bnx2: Fix lost MSI-X problem on 5709 NICs.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / bnx2.c
bloba9aa957f3a7e6d347426e041ea7ca6bdeeedb764
1 /* bnx2.c: Broadcom NX2 network driver.
3 * Copyright (c) 2004-2009 Broadcom Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
9 * Written by: Michael Chan (mchan@broadcom.com)
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
16 #include <linux/kernel.h>
17 #include <linux/timer.h>
18 #include <linux/errno.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/interrupt.h>
23 #include <linux/pci.h>
24 #include <linux/init.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/bitops.h>
30 #include <asm/io.h>
31 #include <asm/irq.h>
32 #include <linux/delay.h>
33 #include <asm/byteorder.h>
34 #include <asm/page.h>
35 #include <linux/time.h>
36 #include <linux/ethtool.h>
37 #include <linux/mii.h>
38 #include <linux/if_vlan.h>
39 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
40 #define BCM_VLAN 1
41 #endif
42 #include <net/ip.h>
43 #include <net/tcp.h>
44 #include <net/checksum.h>
45 #include <linux/workqueue.h>
46 #include <linux/crc32.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/firmware.h>
50 #include <linux/log2.h>
51 #include <linux/list.h>
53 #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
54 #define BCM_CNIC 1
55 #include "cnic_if.h"
56 #endif
57 #include "bnx2.h"
58 #include "bnx2_fw.h"
60 #define DRV_MODULE_NAME "bnx2"
61 #define PFX DRV_MODULE_NAME ": "
62 #define DRV_MODULE_VERSION "2.0.2"
63 #define DRV_MODULE_RELDATE "Aug 21, 2009"
64 #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-5.0.0.j3.fw"
65 #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-5.0.0.j3.fw"
66 #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-5.0.0.j3.fw"
67 #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-5.0.0.j3.fw"
68 #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-5.0.0.j3.fw"
70 #define RUN_AT(x) (jiffies + (x))
72 /* Time in jiffies before concluding the transmitter is hung. */
73 #define TX_TIMEOUT (5*HZ)
75 static char version[] __devinitdata =
76 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
78 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
79 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
80 MODULE_LICENSE("GPL");
81 MODULE_VERSION(DRV_MODULE_VERSION);
82 MODULE_FIRMWARE(FW_MIPS_FILE_06);
83 MODULE_FIRMWARE(FW_RV2P_FILE_06);
84 MODULE_FIRMWARE(FW_MIPS_FILE_09);
85 MODULE_FIRMWARE(FW_RV2P_FILE_09);
86 MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
88 static int disable_msi = 0;
90 module_param(disable_msi, int, 0);
91 MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
93 typedef enum {
94 BCM5706 = 0,
95 NC370T,
96 NC370I,
97 BCM5706S,
98 NC370F,
99 BCM5708,
100 BCM5708S,
101 BCM5709,
102 BCM5709S,
103 BCM5716,
104 BCM5716S,
105 } board_t;
107 /* indexed by board_t, above */
108 static struct {
109 char *name;
110 } board_info[] __devinitdata = {
111 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
112 { "HP NC370T Multifunction Gigabit Server Adapter" },
113 { "HP NC370i Multifunction Gigabit Server Adapter" },
114 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
115 { "HP NC370F Multifunction Gigabit Server Adapter" },
116 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
117 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
118 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
119 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
120 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
121 { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
124 static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
125 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
126 PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
127 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
128 PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
129 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
130 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
131 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
132 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
133 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
134 PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
135 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
136 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
137 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
138 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
139 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
140 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
141 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
142 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
143 { PCI_VENDOR_ID_BROADCOM, 0x163b,
144 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
145 { PCI_VENDOR_ID_BROADCOM, 0x163c,
146 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
147 { 0, }
150 static const struct flash_spec flash_table[] =
152 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
153 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
154 /* Slow EEPROM */
155 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
156 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
157 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
158 "EEPROM - slow"},
159 /* Expansion entry 0001 */
160 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
161 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
162 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
163 "Entry 0001"},
164 /* Saifun SA25F010 (non-buffered flash) */
165 /* strap, cfg1, & write1 need updates */
166 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
167 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
168 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
169 "Non-buffered flash (128kB)"},
170 /* Saifun SA25F020 (non-buffered flash) */
171 /* strap, cfg1, & write1 need updates */
172 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
173 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
174 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
175 "Non-buffered flash (256kB)"},
176 /* Expansion entry 0100 */
177 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
178 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
179 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
180 "Entry 0100"},
181 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
182 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
183 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
184 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
185 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
186 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
187 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
188 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
189 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
190 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
191 /* Saifun SA25F005 (non-buffered flash) */
192 /* strap, cfg1, & write1 need updates */
193 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
194 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
195 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
196 "Non-buffered flash (64kB)"},
197 /* Fast EEPROM */
198 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
199 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
200 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
201 "EEPROM - fast"},
202 /* Expansion entry 1001 */
203 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
204 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
205 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
206 "Entry 1001"},
207 /* Expansion entry 1010 */
208 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
209 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
210 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
211 "Entry 1010"},
212 /* ATMEL AT45DB011B (buffered flash) */
213 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
214 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
215 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
216 "Buffered flash (128kB)"},
217 /* Expansion entry 1100 */
218 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
219 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
220 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
221 "Entry 1100"},
222 /* Expansion entry 1101 */
223 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
224 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
225 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
226 "Entry 1101"},
227 /* Ateml Expansion entry 1110 */
228 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
229 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
230 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
231 "Entry 1110 (Atmel)"},
232 /* ATMEL AT45DB021B (buffered flash) */
233 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
234 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
235 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
236 "Buffered flash (256kB)"},
239 static const struct flash_spec flash_5709 = {
240 .flags = BNX2_NV_BUFFERED,
241 .page_bits = BCM5709_FLASH_PAGE_BITS,
242 .page_size = BCM5709_FLASH_PAGE_SIZE,
243 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
244 .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
245 .name = "5709 Buffered flash (256kB)",
248 MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
250 static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
252 u32 diff;
254 smp_mb();
256 /* The ring uses 256 indices for 255 entries, one of them
257 * needs to be skipped.
259 diff = txr->tx_prod - txr->tx_cons;
260 if (unlikely(diff >= TX_DESC_CNT)) {
261 diff &= 0xffff;
262 if (diff == TX_DESC_CNT)
263 diff = MAX_TX_DESC_CNT;
265 return (bp->tx_ring_size - diff);
268 static u32
269 bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
271 u32 val;
273 spin_lock_bh(&bp->indirect_lock);
274 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
275 val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
276 spin_unlock_bh(&bp->indirect_lock);
277 return val;
280 static void
281 bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
283 spin_lock_bh(&bp->indirect_lock);
284 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
285 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
286 spin_unlock_bh(&bp->indirect_lock);
289 static void
290 bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
292 bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
295 static u32
296 bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
298 return (bnx2_reg_rd_ind(bp, bp->shmem_base + offset));
301 static void
302 bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
304 offset += cid_addr;
305 spin_lock_bh(&bp->indirect_lock);
306 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
307 int i;
309 REG_WR(bp, BNX2_CTX_CTX_DATA, val);
310 REG_WR(bp, BNX2_CTX_CTX_CTRL,
311 offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
312 for (i = 0; i < 5; i++) {
313 val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
314 if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
315 break;
316 udelay(5);
318 } else {
319 REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
320 REG_WR(bp, BNX2_CTX_DATA, val);
322 spin_unlock_bh(&bp->indirect_lock);
325 #ifdef BCM_CNIC
326 static int
327 bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
329 struct bnx2 *bp = netdev_priv(dev);
330 struct drv_ctl_io *io = &info->data.io;
332 switch (info->cmd) {
333 case DRV_CTL_IO_WR_CMD:
334 bnx2_reg_wr_ind(bp, io->offset, io->data);
335 break;
336 case DRV_CTL_IO_RD_CMD:
337 io->data = bnx2_reg_rd_ind(bp, io->offset);
338 break;
339 case DRV_CTL_CTX_WR_CMD:
340 bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
341 break;
342 default:
343 return -EINVAL;
345 return 0;
348 static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
350 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
351 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
352 int sb_id;
354 if (bp->flags & BNX2_FLAG_USING_MSIX) {
355 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
356 bnapi->cnic_present = 0;
357 sb_id = bp->irq_nvecs;
358 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
359 } else {
360 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
361 bnapi->cnic_tag = bnapi->last_status_idx;
362 bnapi->cnic_present = 1;
363 sb_id = 0;
364 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
367 cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
368 cp->irq_arr[0].status_blk = (void *)
369 ((unsigned long) bnapi->status_blk.msi +
370 (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
371 cp->irq_arr[0].status_blk_num = sb_id;
372 cp->num_irq = 1;
375 static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
376 void *data)
378 struct bnx2 *bp = netdev_priv(dev);
379 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
381 if (ops == NULL)
382 return -EINVAL;
384 if (cp->drv_state & CNIC_DRV_STATE_REGD)
385 return -EBUSY;
387 bp->cnic_data = data;
388 rcu_assign_pointer(bp->cnic_ops, ops);
390 cp->num_irq = 0;
391 cp->drv_state = CNIC_DRV_STATE_REGD;
393 bnx2_setup_cnic_irq_info(bp);
395 return 0;
398 static int bnx2_unregister_cnic(struct net_device *dev)
400 struct bnx2 *bp = netdev_priv(dev);
401 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
402 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
404 mutex_lock(&bp->cnic_lock);
405 cp->drv_state = 0;
406 bnapi->cnic_present = 0;
407 rcu_assign_pointer(bp->cnic_ops, NULL);
408 mutex_unlock(&bp->cnic_lock);
409 synchronize_rcu();
410 return 0;
413 struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
415 struct bnx2 *bp = netdev_priv(dev);
416 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
418 cp->drv_owner = THIS_MODULE;
419 cp->chip_id = bp->chip_id;
420 cp->pdev = bp->pdev;
421 cp->io_base = bp->regview;
422 cp->drv_ctl = bnx2_drv_ctl;
423 cp->drv_register_cnic = bnx2_register_cnic;
424 cp->drv_unregister_cnic = bnx2_unregister_cnic;
426 return cp;
428 EXPORT_SYMBOL(bnx2_cnic_probe);
430 static void
431 bnx2_cnic_stop(struct bnx2 *bp)
433 struct cnic_ops *c_ops;
434 struct cnic_ctl_info info;
436 mutex_lock(&bp->cnic_lock);
437 c_ops = bp->cnic_ops;
438 if (c_ops) {
439 info.cmd = CNIC_CTL_STOP_CMD;
440 c_ops->cnic_ctl(bp->cnic_data, &info);
442 mutex_unlock(&bp->cnic_lock);
445 static void
446 bnx2_cnic_start(struct bnx2 *bp)
448 struct cnic_ops *c_ops;
449 struct cnic_ctl_info info;
451 mutex_lock(&bp->cnic_lock);
452 c_ops = bp->cnic_ops;
453 if (c_ops) {
