2 * Kernel Probes (KProbes)
3 * arch/x86_64/kernel/kprobes.c
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * Copyright (C) IBM Corporation, 2002, 2004
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation ( includes contributions from
24 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
25 * interface to access function arguments.
26 * 2004-Oct Jim Keniston <kenistoj@us.ibm.com> and Prasanna S Panchamukhi
27 * <prasanna@in.ibm.com> adapted for x86_64
28 * 2005-Mar Roland McGrath <roland@redhat.com>
29 * Fixed to handle %rip-relative addressing mode correctly.
32 #include <linux/config.h>
33 #include <linux/kprobes.h>
34 #include <linux/ptrace.h>
35 #include <linux/spinlock.h>
36 #include <linux/string.h>
37 #include <linux/slab.h>
38 #include <linux/preempt.h>
39 #include <linux/moduleloader.h>
41 #include <asm/pgtable.h>
42 #include <asm/kdebug.h>
44 static DECLARE_MUTEX(kprobe_mutex
);
46 /* kprobe_status settings */
47 #define KPROBE_HIT_ACTIVE 0x00000001
48 #define KPROBE_HIT_SS 0x00000002
50 static struct kprobe
*current_kprobe
;
51 static unsigned long kprobe_status
, kprobe_old_rflags
, kprobe_saved_rflags
;
52 static struct pt_regs jprobe_saved_regs
;
53 static long *jprobe_saved_rsp
;
54 static kprobe_opcode_t
*get_insn_slot(void);
55 static void free_insn_slot(kprobe_opcode_t
*slot
);
56 void jprobe_return_end(void);
58 /* copy of the kernel stack at the probe fire time */
59 static kprobe_opcode_t jprobes_stack
[MAX_STACK_SIZE
];
62 * returns non-zero if opcode modifies the interrupt flag.
64 static inline int is_IF_modifier(kprobe_opcode_t
*insn
)
69 case 0xcf: /* iret/iretd */
70 case 0x9d: /* popf/popfd */
74 if (*insn
>= 0x40 && *insn
<= 0x4f && *++insn
== 0xcf)
79 int arch_prepare_kprobe(struct kprobe
*p
)
81 /* insn: must be on special executable page on x86_64. */
83 p
->ainsn
.insn
= get_insn_slot();
92 * Determine if the instruction uses the %rip-relative addressing mode.
93 * If it does, return the address of the 32-bit displacement word.
94 * If not, return null.
96 static inline s32
*is_riprel(u8
*insn
)
98 #define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf) \
99 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
100 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
101 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
102 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
104 static const u64 onebyte_has_modrm
[256 / 64] = {
105 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
106 /* ------------------------------- */
107 W(0x00, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 00 */
108 W(0x10, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 10 */
109 W(0x20, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 20 */
110 W(0x30, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0), /* 30 */
111 W(0x40, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 40 */
112 W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 50 */
113 W(0x60, 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0)| /* 60 */
114 W(0x70, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 70 */
115 W(0x80, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 80 */
116 W(0x90, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 90 */
117 W(0xa0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* a0 */
118 W(0xb0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* b0 */
119 W(0xc0, 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0)| /* c0 */
120 W(0xd0, 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1)| /* d0 */
121 W(0xe0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* e0 */
122 W(0xf0, 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1) /* f0 */
123 /* ------------------------------- */
124 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
126 static const u64 twobyte_has_modrm
[256 / 64] = {
127 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
128 /* ------------------------------- */
129 W(0x00, 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1)| /* 0f */
130 W(0x10, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0)| /* 1f */
131 W(0x20, 1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1)| /* 2f */
132 W(0x30, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 3f */
133 W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 4f */
134 W(0x50, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 5f */
135 W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 6f */
136 W(0x70, 1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1), /* 7f */
137 W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 8f */
138 W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 9f */
139 W(0xa0, 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1)| /* af */
140 W(0xb0, 1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1), /* bf */
141 W(0xc0, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0)| /* cf */
142 W(0xd0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* df */
143 W(0xe0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* ef */
144 W(0xf0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0) /* ff */
145 /* ------------------------------- */
146 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
151 /* Skip legacy instruction prefixes. */
171 /* Skip REX instruction prefix. */
172 if ((*insn
& 0xf0) == 0x40)
175 if (*insn
== 0x0f) { /* Two-byte opcode. */
177 need_modrm
= test_bit(*insn
, twobyte_has_modrm
);
178 } else { /* One-byte opcode. */
179 need_modrm
= test_bit(*insn
, onebyte_has_modrm
);
184 if ((modrm
& 0xc7) == 0x05) { /* %rip+disp32 addressing mode */
185 /* Displacement follows ModRM byte. */
186 return (s32
*) ++insn
;
190 /* No %rip-relative addressing mode here. */
194 void arch_copy_kprobe(struct kprobe
*p
)
197 memcpy(p
->ainsn
.insn
, p
->addr
, MAX_INSN_SIZE
);
198 ripdisp
= is_riprel(p
->ainsn
.insn
);
201 * The copied instruction uses the %rip-relative
202 * addressing mode. Adjust the displacement for the
203 * difference between the original location of this
204 * instruction and the location of the copy that will
205 * actually be run. The tricky bit here is making sure
206 * that the sign extension happens correctly in this
207 * calculation, since we need a signed 32-bit result to
208 * be sign-extended to 64 bits when it's added to the
209 * %rip value and yield the same 64-bit result that the
210 * sign-extension of the original signed 32-bit
211 * displacement would have given.
