[PATCH] Kprobes: Incorrect handling of probes on ret/lret instruction
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86_64 / kernel / kprobes.c
blobf77f8a0ff1873bdc1717d473f74eb4116874eae7
1 /*
2 * Kernel Probes (KProbes)
3 * arch/x86_64/kernel/kprobes.c
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * Copyright (C) IBM Corporation, 2002, 2004
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation ( includes contributions from
23 * Rusty Russell).
24 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
25 * interface to access function arguments.
26 * 2004-Oct Jim Keniston <kenistoj@us.ibm.com> and Prasanna S Panchamukhi
27 * <prasanna@in.ibm.com> adapted for x86_64
28 * 2005-Mar Roland McGrath <roland@redhat.com>
29 * Fixed to handle %rip-relative addressing mode correctly.
32 #include <linux/config.h>
33 #include <linux/kprobes.h>
34 #include <linux/ptrace.h>
35 #include <linux/spinlock.h>
36 #include <linux/string.h>
37 #include <linux/slab.h>
38 #include <linux/preempt.h>
39 #include <linux/moduleloader.h>
41 #include <asm/pgtable.h>
42 #include <asm/kdebug.h>
44 static DECLARE_MUTEX(kprobe_mutex);
46 /* kprobe_status settings */
47 #define KPROBE_HIT_ACTIVE 0x00000001
48 #define KPROBE_HIT_SS 0x00000002
50 static struct kprobe *current_kprobe;
51 static unsigned long kprobe_status, kprobe_old_rflags, kprobe_saved_rflags;
52 static struct pt_regs jprobe_saved_regs;
53 static long *jprobe_saved_rsp;
54 static kprobe_opcode_t *get_insn_slot(void);
55 static void free_insn_slot(kprobe_opcode_t *slot);
56 void jprobe_return_end(void);
58 /* copy of the kernel stack at the probe fire time */
59 static kprobe_opcode_t jprobes_stack[MAX_STACK_SIZE];
62 * returns non-zero if opcode modifies the interrupt flag.
64 static inline int is_IF_modifier(kprobe_opcode_t *insn)
66 switch (*insn) {
67 case 0xfa: /* cli */
68 case 0xfb: /* sti */
69 case 0xcf: /* iret/iretd */
70 case 0x9d: /* popf/popfd */
71 return 1;
74 if (*insn >= 0x40 && *insn <= 0x4f && *++insn == 0xcf)
75 return 1;
76 return 0;
79 int arch_prepare_kprobe(struct kprobe *p)
81 /* insn: must be on special executable page on x86_64. */
82 up(&kprobe_mutex);
83 p->ainsn.insn = get_insn_slot();
84 down(&kprobe_mutex);
85 if (!p->ainsn.insn) {
86 return -ENOMEM;
88 return 0;
92 * Determine if the instruction uses the %rip-relative addressing mode.
93 * If it does, return the address of the 32-bit displacement word.
94 * If not, return null.