454 if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
455 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
457 bnapi->cnic_tag = bnapi->last_status_idx;
459 info.cmd = CNIC_CTL_START_CMD;
460 c_ops->cnic_ctl(bp->cnic_data, &info);
462 mutex_unlock(&bp->cnic_lock);
465 #else
467 static void
468 bnx2_cnic_stop(struct bnx2 *bp)
472 static void
473 bnx2_cnic_start(struct bnx2 *bp)
477 #endif
479 static int
480 bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
482 u32 val1;
483 int i, ret;
485 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
486 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
487 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
489 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
490 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
492 udelay(40);
495 val1 = (bp->phy_addr << 21) | (reg << 16) |
496 BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
497 BNX2_EMAC_MDIO_COMM_START_BUSY;
498 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
500 for (i = 0; i < 50; i++) {
501 udelay(10);
503 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
504 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
505 udelay(5);
507 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
508 val1 &= BNX2_EMAC_MDIO_COMM_DATA;
510 break;
514 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
515 *val = 0x0;
516 ret = -EBUSY;
518 else {
519 *val = val1;
520 ret = 0;
523 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
524 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
525 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
527 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
528 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
530 udelay(40);
533 return ret;
536 static int
537 bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
539 u32 val1;
540 int i, ret;
542 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
543 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
544 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
546 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
547 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
549 udelay(40);
552 val1 = (bp->phy_addr << 21) | (reg << 16) | val |
553 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
554 BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
555 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
557 for (i = 0; i < 50; i++) {
558 udelay(10);
560 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
561 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
562 udelay(5);
563 break;
567 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
568 ret = -EBUSY;
569 else
570 ret = 0;
572 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
573 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
574 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
576 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
577 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
579 udelay(40);
582 return ret;
585 static void
586 bnx2_disable_int(struct bnx2 *bp)
588 int i;
589 struct bnx2_napi *bnapi;
591 for (i = 0; i < bp->irq_nvecs; i++) {
592 bnapi = &bp->bnx2_napi[i];
593 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
594 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
596 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
599 static void
600 bnx2_enable_int(struct bnx2 *bp)
602 int i;
603 struct bnx2_napi *bnapi;
605 for (i = 0; i < bp->irq_nvecs; i++) {
606 bnapi = &bp->bnx2_napi[i];
608 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
609 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
610 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
611 bnapi->last_status_idx);
613 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
614 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
615 bnapi->last_status_idx);
617 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
620 static void
621 bnx2_disable_int_sync(struct bnx2 *bp)
623 int i;
625 atomic_inc(&bp->intr_sem);
626 if (!netif_running(bp->dev))
627 return;
629 bnx2_disable_int(bp);
630 for (i = 0; i < bp->irq_nvecs; i++)
631 synchronize_irq(bp->irq_tbl[i].vector);
634 static void
635 bnx2_napi_disable(struct bnx2 *bp)
637 int i;
639 for (i = 0; i < bp->irq_nvecs; i++)
640 napi_disable(&bp->bnx2_napi[i].napi);
643 static void
644 bnx2_napi_enable(struct bnx2 *bp)
646 int i;
648 for (i = 0; i < bp->irq_nvecs; i++)
649 napi_enable(&bp->bnx2_napi[i].napi);
652 static void
653 bnx2_netif_stop(struct bnx2 *bp)
655 bnx2_cnic_stop(bp);
656 bnx2_disable_int_sync(bp);
657 if (netif_running(bp->dev)) {
658 bnx2_napi_disable(bp);
659 netif_tx_disable(bp->dev);
660 bp->dev->trans_start = jiffies; /* prevent tx timeout */
664 static void
665 bnx2_netif_start(struct bnx2 *bp)
667 if (atomic_dec_and_test(&bp->intr_sem)) {
668 if (netif_running(bp->dev)) {
669 netif_tx_wake_all_queues(bp->dev);
670 bnx2_napi_enable(bp);
671 bnx2_enable_int(bp);
672 bnx2_cnic_start(bp);
677 static void
678 bnx2_free_tx_mem(struct bnx2 *bp)
680 int i;
682 for (i = 0; i < bp->num_tx_rings; i++) {
683 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
684 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
686 if (txr->tx_desc_ring) {
687 pci_free_consistent(bp->pdev, TXBD_RING_SIZE,
688 txr->tx_desc_ring,
689 txr->tx_desc_mapping);
690 txr->tx_desc_ring = NULL;
692 kfree(txr->tx_buf_ring);
693 txr->tx_buf_ring = NULL;
697 static void
698 bnx2_free_rx_mem(struct bnx2 *bp)
700 int i;
702 for (i = 0; i < bp->num_rx_rings; i++) {
703 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
704 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
705 int j;
707 for (j = 0; j < bp->rx_max_ring; j++) {
708 if (rxr->rx_desc_ring[j])
709 pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
710 rxr->rx_desc_ring[j],
711 rxr->rx_desc_mapping[j]);
712 rxr->rx_desc_ring[j] = NULL;
714 vfree(rxr->rx_buf_ring);
715 rxr->rx_buf_ring = NULL;
717 for (j = 0; j < bp->rx_max_pg_ring; j++) {
718 if (rxr->rx_pg_desc_ring[j])
719 pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
720 rxr->rx_pg_desc_ring[j],
721 rxr->rx_pg_desc_mapping[j]);
722 rxr->rx_pg_desc_ring[j] = NULL;
724 vfree(rxr->rx_pg_ring);
725 rxr->rx_pg_ring = NULL;
729 static int
730 bnx2_alloc_tx_mem(struct bnx2 *bp)
732 int i;
734 for (i = 0; i < bp->num_tx_rings; i++) {
735 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
736 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
738 txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
739 if (txr->tx_buf_ring == NULL)
740 return -ENOMEM;
742 txr->tx_desc_ring =
743 pci_alloc_consistent(bp->pdev, TXBD_RING_SIZE,
744 &txr->tx_desc_mapping);
745 if (txr->tx_desc_ring == NULL)
746 return -ENOMEM;
748 return 0;
751 static int
752 bnx2_alloc_rx_mem(struct bnx2 *bp)
754 int i;
756 for (i = 0; i < bp->num_rx_rings; i++) {
757 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
758 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
759 int j;
761 rxr->rx_buf_ring =
762 vmalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
763 if (rxr->rx_buf_ring == NULL)
764 return -ENOMEM;
766 memset(rxr->rx_buf_ring, 0,
767 SW_RXBD_RING_SIZE * bp->rx_max_ring);
769 for (j = 0; j < bp->rx_max_ring; j++) {
770 rxr->rx_desc_ring[j] =
771 pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
772 &rxr->rx_desc_mapping[j]);
773 if (rxr->rx_desc_ring[j] == NULL)
774 return -ENOMEM;
778 if (bp->rx_pg_ring_size) {
779 rxr->rx_pg_ring = vmalloc(SW_RXPG_RING_SIZE *
780 bp->rx_max_pg_ring);
781 if (rxr->rx_pg_ring == NULL)
782 return -ENOMEM;
784 memset(rxr->rx_pg_ring, 0, SW_RXPG_RING_SIZE *
785 bp->rx_max_pg_ring);
788 for (j = 0; j < bp->rx_max_pg_ring; j++) {
789 rxr->rx_pg_desc_ring[j] =
790 pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
791 &rxr->rx_pg_desc_mapping[j]);
792 if (rxr->rx_pg_desc_ring[j] == NULL)
793 return -ENOMEM;
797 return 0;
800 static void
801 bnx2_free_mem(struct bnx2 *bp)
803 int i;
804 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
806 bnx2_free_tx_mem(bp);
807 bnx2_free_rx_mem(bp);
809 for (i = 0; i < bp->ctx_pages; i++) {
810 if (bp->ctx_blk[i]) {
811 pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
812 bp->ctx_blk[i],
813 bp->ctx_blk_mapping[i]);
814 bp->ctx_blk[i] = NULL;
817 if (bnapi->status_blk.msi) {
818 pci_free_consistent(bp->pdev, bp->status_stats_size,
819 bnapi->status_blk.msi,
820 bp->status_blk_mapping);
821 bnapi->status_blk.msi = NULL;
822 bp->stats_blk = NULL;
826 static int
827 bnx2_alloc_mem(struct bnx2 *bp)
829 int i, status_blk_size, err;
830 struct bnx2_napi *bnapi;
831 void *status_blk;
833 /* Combine status and statistics blocks into one allocation. */
834 status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
835 if (bp->flags & BNX2_FLAG_MSIX_CAP)
836 status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
837 BNX2_SBLK_MSIX_ALIGN_SIZE);
838 bp->status_stats_size = status_blk_size +
839 sizeof(struct statistics_block);
841 status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
842 &bp->status_blk_mapping);
843 if (status_blk == NULL)
844 goto alloc_mem_err;
846 memset(status_blk, 0, bp->status_stats_size);
848 bnapi = &bp->bnx2_napi[0];
849 bnapi->status_blk.msi = status_blk;
850 bnapi->hw_tx_cons_ptr =
851 &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
852 bnapi->hw_rx_cons_ptr =
853 &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
854 if (bp->flags & BNX2_FLAG_MSIX_CAP) {
855 for (i = 1; i < BNX2_MAX_MSIX_VEC; i++) {
856 struct status_block_msix *sblk;
858 bnapi = &bp->bnx2_napi[i];
860 sblk = (void *) (status_blk +
861 BNX2_SBLK_MSIX_ALIGN_SIZE * i);
862 bnapi->status_blk.msix = sblk;
863 bnapi->hw_tx_cons_ptr =
864 &sblk->status_tx_quick_consumer_index;
865 bnapi->hw_rx_cons_ptr =
866 &sblk->status_rx_quick_consumer_index;
867 bnapi->int_num = i << 24;
871 bp->stats_blk = status_blk + status_blk_size;
873 bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
875 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
876 bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
877 if (bp->ctx_pages == 0)
878 bp->ctx_pages = 1;
879 for (i = 0; i < bp->ctx_pages; i++) {
880 bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
881 BCM_PAGE_SIZE,
882 &bp->ctx_blk_mapping[i]);
883 if (bp->ctx_blk[i] == NULL)
884 goto alloc_mem_err;
888 err = bnx2_alloc_rx_mem(bp);
889 if (err)
890 goto alloc_mem_err;
892 err = bnx2_alloc_tx_mem(bp);
893 if (err)
894 goto alloc_mem_err;
896 return 0;
898 alloc_mem_err:
899 bnx2_free_mem(bp);
900 return -ENOMEM;
903 static void
904 bnx2_report_fw_link(struct bnx2 *bp)
906 u32 fw_link_status = 0;
908 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
909 return;
911 if (bp->link_up) {
912 u32 bmsr;
914 switch (bp->line_speed) {
915 case SPEED_10:
916 if (bp->duplex == DUPLEX_HALF)
917 fw_link_status = BNX2_LINK_STATUS_10HALF;
918 else
919 fw_link_status = BNX2_LINK_STATUS_10FULL;
920 break;
921 case SPEED_100:
922 if (bp->duplex == DUPLEX_HALF)
923 fw_link_status = BNX2_LINK_STATUS_100HALF;
924 else
925 fw_link_status = BNX2_LINK_STATUS_100FULL;
926 break;
927 case SPEED_1000:
928 if (bp->duplex == DUPLEX_HALF)
929 fw_link_status = BNX2_LINK_STATUS_1000HALF;
930 else
931 fw_link_status = BNX2_LINK_STATUS_1000FULL;
932 break;
933 case SPEED_2500:
934 if (bp->duplex == DUPLEX_HALF)
935 fw_link_status = BNX2_LINK_STATUS_2500HALF;
936 else
937 fw_link_status = BNX2_LINK_STATUS_2500FULL;
938 break;
941 fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
943 if (bp->autoneg) {
944 fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
946 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
947 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
949 if (!(bmsr & BMSR_ANEGCOMPLETE) ||
950 bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
951 fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
952 else
953 fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
956 else
957 fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
959 bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
962 static char *
963 bnx2_xceiver_str(struct bnx2 *bp)
965 return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
966 ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
967 "Copper"));
970 static void
971 bnx2_report_link(struct bnx2 *bp)
973 if (bp->link_up) {
974 netif_carrier_on(bp->dev);
975 printk(KERN_INFO PFX "%s NIC %s Link is Up, ", bp->dev->name,
976 bnx2_xceiver_str(bp));
978 printk("%d Mbps ", bp->line_speed);
980 if (bp->duplex == DUPLEX_FULL)
981 printk("full duplex");
982 else
983 printk("half duplex");
985 if (bp->flow_ctrl) {
986 if (bp->flow_ctrl & FLOW_CTRL_RX) {
987 printk(", receive ");
988 if (bp->flow_ctrl & FLOW_CTRL_TX)
989 printk("& transmit ");
991 else {
992 printk(", transmit ");
994 printk("flow control ON");
996 printk("\n");
998 else {
999 netif_carrier_off(bp->dev);
1000 printk(KERN_ERR PFX "%s NIC %s Link is Down\n", bp->dev->name,
1001 bnx2_xceiver_str(bp));
1004 bnx2_report_fw_link(bp);
1007 static void
1008 bnx2_resolve_flow_ctrl(struct bnx2 *bp)
1010 u32 local_adv, remote_adv;
1012 bp->flow_ctrl = 0;
1013 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
1014 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
1016 if (bp->duplex == DUPLEX_FULL) {
1017 bp->flow_ctrl = bp->req_flow_ctrl;
1019 return;
1022 if (bp->duplex != DUPLEX_FULL) {
1023 return;
1026 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1027 (CHIP_NUM(bp) == CHIP_NUM_5708)) {
1028 u32 val;
1030 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
1031 if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
1032 bp->flow_ctrl |= FLOW_CTRL_TX;
1033 if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
1034 bp->flow_ctrl |= FLOW_CTRL_RX;
1035 return;
1038 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1039 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1041 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1042 u32 new_local_adv = 0;
1043 u32 new_remote_adv = 0;
1045 if (local_adv & ADVERTISE_1000XPAUSE)
1046 new_local_adv |= ADVERTISE_PAUSE_CAP;
1047 if (local_adv & ADVERTISE_1000XPSE_ASYM)
1048 new_local_adv |= ADVERTISE_PAUSE_ASYM;
1049 if (remote_adv & ADVERTISE_1000XPAUSE)
1050 new_remote_adv |= ADVERTISE_PAUSE_CAP;
1051 if (remote_adv & ADVERTISE_1000XPSE_ASYM)
1052 new_remote_adv |= ADVERTISE_PAUSE_ASYM;
1054 local_adv = new_local_adv;
1055 remote_adv = new_remote_adv;
1058 /* See Table 28B-3 of 802.3ab-1999 spec. */
1059 if (local_adv & ADVERTISE_PAUSE_CAP) {
1060 if(local_adv & ADVERTISE_PAUSE_ASYM) {
1061 if (remote_adv & ADVERTISE_PAUSE_CAP) {
1062 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