213 s64 disp
= (u8
*) p
->addr
+ *ripdisp
- (u8
*) p
->ainsn
.insn
;
214 BUG_ON((s64
) (s32
) disp
!= disp
); /* Sanity check. */
219 void arch_remove_kprobe(struct kprobe
*p
)
222 free_insn_slot(p
->ainsn
.insn
);
226 static inline void disarm_kprobe(struct kprobe
*p
, struct pt_regs
*regs
)
228 *p
->addr
= p
->opcode
;
229 regs
->rip
= (unsigned long)p
->addr
;
232 static void prepare_singlestep(struct kprobe
*p
, struct pt_regs
*regs
)
234 regs
->eflags
|= TF_MASK
;
235 regs
->eflags
&= ~IF_MASK
;
236 /*single step inline if the instruction is an int3*/
237 if (p
->opcode
== BREAKPOINT_INSTRUCTION
)
238 regs
->rip
= (unsigned long)p
->addr
;
240 regs
->rip
= (unsigned long)p
->ainsn
.insn
;
244 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
245 * remain disabled thorough out this function.
247 int kprobe_handler(struct pt_regs
*regs
)
251 kprobe_opcode_t
*addr
= (kprobe_opcode_t
*)(regs
->rip
- sizeof(kprobe_opcode_t
));
253 /* We're in an interrupt, but this is clear and BUG()-safe. */
256 /* Check we're not actually recursing */
257 if (kprobe_running()) {
258 /* We *are* holding lock here, so this is safe.
259 Disarm the probe we just hit, and ignore it. */
260 p
= get_kprobe(addr
);
262 if (kprobe_status
== KPROBE_HIT_SS
) {
263 regs
->eflags
&= ~TF_MASK
;
264 regs
->eflags
|= kprobe_saved_rflags
;
268 disarm_kprobe(p
, regs
);
272 if (p
->break_handler
&& p
->break_handler(p
, regs
)) {
276 /* If it's not ours, can't be delete race, (we hold lock). */
281 p
= get_kprobe(addr
);
284 if (*addr
!= BREAKPOINT_INSTRUCTION
) {
286 * The breakpoint instruction was removed right
287 * after we hit it. Another cpu has removed
288 * either a probepoint or a debugger breakpoint
289 * at this address. In either case, no further
290 * handling of this interrupt is appropriate.
294 /* Not one of ours: let kernel handle it */
298 kprobe_status
= KPROBE_HIT_ACTIVE
;
300 kprobe_saved_rflags
= kprobe_old_rflags
301 = (regs
->eflags
& (TF_MASK
| IF_MASK
));
302 if (is_IF_modifier(p
->ainsn
.insn
))
303 kprobe_saved_rflags
&= ~IF_MASK
;
305 if (p
->pre_handler
&& p
->pre_handler(p
, regs
))
306 /* handler has already set things up, so skip ss setup */
310 prepare_singlestep(p
, regs
);
311 kprobe_status
= KPROBE_HIT_SS
;
315 preempt_enable_no_resched();
320 * Called after single-stepping. p->addr is the address of the
321 * instruction whose first byte has been replaced by the "int 3"
322 * instruction. To avoid the SMP problems that can occur when we
323 * temporarily put back the original opcode to single-step, we
324 * single-stepped a copy of the instruction. The address of this
325 * copy is p->ainsn.insn.
327 * This function prepares to return from the post-single-step
328 * interrupt. We have to fix up the stack as follows:
330 * 0) Except in the case of absolute or indirect jump or call instructions,
331 * the new rip is relative to the copied instruction. We need to make
332 * it relative to the original instruction.
334 * 1) If the single-stepped instruction was pushfl, then the TF and IF
335 * flags are set in the just-pushed eflags, and may need to be cleared.
337 * 2) If the single-stepped instruction was a call, the return address
338 * that is atop the stack is the address following the copied instruction.
339 * We need to make it the address following the original instruction.