96 static inline s32 *is_riprel(u8 *insn)
98 #define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf) \
99 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
100 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
101 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
102 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
103 << (row % 64))
104 static const u64 onebyte_has_modrm[256 / 64] = {
105 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
106 /* ------------------------------- */
107 W(0x00, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 00 */
108 W(0x10, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 10 */
109 W(0x20, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 20 */
110 W(0x30, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0), /* 30 */
111 W(0x40, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 40 */
112 W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 50 */
113 W(0x60, 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0)| /* 60 */
114 W(0x70, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 70 */
115 W(0x80, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 80 */
116 W(0x90, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 90 */
117 W(0xa0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* a0 */
118 W(0xb0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* b0 */
119 W(0xc0, 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0)| /* c0 */
120 W(0xd0, 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1)| /* d0 */
121 W(0xe0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* e0 */
122 W(0xf0, 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1) /* f0 */
123 /* ------------------------------- */
124 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
126 static const u64 twobyte_has_modrm[256 / 64] = {
127 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
128 /* ------------------------------- */
129 W(0x00, 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1)| /* 0f */
130 W(0x10, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0)| /* 1f */
131 W(0x20, 1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1)| /* 2f */
132 W(0x30, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 3f */
133 W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 4f */
134 W(0x50, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 5f */
135 W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 6f */
136 W(0x70, 1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1), /* 7f */
137 W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 8f */
138 W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 9f */
139 W(0xa0, 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1)| /* af */
140 W(0xb0, 1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1), /* bf */
141 W(0xc0, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0)| /* cf */
142 W(0xd0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* df */
143 W(0xe0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* ef */
144 W(0xf0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0) /* ff */
145 /* ------------------------------- */
146 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
148 #undef W
149 int need_modrm;
151 /* Skip legacy instruction prefixes. */
152 while (1) {
153 switch (*insn) {
154 case 0x66:
155 case 0x67:
156 case 0x2e:
157 case 0x3e:
158 case 0x26:
159 case 0x64:
160 case 0x65:
161 case 0x36:
162 case 0xf0:
163 case 0xf3:
164 case 0xf2:
165 ++insn;
166 continue;
168 break;
171 /* Skip REX instruction prefix. */
172 if ((*insn & 0xf0) == 0x40)
173 ++insn;
175 if (*insn == 0x0f) { /* Two-byte opcode. */
176 ++insn;
177 need_modrm = test_bit(*insn, twobyte_has_modrm);
178 } else { /* One-byte opcode. */
179 need_modrm = test_bit(*insn, onebyte_has_modrm);
182 if (need_modrm) {
183 u8 modrm = *++insn;
184 if ((modrm & 0xc7) == 0x05) { /* %rip+disp32 addressing mode */
185 /* Displacement follows ModRM byte. */
186 return (s32 *) ++insn;
190 /* No %rip-relative addressing mode here. */
191 return NULL;
194 void arch_copy_kprobe(struct kprobe *p)
196 s32 *ripdisp;
197 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE);
198 ripdisp = is_riprel(p->ainsn.insn);
199 if (ripdisp) {
201 * The copied instruction uses the %rip-relative
202 * addressing mode. Adjust the displacement for the
203 * difference between the original location of this
204 * instruction and the location of the copy that will
205 * actually be run. The tricky bit here is making sure
206 * that the sign extension happens correctly in this
207 * calculation, since we need a signed 32-bit result to
208 * be sign-extended to 64 bits when it's added to the
209 * %rip value and yield the same 64-bit result that the
210 * sign-extension of the original signed 32-bit
211 * displacement would have given.
213 s64 disp = (u8 *) p->addr + *ripdisp - (u8 *) p->ainsn.insn;
214 BUG_ON((s64) (s32) disp != disp); /* Sanity check. */
215 *ripdisp = disp;
219 void arch_remove_kprobe(struct kprobe *p)
221 up(&kprobe_mutex);
222 free_insn_slot(p->ainsn.insn);
223 down(&kprobe_mutex);
226 static inline void disarm_kprobe(struct kprobe *p, struct pt_regs *regs)
228 *p->addr = p->opcode;
229 regs->rip = (unsigned long)p->addr;
232 static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
234 regs->eflags |= TF_MASK;
235 regs->eflags &= ~IF_MASK;
236 /*single step inline if the instruction is an int3*/
237 if (p->opcode == BREAKPOINT_INSTRUCTION)
238 regs->rip = (unsigned long)p->addr;
239 else
240 regs->rip = (unsigned long)p->ainsn.insn;
244 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
245 * remain disabled thorough out this function.
247 int kprobe_handler(struct pt_regs *regs)
249 struct kprobe *p;
250 int ret = 0;
251 kprobe_opcode_t *addr = (kprobe_opcode_t *)(regs->rip - sizeof(kprobe_opcode_t));
253 /* We're in an interrupt, but this is clear and BUG()-safe. */
254 preempt_disable();
256 /* Check we're not actually recursing */
257 if (kprobe_running()) {
258 /* We *are* holding lock here, so this is safe.