1064 else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
1065 bp->flow_ctrl = FLOW_CTRL_RX;
1068 else {
1069 if (remote_adv & ADVERTISE_PAUSE_CAP) {
1070 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
1074 else if (local_adv & ADVERTISE_PAUSE_ASYM) {
1075 if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
1076 (remote_adv & ADVERTISE_PAUSE_ASYM)) {
1078 bp->flow_ctrl = FLOW_CTRL_TX;
1083 static int
1084 bnx2_5709s_linkup(struct bnx2 *bp)
1086 u32 val, speed;
1088 bp->link_up = 1;
1090 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
1091 bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
1092 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1094 if ((bp->autoneg & AUTONEG_SPEED) == 0) {
1095 bp->line_speed = bp->req_line_speed;
1096 bp->duplex = bp->req_duplex;
1097 return 0;
1099 speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
1100 switch (speed) {
1101 case MII_BNX2_GP_TOP_AN_SPEED_10:
1102 bp->line_speed = SPEED_10;
1103 break;
1104 case MII_BNX2_GP_TOP_AN_SPEED_100:
1105 bp->line_speed = SPEED_100;
1106 break;
1107 case MII_BNX2_GP_TOP_AN_SPEED_1G:
1108 case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
1109 bp->line_speed = SPEED_1000;
1110 break;
1111 case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
1112 bp->line_speed = SPEED_2500;
1113 break;
1115 if (val & MII_BNX2_GP_TOP_AN_FD)
1116 bp->duplex = DUPLEX_FULL;
1117 else
1118 bp->duplex = DUPLEX_HALF;
1119 return 0;
1122 static int
1123 bnx2_5708s_linkup(struct bnx2 *bp)
1125 u32 val;
1127 bp->link_up = 1;
1128 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
1129 switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
1130 case BCM5708S_1000X_STAT1_SPEED_10:
1131 bp->line_speed = SPEED_10;
1132 break;
1133 case BCM5708S_1000X_STAT1_SPEED_100:
1134 bp->line_speed = SPEED_100;
1135 break;
1136 case BCM5708S_1000X_STAT1_SPEED_1G:
1137 bp->line_speed = SPEED_1000;
1138 break;
1139 case BCM5708S_1000X_STAT1_SPEED_2G5:
1140 bp->line_speed = SPEED_2500;
1141 break;
1143 if (val & BCM5708S_1000X_STAT1_FD)
1144 bp->duplex = DUPLEX_FULL;
1145 else
1146 bp->duplex = DUPLEX_HALF;
1148 return 0;
1151 static int
1152 bnx2_5706s_linkup(struct bnx2 *bp)
1154 u32 bmcr, local_adv, remote_adv, common;
1156 bp->link_up = 1;
1157 bp->line_speed = SPEED_1000;
1159 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1160 if (bmcr & BMCR_FULLDPLX) {
1161 bp->duplex = DUPLEX_FULL;
1163 else {
1164 bp->duplex = DUPLEX_HALF;
1167 if (!(bmcr & BMCR_ANENABLE)) {
1168 return 0;
1171 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1172 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1174 common = local_adv & remote_adv;
1175 if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
1177 if (common & ADVERTISE_1000XFULL) {
1178 bp->duplex = DUPLEX_FULL;
1180 else {
1181 bp->duplex = DUPLEX_HALF;
1185 return 0;
1188 static int
1189 bnx2_copper_linkup(struct bnx2 *bp)
1191 u32 bmcr;
1193 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1194 if (bmcr & BMCR_ANENABLE) {
1195 u32 local_adv, remote_adv, common;
1197 bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
1198 bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
1200 common = local_adv & (remote_adv >> 2);
1201 if (common & ADVERTISE_1000FULL) {
1202 bp->line_speed = SPEED_1000;
1203 bp->duplex = DUPLEX_FULL;
1205 else if (common & ADVERTISE_1000HALF) {
1206 bp->line_speed = SPEED_1000;
1207 bp->duplex = DUPLEX_HALF;
1209 else {
1210 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1211 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1213 common = local_adv & remote_adv;
1214 if (common & ADVERTISE_100FULL) {
1215 bp->line_speed = SPEED_100;
1216 bp->duplex = DUPLEX_FULL;
1218 else if (common & ADVERTISE_100HALF) {
1219 bp->line_speed = SPEED_100;
1220 bp->duplex = DUPLEX_HALF;
1222 else if (common & ADVERTISE_10FULL) {
1223 bp->line_speed = SPEED_10;
1224 bp->duplex = DUPLEX_FULL;
1226 else if (common & ADVERTISE_10HALF) {
1227 bp->line_speed = SPEED_10;
1228 bp->duplex = DUPLEX_HALF;
1230 else {
1231 bp->line_speed = 0;
1232 bp->link_up = 0;
1236 else {
1237 if (bmcr & BMCR_SPEED100) {
1238 bp->line_speed = SPEED_100;
1240 else {
1241 bp->line_speed = SPEED_10;
1243 if (bmcr & BMCR_FULLDPLX) {
1244 bp->duplex = DUPLEX_FULL;
1246 else {
1247 bp->duplex = DUPLEX_HALF;
1251 return 0;
1254 static void
1255 bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
1257 u32 val, rx_cid_addr = GET_CID_ADDR(cid);
1259 val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
1260 val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
1261 val |= 0x02 << 8;
1263 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1264 u32 lo_water, hi_water;
1266 if (bp->flow_ctrl & FLOW_CTRL_TX)
1267 lo_water = BNX2_L2CTX_LO_WATER_MARK_DEFAULT;
1268 else
1269 lo_water = BNX2_L2CTX_LO_WATER_MARK_DIS;
1270 if (lo_water >= bp->rx_ring_size)
1271 lo_water = 0;
1273 hi_water = bp->rx_ring_size / 4;
1275 if (hi_water <= lo_water)
1276 lo_water = 0;
1278 hi_water /= BNX2_L2CTX_HI_WATER_MARK_SCALE;
1279 lo_water /= BNX2_L2CTX_LO_WATER_MARK_SCALE;
1281 if (hi_water > 0xf)
1282 hi_water = 0xf;
1283 else if (hi_water == 0)
1284 lo_water = 0;
1285 val |= lo_water | (hi_water << BNX2_L2CTX_HI_WATER_MARK_SHIFT);
1287 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
1290 static void
1291 bnx2_init_all_rx_contexts(struct bnx2 *bp)
1293 int i;
1294 u32 cid;
1296 for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
1297 if (i == 1)
1298 cid = RX_RSS_CID;
1299 bnx2_init_rx_context(bp, cid);
1303 static void
1304 bnx2_set_mac_link(struct bnx2 *bp)
1306 u32 val;
1308 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
1309 if (bp->link_up && (bp->line_speed == SPEED_1000) &&
1310 (bp->duplex == DUPLEX_HALF)) {
1311 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
1314 /* Configure the EMAC mode register. */
1315 val = REG_RD(bp, BNX2_EMAC_MODE);
1317 val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
1318 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
1319 BNX2_EMAC_MODE_25G_MODE);
1321 if (bp->link_up) {
1322 switch (bp->line_speed) {
1323 case SPEED_10:
1324 if (CHIP_NUM(bp) != CHIP_NUM_5706) {
1325 val |= BNX2_EMAC_MODE_PORT_MII_10M;
1326 break;
1328 /* fall through */
1329 case SPEED_100:
1330 val |= BNX2_EMAC_MODE_PORT_MII;
1331 break;
1332 case SPEED_2500:
1333 val |= BNX2_EMAC_MODE_25G_MODE;
1334 /* fall through */
1335 case SPEED_1000:
1336 val |= BNX2_EMAC_MODE_PORT_GMII;
1337 break;
1340 else {
1341 val |= BNX2_EMAC_MODE_PORT_GMII;
1344 /* Set the MAC to operate in the appropriate duplex mode. */
1345 if (bp->duplex == DUPLEX_HALF)
1346 val |= BNX2_EMAC_MODE_HALF_DUPLEX;
1347 REG_WR(bp, BNX2_EMAC_MODE, val);
1349 /* Enable/disable rx PAUSE. */
1350 bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
1352 if (bp->flow_ctrl & FLOW_CTRL_RX)
1353 bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
1354 REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
1356 /* Enable/disable tx PAUSE. */
1357 val = REG_RD(bp, BNX2_EMAC_TX_MODE);
1358 val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
1360 if (bp->flow_ctrl & FLOW_CTRL_TX)
1361 val |= BNX2_EMAC_TX_MODE_FLOW_EN;
1362 REG_WR(bp, BNX2_EMAC_TX_MODE, val);
1364 /* Acknowledge the interrupt. */
1365 REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
1367 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1368 bnx2_init_all_rx_contexts(bp);
1371 static void
1372 bnx2_enable_bmsr1(struct bnx2 *bp)
1374 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1375 (CHIP_NUM(bp) == CHIP_NUM_5709))
1376 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1377 MII_BNX2_BLK_ADDR_GP_STATUS);
1380 static void
1381 bnx2_disable_bmsr1(struct bnx2 *bp)
1383 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1384 (CHIP_NUM(bp) == CHIP_NUM_5709))
1385 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1386 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1389 static int
1390 bnx2_test_and_enable_2g5(struct bnx2 *bp)
1392 u32 up1;
1393 int ret = 1;
1395 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1396 return 0;
1398 if (bp->autoneg & AUTONEG_SPEED)
1399 bp->advertising |= ADVERTISED_2500baseX_Full;
1401 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1402 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1404 bnx2_read_phy(bp, bp->mii_up1, &up1);
1405 if (!(up1 & BCM5708S_UP1_2G5)) {
1406 up1 |= BCM5708S_UP1_2G5;
1407 bnx2_write_phy(bp, bp->mii_up1, up1);
1408 ret = 0;
1411 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1412 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1413 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1415 return ret;
1418 static int
1419 bnx2_test_and_disable_2g5(struct bnx2 *bp)
1421 u32 up1;
1422 int ret = 0;
1424 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1425 return 0;
1427 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1428 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1430 bnx2_read_phy(bp, bp->mii_up1, &up1);
1431 if (up1 & BCM5708S_UP1_2G5) {
1432 up1 &= ~BCM5708S_UP1_2G5;
1433 bnx2_write_phy(bp, bp->mii_up1, up1);
1434 ret = 1;
1437 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1438 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1439 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1441 return ret;
1444 static void
1445 bnx2_enable_forced_2g5(struct bnx2 *bp)
1447 u32 bmcr;
1449 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1450 return;
1452 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1453 u32 val;
1455 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1456 MII_BNX2_BLK_ADDR_SERDES_DIG);
1457 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
1458 val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
1459 val |= MII_BNX2_SD_MISC1_FORCE | MII_BNX2_SD_MISC1_FORCE_2_5G;
1460 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1462 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1463 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1464 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1466 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1467 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1468 bmcr |= BCM5708S_BMCR_FORCE_2500;
1471 if (bp->autoneg & AUTONEG_SPEED) {
1472 bmcr &= ~BMCR_ANENABLE;
1473 if (bp->req_duplex == DUPLEX_FULL)
1474 bmcr |= BMCR_FULLDPLX;
1476 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1479 static void
1480 bnx2_disable_forced_2g5(struct bnx2 *bp)
1482 u32 bmcr;
1484 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1485 return;
1487 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1488 u32 val;
1490 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1491 MII_BNX2_BLK_ADDR_SERDES_DIG);
1492 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
1493 val &= ~MII_BNX2_SD_MISC1_FORCE;
1494 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1496 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1497 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1498 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1500 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1501 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1502 bmcr &= ~BCM5708S_BMCR_FORCE_2500;
1505 if (bp->autoneg & AUTONEG_SPEED)
1506 bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
1507 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1510 static void
1511 bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
1513 u32 val;
1515 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
1516 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
1517 if (start)
1518 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
1519 else
1520 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
1523 static int
1524 bnx2_set_link(struct bnx2 *bp)
1526 u32 bmsr;
1527 u8 link_up;
1529 if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
1530 bp->link_up = 1;
1531 return 0;
1534 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1535 return 0;
1537 link_up = bp->link_up;
1539 bnx2_enable_bmsr1(bp);
1540 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1541 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1542 bnx2_disable_bmsr1(bp);
1544 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1545 (CHIP_NUM(bp) == CHIP_NUM_5706)) {
1546 u32 val, an_dbg;
1548 if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
1549 bnx2_5706s_force_link_dn(bp, 0);
1550 bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
1552 val = REG_RD(bp, BNX2_EMAC_STATUS);
1554 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
1555 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1556 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1558 if ((val & BNX2_EMAC_STATUS_LINK) &&
1559 !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
1560 bmsr |= BMSR_LSTATUS;
1561 else
1562 bmsr &= ~BMSR_LSTATUS;
1565 if (bmsr & BMSR_LSTATUS) {
1566 bp->link_up = 1;
1568 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1569 if (CHIP_NUM(bp) == CHIP_NUM_5706)
1570 bnx2_5706s_linkup(bp);
1571 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
1572 bnx2_5708s_linkup(bp);
1573 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
1574 bnx2_5709s_linkup(bp);
1576 else {
1577 bnx2_copper_linkup(bp);
1579 bnx2_resolve_flow_ctrl(bp);
1581 else {
1582 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1583 (bp->autoneg & AUTONEG_SPEED))
1584 bnx2_disable_forced_2g5(bp);
1586 if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
1587 u32 bmcr;
1589 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1590 bmcr |= BMCR_ANENABLE;
1591 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1593 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
1595 bp->link_up = 0;
1598 if (bp->link_up != link_up) {
1599 bnx2_report_link(bp);
1602 bnx2_set_mac_link(bp);
1604 return 0;
1607 static int
1608 bnx2_reset_phy(struct bnx2 *bp)
1610 int i;
1611 u32 reg;
1613 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
1615 #define PHY_RESET_MAX_WAIT 100
1616 for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
1617 udelay(10);
1619 bnx2_read_phy(bp, bp->mii_bmcr, &reg);
1620 if (!(reg & BMCR_RESET)) {
1621 udelay(20);
1622 break;
1625 if (i == PHY_RESET_MAX_WAIT) {
1626 return -EBUSY;
1628 return 0;
1631 static u32
1632 bnx2_phy_get_pause_adv(struct bnx2 *bp)
1634 u32 adv = 0;
1636 if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
1637 (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
1639 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1640 adv = ADVERTISE_1000XPAUSE;
1642 else {
1643 adv = ADVERTISE_PAUSE_CAP;
