331 rcu_report_qs_rnp(mask
, rsp
, rnp
, flags
);
1334 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1336 rnp
= rcu_get_root(rsp
);
1337 if (rnp
->qsmask
== 0) {
1338 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1339 rcu_initiate_boost(rnp
, flags
); /* releases rnp->lock. */
1344 * Force quiescent states on reluctant CPUs, and also detect which
1345 * CPUs are in dyntick-idle mode.
1347 static void force_quiescent_state(struct rcu_state
*rsp
, int relaxed
)
1349 unsigned long flags
;
1350 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1352 if (!rcu_gp_in_progress(rsp
))
1353 return; /* No grace period in progress, nothing to force. */
1354 if (!raw_spin_trylock_irqsave(&rsp
->fqslock
, flags
)) {
1355 rsp
->n_force_qs_lh
++; /* Inexact, can lose counts. Tough! */
1356 return; /* Someone else is already on the job. */
1358 if (relaxed
&& ULONG_CMP_GE(rsp
->jiffies_force_qs
, jiffies
))
1359 goto unlock_fqs_ret
; /* no emergency and done recently. */
1361 raw_spin_lock(&rnp
->lock
); /* irqs already disabled */
1362 rsp
->jiffies_force_qs
= jiffies
+ RCU_JIFFIES_TILL_FORCE_QS
;
1363 if(!rcu_gp_in_progress(rsp
)) {
1364 rsp
->n_force_qs_ngp
++;
1365 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
1366 goto unlock_fqs_ret
; /* no GP in progress, time updated. */
1368 rsp
->fqs_active
= 1;
1369 switch (rsp
->signaled
) {
1373 break; /* grace period idle or initializing, ignore. */
1375 case RCU_SAVE_DYNTICK
:
1376 if (RCU_SIGNAL_INIT
!= RCU_SAVE_DYNTICK
)
1377 break; /* So gcc recognizes the dead code. */
1379 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
1381 /* Record dyntick-idle state. */
1382 force_qs_rnp(rsp
, dyntick_save_progress_counter
);
1383 raw_spin_lock(&rnp
->lock
); /* irqs already disabled */
1384 if (rcu_gp_in_progress(rsp
))
1385 rsp
->signaled
= RCU_FORCE_QS
;
1390 /* Check dyntick-idle state, send IPI to laggarts. */
1391 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
1392 force_qs_rnp(rsp
, rcu_implicit_dynticks_qs
);
1394 /* Leave state in case more forcing is required. */
1396 raw_spin_lock(&rnp
->lock
); /* irqs already disabled */
1399 rsp
->fqs_active
= 0;
1400 if (rsp
->fqs_need_gp
) {
1401 raw_spin_unlock(&rsp
->fqslock
); /* irqs remain disabled */
1402 rsp
->fqs_need_gp
= 0;
1403 rcu_start_gp(rsp
, flags
); /* releases rnp->lock */
1406 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
1408 raw_spin_unlock_irqrestore(&rsp
->fqslock
, flags
);
1411 #else /* #ifdef CONFIG_SMP */
1413 static void force_quiescent_state(struct rcu_state
*rsp
, int relaxed
)
1418 #endif /* #else #ifdef CONFIG_SMP */
1421 * This does the RCU processing work from softirq context for the
1422 * specified rcu_state and rcu_data structures. This may be called
1423 * only from the CPU to whom the rdp belongs.
1426 __rcu_process_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1428 unsigned long flags
;
1430 WARN_ON_ONCE(rdp
->beenonline
== 0);
1433 * If an RCU GP has gone long enough, go check for dyntick
1434 * idle CPUs and, if needed, send resched IPIs.
1436 if (ULONG_CMP_LT(ACCESS_ONCE(rsp
->jiffies_force_qs
), jiffies
))
1437 force_quiescent_state(rsp
, 1);
1440 * Advance callbacks in response to end of earlier grace
1441 * period that some other CPU ended.
1443 rcu_process_gp_end(rsp
, rdp
);
1445 /* Update RCU state based on any recent quiescent states. */
1446 rcu_check_quiescent_state(rsp
, rdp
);
1448 /* Does this CPU require a not-yet-started grace period? */
1449 if (cpu_needs_another_gp(rsp
, rdp
)) {
1450 raw_spin_lock_irqsave(&rcu_get_root(rsp
)->lock
, flags
);
1451 rcu_start_gp(rsp
, flags
); /* releases above lock */
1454 /* If there are callbacks ready, invoke them. */
1455 rcu_do_batch(rsp
, rdp
);
1459 * Do softirq processing for the current CPU.
1461 static void rcu_process_callbacks(void)
1464 * Memory references from any prior RCU read-side critical sections
1465 * executed by the interrupted code must be seen before any RCU
1466 * grace-period manipulations below.