259 Disarm the probe we just hit, and ignore it. */
260 p = get_kprobe(addr);
261 if (p) {
262 if (kprobe_status == KPROBE_HIT_SS) {
263 regs->eflags &= ~TF_MASK;
264 regs->eflags |= kprobe_saved_rflags;
265 unlock_kprobes();
266 goto no_kprobe;
268 disarm_kprobe(p, regs);
269 ret = 1;
270 } else {
271 p = current_kprobe;
272 if (p->break_handler && p->break_handler(p, regs)) {
273 goto ss_probe;
276 /* If it's not ours, can't be delete race, (we hold lock). */
277 goto no_kprobe;
280 lock_kprobes();
281 p = get_kprobe(addr);
282 if (!p) {
283 unlock_kprobes();
284 if (*addr != BREAKPOINT_INSTRUCTION) {
286 * The breakpoint instruction was removed right
287 * after we hit it. Another cpu has removed
288 * either a probepoint or a debugger breakpoint
289 * at this address. In either case, no further
290 * handling of this interrupt is appropriate.
292 ret = 1;
294 /* Not one of ours: let kernel handle it */
295 goto no_kprobe;
298 kprobe_status = KPROBE_HIT_ACTIVE;
299 current_kprobe = p;
300 kprobe_saved_rflags = kprobe_old_rflags
301 = (regs->eflags & (TF_MASK | IF_MASK));
302 if (is_IF_modifier(p->ainsn.insn))
303 kprobe_saved_rflags &= ~IF_MASK;
305 if (p->pre_handler && p->pre_handler(p, regs))
306 /* handler has already set things up, so skip ss setup */
307 return 1;
309 ss_probe:
310 prepare_singlestep(p, regs);
311 kprobe_status = KPROBE_HIT_SS;
312 return 1;
314 no_kprobe:
315 preempt_enable_no_resched();
316 return ret;
320 * Called after single-stepping. p->addr is the address of the
321 * instruction whose first byte has been replaced by the "int 3"
322 * instruction. To avoid the SMP problems that can occur when we
323 * temporarily put back the original opcode to single-step, we
324 * single-stepped a copy of the instruction. The address of this
325 * copy is p->ainsn.insn.
327 * This function prepares to return from the post-single-step
328 * interrupt. We have to fix up the stack as follows:
330 * 0) Except in the case of absolute or indirect jump or call instructions,
331 * the new rip is relative to the copied instruction. We need to make
332 * it relative to the original instruction.
334 * 1) If the single-stepped instruction was pushfl, then the TF and IF
335 * flags are set in the just-pushed eflags, and may need to be cleared.
337 * 2) If the single-stepped instruction was a call, the return address
338 * that is atop the stack is the address following the copied instruction.
339 * We need to make it the address following the original instruction.
341 static void resume_execution(struct kprobe *p, struct pt_regs *regs)
343 unsigned long *tos = (unsigned long *)regs->rsp;
344 unsigned long next_rip = 0;
345 unsigned long copy_rip = (unsigned long)p->ainsn.insn;
346 unsigned long orig_rip = (unsigned long)p->addr;
347 kprobe_opcode_t *insn = p->ainsn.insn;
349 /*skip the REX prefix*/
350 if (*insn >= 0x40 && *insn <= 0x4f)
351 insn++;
353 switch (*insn) {
354 case 0x9c: /* pushfl */
355 *tos &= ~(TF_MASK | IF_MASK);
356 *tos |= kprobe_old_rflags;
357 break;
358 case 0xc3: /* ret/lret */
359 case 0xcb:
360 case 0xc2:
361 case 0xca:
362 regs->eflags &= ~TF_MASK;
363 /* rip is already adjusted, no more changes required*/
364 return;
365 case 0xe8: /* call relative - Fix return addr */
366 *tos = orig_rip + (*tos - copy_rip);
367 break;
368 case 0xff:
369 if ((*insn & 0x30) == 0x10) {
370 /* call absolute, indirect */
371 /* Fix return addr; rip is correct. */
372 next_rip = regs->rip;
373 *tos = orig_rip + (*tos - copy_rip);
374 } else if (((*insn & 0x31) == 0x20) || /* jmp near, absolute indirect */
375 ((*insn & 0x31) == 0x21)) { /* jmp far, absolute indirect */
376 /* rip is correct. */
377 next_rip = regs->rip;
379 break;
380 case 0xea: /* jmp absolute -- rip is correct */
381 next_rip = regs->rip;
382 break;
383 default:
384 break;
387 regs->eflags &= ~TF_MASK;
388 if (next_rip) {
389 regs->rip = next_rip;
390 } else {
391 regs->rip = orig_rip + (regs->rip - copy_rip);
396 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
397 * remain disabled thoroughout this function. And we hold kprobe lock.