1646 else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
1647 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1648 adv = ADVERTISE_1000XPSE_ASYM;
1650 else {
1651 adv = ADVERTISE_PAUSE_ASYM;
1654 else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
1655 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1656 adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
1658 else {
1659 adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1662 return adv;
1665 static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
1667 static int
1668 bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
1669 __releases(&bp->phy_lock)
1670 __acquires(&bp->phy_lock)
1672 u32 speed_arg = 0, pause_adv;
1674 pause_adv = bnx2_phy_get_pause_adv(bp);
1676 if (bp->autoneg & AUTONEG_SPEED) {
1677 speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
1678 if (bp->advertising & ADVERTISED_10baseT_Half)
1679 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1680 if (bp->advertising & ADVERTISED_10baseT_Full)
1681 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1682 if (bp->advertising & ADVERTISED_100baseT_Half)
1683 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1684 if (bp->advertising & ADVERTISED_100baseT_Full)
1685 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1686 if (bp->advertising & ADVERTISED_1000baseT_Full)
1687 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1688 if (bp->advertising & ADVERTISED_2500baseX_Full)
1689 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1690 } else {
1691 if (bp->req_line_speed == SPEED_2500)
1692 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1693 else if (bp->req_line_speed == SPEED_1000)
1694 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1695 else if (bp->req_line_speed == SPEED_100) {
1696 if (bp->req_duplex == DUPLEX_FULL)
1697 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1698 else
1699 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1700 } else if (bp->req_line_speed == SPEED_10) {
1701 if (bp->req_duplex == DUPLEX_FULL)
1702 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1703 else
1704 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1708 if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
1709 speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
1710 if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
1711 speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
1713 if (port == PORT_TP)
1714 speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
1715 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
1717 bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
1719 spin_unlock_bh(&bp->phy_lock);
1720 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
1721 spin_lock_bh(&bp->phy_lock);
1723 return 0;
1726 static int
1727 bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
1728 __releases(&bp->phy_lock)
1729 __acquires(&bp->phy_lock)
1731 u32 adv, bmcr;
1732 u32 new_adv = 0;
1734 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1735 return (bnx2_setup_remote_phy(bp, port));
1737 if (!(bp->autoneg & AUTONEG_SPEED)) {
1738 u32 new_bmcr;
1739 int force_link_down = 0;
1741 if (bp->req_line_speed == SPEED_2500) {
1742 if (!bnx2_test_and_enable_2g5(bp))
1743 force_link_down = 1;
1744 } else if (bp->req_line_speed == SPEED_1000) {
1745 if (bnx2_test_and_disable_2g5(bp))
1746 force_link_down = 1;
1748 bnx2_read_phy(bp, bp->mii_adv, &adv);
1749 adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
1751 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1752 new_bmcr = bmcr & ~BMCR_ANENABLE;
1753 new_bmcr |= BMCR_SPEED1000;
1755 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1756 if (bp->req_line_speed == SPEED_2500)
1757 bnx2_enable_forced_2g5(bp);
1758 else if (bp->req_line_speed == SPEED_1000) {
1759 bnx2_disable_forced_2g5(bp);
1760 new_bmcr &= ~0x2000;
1763 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1764 if (bp->req_line_speed == SPEED_2500)
1765 new_bmcr |= BCM5708S_BMCR_FORCE_2500;
1766 else
1767 new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
1770 if (bp->req_duplex == DUPLEX_FULL) {
1771 adv |= ADVERTISE_1000XFULL;
1772 new_bmcr |= BMCR_FULLDPLX;
1774 else {
1775 adv |= ADVERTISE_1000XHALF;
1776 new_bmcr &= ~BMCR_FULLDPLX;
1778 if ((new_bmcr != bmcr) || (force_link_down)) {
1779 /* Force a link down visible on the other side */
1780 if (bp->link_up) {
1781 bnx2_write_phy(bp, bp->mii_adv, adv &
1782 ~(ADVERTISE_1000XFULL |
1783 ADVERTISE_1000XHALF));
1784 bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
1785 BMCR_ANRESTART | BMCR_ANENABLE);
1787 bp->link_up = 0;
1788 netif_carrier_off(bp->dev);
1789 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1790 bnx2_report_link(bp);
1792 bnx2_write_phy(bp, bp->mii_adv, adv);
1793 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1794 } else {
1795 bnx2_resolve_flow_ctrl(bp);
1796 bnx2_set_mac_link(bp);
1798 return 0;
1801 bnx2_test_and_enable_2g5(bp);
1803 if (bp->advertising & ADVERTISED_1000baseT_Full)
1804 new_adv |= ADVERTISE_1000XFULL;
1806 new_adv |= bnx2_phy_get_pause_adv(bp);
1808 bnx2_read_phy(bp, bp->mii_adv, &adv);
1809 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1811 bp->serdes_an_pending = 0;
1812 if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
1813 /* Force a link down visible on the other side */
1814 if (bp->link_up) {
1815 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
1816 spin_unlock_bh(&bp->phy_lock);
1817 msleep(20);
1818 spin_lock_bh(&bp->phy_lock);
1821 bnx2_write_phy(bp, bp->mii_adv, new_adv);
1822 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
1823 BMCR_ANENABLE);
1824 /* Speed up link-up time when the link partner
1825 * does not autonegotiate which is very common
1826 * in blade servers. Some blade servers use
1827 * IPMI for kerboard input and it's important
1828 * to minimize link disruptions. Autoneg. involves
1829 * exchanging base pages plus 3 next pages and
1830 * normally completes in about 120 msec.
1832 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
1833 bp->serdes_an_pending = 1;
1834 mod_timer(&bp->timer, jiffies + bp->current_interval);
1835 } else {
1836 bnx2_resolve_flow_ctrl(bp);
1837 bnx2_set_mac_link(bp);
1840 return 0;
1843 #define ETHTOOL_ALL_FIBRE_SPEED \
1844 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1845 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1846 (ADVERTISED_1000baseT_Full)
1848 #define ETHTOOL_ALL_COPPER_SPEED \
1849 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1850 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1851 ADVERTISED_1000baseT_Full)
1853 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1854 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1856 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1858 static void
1859 bnx2_set_default_remote_link(struct bnx2 *bp)
1861 u32 link;
1863 if (bp->phy_port == PORT_TP)
1864 link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
1865 else
1866 link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
1868 if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
1869 bp->req_line_speed = 0;
1870 bp->autoneg |= AUTONEG_SPEED;
1871 bp->advertising = ADVERTISED_Autoneg;
1872 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1873 bp->advertising |= ADVERTISED_10baseT_Half;
1874 if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
1875 bp->advertising |= ADVERTISED_10baseT_Full;
1876 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1877 bp->advertising |= ADVERTISED_100baseT_Half;
1878 if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
1879 bp->advertising |= ADVERTISED_100baseT_Full;
1880 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1881 bp->advertising |= ADVERTISED_1000baseT_Full;
1882 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1883 bp->advertising |= ADVERTISED_2500baseX_Full;
1884 } else {
1885 bp->autoneg = 0;
1886 bp->advertising = 0;
1887 bp->req_duplex = DUPLEX_FULL;
1888 if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
1889 bp->req_line_speed = SPEED_10;
1890 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1891 bp->req_duplex = DUPLEX_HALF;
1893 if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
1894 bp->req_line_speed = SPEED_100;
1895 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1896 bp->req_duplex = DUPLEX_HALF;
1898 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1899 bp->req_line_speed = SPEED_1000;
1900 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1901 bp->req_line_speed = SPEED_2500;
1905 static void
1906 bnx2_set_default_link(struct bnx2 *bp)
1908 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
1909 bnx2_set_default_remote_link(bp);
1910 return;
1913 bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
1914 bp->req_line_speed = 0;
1915 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1916 u32 reg;
1918 bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
1920 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
1921 reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
1922 if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
1923 bp->autoneg = 0;
1924 bp->req_line_speed = bp->line_speed = SPEED_1000;
1925 bp->req_duplex = DUPLEX_FULL;
1927 } else
1928 bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
1931 static void
1932 bnx2_send_heart_beat(struct bnx2 *bp)
1934 u32 msg;
1935 u32 addr;
1937 spin_lock(&bp->indirect_lock);
1938 msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
1939 addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
1940 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
1941 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
1942 spin_unlock(&bp->indirect_lock);
1945 static void
1946 bnx2_remote_phy_event(struct bnx2 *bp)
1948 u32 msg;
1949 u8 link_up = bp->link_up;
1950 u8 old_port;
1952 msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
1954 if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
1955 bnx2_send_heart_beat(bp);
1957 msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
1959 if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
1960 bp->link_up = 0;
1961 else {
1962 u32 speed;
1964 bp->link_up = 1;
1965 speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
1966 bp->duplex = DUPLEX_FULL;
1967 switch (speed) {
1968 case BNX2_LINK_STATUS_10HALF:
1969 bp->duplex = DUPLEX_HALF;
1970 case BNX2_LINK_STATUS_10FULL:
1971 bp->line_speed = SPEED_10;
1972 break;
1973 case BNX2_LINK_STATUS_100HALF:
1974 bp->duplex = DUPLEX_HALF;
1975 case BNX2_LINK_STATUS_100BASE_T4:
1976 case BNX2_LINK_STATUS_100FULL:
1977 bp->line_speed = SPEED_100;
1978 break;
1979 case BNX2_LINK_STATUS_1000HALF:
1980 bp->duplex = DUPLEX_HALF;
1981 case BNX2_LINK_STATUS_1000FULL:
1982 bp->line_speed = SPEED_1000;
1983 break;
1984 case BNX2_LINK_STATUS_2500HALF:
1985 bp->duplex = DUPLEX_HALF;
1986 case BNX2_LINK_STATUS_2500FULL:
1987 bp->line_speed = SPEED_2500;
1988 break;
1989 default:
1990 bp->line_speed = 0;
1991 break;
1994 bp->flow_ctrl = 0;
1995 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
1996 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
1997 if (bp->duplex == DUPLEX_FULL)
1998 bp->flow_ctrl = bp->req_flow_ctrl;
1999 } else {
2000 if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
2001 bp->flow_ctrl |= FLOW_CTRL_TX;
2002 if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
2003 bp->flow_ctrl |= FLOW_CTRL_RX;
2006 old_port = bp->phy_port;
2007 if (msg & BNX2_LINK_STATUS_SERDES_LINK)
2008 bp->phy_port = PORT_FIBRE;
2009 else
2010 bp->phy_port = PORT_TP;
2012 if (old_port != bp->phy_port)
2013 bnx2_set_default_link(bp);
2016 if (bp->link_up != link_up)
2017 bnx2_report_link(bp);
2019 bnx2_set_mac_link(bp);
2022 static int
2023 bnx2_set_remote_link(struct bnx2 *bp)
2025 u32 evt_code;
2027 evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
2028 switch (evt_code) {
2029 case BNX2_FW_EVT_CODE_LINK_EVENT:
2030 bnx2_remote_phy_event(bp);
2031 break;
2032 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
2033 default:
2034 bnx2_send_heart_beat(bp);
2035 break;
2037 return 0;
2040 static int
2041 bnx2_setup_copper_phy(struct bnx2 *bp)
2042 __releases(&bp->phy_lock)
2043 __acquires(&bp->phy_lock)
2045 u32 bmcr;
2046 u32 new_bmcr;
2048 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
2050 if (bp->autoneg & AUTONEG_SPEED) {
2051 u32 adv_reg, adv1000_reg;
2052 u32 new_adv_reg = 0;
2053 u32 new_adv1000_reg = 0;
2055 bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
2056 adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
2057 ADVERTISE_PAUSE_ASYM);
2059 bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
2060 adv1000_reg &= PHY_ALL_1000_SPEED;
2062 if (bp->advertising & ADVERTISED_10baseT_Half)
2063 new_adv_reg |= ADVERTISE_10HALF;
2064 if (bp->advertising & ADVERTISED_10baseT_Full)
2065 new_adv_reg |= ADVERTISE_10FULL;
2066 if (bp->advertising & ADVERTISED_100baseT_Half)
2067 new_adv_reg |= ADVERTISE_100HALF;
2068 if (bp->advertising & ADVERTISED_100baseT_Full)
2069 new_adv_reg |= ADVERTISE_100FULL;
2070 if (bp->advertising & ADVERTISED_1000baseT_Full)
2071 new_adv1000_reg |= ADVERTISE_1000FULL;
2073 new_adv_reg |= ADVERTISE_CSMA;
2075 new_adv_reg |= bnx2_phy_get_pause_adv(bp);
2077 if ((adv1000_reg != new_adv1000_reg) ||
2078 (adv_reg != new_adv_reg) ||
2079 ((bmcr & BMCR_ANENABLE) == 0)) {
2081 bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
2082 bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
2083 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
2084 BMCR_ANENABLE);
2086 else if (bp->link_up) {
2087 /* Flow ctrl may have changed from auto to forced */
2088 /* or vice-versa. */
2090 bnx2_resolve_flow_ctrl(bp);
2091 bnx2_set_mac_link(bp);
2093 return 0;
2096 new_bmcr = 0;
2097 if (bp->req_line_speed == SPEED_100) {
2098 new_bmcr |= BMCR_SPEED100;
2100 if (bp->req_duplex == DUPLEX_FULL) {
2101 new_bmcr |= BMCR_FULLDPLX;
2103 if (new_bmcr != bmcr) {
2104 u32 bmsr;
2106 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2107 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2109 if (bmsr & BMSR_LSTATUS) {
2110 /* Force link down */
2111 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
2112 spin_unlock_bh(&bp->phy_lock);
2113 msleep(50);
2114 spin_lock_bh(&bp->phy_lock);
2116 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2117 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2120 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
2122 /* Normally, the new speed is setup after the link has
2123 * gone down and up again. In some cases, link will not go
2124 * down so we need to set up the new speed here.