1468 smp_mb(); /* See above block comment. */
1470 __rcu_process_callbacks(&rcu_sched_state
,
1471 &__get_cpu_var(rcu_sched_data
));
1472 __rcu_process_callbacks(&rcu_bh_state
, &__get_cpu_var(rcu_bh_data
));
1473 rcu_preempt_process_callbacks();
1476 * Memory references from any later RCU read-side critical sections
1477 * executed by the interrupted code must be seen after any RCU
1478 * grace-period manipulations above.
1480 smp_mb(); /* See above block comment. */
1482 /* If we are last CPU on way to dyntick-idle mode, accelerate it. */
1483 rcu_needs_cpu_flush();
1487 * Wake up the current CPU's kthread. This replaces raise_softirq()
1488 * in earlier versions of RCU. Note that because we are running on
1489 * the current CPU with interrupts disabled, the rcu_cpu_kthread_task
1490 * cannot disappear out from under us.
1492 static void invoke_rcu_cpu_kthread(void)
1494 unsigned long flags
;
1496 local_irq_save(flags
);
1497 __this_cpu_write(rcu_cpu_has_work
, 1);
1498 if (__this_cpu_read(rcu_cpu_kthread_task
) == NULL
) {
1499 local_irq_restore(flags
);
1502 wake_up(&__get_cpu_var(rcu_cpu_wq
));
1503 local_irq_restore(flags
);
1507 * Wake up the specified per-rcu_node-structure kthread.
1508 * Because the per-rcu_node kthreads are immortal, we don't need
1509 * to do anything to keep them alive.
1511 static void invoke_rcu_node_kthread(struct rcu_node
*rnp
)
1513 struct task_struct
*t
;
1515 t
= rnp
->node_kthread_task
;
1521 * Set the specified CPU's kthread to run RT or not, as specified by
1522 * the to_rt argument. The CPU-hotplug locks are held, so the task
1523 * is not going away.
1525 static void rcu_cpu_kthread_setrt(int cpu
, int to_rt
)
1528 struct sched_param sp
;
1529 struct task_struct
*t
;
1531 t
= per_cpu(rcu_cpu_kthread_task
, cpu
);
1535 policy
= SCHED_FIFO
;
1536 sp
.sched_priority
= RCU_KTHREAD_PRIO
;
1538 policy
= SCHED_NORMAL
;
1539 sp
.sched_priority
= 0;
1541 sched_setscheduler_nocheck(t
, policy
, &sp
);
1545 * Timer handler to initiate the waking up of per-CPU kthreads that
1546 * have yielded the CPU due to excess numbers of RCU callbacks.
1547 * We wake up the per-rcu_node kthread, which in turn will wake up
1548 * the booster kthread.
1550 static void rcu_cpu_kthread_timer(unsigned long arg
)
1552 unsigned long flags
;
1553 struct rcu_data
*rdp
= per_cpu_ptr(rcu_state
->rda
, arg
);
1554 struct rcu_node
*rnp
= rdp
->mynode
;
1556 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1557 rnp
->wakemask
|= rdp
->grpmask
;
1558 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1559 invoke_rcu_node_kthread(rnp
);
1563 * Drop to non-real-time priority and yield, but only after posting a
1564 * timer that will cause us to regain our real-time priority if we
1565 * remain preempted. Either way, we restore our real-time priority
1568 static void rcu_yield(void (*f
)(unsigned long), unsigned long arg
)
1570 struct sched_param sp
;
1571 struct timer_list yield_timer
;
1573 setup_timer_on_stack(&yield_timer
, f
, arg
);
1574 mod_timer(&yield_timer
, jiffies
+ 2);
1575 sp
.sched_priority
= 0;
1576 sched_setscheduler_nocheck(current
, SCHED_NORMAL
, &sp
);
1577 set_user_nice(current
, 19);
1579 sp
.sched_priority
= RCU_KTHREAD_PRIO
;
1580 sched_setscheduler_nocheck(current
, SCHED_FIFO
, &sp
);
1581 del_timer(&yield_timer
);
1585 * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
1586 * This can happen while the corresponding CPU is either coming online
1587 * or going offline. We cannot wait until the CPU is fully online
1588 * before starting the kthread, because the various notifier functions
1589 * can wait for RCU grace periods. So we park rcu_cpu_kthread() until
1590 * the corresponding CPU is online.
1592 * Return 1 if the kthread needs to stop, 0 otherwise.
1594 * Caller must disable bh. This function can momentarily enable it.
1596 static int rcu_cpu_kthread_should_stop(int cpu
)
1598 while (cpu_is_offline(cpu
) ||
1599 !cpumask_equal(¤t
->cpus_allowed
, cpumask_of(cpu
)) ||
1600 smp_processor_id() != cpu
) {
1601 if (kthread_should_stop())
1603 per_cpu(rcu_cpu_kthread_status
, cpu
) = RCU_KTHREAD_OFFCPU
;
1604 per_cpu(rcu_cpu_kthread_cpu
, cpu
) = raw_smp_processor_id();
1606 schedule_timeout_uninterruptible(1);
1607 if (!cpumask_equal(¤t
->cpus_allowed
, cpumask_of(cpu
)))
1608 set_cpus_allowed_ptr(current
, cpumask_of(cpu
));
1611 per_cpu(rcu_cpu_kthread_cpu
, cpu
) = cpu
;
1616 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1617 * earlier RCU softirq.