399 int post_kprobe_handler(struct pt_regs *regs)
401 if (!kprobe_running())
402 return 0;
404 if (current_kprobe->post_handler)
405 current_kprobe->post_handler(current_kprobe, regs, 0);
407 resume_execution(current_kprobe, regs);
408 regs->eflags |= kprobe_saved_rflags;
410 unlock_kprobes();
411 preempt_enable_no_resched();
414 * if somebody else is singlestepping across a probe point, eflags
415 * will have TF set, in which case, continue the remaining processing
416 * of do_debug, as if this is not a probe hit.
418 if (regs->eflags & TF_MASK)
419 return 0;
421 return 1;
424 /* Interrupts disabled, kprobe_lock held. */
425 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
427 if (current_kprobe->fault_handler
428 && current_kprobe->fault_handler(current_kprobe, regs, trapnr))
429 return 1;
431 if (kprobe_status & KPROBE_HIT_SS) {
432 resume_execution(current_kprobe, regs);
433 regs->eflags |= kprobe_old_rflags;
435 unlock_kprobes();
436 preempt_enable_no_resched();
438 return 0;
442 * Wrapper routine for handling exceptions.
444 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
445 void *data)
447 struct die_args *args = (struct die_args *)data;
448 switch (val) {
449 case DIE_INT3:
450 if (kprobe_handler(args->regs))
451 return NOTIFY_STOP;
452 break;
453 case DIE_DEBUG:
454 if (post_kprobe_handler(args->regs))
455 return NOTIFY_STOP;
456 break;
457 case DIE_GPF:
458 if (kprobe_running() &&
459 kprobe_fault_handler(args->regs, args->trapnr))
460 return NOTIFY_STOP;
461 break;
462 case DIE_PAGE_FAULT:
463 if (kprobe_running() &&
464 kprobe_fault_handler(args->regs, args->trapnr))
465 return NOTIFY_STOP;
466 break;
467 default:
468 break;
470 return NOTIFY_DONE;
473 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
475 struct jprobe *jp = container_of(p, struct jprobe, kp);
476 unsigned long addr;
478 jprobe_saved_regs = *regs;
479 jprobe_saved_rsp = (long *) regs->rsp;
480 addr = (unsigned long)jprobe_saved_rsp;
482 * As Linus pointed out, gcc assumes that the callee
483 * owns the argument space and could overwrite it, e.g.
484 * tailcall optimization. So, to be absolutely safe
485 * we also save and restore enough stack bytes to cover
486 * the argument area.
488 memcpy(jprobes_stack, (kprobe_opcode_t *) addr, MIN_STACK_SIZE(addr));
489 regs->eflags &= ~IF_MASK;
490 regs->rip = (unsigned long)(jp->entry);
491 return 1;
494 void jprobe_return(void)
496 preempt_enable_no_resched();
497 asm volatile (" xchg %%rbx,%%rsp \n"
498 " int3 \n"
499 " .globl jprobe_return_end \n"
500 " jprobe_return_end: \n"
501 " nop \n"::"b"
502 (jprobe_saved_rsp):"memory");
505 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
507 u8 *addr = (u8 *) (regs->rip - 1);
508 unsigned long stack_addr = (unsigned long)jprobe_saved_rsp;
509 struct jprobe *jp = container_of(p, struct jprobe, kp);
511 if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
512 if ((long *)regs->rsp != jprobe_saved_rsp) {
513 struct pt_regs *saved_regs =
514 container_of(jprobe_saved_rsp, struct pt_regs, rsp);
515 printk("current rsp %p does not match saved rsp %p\n",
516 (long *)regs->rsp, jprobe_saved_rsp);
517 printk("Saved registers for jprobe %p\n", jp);
518 show_registers(saved_regs);
519 printk("Current registers\n");
520 show_registers(regs);
521 BUG();
523 *regs = jprobe_saved_regs;
524 memcpy((kprobe_opcode_t *) stack_addr, jprobes_stack,
525 MIN_STACK_SIZE(stack_addr));
526 return 1;
528 return 0;
532 * kprobe->ainsn.insn points to the copy of the instruction to be single-stepped.