2126 if (bmsr & BMSR_LSTATUS) {
2127 bp->line_speed = bp->req_line_speed;
2128 bp->duplex = bp->req_duplex;
2129 bnx2_resolve_flow_ctrl(bp);
2130 bnx2_set_mac_link(bp);
2132 } else {
2133 bnx2_resolve_flow_ctrl(bp);
2134 bnx2_set_mac_link(bp);
2136 return 0;
2139 static int
2140 bnx2_setup_phy(struct bnx2 *bp, u8 port)
2141 __releases(&bp->phy_lock)
2142 __acquires(&bp->phy_lock)
2144 if (bp->loopback == MAC_LOOPBACK)
2145 return 0;
2147 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
2148 return (bnx2_setup_serdes_phy(bp, port));
2150 else {
2151 return (bnx2_setup_copper_phy(bp));
2155 static int
2156 bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
2158 u32 val;
2160 bp->mii_bmcr = MII_BMCR + 0x10;
2161 bp->mii_bmsr = MII_BMSR + 0x10;
2162 bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
2163 bp->mii_adv = MII_ADVERTISE + 0x10;
2164 bp->mii_lpa = MII_LPA + 0x10;
2165 bp->mii_up1 = MII_BNX2_OVER1G_UP1;
2167 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
2168 bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
2170 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2171 if (reset_phy)
2172 bnx2_reset_phy(bp);
2174 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
2176 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
2177 val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
2178 val |= MII_BNX2_SD_1000XCTL1_FIBER;
2179 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
2181 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
2182 bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
2183 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
2184 val |= BCM5708S_UP1_2G5;
2185 else
2186 val &= ~BCM5708S_UP1_2G5;
2187 bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
2189 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
2190 bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
2191 val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
2192 bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
2194 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
2196 val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
2197 MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
2198 bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
2200 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2202 return 0;
2205 static int
2206 bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
2208 u32 val;
2210 if (reset_phy)
2211 bnx2_reset_phy(bp);
2213 bp->mii_up1 = BCM5708S_UP1;
2215 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
2216 bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
2217 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2219 bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
2220 val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
2221 bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
2223 bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
2224 val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
2225 bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
2227 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
2228 bnx2_read_phy(bp, BCM5708S_UP1, &val);
2229 val |= BCM5708S_UP1_2G5;
2230 bnx2_write_phy(bp, BCM5708S_UP1, val);
2233 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
2234 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
2235 (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
2236 /* increase tx signal amplitude */
2237 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2238 BCM5708S_BLK_ADDR_TX_MISC);
2239 bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
2240 val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
2241 bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
2242 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2245 val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
2246 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
2248 if (val) {
2249 u32 is_backplane;
2251 is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
2252 if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
2253 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2254 BCM5708S_BLK_ADDR_TX_MISC);
2255 bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
2256 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2257 BCM5708S_BLK_ADDR_DIG);
2260 return 0;
2263 static int
2264 bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
2266 if (reset_phy)
2267 bnx2_reset_phy(bp);
2269 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
2271 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2272 REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
2274 if (bp->dev->mtu > 1500) {
2275 u32 val;
2277 /* Set extended packet length bit */
2278 bnx2_write_phy(bp, 0x18, 0x7);
2279 bnx2_read_phy(bp, 0x18, &val);
2280 bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
2282 bnx2_write_phy(bp, 0x1c, 0x6c00);
2283 bnx2_read_phy(bp, 0x1c, &val);
2284 bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
2286 else {
2287 u32 val;
2289 bnx2_write_phy(bp, 0x18, 0x7);
2290 bnx2_read_phy(bp, 0x18, &val);
2291 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2293 bnx2_write_phy(bp, 0x1c, 0x6c00);
2294 bnx2_read_phy(bp, 0x1c, &val);
2295 bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
2298 return 0;
2301 static int
2302 bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
2304 u32 val;
2306 if (reset_phy)
2307 bnx2_reset_phy(bp);
2309 if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
2310 bnx2_write_phy(bp, 0x18, 0x0c00);
2311 bnx2_write_phy(bp, 0x17, 0x000a);
2312 bnx2_write_phy(bp, 0x15, 0x310b);
2313 bnx2_write_phy(bp, 0x17, 0x201f);
2314 bnx2_write_phy(bp, 0x15, 0x9506);
2315 bnx2_write_phy(bp, 0x17, 0x401f);
2316 bnx2_write_phy(bp, 0x15, 0x14e2);
2317 bnx2_write_phy(bp, 0x18, 0x0400);
2320 if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
2321 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
2322 MII_BNX2_DSP_EXPAND_REG | 0x8);
2323 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
2324 val &= ~(1 << 8);
2325 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
2328 if (bp->dev->mtu > 1500) {
2329 /* Set extended packet length bit */
2330 bnx2_write_phy(bp, 0x18, 0x7);
2331 bnx2_read_phy(bp, 0x18, &val);
2332 bnx2_write_phy(bp, 0x18, val | 0x4000);
2334 bnx2_read_phy(bp, 0x10, &val);
2335 bnx2_write_phy(bp, 0x10, val | 0x1);
2337 else {
2338 bnx2_write_phy(bp, 0x18, 0x7);
2339 bnx2_read_phy(bp, 0x18, &val);
2340 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2342 bnx2_read_phy(bp, 0x10, &val);
2343 bnx2_write_phy(bp, 0x10, val & ~0x1);
2346 /* ethernet@wirespeed */
2347 bnx2_write_phy(bp, 0x18, 0x7007);
2348 bnx2_read_phy(bp, 0x18, &val);
2349 bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
2350 return 0;
2354 static int
2355 bnx2_init_phy(struct bnx2 *bp, int reset_phy)
2356 __releases(&bp->phy_lock)
2357 __acquires(&bp->phy_lock)
2359 u32 val;
2360 int rc = 0;
2362 bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
2363 bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
2365 bp->mii_bmcr = MII_BMCR;
2366 bp->mii_bmsr = MII_BMSR;
2367 bp->mii_bmsr1 = MII_BMSR;
2368 bp->mii_adv = MII_ADVERTISE;
2369 bp->mii_lpa = MII_LPA;
2371 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
2373 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
2374 goto setup_phy;
2376 bnx2_read_phy(bp, MII_PHYSID1, &val);
2377 bp->phy_id = val << 16;
2378 bnx2_read_phy(bp, MII_PHYSID2, &val);
2379 bp->phy_id |= val & 0xffff;
2381 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
2382 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2383 rc = bnx2_init_5706s_phy(bp, reset_phy);
2384 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
2385 rc = bnx2_init_5708s_phy(bp, reset_phy);
2386 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
2387 rc = bnx2_init_5709s_phy(bp, reset_phy);
2389 else {
2390 rc = bnx2_init_copper_phy(bp, reset_phy);
2393 setup_phy:
2394 if (!rc)
2395 rc = bnx2_setup_phy(bp, bp->phy_port);
2397 return rc;
2400 static int
2401 bnx2_set_mac_loopback(struct bnx2 *bp)
2403 u32 mac_mode;
2405 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2406 mac_mode &= ~BNX2_EMAC_MODE_PORT;
2407 mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
2408 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2409 bp->link_up = 1;
2410 return 0;
2413 static int bnx2_test_link(struct bnx2 *);
2415 static int
2416 bnx2_set_phy_loopback(struct bnx2 *bp)
2418 u32 mac_mode;
2419 int rc, i;
2421 spin_lock_bh(&bp->phy_lock);
2422 rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
2423 BMCR_SPEED1000);
2424 spin_unlock_bh(&bp->phy_lock);
2425 if (rc)
2426 return rc;
2428 for (i = 0; i < 10; i++) {
2429 if (bnx2_test_link(bp) == 0)
2430 break;
2431 msleep(100);
2434 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2435 mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
2436 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
2437 BNX2_EMAC_MODE_25G_MODE);
2439 mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
2440 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2441 bp->link_up = 1;
2442 return 0;
2445 static int
2446 bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
2448 int i;
2449 u32 val;
2451 bp->fw_wr_seq++;
2452 msg_data |= bp->fw_wr_seq;
2454 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2456 if (!ack)
2457 return 0;
2459 /* wait for an acknowledgement. */
2460 for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
2461 msleep(10);
2463 val = bnx2_shmem_rd(bp, BNX2_FW_MB);
2465 if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
2466 break;
2468 if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
2469 return 0;
2471 /* If we timed out, inform the firmware that this is the case. */
2472 if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
2473 if (!silent)
2474 printk(KERN_ERR PFX "fw sync timeout, reset code = "
2475 "%x\n", msg_data);
2477 msg_data &= ~BNX2_DRV_MSG_CODE;
2478 msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
2480 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2482 return -EBUSY;
2485 if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
2486 return -EIO;
2488 return 0;
2491 static int
2492 bnx2_init_5709_context(struct bnx2 *bp)
2494 int i, ret = 0;
2495 u32 val;
2497 val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
2498 val |= (BCM_PAGE_BITS - 8) << 16;
2499 REG_WR(bp, BNX2_CTX_COMMAND, val);
2500 for (i = 0; i < 10; i++) {
2501 val = REG_RD(bp, BNX2_CTX_COMMAND);
2502 if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
2503 break;
2504 udelay(2);
2506 if (val & BNX2_CTX_COMMAND_MEM_INIT)
2507 return -EBUSY;
2509 for (i = 0; i < bp->ctx_pages; i++) {
2510 int j;
2512 if (bp->ctx_blk[i])
2513 memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
2514 else
2515 return -ENOMEM;
2517 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
2518 (bp->ctx_blk_mapping[i] & 0xffffffff) |
2519 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
2520 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
2521 (u64) bp->ctx_blk_mapping[i] >> 32);
2522 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
2523 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
2524 for (j = 0; j < 10; j++) {
2526 val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
2527 if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
2528 break;
2529 udelay(5);
2531 if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
2532 ret = -EBUSY;
2533 break;
2536 return ret;
2539 static void
2540 bnx2_init_context(struct bnx2 *bp)
2542 u32 vcid;
2544 vcid = 96;
2545 while (vcid) {
2546 u32 vcid_addr, pcid_addr, offset;
2547 int i;
2549 vcid--;
2551 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
2552 u32 new_vcid;
2554 vcid_addr = GET_PCID_ADDR(vcid);
2555 if (vcid & 0x8) {
2556 new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
2558 else {
2559 new_vcid = vcid;
2561 pcid_addr = GET_PCID_ADDR(new_vcid);
2563 else {
2564 vcid_addr = GET_CID_ADDR(vcid);
2565 pcid_addr = vcid_addr;
2568 for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
2569 vcid_addr += (i << PHY_CTX_SHIFT);
2570 pcid_addr += (i << PHY_CTX_SHIFT);
2572 REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
2573 REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
2575 /* Zero out the context. */
2576 for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
2577 bnx2_ctx_wr(bp, vcid_addr, offset, 0);
2582 static int
2583 bnx2_alloc_bad_rbuf(struct bnx2 *bp)
2585 u16 *good_mbuf;
2586 u32 good_mbuf_cnt;
2587 u32 val;
2589 good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
2590 if (good_mbuf == NULL) {
2591 printk(KERN_ERR PFX "Failed to allocate memory in "
2592 "bnx2_alloc_bad_rbuf\n");
2593 return -ENOMEM;
2596 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
2597 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
2599 good_mbuf_cnt = 0;
2601 /* Allocate a bunch of mbufs and save the good ones in an array. */
2602 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2603 while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
2604 bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
2605 BNX2_RBUF_COMMAND_ALLOC_REQ);
2607 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
2609 val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
2611 /* The addresses with Bit 9 set are bad memory blocks. */
2612 if (!(val & (1 << 9))) {
2613 good_mbuf[good_mbuf_cnt] = (u16) val;
2614 good_mbuf_cnt++;
2617 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2620 /* Free the good ones back to the mbuf pool thus discarding
2621 * all the bad ones. */
2622 while (good_mbuf_cnt) {
2623 good_mbuf_cnt--;
2625 val = good_mbuf[good_mbuf_cnt];
2626 val = (val << 9) | val | 1;
2628 bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
2630 kfree(good_mbuf);
2631 return 0;
2634 static void
2635 bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
2637 u32 val;
2639 val = (mac_addr[0] << 8) | mac_addr[1];
2641 REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
2643 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
2644 (mac_addr[4] << 8) | mac_addr[5];
2646 REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
2649 static inline int
2650 bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2652 dma_addr_t mapping;
2653 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2654 struct rx_bd *rxbd =
2655 &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
2656 struct page *page = alloc_page(GFP_ATOMIC);
2658 if (!page)
2659 return -ENOMEM;
2660 mapping = pci_map_page(bp->pdev, page, 0, PAGE_SIZE,
2661 PCI_DMA_FROMDEVICE);
2662 if (pci_dma_mapping_error(bp->pdev, mapping)) {
2663 __free_page(page);
2664 return -EIO;
2667 rx_pg->page = page;
2668 pci_unmap_addr_set(rx_pg, mapping, mapping);
2669 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2670 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2671 return 0;
2674 static void
2675 bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2677 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2678 struct page *page = rx_pg->page;
2680 if (!page)
2681 return;
2683 pci_unmap_page(bp->pdev, pci_unmap_addr(rx_pg, mapping), PAGE_SIZE,
2684 PCI_DMA_FROMDEVICE);
2686 __free_page(page);
2687 rx_pg->page = NULL;
2690 static inline int
2691 bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2693 struct sk_buff *skb;
2694 struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
2695 dma_addr_t mapping;
2696 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
2697 unsigned long align;
2699 skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
2700 if (skb == NULL) {
2701 return -ENOMEM;
2704 if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
2705 skb_reserve(skb, BNX2_RX_ALIGN - align);
2707 mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
2708 PCI_DMA_FROMDEVICE);
2709 if (pci_dma_mapping_error(bp->pdev, mapping)) {
2710 dev_kfree_skb(skb);
2711 return -EIO;
2714 rx_buf->skb = skb;
2715 pci_unmap_addr_set(rx_buf, mapping, mapping);
2717 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2718 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2720 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2722 return 0;
2725 static int
2726 bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
2728 struct status_block *sblk = bnapi->status_blk.msi;
2729 u32 new_link_state, old_link_state;
2730 int is_set = 1;
2732 new_link_state = sblk->status_attn_bits & event;
2733 old_link_state = sblk->status_attn_bits_ack & event;
2734 if (new_link_state != old_link_state) {
2735 if (new_link_state)
2736 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
2737 else
2738 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
2739 } else
2740 is_set = 0;
2742 return is_set;
2745 static void
2746 bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
2748 spin_lock(&bp->phy_lock);
2750 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
2751 bnx2_set_link(bp);
2752 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
2753 bnx2_set_remote_link(bp);
2755 spin_unlock(&bp->phy_lock);
2759 static inline u16
2760 bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
2762 u16 cons;
2764 /* Tell compiler that status block fields can change. */
2765 barrier();
2766 cons = *bnapi->hw_tx_cons_ptr;
2767 barrier();
2768 if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
2769 cons++;
2770 return cons;
2773 static int
2774 bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
2776 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
2777 u16 hw_cons, sw_cons, sw_ring_cons;
2778 int tx_pkt = 0, index;
2779 struct netdev_queue *txq;
2781 index = (bnapi - bp->bnx2_napi);
2782 txq = netdev_get_tx_queue(bp->dev, index);
2784 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2785 sw_cons = txr->tx_cons;
2787 while (sw_cons != hw_cons) {
2788 struct sw_tx_bd *tx_buf;
2789 struct sk_buff *skb;
2790 int i, last;
2792 sw_ring_cons = TX_RING_IDX(sw_cons);
2794 tx_buf = &txr->tx_buf_ring[sw_ring_cons];
2795 skb = tx_buf->skb;
2797 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
2798 prefetch(&skb->end);
2800 /* partial BD completions possible with TSO packets */
2801 if (tx_buf->is_gso) {
2802 u16 last_idx, last_ring_idx;
2804 last_idx = sw_cons + tx_buf->nr_frags + 1;
2805 last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
2806 if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
2807 last_idx++;
2809 if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
2810 break;
2814 skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
2816 tx_buf->skb = NULL;
2817 last = tx_buf->nr_frags;
2819 for (i = 0; i < last; i++) {
2820 sw_cons = NEXT_TX_BD(sw_cons);
2823 sw_cons = NEXT_TX_BD(sw_cons);
2825 dev_kfree_skb(skb);
2826 tx_pkt++;
2827 if (tx_pkt == budget)
2828 break;
2830 if (hw_cons == sw_cons)
2831 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2834 txr->hw_tx_cons = hw_cons;
2835 txr->tx_cons = sw_cons;
2837 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2838 * before checking for netif_tx_queue_stopped(). Without the
2839 * memory barrier, there is a small possibility that bnx2_start_xmit()
2840 * will miss it and cause the queue to be stopped forever.