1619 static int rcu_cpu_kthread(void *arg
)
1621 int cpu
= (int)(long)arg
;
1622 unsigned long flags
;
1624 unsigned int *statusp
= &per_cpu(rcu_cpu_kthread_status
, cpu
);
1625 wait_queue_head_t
*wqp
= &per_cpu(rcu_cpu_wq
, cpu
);
1627 char *workp
= &per_cpu(rcu_cpu_has_work
, cpu
);
1630 *statusp
= RCU_KTHREAD_WAITING
;
1631 wait_event_interruptible(*wqp
,
1632 *workp
!= 0 || kthread_should_stop());
1634 if (rcu_cpu_kthread_should_stop(cpu
)) {
1638 *statusp
= RCU_KTHREAD_RUNNING
;
1639 per_cpu(rcu_cpu_kthread_loops
, cpu
)++;
1640 local_irq_save(flags
);
1643 local_irq_restore(flags
);
1645 rcu_process_callbacks();
1652 *statusp
= RCU_KTHREAD_YIELDING
;
1653 rcu_yield(rcu_cpu_kthread_timer
, (unsigned long)cpu
);
1657 *statusp
= RCU_KTHREAD_STOPPED
;
1662 * Spawn a per-CPU kthread, setting up affinity and priority.
1663 * Because the CPU hotplug lock is held, no other CPU will be attempting
1664 * to manipulate rcu_cpu_kthread_task. There might be another CPU
1665 * attempting to access it during boot, but the locking in kthread_bind()
1666 * will enforce sufficient ordering.
1668 static int __cpuinit
rcu_spawn_one_cpu_kthread(int cpu
)
1670 struct sched_param sp
;
1671 struct task_struct
*t
;
1673 if (!rcu_kthreads_spawnable
||
1674 per_cpu(rcu_cpu_kthread_task
, cpu
) != NULL
)
1676 t
= kthread_create(rcu_cpu_kthread
, (void *)(long)cpu
, "rcuc%d", cpu
);
1679 kthread_bind(t
, cpu
);
1680 per_cpu(rcu_cpu_kthread_cpu
, cpu
) = cpu
;
1681 WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task
, cpu
) != NULL
);
1682 per_cpu(rcu_cpu_kthread_task
, cpu
) = t
;
1684 sp
.sched_priority
= RCU_KTHREAD_PRIO
;
1685 sched_setscheduler_nocheck(t
, SCHED_FIFO
, &sp
);
1690 * Per-rcu_node kthread, which is in charge of waking up the per-CPU
1691 * kthreads when needed. We ignore requests to wake up kthreads
1692 * for offline CPUs, which is OK because force_quiescent_state()
1693 * takes care of this case.
1695 static int rcu_node_kthread(void *arg
)
1698 unsigned long flags
;
1700 struct rcu_node
*rnp
= (struct rcu_node
*)arg
;
1701 struct sched_param sp
;
1702 struct task_struct
*t
;
1705 rnp
->node_kthread_status
= RCU_KTHREAD_WAITING
;
1706 wait_event_interruptible(rnp
->node_wq
, rnp
->wakemask
!= 0);
1707 rnp
->node_kthread_status
= RCU_KTHREAD_RUNNING
;
1708 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1709 mask
= rnp
->wakemask
;
1711 rcu_initiate_boost(rnp
, flags
); /* releases rnp->lock. */
1712 for (cpu
= rnp
->grplo
; cpu
<= rnp
->grphi
; cpu
++, mask
>>= 1) {
1713 if ((mask
& 0x1) == 0)
1716 t
= per_cpu(rcu_cpu_kthread_task
, cpu
);
1717 if (!cpu_online(cpu
) || t
== NULL
) {
1721 per_cpu(rcu_cpu_has_work
, cpu
) = 1;
1722 sp
.sched_priority
= RCU_KTHREAD_PRIO
;
1723 sched_setscheduler_nocheck(t
, SCHED_FIFO
, &sp
);
1728 rnp
->node_kthread_status
= RCU_KTHREAD_STOPPED
;
1733 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1734 * served by the rcu_node in question. The CPU hotplug lock is still
1735 * held, so the value of rnp->qsmaskinit will be stable.
1737 * We don't include outgoingcpu in the affinity set, use -1 if there is
1738 * no outgoing CPU. If there are no CPUs left in the affinity set,
1739 * this function allows the kthread to execute on any CPU.