341 static void resume_execution(struct kprobe
*p
, struct pt_regs
*regs
)
343 unsigned long *tos
= (unsigned long *)regs
->rsp
;
344 unsigned long next_rip
= 0;
345 unsigned long copy_rip
= (unsigned long)p
->ainsn
.insn
;
346 unsigned long orig_rip
= (unsigned long)p
->addr
;
347 kprobe_opcode_t
*insn
= p
->ainsn
.insn
;
349 /*skip the REX prefix*/
350 if (*insn
>= 0x40 && *insn
<= 0x4f)
354 case 0x9c: /* pushfl */
355 *tos
&= ~(TF_MASK
| IF_MASK
);
356 *tos
|= kprobe_old_rflags
;
358 case 0xc3: /* ret/lret */
362 regs
->eflags
&= ~TF_MASK
;
363 /* rip is already adjusted, no more changes required*/
365 case 0xe8: /* call relative - Fix return addr */
366 *tos
= orig_rip
+ (*tos
- copy_rip
);
369 if ((*insn
& 0x30) == 0x10) {
370 /* call absolute, indirect */
371 /* Fix return addr; rip is correct. */
372 next_rip
= regs
->rip
;
373 *tos
= orig_rip
+ (*tos
- copy_rip
);
374 } else if (((*insn
& 0x31) == 0x20) || /* jmp near, absolute indirect */
375 ((*insn
& 0x31) == 0x21)) { /* jmp far, absolute indirect */
376 /* rip is correct. */
377 next_rip
= regs
->rip
;
380 case 0xea: /* jmp absolute -- rip is correct */
381 next_rip
= regs
->rip
;
387 regs
->eflags
&= ~TF_MASK
;
389 regs
->rip
= next_rip
;
391 regs
->rip
= orig_rip
+ (regs
->rip
- copy_rip
);
396 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
397 * remain disabled thoroughout this function. And we hold kprobe lock.
399 int post_kprobe_handler(struct pt_regs
*regs
)
401 if (!kprobe_running())
404 if (current_kprobe
->post_handler
)
405 current_kprobe
->post_handler(current_kprobe
, regs
, 0);
407 resume_execution(current_kprobe
, regs
);
408 regs
->eflags
|= kprobe_saved_rflags
;
411 preempt_enable_no_resched();
414 * if somebody else is singlestepping across a probe point, eflags
415 * will have TF set, in which case, continue the remaining processing
416 * of do_debug, as if this is not a probe hit.
418 if (regs
->eflags
& TF_MASK
)
424 /* Interrupts disabled, kprobe_lock held. */
425 int kprobe_fault_handler(struct pt_regs
*regs
, int trapnr
)
427 if (current_kprobe
->fault_handler
428 && current_kprobe
->fault_handler(current_kprobe
, regs
, trapnr
))
431 if (kprobe_status
& KPROBE_HIT_SS
) {
432 resume_execution(current_kprobe
, regs
);
433 regs
->eflags
|= kprobe_old_rflags
;
436 preempt_enable_no_resched();
442 * Wrapper routine for handling exceptions.
444 int kprobe_exceptions_notify(struct notifier_block
*self
, unsigned long val
,
447 struct die_args
*args
= (struct die_args
*)data
;
450 if (kprobe_handler(args
->regs
))
454 if (post_kprobe_handler(args
->regs
))
458 if (kprobe_running() &&
459 kprobe_fault_handler(args
->regs
, args
->trapnr
))
463 if (kprobe_running() &&
464 kprobe_fault_handler(args
->regs
, args
->trapnr
))
473 int setjmp_pre_handler(struct kprobe
*p
, struct pt_regs
*regs
)
475 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
478 jprobe_saved_regs
= *regs
;
479 jprobe_saved_rsp
= (long *) regs
->rsp
;
480 addr
= (unsigned long)jprobe_saved_rsp
;
482 * As Linus pointed out, gcc assumes that the callee
483 * owns the argument space and could overwrite it, e.g.