2842 smp_mb();
2844 if (unlikely(netif_tx_queue_stopped(txq)) &&
2845 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
2846 __netif_tx_lock(txq, smp_processor_id());
2847 if ((netif_tx_queue_stopped(txq)) &&
2848 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
2849 netif_tx_wake_queue(txq);
2850 __netif_tx_unlock(txq);
2853 return tx_pkt;
2856 static void
2857 bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2858 struct sk_buff *skb, int count)
2860 struct sw_pg *cons_rx_pg, *prod_rx_pg;
2861 struct rx_bd *cons_bd, *prod_bd;
2862 int i;
2863 u16 hw_prod, prod;
2864 u16 cons = rxr->rx_pg_cons;
2866 cons_rx_pg = &rxr->rx_pg_ring[cons];
2868 /* The caller was unable to allocate a new page to replace the
2869 * last one in the frags array, so we need to recycle that page
2870 * and then free the skb.
2872 if (skb) {
2873 struct page *page;
2874 struct skb_shared_info *shinfo;
2876 shinfo = skb_shinfo(skb);
2877 shinfo->nr_frags--;
2878 page = shinfo->frags[shinfo->nr_frags].page;
2879 shinfo->frags[shinfo->nr_frags].page = NULL;
2881 cons_rx_pg->page = page;
2882 dev_kfree_skb(skb);
2885 hw_prod = rxr->rx_pg_prod;
2887 for (i = 0; i < count; i++) {
2888 prod = RX_PG_RING_IDX(hw_prod);
2890 prod_rx_pg = &rxr->rx_pg_ring[prod];
2891 cons_rx_pg = &rxr->rx_pg_ring[cons];
2892 cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2893 prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2895 if (prod != cons) {
2896 prod_rx_pg->page = cons_rx_pg->page;
2897 cons_rx_pg->page = NULL;
2898 pci_unmap_addr_set(prod_rx_pg, mapping,
2899 pci_unmap_addr(cons_rx_pg, mapping));
2901 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2902 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2905 cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
2906 hw_prod = NEXT_RX_BD(hw_prod);
2908 rxr->rx_pg_prod = hw_prod;
2909 rxr->rx_pg_cons = cons;
2912 static inline void
2913 bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2914 struct sk_buff *skb, u16 cons, u16 prod)
2916 struct sw_bd *cons_rx_buf, *prod_rx_buf;
2917 struct rx_bd *cons_bd, *prod_bd;
2919 cons_rx_buf = &rxr->rx_buf_ring[cons];
2920 prod_rx_buf = &rxr->rx_buf_ring[prod];
2922 pci_dma_sync_single_for_device(bp->pdev,
2923 pci_unmap_addr(cons_rx_buf, mapping),
2924 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
2926 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2928 prod_rx_buf->skb = skb;
2930 if (cons == prod)
2931 return;
2933 pci_unmap_addr_set(prod_rx_buf, mapping,
2934 pci_unmap_addr(cons_rx_buf, mapping));
2936 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2937 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2938 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2939 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2942 static int
2943 bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
2944 unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
2945 u32 ring_idx)
2947 int err;
2948 u16 prod = ring_idx & 0xffff;
2950 err = bnx2_alloc_rx_skb(bp, rxr, prod);
2951 if (unlikely(err)) {
2952 bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
2953 if (hdr_len) {
2954 unsigned int raw_len = len + 4;
2955 int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
2957 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
2959 return err;
2962 skb_reserve(skb, BNX2_RX_OFFSET);
2963 pci_unmap_single(bp->pdev, dma_addr, bp->rx_buf_use_size,
2964 PCI_DMA_FROMDEVICE);
2966 if (hdr_len == 0) {
2967 skb_put(skb, len);
2968 return 0;
2969 } else {
2970 unsigned int i, frag_len, frag_size, pages;
2971 struct sw_pg *rx_pg;
2972 u16 pg_cons = rxr->rx_pg_cons;
2973 u16 pg_prod = rxr->rx_pg_prod;
2975 frag_size = len + 4 - hdr_len;
2976 pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
2977 skb_put(skb, hdr_len);
2979 for (i = 0; i < pages; i++) {
2980 dma_addr_t mapping_old;
2982 frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
2983 if (unlikely(frag_len <= 4)) {
2984 unsigned int tail = 4 - frag_len;
2986 rxr->rx_pg_cons = pg_cons;
2987 rxr->rx_pg_prod = pg_prod;
2988 bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
2989 pages - i);
2990 skb->len -= tail;
2991 if (i == 0) {
2992 skb->tail -= tail;
2993 } else {
2994 skb_frag_t *frag =
2995 &skb_shinfo(skb)->frags[i - 1];
2996 frag->size -= tail;
2997 skb->data_len -= tail;
2998 skb->truesize -= tail;
3000 return 0;
3002 rx_pg = &rxr->rx_pg_ring[pg_cons];
3004 /* Don't unmap yet. If we're unable to allocate a new
3005 * page, we need to recycle the page and the DMA addr.
3007 mapping_old = pci_unmap_addr(rx_pg, mapping);
3008 if (i == pages - 1)
3009 frag_len -= 4;
3011 skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
3012 rx_pg->page = NULL;
3014 err = bnx2_alloc_rx_page(bp, rxr,
3015 RX_PG_RING_IDX(pg_prod));
3016 if (unlikely(err)) {
3017 rxr->rx_pg_cons = pg_cons;
3018 rxr->rx_pg_prod = pg_prod;
3019 bnx2_reuse_rx_skb_pages(bp, rxr, skb,
3020 pages - i);
3021 return err;
3024 pci_unmap_page(bp->pdev, mapping_old,
3025 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3027 frag_size -= frag_len;
3028 skb->data_len += frag_len;
3029 skb->truesize += frag_len;
3030 skb->len += frag_len;
3032 pg_prod = NEXT_RX_BD(pg_prod);
3033 pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
3035 rxr->rx_pg_prod = pg_prod;
3036 rxr->rx_pg_cons = pg_cons;
3038 return 0;
3041 static inline u16
3042 bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
3044 u16 cons;
3046 /* Tell compiler that status block fields can change. */
3047 barrier();
3048 cons = *bnapi->hw_rx_cons_ptr;
3049 barrier();
3050 if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
3051 cons++;
3052 return cons;
3055 static int
3056 bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
3058 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3059 u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
3060 struct l2_fhdr *rx_hdr;
3061 int rx_pkt = 0, pg_ring_used = 0;
3063 hw_cons = bnx2_get_hw_rx_cons(bnapi);
3064 sw_cons = rxr->rx_cons;
3065 sw_prod = rxr->rx_prod;
3067 /* Memory barrier necessary as speculative reads of the rx
3068 * buffer can be ahead of the index in the status block
3070 rmb();
3071 while (sw_cons != hw_cons) {
3072 unsigned int len, hdr_len;
3073 u32 status;
3074 struct sw_bd *rx_buf;
3075 struct sk_buff *skb;
3076 dma_addr_t dma_addr;
3077 u16 vtag = 0;
3078 int hw_vlan __maybe_unused = 0;
3080 sw_ring_cons = RX_RING_IDX(sw_cons);
3081 sw_ring_prod = RX_RING_IDX(sw_prod);
3083 rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
3084 skb = rx_buf->skb;
3086 rx_buf->skb = NULL;
3088 dma_addr = pci_unmap_addr(rx_buf, mapping);
3090 pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
3091 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
3092 PCI_DMA_FROMDEVICE);
3094 rx_hdr = (struct l2_fhdr *) skb->data;
3095 len = rx_hdr->l2_fhdr_pkt_len;
3096 status = rx_hdr->l2_fhdr_status;
3098 hdr_len = 0;
3099 if (status & L2_FHDR_STATUS_SPLIT) {
3100 hdr_len = rx_hdr->l2_fhdr_ip_xsum;
3101 pg_ring_used = 1;
3102 } else if (len > bp->rx_jumbo_thresh) {
3103 hdr_len = bp->rx_jumbo_thresh;
3104 pg_ring_used = 1;
3107 if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
3108 L2_FHDR_ERRORS_PHY_DECODE |
3109 L2_FHDR_ERRORS_ALIGNMENT |
3110 L2_FHDR_ERRORS_TOO_SHORT |
3111 L2_FHDR_ERRORS_GIANT_FRAME))) {
3113 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
3114 sw_ring_prod);
3115 if (pg_ring_used) {
3116 int pages;
3118 pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
3120 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
3122 goto next_rx;
3125 len -= 4;
3127 if (len <= bp->rx_copy_thresh) {
3128 struct sk_buff *new_skb;
3130 new_skb = netdev_alloc_skb(bp->dev, len + 6);
3131 if (new_skb == NULL) {
3132 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
3133 sw_ring_prod);
3134 goto next_rx;
3137 /* aligned copy */
3138 skb_copy_from_linear_data_offset(skb,
3139 BNX2_RX_OFFSET - 6,
3140 new_skb->data, len + 6);
3141 skb_reserve(new_skb, 6);
3142 skb_put(new_skb, len);
3144 bnx2_reuse_rx_skb(bp, rxr, skb,
3145 sw_ring_cons, sw_ring_prod);
3147 skb = new_skb;
3148 } else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
3149 dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
3150 goto next_rx;
3152 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
3153 !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
3154 vtag = rx_hdr->l2_fhdr_vlan_tag;
3155 #ifdef BCM_VLAN
3156 if (bp->vlgrp)
3157 hw_vlan = 1;
3158 else
3159 #endif
3161 struct vlan_ethhdr *ve = (struct vlan_ethhdr *)
3162 __skb_push(skb, 4);
3164 memmove(ve, skb->data + 4, ETH_ALEN * 2);
3165 ve->h_vlan_proto = htons(ETH_P_8021Q);
3166 ve->h_vlan_TCI = htons(vtag);
3167 len += 4;
3171 skb->protocol = eth_type_trans(skb, bp->dev);
3173 if ((len > (bp->dev->mtu + ETH_HLEN)) &&
3174 (ntohs(skb->protocol) != 0x8100)) {
3176 dev_kfree_skb(skb);
3177 goto next_rx;
3181 skb->ip_summed = CHECKSUM_NONE;
3182 if (bp->rx_csum &&
3183 (status & (L2_FHDR_STATUS_TCP_SEGMENT |
3184 L2_FHDR_STATUS_UDP_DATAGRAM))) {
3186 if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
3187 L2_FHDR_ERRORS_UDP_XSUM)) == 0))
3188 skb->ip_summed = CHECKSUM_UNNECESSARY;
3191 skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
3193 #ifdef BCM_VLAN
3194 if (hw_vlan)
3195 vlan_hwaccel_receive_skb(skb, bp->vlgrp, vtag);
3196 else
3197 #endif
3198 netif_receive_skb(skb);
3200 rx_pkt++;
3202 next_rx:
3203 sw_cons = NEXT_RX_BD(sw_cons);
3204 sw_prod = NEXT_RX_BD(sw_prod);
3206 if ((rx_pkt == budget))
3207 break;
3209 /* Refresh hw_cons to see if there is new work */
3210 if (sw_cons == hw_cons) {
3211 hw_cons = bnx2_get_hw_rx_cons(bnapi);
3212 rmb();
3215 rxr->rx_cons = sw_cons;
3216 rxr->rx_prod = sw_prod;
3218 if (pg_ring_used)
3219 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
3221 REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
3223 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
3225 mmiowb();
3227 return rx_pkt;
3231 /* MSI ISR - The only difference between this and the INTx ISR
3232 * is that the MSI interrupt is always serviced.