1741 static void rcu_node_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
)
1745 unsigned long mask
= rnp
->qsmaskinit
;
1747 if (rnp
->node_kthread_task
== NULL
)
1749 if (!alloc_cpumask_var(&cm
, GFP_KERNEL
))
1752 for (cpu
= rnp
->grplo
; cpu
<= rnp
->grphi
; cpu
++, mask
>>= 1)
1753 if ((mask
& 0x1) && cpu
!= outgoingcpu
)
1754 cpumask_set_cpu(cpu
, cm
);
1755 if (cpumask_weight(cm
) == 0) {
1757 for (cpu
= rnp
->grplo
; cpu
<= rnp
->grphi
; cpu
++)
1758 cpumask_clear_cpu(cpu
, cm
);
1759 WARN_ON_ONCE(cpumask_weight(cm
) == 0);
1761 set_cpus_allowed_ptr(rnp
->node_kthread_task
, cm
);
1762 rcu_boost_kthread_setaffinity(rnp
, cm
);
1763 free_cpumask_var(cm
);
1767 * Spawn a per-rcu_node kthread, setting priority and affinity.
1768 * Called during boot before online/offline can happen, or, if
1769 * during runtime, with the main CPU-hotplug locks held. So only
1770 * one of these can be executing at a time.
1772 static int __cpuinit
rcu_spawn_one_node_kthread(struct rcu_state
*rsp
,
1773 struct rcu_node
*rnp
)
1775 unsigned long flags
;
1776 int rnp_index
= rnp
- &rsp
->node
[0];
1777 struct sched_param sp
;
1778 struct task_struct
*t
;
1780 if (!rcu_kthreads_spawnable
||
1781 rnp
->qsmaskinit
== 0)
1783 if (rnp
->node_kthread_task
== NULL
) {
1784 t
= kthread_create(rcu_node_kthread
, (void *)rnp
,
1785 "rcun%d", rnp_index
);
1788 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1789 rnp
->node_kthread_task
= t
;
1790 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1792 sp
.sched_priority
= 99;
1793 sched_setscheduler_nocheck(t
, SCHED_FIFO
, &sp
);
1795 return rcu_spawn_one_boost_kthread(rsp
, rnp
, rnp_index
);
1799 * Spawn all kthreads -- called as soon as the scheduler is running.
1801 static int __init
rcu_spawn_kthreads(void)
1804 struct rcu_node
*rnp
;
1806 rcu_kthreads_spawnable
= 1;
1807 for_each_possible_cpu(cpu
) {
1808 init_waitqueue_head(&per_cpu(rcu_cpu_wq
, cpu
));
1809 per_cpu(rcu_cpu_has_work
, cpu
) = 0;
1810 if (cpu_online(cpu
))
1811 (void)rcu_spawn_one_cpu_kthread(cpu
);
1813 rnp
= rcu_get_root(rcu_state
);
1814 init_waitqueue_head(&rnp
->node_wq
);
1815 rcu_init_boost_waitqueue(rnp
);
1816 (void)rcu_spawn_one_node_kthread(rcu_state
, rnp
);
1817 if (NUM_RCU_NODES
> 1)
1818 rcu_for_each_leaf_node(rcu_state
, rnp
) {
1819 init_waitqueue_head(&rnp
->node_wq
);
1820 rcu_init_boost_waitqueue(rnp
);
1821 (void)rcu_spawn_one_node_kthread(rcu_state
, rnp
);
1825 early_initcall(rcu_spawn_kthreads
);
1828 __call_rcu(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
),
1829 struct rcu_state
*rsp
)
1831 unsigned long flags
;
1832 struct rcu_data
*rdp
;
1834 debug_rcu_head_queue(head
);
1838 smp_mb(); /* Ensure RCU update seen before callback registry. */
1841 * Opportunistically note grace-period endings and beginnings.
1842 * Note that we might see a beginning right after we see an
1843 * end, but never vice versa, since this CPU has to pass through
1844 * a quiescent state betweentimes.
1846 local_irq_save(flags
);
1847 rdp
= this_cpu_ptr(rsp
->rda
);
1849 /* Add the callback to our list. */
1850 *rdp
->nxttail
[RCU_NEXT_TAIL
] = head
;
1851 rdp
->nxttail
[RCU_NEXT_TAIL
] = &head
->next
;
1854 /* If interrupts were disabled, don't dive into RCU core. */
1855 if (irqs_disabled_flags(flags
)) {
1856 local_irq_restore(flags
);
1861 * Force the grace period if too many callbacks or too long waiting.
1862 * Enforce hysteresis, and don't invoke force_quiescent_state()
1863 * if some other CPU has recently done so. Also, don't bother
1864 * invoking force_quiescent_state() if the newly enqueued callback
1865 * is the only one waiting for a grace period to complete.