533 * By default on x86_64, pages we get from kmalloc or vmalloc are not
534 * executable. Single-stepping an instruction on such a page yields an
535 * oops. So instead of storing the instruction copies in their respective
536 * kprobe objects, we allocate a page, map it executable, and store all the
537 * instruction copies there. (We can allocate additional pages if somebody
538 * inserts a huge number of probes.) Each page can hold up to INSNS_PER_PAGE
539 * instruction slots, each of which is MAX_INSN_SIZE*sizeof(kprobe_opcode_t)
540 * bytes.
542 #define INSNS_PER_PAGE (PAGE_SIZE/(MAX_INSN_SIZE*sizeof(kprobe_opcode_t)))
543 struct kprobe_insn_page {
544 struct hlist_node hlist;
545 kprobe_opcode_t *insns; /* page of instruction slots */
546 char slot_used[INSNS_PER_PAGE];
547 int nused;
550 static struct hlist_head kprobe_insn_pages;
553 * get_insn_slot() - Find a slot on an executable page for an instruction.
554 * We allocate an executable page if there's no room on existing ones.
556 static kprobe_opcode_t *get_insn_slot(void)
558 struct kprobe_insn_page *kip;
559 struct hlist_node *pos;
561 hlist_for_each(pos, &kprobe_insn_pages) {
562 kip = hlist_entry(pos, struct kprobe_insn_page, hlist);
563 if (kip->nused < INSNS_PER_PAGE) {
564 int i;
565 for (i = 0; i < INSNS_PER_PAGE; i++) {
566 if (!kip->slot_used[i]) {
567 kip->slot_used[i] = 1;
568 kip->nused++;
569 return kip->insns + (i*MAX_INSN_SIZE);
572 /* Surprise! No unused slots. Fix kip->nused. */
573 kip->nused = INSNS_PER_PAGE;
577 /* All out of space. Need to allocate a new page. Use slot 0.*/
578 kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL);
579 if (!kip) {
580 return NULL;
584 * For the %rip-relative displacement fixups to be doable, we
585 * need our instruction copy to be within +/- 2GB of any data it
586 * might access via %rip. That is, within 2GB of where the
587 * kernel image and loaded module images reside. So we allocate
588 * a page in the module loading area.
590 kip->insns = module_alloc(PAGE_SIZE);
591 if (!kip->insns) {
592 kfree(kip);
593 return NULL;
595 INIT_HLIST_NODE(&kip->hlist);
596 hlist_add_head(&kip->hlist, &kprobe_insn_pages);
597 memset(kip->slot_used, 0, INSNS_PER_PAGE);
598 kip->slot_used[0] = 1;
599 kip->nused = 1;
600 return kip->insns;
604 * free_insn_slot() - Free instruction slot obtained from get_insn_slot().
606 static void free_insn_slot(kprobe_opcode_t *slot)
608 struct kprobe_insn_page *kip;
609 struct hlist_node *pos;
611 hlist_for_each(pos, &kprobe_insn_pages) {
612 kip = hlist_entry(pos, struct kprobe_insn_page, hlist);
613 if (kip->insns <= slot
614 && slot < kip->insns+(INSNS_PER_PAGE*MAX_INSN_SIZE)) {
615 int i = (slot - kip->insns) / MAX_INSN_SIZE;
616 kip->slot_used[i] = 0;
617 kip->nused--;
618 if (kip->nused == 0) {
620 * Page is no longer in use. Free it unless
621 * it's the last one. We keep the last one
622 * so as not to have to set it up again the
623 * next time somebody inserts a probe.
625 hlist_del(&kip->hlist);
626 if (hlist_empty(&kprobe_insn_pages)) {
627 INIT_HLIST_NODE(&kip->hlist);
628 hlist_add_head(&kip->hlist,
629 &kprobe_insn_pages);
630 } else {
631 module_free(NULL, kip->insns);
632 kfree(kip);
635 return;