3234 static irqreturn_t
3235 bnx2_msi(int irq, void *dev_instance)
3237 struct bnx2_napi *bnapi = dev_instance;
3238 struct bnx2 *bp = bnapi->bp;
3240 prefetch(bnapi->status_blk.msi);
3241 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3242 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3243 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3245 /* Return here if interrupt is disabled. */
3246 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3247 return IRQ_HANDLED;
3249 napi_schedule(&bnapi->napi);
3251 return IRQ_HANDLED;
3254 static irqreturn_t
3255 bnx2_msi_1shot(int irq, void *dev_instance)
3257 struct bnx2_napi *bnapi = dev_instance;
3258 struct bnx2 *bp = bnapi->bp;
3260 prefetch(bnapi->status_blk.msi);
3262 /* Return here if interrupt is disabled. */
3263 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3264 return IRQ_HANDLED;
3266 napi_schedule(&bnapi->napi);
3268 return IRQ_HANDLED;
3271 static irqreturn_t
3272 bnx2_interrupt(int irq, void *dev_instance)
3274 struct bnx2_napi *bnapi = dev_instance;
3275 struct bnx2 *bp = bnapi->bp;
3276 struct status_block *sblk = bnapi->status_blk.msi;
3278 /* When using INTx, it is possible for the interrupt to arrive
3279 * at the CPU before the status block posted prior to the
3280 * interrupt. Reading a register will flush the status block.
3281 * When using MSI, the MSI message will always complete after
3282 * the status block write.
3284 if ((sblk->status_idx == bnapi->last_status_idx) &&
3285 (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
3286 BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
3287 return IRQ_NONE;
3289 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3290 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3291 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3293 /* Read back to deassert IRQ immediately to avoid too many
3294 * spurious interrupts.
3296 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
3298 /* Return here if interrupt is shared and is disabled. */
3299 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3300 return IRQ_HANDLED;
3302 if (napi_schedule_prep(&bnapi->napi)) {
3303 bnapi->last_status_idx = sblk->status_idx;
3304 __napi_schedule(&bnapi->napi);
3307 return IRQ_HANDLED;
3310 static inline int
3311 bnx2_has_fast_work(struct bnx2_napi *bnapi)
3313 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3314 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3316 if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
3317 (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
3318 return 1;
3319 return 0;
3322 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3323 STATUS_ATTN_BITS_TIMER_ABORT)
3325 static inline int
3326 bnx2_has_work(struct bnx2_napi *bnapi)
3328 struct status_block *sblk = bnapi->status_blk.msi;
3330 if (bnx2_has_fast_work(bnapi))
3331 return 1;
3333 #ifdef BCM_CNIC
3334 if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
3335 return 1;
3336 #endif
3338 if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
3339 (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
3340 return 1;
3342 return 0;
3345 static void
3346 bnx2_chk_missed_msi(struct bnx2 *bp)
3348 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
3349 u32 msi_ctrl;
3351 if (bnx2_has_work(bnapi)) {
3352 msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
3353 if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
3354 return;
3356 if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
3357 REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
3358 ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
3359 REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
3360 bnx2_msi(bp->irq_tbl[0].vector, bnapi);
3364 bp->idle_chk_status_idx = bnapi->last_status_idx;
3367 #ifdef BCM_CNIC
3368 static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
3370 struct cnic_ops *c_ops;
3372 if (!bnapi->cnic_present)
3373 return;
3375 rcu_read_lock();
3376 c_ops = rcu_dereference(bp->cnic_ops);
3377 if (c_ops)
3378 bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
3379 bnapi->status_blk.msi);
3380 rcu_read_unlock();
3382 #endif
3384 static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
3386 struct status_block *sblk = bnapi->status_blk.msi;
3387 u32 status_attn_bits = sblk->status_attn_bits;
3388 u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
3390 if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
3391 (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
3393 bnx2_phy_int(bp, bnapi);
3395 /* This is needed to take care of transient status
3396 * during link changes.
3398 REG_WR(bp, BNX2_HC_COMMAND,
3399 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
3400 REG_RD(bp, BNX2_HC_COMMAND);
3404 static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
3405 int work_done, int budget)
3407 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3408 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3410 if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
3411 bnx2_tx_int(bp, bnapi, 0);
3413 if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
3414 work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
3416 return work_done;
3419 static int bnx2_poll_msix(struct napi_struct *napi, int budget)
3421 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3422 struct bnx2 *bp = bnapi->bp;
3423 int work_done = 0;
3424 struct status_block_msix *sblk = bnapi->status_blk.msix;
3426 while (1) {
3427 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3428 if (unlikely(work_done >= budget))
3429 break;
3431 bnapi->last_status_idx = sblk->status_idx;
3432 /* status idx must be read before checking for more work. */
3433 rmb();
3434 if (likely(!bnx2_has_fast_work(bnapi))) {
3436 napi_complete(napi);
3437 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
3438 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3439 bnapi->last_status_idx);
3440 break;
3443 return work_done;
3446 static int bnx2_poll(struct napi_struct *napi, int budget)
3448 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3449 struct bnx2 *bp = bnapi->bp;
3450 int work_done = 0;
3451 struct status_block *sblk = bnapi->status_blk.msi;
3453 while (1) {
3454 bnx2_poll_link(bp, bnapi);
3456 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3458 #ifdef BCM_CNIC
3459 bnx2_poll_cnic(bp, bnapi);
3460 #endif
3462 /* bnapi->last_status_idx is used below to tell the hw how
3463 * much work has been processed, so we must read it before
3464 * checking for more work.
3466 bnapi->last_status_idx = sblk->status_idx;
3468 if (unlikely(work_done >= budget))
3469 break;
3471 rmb();
3472 if (likely(!bnx2_has_work(bnapi))) {
3473 napi_complete(napi);
3474 if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
3475 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3476 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3477 bnapi->last_status_idx);
3478 break;
3480 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3481 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3482 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
3483 bnapi->last_status_idx);
3485 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3486 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3487 bnapi->last_status_idx);
3488 break;
3492 return work_done;
3495 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3496 * from set_multicast.
3498 static void
3499 bnx2_set_rx_mode(struct net_device *dev)
3501 struct bnx2 *bp = netdev_priv(dev);
3502 u32 rx_mode, sort_mode;
3503 struct netdev_hw_addr *ha;
3504 int i;
3506 if (!netif_running(dev))
3507 return;
3509 spin_lock_bh(&bp->phy_lock);
3511 rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
3512 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
3513 sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
3514 #ifdef BCM_VLAN
3515 if (!bp->vlgrp && (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
3516 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
3517 #else
3518 if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
3519 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
3520 #endif
3521 if (dev->flags & IFF_PROMISC) {
3522 /* Promiscuous mode. */
3523 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3524 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3525 BNX2_RPM_SORT_USER0_PROM_VLAN;
3527 else if (dev->flags & IFF_ALLMULTI) {
3528 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3529 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3530 0xffffffff);
3532 sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
3534 else {
3535 /* Accept one or more multicast(s). */
3536 struct dev_mc_list *mclist;
3537 u32 mc_filter[NUM_MC_HASH_REGISTERS];
3538 u32 regidx;
3539 u32 bit;
3540 u32 crc;
3542 memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
3544 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
3545 i++, mclist = mclist->next) {
3547 crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
3548 bit = crc & 0xff;
3549 regidx = (bit & 0xe0) >> 5;
3550 bit &= 0x1f;
3551 mc_filter[regidx] |= (1 << bit);
3554 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3555 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3556 mc_filter[i]);
3559 sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
3562 if (dev->uc.count > BNX2_MAX_UNICAST_ADDRESSES) {
3563 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3564 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3565 BNX2_RPM_SORT_USER0_PROM_VLAN;
3566 } else if (!(dev->flags & IFF_PROMISC)) {
3567 /* Add all entries into to the match filter list */
3568 i = 0;
3569 list_for_each_entry(ha, &dev->uc.list, list) {
3570 bnx2_set_mac_addr(bp, ha->addr,
3571 i + BNX2_START_UNICAST_ADDRESS_INDEX);
3572 sort_mode |= (1 <<
3573 (i + BNX2_START_UNICAST_ADDRESS_INDEX));
3574 i++;
3579 if (rx_mode != bp->rx_mode) {
3580 bp->rx_mode = rx_mode;
3581 REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
3584 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3585 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
3586 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
3588 spin_unlock_bh(&bp->phy_lock);
3591 static int __devinit
3592 check_fw_section(const struct firmware *fw,
3593 const struct bnx2_fw_file_section *section,
3594 u32 alignment, bool non_empty)
3596 u32 offset = be32_to_cpu(section->offset);
3597 u32 len = be32_to_cpu(section->len);
3599 if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
3600 return -EINVAL;
3601 if ((non_empty && len == 0) || len > fw->size - offset ||
3602 len & (alignment - 1))
3603 return -EINVAL;
3604 return 0;
3607 static int __devinit
3608 check_mips_fw_entry(const struct firmware *fw,
3609 const struct bnx2_mips_fw_file_entry *entry)
3611 if (check_fw_section(fw, &entry->text, 4, true) ||
3612 check_fw_section(fw, &entry->data, 4, false) ||
3613 check_fw_section(fw, &entry->rodata, 4, false))
3614 return -EINVAL;
3615 return 0;
3618 static int __devinit
3619 bnx2_request_firmware(struct bnx2 *bp)
3621 const char *mips_fw_file, *rv2p_fw_file;
3622 const struct bnx2_mips_fw_file *mips_fw;
3623 const struct bnx2_rv2p_fw_file *rv2p_fw;
3624 int rc;
3626 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
3627 mips_fw_file = FW_MIPS_FILE_09;
3628 if ((CHIP_ID(bp) == CHIP_ID_5709_A0) ||
3629 (CHIP_ID(bp) == CHIP_ID_5709_A1))
3630 rv2p_fw_file = FW_RV2P_FILE_09_Ax;
3631 else
3632 rv2p_fw_file = FW_RV2P_FILE_09;
3633 } else {
3634 mips_fw_file = FW_MIPS_FILE_06;
3635 rv2p_fw_file = FW_RV2P_FILE_06;
3638 rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
3639 if (rc) {
3640 printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
3641 mips_fw_file);
3642 return rc;
3645 rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
3646 if (rc) {
3647 printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
3648 rv2p_fw_file);
3649 return rc;
3651 mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
3652 rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
3653 if (bp->mips_firmware->size < sizeof(*mips_fw) ||
3654 check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
3655 check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
3656 check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
3657 check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
3658 check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
3659 printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
3660 mips_fw_file);
3661 return -EINVAL;
3663 if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
3664 check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
3665 check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
3666 printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
3667 rv2p_fw_file);
3668 return -EINVAL;
3671 return 0;
3674 static u32
3675 rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
3677 switch (idx) {
3678 case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
3679 rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
3680 rv2p_code |= RV2P_BD_PAGE_SIZE;
3681 break;
3683 return rv2p_code;
3686 static int
3687 load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
3688 const struct bnx2_rv2p_fw_file_entry *fw_entry)
3690 u32 rv2p_code_len, file_offset;
3691 __be32 *rv2p_code;
3692 int i;
3693 u32 val, cmd, addr;
3695 rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
3696 file_offset = be32_to_cpu(fw_entry->rv2p.offset);
3698 rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
3700 if (rv2p_proc == RV2P_PROC1) {
3701 cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
3702 addr = BNX2_RV2P_PROC1_ADDR_CMD;
3703 } else {
3704 cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
3705 addr = BNX2_RV2P_PROC2_ADDR_CMD;
3708 for (i = 0; i < rv2p_code_len; i += 8) {
3709 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
3710 rv2p_code++;
3711 REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
3712 rv2p_code++;
3714 val = (i / 8) | cmd;
3715 REG_WR(bp, addr, val);
3718 rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
3719 for (i = 0; i < 8; i++) {
3720 u32 loc, code;
3722 loc = be32_to_cpu(fw_entry->fixup[i]);
3723 if (loc && ((loc * 4) < rv2p_code_len)) {
3724 code = be32_to_cpu(*(rv2p_code + loc - 1));
3725 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
3726 code = be32_to_cpu(*(rv2p_code + loc));
3727 code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
3728 REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
3730 val = (loc / 2) | cmd;
3731 REG_WR(bp, addr, val);
3735 /* Reset the processor, un-stall is done later. */
3736 if (rv2p_proc == RV2P_PROC1) {
3737 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
3739 else {
3740 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
3743 return 0;
3746 static int
3747 load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
3748 const struct bnx2_mips_fw_file_entry *fw_entry)
3750 u32 addr, len, file_offset;
3751 __be32 *data;
3752 u32 offset;
3753 u32 val;
3755 /* Halt the CPU. */
3756 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3757 val |= cpu_reg->mode_value_halt;
3758 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3759 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3761 /* Load the Text area. */
3762 addr = be32_to_cpu(fw_entry->text.addr);