1867 if (unlikely(rdp
->qlen
> rdp
->qlen_last_fqs_check
+ qhimark
)) {
1869 /* Are we ignoring a completed grace period? */
1870 rcu_process_gp_end(rsp
, rdp
);
1871 check_for_new_grace_period(rsp
, rdp
);
1873 /* Start a new grace period if one not already started. */
1874 if (!rcu_gp_in_progress(rsp
)) {
1875 unsigned long nestflag
;
1876 struct rcu_node
*rnp_root
= rcu_get_root(rsp
);
1878 raw_spin_lock_irqsave(&rnp_root
->lock
, nestflag
);
1879 rcu_start_gp(rsp
, nestflag
); /* rlses rnp_root->lock */
1881 /* Give the grace period a kick. */
1882 rdp
->blimit
= LONG_MAX
;
1883 if (rsp
->n_force_qs
== rdp
->n_force_qs_snap
&&
1884 *rdp
->nxttail
[RCU_DONE_TAIL
] != head
)
1885 force_quiescent_state(rsp
, 0);
1886 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
1887 rdp
->qlen_last_fqs_check
= rdp
->qlen
;
1889 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp
->jiffies_force_qs
), jiffies
))
1890 force_quiescent_state(rsp
, 1);
1891 local_irq_restore(flags
);
1895 * Queue an RCU-sched callback for invocation after a grace period.
1897 void call_rcu_sched(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
1899 __call_rcu(head
, func
, &rcu_sched_state
);
1901 EXPORT_SYMBOL_GPL(call_rcu_sched
);
1904 * Queue an RCU for invocation after a quicker grace period.
1906 void call_rcu_bh(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
1908 __call_rcu(head
, func
, &rcu_bh_state
);
1910 EXPORT_SYMBOL_GPL(call_rcu_bh
);
1913 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1915 * Control will return to the caller some time after a full rcu-sched
1916 * grace period has elapsed, in other words after all currently executing
1917 * rcu-sched read-side critical sections have completed. These read-side
1918 * critical sections are delimited by rcu_read_lock_sched() and
1919 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1920 * local_irq_disable(), and so on may be used in place of
1921 * rcu_read_lock_sched().
1923 * This means that all preempt_disable code sequences, including NMI and
1924 * hardware-interrupt handlers, in progress on entry will have completed
1925 * before this primitive returns. However, this does not guarantee that
1926 * softirq handlers will have completed, since in some kernels, these
1927 * handlers can run in process context, and can block.
1929 * This primitive provides the guarantees made by the (now removed)
1930 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1931 * guarantees that rcu_read_lock() sections will have completed.
1932 * In "classic RCU", these two guarantees happen to be one and
1933 * the same, but can differ in realtime RCU implementations.
1935 void synchronize_sched(void)
1937 struct rcu_synchronize rcu
;
1939 if (rcu_blocking_is_gp())
1942 init_rcu_head_on_stack(&rcu
.head
);
1943 init_completion(&rcu
.completion
);
1944 /* Will wake me after RCU finished. */
1945 call_rcu_sched(&rcu
.head
, wakeme_after_rcu
);
1947 wait_for_completion(&rcu
.completion
);
1948 destroy_rcu_head_on_stack(&rcu
.head
);
1950 EXPORT_SYMBOL_GPL(synchronize_sched
);
1953 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1955 * Control will return to the caller some time after a full rcu_bh grace
1956 * period has elapsed, in other words after all currently executing rcu_bh
1957 * read-side critical sections have completed. RCU read-side critical
1958 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1959 * and may be nested.
1961 void synchronize_rcu_bh(void)
1963 struct rcu_synchronize rcu
;
1965 if (rcu_blocking_is_gp())
1968 init_rcu_head_on_stack(&rcu
.head
);
1969 init_completion(&rcu
.completion
);
1970 /* Will wake me after RCU finished. */
1971 call_rcu_bh(&rcu
.head
, wakeme_after_rcu
);
1973 wait_for_completion(&rcu
.completion
);
1974 destroy_rcu_head_on_stack(&rcu
.head
);
1976 EXPORT_SYMBOL_GPL(synchronize_rcu_bh
);
1979 * Check to see if there is any immediate RCU-related work to be done
1980 * by the current CPU, for the specified type of RCU, returning 1 if so.
1981 * The checks are in order of increasing expense: checks that can be
1982 * carried out against CPU-local state are performed first. However,
1983 * we must check for CPU stalls first, else we might not get a chance.
1985 static int __rcu_pending(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1987 struct rcu_node
*rnp
= rdp
->mynode
;
1989 rdp
->n_rcu_pending
++;
1991 /* Check for CPU stalls, if enabled. */
1992 check_cpu_stall(rsp
, rdp
);
1994 /* Is the RCU core waiting for a quiescent state from this CPU? */
1995 if (rdp
->qs_pending
&& !rdp
->passed_quiesc
) {
1998 * If force_quiescent_state() coming soon and this CPU
1999 * needs a quiescent state, and this is either RCU-sched
2000 * or RCU-bh, force a local reschedule.