484 * tailcall optimization. So, to be absolutely safe
485 * we also save and restore enough stack bytes to cover
488 memcpy(jprobes_stack
, (kprobe_opcode_t
*) addr
, MIN_STACK_SIZE(addr
));
489 regs
->eflags
&= ~IF_MASK
;
490 regs
->rip
= (unsigned long)(jp
->entry
);
494 void jprobe_return(void)
496 preempt_enable_no_resched();
497 asm volatile (" xchg %%rbx,%%rsp \n"
499 " .globl jprobe_return_end \n"
500 " jprobe_return_end: \n"
502 (jprobe_saved_rsp
):"memory");
505 int longjmp_break_handler(struct kprobe
*p
, struct pt_regs
*regs
)
507 u8
*addr
= (u8
*) (regs
->rip
- 1);
508 unsigned long stack_addr
= (unsigned long)jprobe_saved_rsp
;
509 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
511 if ((addr
> (u8
*) jprobe_return
) && (addr
< (u8
*) jprobe_return_end
)) {
512 if ((long *)regs
->rsp
!= jprobe_saved_rsp
) {
513 struct pt_regs
*saved_regs
=
514 container_of(jprobe_saved_rsp
, struct pt_regs
, rsp
);
515 printk("current rsp %p does not match saved rsp %p\n",
516 (long *)regs
->rsp
, jprobe_saved_rsp
);
517 printk("Saved registers for jprobe %p\n", jp
);
518 show_registers(saved_regs
);
519 printk("Current registers\n");
520 show_registers(regs
);
523 *regs
= jprobe_saved_regs
;
524 memcpy((kprobe_opcode_t
*) stack_addr
, jprobes_stack
,
525 MIN_STACK_SIZE(stack_addr
));
532 * kprobe->ainsn.insn points to the copy of the instruction to be single-stepped.
533 * By default on x86_64, pages we get from kmalloc or vmalloc are not
534 * executable. Single-stepping an instruction on such a page yields an
535 * oops. So instead of storing the instruction copies in their respective
536 * kprobe objects, we allocate a page, map it executable, and store all the
537 * instruction copies there. (We can allocate additional pages if somebody
538 * inserts a huge number of probes.) Each page can hold up to INSNS_PER_PAGE
539 * instruction slots, each of which is MAX_INSN_SIZE*sizeof(kprobe_opcode_t)
542 #define INSNS_PER_PAGE (PAGE_SIZE/(MAX_INSN_SIZE*sizeof(kprobe_opcode_t)))
543 struct kprobe_insn_page
{
544 struct hlist_node hlist
;
545 kprobe_opcode_t
*insns
; /* page of instruction slots */
546 char slot_used
[INSNS_PER_PAGE
];
550 static struct hlist_head kprobe_insn_pages
;
553 * get_insn_slot() - Find a slot on an executable page for an instruction.
554 * We allocate an executable page if there's no room on existing ones.
556 static kprobe_opcode_t
*get_insn_slot(void)
558 struct kprobe_insn_page
*kip
;
559 struct hlist_node
*pos
;
561 hlist_for_each(pos
, &kprobe_insn_pages
) {
562 kip
= hlist_entry(pos
, struct kprobe_insn_page
, hlist
);
563 if (kip
->nused
< INSNS_PER_PAGE
) {
565 for (i
= 0; i
< INSNS_PER_PAGE
; i
++) {
566 if (!kip
->slot_used
[i
]) {
567 kip
->slot_used
[i
] = 1;
569 return kip
->insns
+ (i
*MAX_INSN_SIZE
);
572 /* Surprise! No unused slots. Fix kip->nused. */
573 kip
->nused
= INSNS_PER_PAGE
;
577 /* All out of space. Need to allocate a new page. Use slot 0.*/
578 kip
= kmalloc(sizeof(struct kprobe_insn_page
), GFP_KERNEL
);
584 * For the %rip-relative displacement fixups to be doable, we
585 * need our instruction copy to be within +/- 2GB of any data it
586 * might access via %rip. That is, within 2GB of where the
587 * kernel image and loaded module images reside. So we allocate
588 * a page in the module loading area.
590 kip
->insns
= module_alloc(PAGE_SIZE
);
595 INIT_HLIST_NODE(&kip
->hlist
);
596 hlist_add_head(&kip
->hlist
, &kprobe_insn_pages
);
597 memset(kip
->slot_used
, 0, INSNS_PER_PAGE
);
598 kip
->slot_used
[0] = 1;
604 * free_insn_slot() - Free instruction slot obtained from get_insn_slot().
606 static void free_insn_slot(kprobe_opcode_t
*slot
)
608 struct kprobe_insn_page
*kip
;
609 struct hlist_node
*pos
;
611 hlist_for_each(pos
, &kprobe_insn_pages
) {
612 kip
= hlist_entry(pos
, struct kprobe_insn_page
, hlist
);
613 if (kip
->insns
<= slot
614 && slot
< kip
->insns
+(INSNS_PER_PAGE
*MAX_INSN_SIZE
)) {
615 int i
= (slot
- kip
->insns
) / MAX_INSN_SIZE
;
616 kip
->slot_used
[i
] = 0;
618 if (kip
->nused
== 0) {
620 * Page is no longer in use. Free it unless
621 * it's the last one. We keep the last one
622 * so as not to have to set it up again the
623 * next time somebody inserts a probe.
625 hlist_del(&kip
->hlist
);
626 if (hlist_empty(&kprobe_insn_pages
)) {
627 INIT_HLIST_NODE(&kip
->hlist
);
628 hlist_add_head(&kip
->hlist
,
631 module_free(NULL
, kip
->insns
);