2002 rdp
->n_rp_qs_pending
++;
2003 if (!rdp
->preemptible
&&
2004 ULONG_CMP_LT(ACCESS_ONCE(rsp
->jiffies_force_qs
) - 1,
2007 } else if (rdp
->qs_pending
&& rdp
->passed_quiesc
) {
2008 rdp
->n_rp_report_qs
++;
2012 /* Does this CPU have callbacks ready to invoke? */
2013 if (cpu_has_callbacks_ready_to_invoke(rdp
)) {
2014 rdp
->n_rp_cb_ready
++;
2018 /* Has RCU gone idle with this CPU needing another grace period? */
2019 if (cpu_needs_another_gp(rsp
, rdp
)) {
2020 rdp
->n_rp_cpu_needs_gp
++;
2024 /* Has another RCU grace period completed? */
2025 if (ACCESS_ONCE(rnp
->completed
) != rdp
->completed
) { /* outside lock */
2026 rdp
->n_rp_gp_completed
++;
2030 /* Has a new RCU grace period started? */
2031 if (ACCESS_ONCE(rnp
->gpnum
) != rdp
->gpnum
) { /* outside lock */
2032 rdp
->n_rp_gp_started
++;
2036 /* Has an RCU GP gone long enough to send resched IPIs &c? */
2037 if (rcu_gp_in_progress(rsp
) &&
2038 ULONG_CMP_LT(ACCESS_ONCE(rsp
->jiffies_force_qs
), jiffies
)) {
2039 rdp
->n_rp_need_fqs
++;
2044 rdp
->n_rp_need_nothing
++;
2049 * Check to see if there is any immediate RCU-related work to be done
2050 * by the current CPU, returning 1 if so. This function is part of the
2051 * RCU implementation; it is -not- an exported member of the RCU API.
2053 static int rcu_pending(int cpu
)
2055 return __rcu_pending(&rcu_sched_state
, &per_cpu(rcu_sched_data
, cpu
)) ||
2056 __rcu_pending(&rcu_bh_state
, &per_cpu(rcu_bh_data
, cpu
)) ||
2057 rcu_preempt_pending(cpu
);
2061 * Check to see if any future RCU-related work will need to be done
2062 * by the current CPU, even if none need be done immediately, returning
2065 static int rcu_needs_cpu_quick_check(int cpu
)
2067 /* RCU callbacks either ready or pending? */
2068 return per_cpu(rcu_sched_data
, cpu
).nxtlist
||
2069 per_cpu(rcu_bh_data
, cpu
).nxtlist
||
2070 rcu_preempt_needs_cpu(cpu
);
2073 static DEFINE_PER_CPU(struct rcu_head
, rcu_barrier_head
) = {NULL
};
2074 static atomic_t rcu_barrier_cpu_count
;
2075 static DEFINE_MUTEX(rcu_barrier_mutex
);
2076 static struct completion rcu_barrier_completion
;
2078 static void rcu_barrier_callback(struct rcu_head
*notused
)
2080 if (atomic_dec_and_test(&rcu_barrier_cpu_count
))
2081 complete(&rcu_barrier_completion
);
2085 * Called with preemption disabled, and from cross-cpu IRQ context.
2087 static void rcu_barrier_func(void *type
)
2089 int cpu
= smp_processor_id();
2090 struct rcu_head
*head
= &per_cpu(rcu_barrier_head
, cpu
);
2091 void (*call_rcu_func
)(struct rcu_head
*head
,
2092 void (*func
)(struct rcu_head
*head
));
2094 atomic_inc(&rcu_barrier_cpu_count
);
2095 call_rcu_func
= type
;
2096 call_rcu_func(head
, rcu_barrier_callback
);
2100 * Orchestrate the specified type of RCU barrier, waiting for all
2101 * RCU callbacks of the specified type to complete.
2103 static void _rcu_barrier(struct rcu_state
*rsp
,
2104 void (*call_rcu_func
)(struct rcu_head
*head
,
2105 void (*func
)(struct rcu_head
*head
)))
2107 BUG_ON(in_interrupt());
2108 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2109 mutex_lock(&rcu_barrier_mutex
);
2110 init_completion(&rcu_barrier_completion
);
2112 * Initialize rcu_barrier_cpu_count to 1, then invoke
2113 * rcu_barrier_func() on each CPU, so that each CPU also has
2114 * incremented rcu_barrier_cpu_count. Only then is it safe to
2115 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
2116 * might complete its grace period before all of the other CPUs
2117 * did their increment, causing this function to return too
2118 * early. Note that on_each_cpu() disables irqs, which prevents
2119 * any CPUs from coming online or going offline until each online
2120 * CPU has queued its RCU-barrier callback.
2122 atomic_set(&rcu_barrier_cpu_count
, 1);
2123 on_each_cpu(rcu_barrier_func
, (void *)call_rcu_func
, 1);
2124 if (atomic_dec_and_test(&rcu_barrier_cpu_count
))
2125 complete(&rcu_barrier_completion
);
2126 wait_for_completion(&rcu_barrier_completion
);
2127 mutex_unlock(&rcu_barrier_mutex
);
2131 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2133 void rcu_barrier_bh(void)
2135 _rcu_barrier(&rcu_bh_state
, call_rcu_bh
);
2137 EXPORT_SYMBOL_GPL(rcu_barrier_bh
);
2140 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2142 void rcu_barrier_sched(void)
2144 _rcu_barrier(&rcu_sched_state
, call_rcu_sched
);
2146 EXPORT_SYMBOL_GPL(rcu_barrier_sched
);
2149 * Do boot-time initialization of a CPU's per-CPU RCU data.
2152 rcu_boot_init_percpu_data(int cpu
, struct rcu_state
*rsp
)
2154 unsigned long flags
;
2156 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2157 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2159 /* Set up local state, ensuring consistent view of global state. */
2160 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
2161 rdp
->grpmask
= 1UL << (cpu
- rdp
->mynode
->grplo
);
2162 rdp
->nxtlist
= NULL
;
2163 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
2164 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
2167 rdp
->dynticks
= &per_cpu(rcu_dynticks
, cpu
);
2168 #endif /* #ifdef CONFIG_NO_HZ */
2170 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
2174 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2175 * offline event can be happening at a given time. Note also that we
2176 * can accept some slop in the rsp->completed access due to the fact
2177 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2179 static void __cpuinit
2180 rcu_init_percpu_data(int cpu
, struct rcu_state
*rsp
, int preemptible
)
2182 unsigned long flags
;
2184 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2185 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2187 /* Set up local state, ensuring consistent view of global state. */
2188 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
2189 rdp
->passed_quiesc
= 0; /* We could be racing with new GP, */
2190 rdp
->qs_pending
= 1; /* so set up to respond to current GP. */
2191 rdp
->beenonline
= 1; /* We have now been online. */
2192 rdp
->preemptible
= preemptible
;
2193 rdp
->qlen_last_fqs_check
= 0;
2194 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
2195 rdp
->blimit
= blimit
;
2196 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
2199 * A new grace period might start here. If so, we won't be part
2200 * of it, but that is OK, as we are currently in a quiescent state.
2203 /* Exclude any attempts to start a new GP on large systems. */
2204 raw_spin_lock(&rsp
->onofflock
); /* irqs already disabled. */
2206 /* Add CPU to rcu_node bitmasks. */
2208 mask
= rdp
->grpmask
;
2210 /* Exclude any attempts to start a new GP on small systems. */
2211 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
2212 rnp
->qsmaskinit
|= mask
;
2213 mask
= rnp
->grpmask
;
2214 if (rnp
== rdp
->mynode
) {
2215 rdp
->gpnum
= rnp
->completed
; /* if GP in progress... */
2216 rdp
->completed
= rnp
->completed
;
2217 rdp
->passed_quiesc_completed
= rnp
->completed
- 1;
2219 raw_spin_unlock(&rnp
->lock
); /* irqs already disabled. */
2221 } while (rnp
!= NULL
&& !(rnp
->qsmaskinit
& mask
));
2223 raw_spin_unlock_irqrestore(&rsp
->onofflock
, flags
);
2226 static void __cpuinit
rcu_online_cpu(int cpu
)
2228 rcu_init_percpu_data(cpu
, &rcu_sched_state
, 0);
2229 rcu_init_percpu_data(cpu
, &rcu_bh_state
, 0);
2230 rcu_preempt_init_percpu_data(cpu
);
2233 static void __cpuinit
rcu_online_kthreads(int cpu
)
2235 struct rcu_data
*rdp
= per_cpu_ptr(rcu_state
->rda
, cpu
);
2236 struct rcu_node
*rnp
= rdp
->mynode
;
2238 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
2239 if (rcu_kthreads_spawnable
) {
2240 (void)rcu_spawn_one_cpu_kthread(cpu
);
2241 if (rnp
->node_kthread_task
== NULL
)
2242 (void)rcu_spawn_one_node_kthread(rcu_state
, rnp
);
2247 * Handle CPU online/offline notification events.
2249 static int __cpuinit
rcu_cpu_notify(struct notifier_block
*self
,
2250 unsigned long action
, void *hcpu
)
2252 long cpu
= (long)hcpu
;
2253 struct rcu_data
*rdp
= per_cpu_ptr(rcu_state
->rda
, cpu
);
2254 struct rcu_node
*rnp
= rdp
->mynode
;
2257 case CPU_UP_PREPARE
:
2258 case CPU_UP_PREPARE_FROZEN
:
2259 rcu_online_cpu(cpu
);
2260 rcu_online_kthreads(cpu
);
2263 case CPU_DOWN_FAILED
:
2264 rcu_node_kthread_setaffinity(rnp
, -1);
2265 rcu_cpu_kthread_setrt(cpu
, 1);
2267 case CPU_DOWN_PREPARE
:
2268 rcu_node_kthread_setaffinity(rnp
, cpu
);
2269 rcu_cpu_kthread_setrt(cpu
, 0);
2272 case CPU_DYING_FROZEN
:
2274 * The whole machine is "stopped" except this CPU, so we can
2275 * touch any data without introducing corruption. We send the
2276 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2278 rcu_send_cbs_to_online(&rcu_bh_state
);
2279 rcu_send_cbs_to_online(&rcu_sched_state
);
2280 rcu_preempt_send_cbs_to_online();
2283 case CPU_DEAD_FROZEN
:
2284 case CPU_UP_CANCELED
:
2285 case CPU_UP_CANCELED_FROZEN
:
2286 rcu_offline_cpu(cpu
);
2295 * This function is invoked towards the end of the scheduler's initialization
2296 * process. Before this is called, the idle task might contain
2297 * RCU read-side critical sections (during which time, this idle
2298 * task is booting the system). After this function is called, the
2299 * idle tasks are prohibited from containing RCU read-side critical
2300 * sections. This function also enables RCU lockdep checking.
2302 void rcu_scheduler_starting(void)
2304 WARN_ON(num_online_cpus() != 1);
2305 WARN_ON(nr_context_switches() > 0);
2306 rcu_scheduler_active
= 1;
2310 * Compute the per-level fanout, either using the exact fanout specified
2311 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2313 #ifdef CONFIG_RCU_FANOUT_EXACT
2314 static void __init
rcu_init_levelspread(struct rcu_state
*rsp
)
2318 for (i
= NUM_RCU_LVLS
- 1; i
> 0; i
--)
2319 rsp
->levelspread
[i
] = CONFIG_RCU_FANOUT
;
2320 rsp
->levelspread
[0] = RCU_FANOUT_LEAF
;
2322 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2323 static void __init
rcu_init_levelspread(struct rcu_state
*rsp
)
2330 for (i
= NUM_RCU_LVLS
- 1; i
>= 0; i
--) {
2331 ccur
= rsp
->levelcnt
[i
];
2332 rsp
->levelspread
[i
] = (cprv
+ ccur
- 1) / ccur
;
2336 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2339 * Helper function for rcu_init() that initializes one rcu_state structure.
2341 static void __init
rcu_init_one(struct rcu_state
*rsp
,
2342 struct rcu_data __percpu
*rda
)
2344 static char *buf
[] = { "rcu_node_level_0",
2347 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2351 struct rcu_node
*rnp
;
2353 BUILD_BUG_ON(MAX_RCU_LVLS
> ARRAY_SIZE(buf
)); /* Fix buf[] init! */
2355 /* Initialize the level-tracking arrays. */
2357 for (i
= 1; i
< NUM_RCU_LVLS
; i
++)
2358 rsp
->level
[i
] = rsp
->level
[i
- 1] + rsp
->levelcnt
[i
- 1];
2359 rcu_init_levelspread(rsp
);
2361 /* Initialize the elements themselves, starting from the leaves. */
2363 for (i
= NUM_RCU_LVLS
- 1; i
>= 0; i
--) {
2364 cpustride
*= rsp
->levelspread
[i
];
2365 rnp
= rsp
->level
[i
];
2366 for (j
= 0; j
< rsp
->levelcnt
[i
]; j
++, rnp
++) {
2367 raw_spin_lock_init(&rnp
->lock
);
2368 lockdep_set_class_and_name(&rnp
->lock
,
2369 &rcu_node_class
[i
], buf
[i
]);
2372 rnp
->qsmaskinit
= 0;
2373 rnp
->grplo
= j
* cpustride
;
2374 rnp
->grphi
= (j
+ 1) * cpustride
- 1;
2375 if (rnp
->grphi
>= NR_CPUS
)
2376 rnp
->grphi
= NR_CPUS
- 1;
2382 rnp
->grpnum
= j
% rsp
->levelspread
[i
- 1];
2383 rnp
->grpmask
= 1UL << rnp
->grpnum
;
2384 rnp
->parent
= rsp
->level
[i
- 1] +
2385 j
/ rsp
->levelspread
[i
- 1];
2388 INIT_LIST_HEAD(&rnp
->blkd_tasks
);
2393 rnp
= rsp
->level
[NUM_RCU_LVLS
- 1];
2394 for_each_possible_cpu(i
) {
2395 while (i
> rnp
->grphi
)
2397 per_cpu_ptr(rsp
->rda
, i
)->mynode
= rnp
;
2398 rcu_boot_init_percpu_data(i
, rsp
);
2402 void __init
rcu_init(void)
2406 rcu_bootup_announce();
2407 rcu_init_one(&rcu_sched_state
, &rcu_sched_data
);
2408 rcu_init_one(&rcu_bh_state
, &rcu_bh_data
);
2409 __rcu_init_preempt();
2412 * We don't need protection against CPU-hotplug here because
2413 * this is called early in boot, before either interrupts
2414 * or the scheduler are operational.
2416 cpu_notifier(rcu_cpu_notify
, 0);
2417 for_each_online_cpu(cpu
)
2418 rcu_cpu_notify(NULL
, CPU_UP_PREPARE
, (void *)(long)cpu
);
2419 check_cpu_stall_init();
2422 #include "rcutree_plugin.h"