3763 len = be32_to_cpu(fw_entry->text.len);
3764 file_offset = be32_to_cpu(fw_entry->text.offset);
3765 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3767 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3768 if (len) {
3769 int j;
3771 for (j = 0; j < (len / 4); j++, offset += 4)
3772 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3775 /* Load the Data area. */
3776 addr = be32_to_cpu(fw_entry->data.addr);
3777 len = be32_to_cpu(fw_entry->data.len);
3778 file_offset = be32_to_cpu(fw_entry->data.offset);
3779 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3781 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3782 if (len) {
3783 int j;
3785 for (j = 0; j < (len / 4); j++, offset += 4)
3786 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3789 /* Load the Read-Only area. */
3790 addr = be32_to_cpu(fw_entry->rodata.addr);
3791 len = be32_to_cpu(fw_entry->rodata.len);
3792 file_offset = be32_to_cpu(fw_entry->rodata.offset);
3793 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3795 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3796 if (len) {
3797 int j;
3799 for (j = 0; j < (len / 4); j++, offset += 4)
3800 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3803 /* Clear the pre-fetch instruction. */
3804 bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
3806 val = be32_to_cpu(fw_entry->start_addr);
3807 bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
3809 /* Start the CPU. */
3810 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3811 val &= ~cpu_reg->mode_value_halt;
3812 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3813 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3815 return 0;
3818 static int
3819 bnx2_init_cpus(struct bnx2 *bp)
3821 const struct bnx2_mips_fw_file *mips_fw =
3822 (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
3823 const struct bnx2_rv2p_fw_file *rv2p_fw =
3824 (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
3825 int rc;
3827 /* Initialize the RV2P processor. */
3828 load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
3829 load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
3831 /* Initialize the RX Processor. */
3832 rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
3833 if (rc)
3834 goto init_cpu_err;
3836 /* Initialize the TX Processor. */
3837 rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
3838 if (rc)
3839 goto init_cpu_err;
3841 /* Initialize the TX Patch-up Processor. */
3842 rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
3843 if (rc)
3844 goto init_cpu_err;
3846 /* Initialize the Completion Processor. */
3847 rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
3848 if (rc)
3849 goto init_cpu_err;
3851 /* Initialize the Command Processor. */
3852 rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
3854 init_cpu_err:
3855 return rc;
3858 static int
3859 bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
3861 u16 pmcsr;
3863 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
3865 switch (state) {
3866 case PCI_D0: {
3867 u32 val;
3869 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
3870 (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3871 PCI_PM_CTRL_PME_STATUS);
3873 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3874 /* delay required during transition out of D3hot */
3875 msleep(20);
3877 val = REG_RD(bp, BNX2_EMAC_MODE);
3878 val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
3879 val &= ~BNX2_EMAC_MODE_MPKT;
3880 REG_WR(bp, BNX2_EMAC_MODE, val);
3882 val = REG_RD(bp, BNX2_RPM_CONFIG);
3883 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3884 REG_WR(bp, BNX2_RPM_CONFIG, val);
3885 break;
3887 case PCI_D3hot: {
3888 int i;
3889 u32 val, wol_msg;
3891 if (bp->wol) {
3892 u32 advertising;
3893 u8 autoneg;
3895 autoneg = bp->autoneg;
3896 advertising = bp->advertising;
3898 if (bp->phy_port == PORT_TP) {
3899 bp->autoneg = AUTONEG_SPEED;
3900 bp->advertising = ADVERTISED_10baseT_Half |
3901 ADVERTISED_10baseT_Full |
3902 ADVERTISED_100baseT_Half |
3903 ADVERTISED_100baseT_Full |
3904 ADVERTISED_Autoneg;
3907 spin_lock_bh(&bp->phy_lock);
3908 bnx2_setup_phy(bp, bp->phy_port);
3909 spin_unlock_bh(&bp->phy_lock);
3911 bp->autoneg = autoneg;
3912 bp->advertising = advertising;
3914 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
3916 val = REG_RD(bp, BNX2_EMAC_MODE);
3918 /* Enable port mode. */
3919 val &= ~BNX2_EMAC_MODE_PORT;
3920 val |= BNX2_EMAC_MODE_MPKT_RCVD |
3921 BNX2_EMAC_MODE_ACPI_RCVD |
3922 BNX2_EMAC_MODE_MPKT;
3923 if (bp->phy_port == PORT_TP)
3924 val |= BNX2_EMAC_MODE_PORT_MII;
3925 else {
3926 val |= BNX2_EMAC_MODE_PORT_GMII;
3927 if (bp->line_speed == SPEED_2500)
3928 val |= BNX2_EMAC_MODE_25G_MODE;
3931 REG_WR(bp, BNX2_EMAC_MODE, val);
3933 /* receive all multicast */
3934 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3935 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3936 0xffffffff);
3938 REG_WR(bp, BNX2_EMAC_RX_MODE,
3939 BNX2_EMAC_RX_MODE_SORT_MODE);
3941 val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
3942 BNX2_RPM_SORT_USER0_MC_EN;
3943 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3944 REG_WR(bp, BNX2_RPM_SORT_USER0, val);
3945 REG_WR(bp, BNX2_RPM_SORT_USER0, val |
3946 BNX2_RPM_SORT_USER0_ENA);
3948 /* Need to enable EMAC and RPM for WOL. */
3949 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
3950 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
3951 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
3952 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
3954 val = REG_RD(bp, BNX2_RPM_CONFIG);
3955 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3956 REG_WR(bp, BNX2_RPM_CONFIG, val);
3958 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
3960 else {
3961 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
3964 if (!(bp->flags & BNX2_FLAG_NO_WOL))
3965 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
3966 1, 0);
3968 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3969 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
3970 (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
3972 if (bp->wol)
3973 pmcsr |= 3;
3975 else {
3976 pmcsr |= 3;
3978 if (bp->wol) {
3979 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3981 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
3982 pmcsr);
3984 /* No more memory access after this point until
3985 * device is brought back to D0.
3987 udelay(50);
3988 break;
3990 default:
3991 return -EINVAL;
3993 return 0;
3996 static int
3997 bnx2_acquire_nvram_lock(struct bnx2 *bp)
3999 u32 val;
4000 int j;
4002 /* Request access to the flash interface. */
4003 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
4004 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4005 val = REG_RD(bp, BNX2_NVM_SW_ARB);
4006 if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
4007 break;
4009 udelay(5);
4012 if (j >= NVRAM_TIMEOUT_COUNT)
4013 return -EBUSY;
4015 return 0;
4018 static int
4019 bnx2_release_nvram_lock(struct bnx2 *bp)
4021 int j;
4022 u32 val;
4024 /* Relinquish nvram interface. */
4025 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
4027 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4028 val = REG_RD(bp, BNX2_NVM_SW_ARB);
4029 if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
4030 break;
4032 udelay(5);
4035 if (j >= NVRAM_TIMEOUT_COUNT)
4036 return -EBUSY;
4038 return 0;
4042 static int
4043 bnx2_enable_nvram_write(struct bnx2 *bp)
4045 u32 val;
4047 val = REG_RD(bp, BNX2_MISC_CFG);
4048 REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
4050 if (bp->flash_info->flags & BNX2_NV_WREN) {
4051 int j;
4053 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4054 REG_WR(bp, BNX2_NVM_COMMAND,
4055 BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
4057 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4058 udelay(5);
4060 val = REG_RD(bp, BNX2_NVM_COMMAND);
4061 if (val & BNX2_NVM_COMMAND_DONE)
4062 break;
4065 if (j >= NVRAM_TIMEOUT_COUNT)
4066 return -EBUSY;
4068 return 0;
4071 static void
4072 bnx2_disable_nvram_write(struct bnx2 *bp)
4074 u32 val;
4076 val = REG_RD(bp, BNX2_MISC_CFG);
4077 REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
4081 static void
4082 bnx2_enable_nvram_access(struct bnx2 *bp)
4084 u32 val;
4086 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
4087 /* Enable both bits, even on read. */
4088 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
4089 val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
4092 static void
4093 bnx2_disable_nvram_access(struct bnx2 *bp)
4095 u32 val;
4097 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
4098 /* Disable both bits, even after read. */
4099 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
4100 val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
4101 BNX2_NVM_ACCESS_ENABLE_WR_EN));
4104 static int
4105 bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
4107 u32 cmd;
4108 int j;
4110 if (bp->flash_info->flags & BNX2_NV_BUFFERED)
4111 /* Buffered flash, no erase needed */
4112 return 0;
4114 /* Build an erase command */
4115 cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
4116 BNX2_NVM_COMMAND_DOIT;
4118 /* Need to clear DONE bit separately. */
4119 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4121 /* Address of the NVRAM to read from. */
4122 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4124 /* Issue an erase command. */
4125 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4127 /* Wait for completion. */
4128 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4129 u32 val;
4131 udelay(5);
4133 val = REG_RD(bp, BNX2_NVM_COMMAND);
4134 if (val & BNX2_NVM_COMMAND_DONE)
4135 break;
4138 if (j >= NVRAM_TIMEOUT_COUNT)
4139 return -EBUSY;
4141 return 0;
4144 static int
4145 bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
4147 u32 cmd;
4148 int j;
4150 /* Build the command word. */
4151 cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
4153 /* Calculate an offset of a buffered flash, not needed for 5709. */
4154 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
4155 offset = ((offset / bp->flash_info->page_size) <<
4156 bp->flash_info->page_bits) +
4157 (offset % bp->flash_info->page_size);
4160 /* Need to clear DONE bit separately. */
4161 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4163 /* Address of the NVRAM to read from. */
4164 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4166 /* Issue a read command. */
4167 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4169 /* Wait for completion. */
4170 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4171 u32 val;
4173 udelay(5);
4175 val = REG_RD(bp, BNX2_NVM_COMMAND);
4176 if (val & BNX2_NVM_COMMAND_DONE) {
4177 __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
4178 memcpy(ret_val, &v, 4);
4179 break;
4182 if (j >= NVRAM_TIMEOUT_COUNT)
4183 return -EBUSY;
4185 return 0;
4189 static int
4190 bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
4192 u32 cmd;
4193 __be32 val32;
4194 int j;
4196 /* Build the command word. */
4197 cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
4199 /* Calculate an offset of a buffered flash, not needed for 5709. */
4200 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
4201 offset = ((offset / bp->flash_info->page_size) <<
4202 bp->flash_info->page_bits) +
4203 (offset % bp->flash_info->page_size);
4206 /* Need to clear DONE bit separately. */
4207 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4209 memcpy(&val32, val, 4);
4211 /* Write the data. */
4212 REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
4214 /* Address of the NVRAM to write to. */
4215 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4217 /* Issue the write command. */
4218 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4220 /* Wait for completion. */
4221 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4222 udelay(5);
4224 if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
4225 break;
4227 if (j >= NVRAM_TIMEOUT_COUNT)
4228 return -EBUSY;
4230 return 0;
4233 static int
4234 bnx2_init_nvram(struct bnx2 *bp)
4236 u32 val;
4237 int j, entry_count, rc = 0;
4238 const struct flash_spec *flash;
4240 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4241 bp->flash_info = &flash_5709;
4242 goto get_flash_size;
4245 /* Determine the selected interface. */
4246 val = REG_RD(bp, BNX2_NVM_CFG1);
4248 entry_count = ARRAY_SIZE(flash_table);
4250 if (val & 0x40000000) {
4252 /* Flash interface has been reconfigured */
4253 for (j = 0, flash = &flash_table[0]; j < entry_count;
4254 j++, flash++) {
4255 if ((val & FLASH_BACKUP_STRAP_MASK) ==
4256 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
4257 bp->flash_info = flash;
4258 break;
4262 else {
4263 u32 mask;
4264 /* Not yet been reconfigured */
4266 if (val & (1 << 23))
4267 mask = FLASH_BACKUP_STRAP_MASK;
4268 else
4269 mask = FLASH_STRAP_MASK;
4271 for (j = 0, flash = &flash_table[0]; j < entry_count;
4272 j++, flash++) {
4274 if ((val & mask) == (flash->strapping & mask)) {
4275 bp->flash_info = flash;
4277 /* Request access to the flash interface. */
4278 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4279 return rc;
4281 /* Enable access to flash interface */
4282 bnx2_enable_nvram_access(bp);
4284 /* Reconfigure the flash interface */
4285 REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
4286 REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
4287 REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
4288 REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
4290 /* Disable access to flash interface */
4291 bnx2_disable_nvram_access(bp);
4292 bnx2_release_nvram_lock(bp);
4294 break;
4297 } /* if (val & 0x40000000) */
4299 if (j == entry_count) {
4300 bp->flash_info = NULL;
4301 printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
4302 return -ENODEV;
4305 get_flash_size:
4306 val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
4307 val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
4308 if (val)
4309 bp->flash_size = val;
4310 else
4311 bp->flash_size = bp->flash_info->total_size;
4313 return rc;
4316 static int
4317 bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
4318 int buf_size)
4320 int rc = 0;
4321 u32 cmd_flags, offset32, len32, extra;
4323 if (buf_size == 0)
4324 return 0;
4326 /* Request access to the flash interface. */
4327 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4328 return rc;
4330 /* Enable access to flash interface */
4331 bnx2_enable_nvram_access(bp);
4333 len32 = buf_size;
4334 offset32 = offset;
4335 extra = 0;
4337 cmd_flags = 0;
4339 if (offset32 & 3) {
4340 u8 buf[4];
4341 u32 pre_len;
4343 offset32 &= ~3;
4344 pre_len = 4 - (offset & 3);
4346 if (pre_len >= len32) {
4347 pre_len = len32;
4348 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4349 BNX2_NVM_COMMAND_LAST;
4351 else {
4352 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4355 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4357 if (rc)
4358 return rc;
4360 memcpy(ret_buf, buf + (offset & 3), pre_len);
4362 offset32 += 4;
4363 ret_buf += pre_len;
4364 len32 -= pre_len;
4366 if (len32 & 3) {
4367 extra = 4 - (len32 & 3);
4368 len32 = (len32 + 4) & ~3;
4371 if (len32 == 4) {
4372 u8 buf[4];
4374 if (cmd_flags)
4375 cmd_flags = BNX2_NVM_COMMAND_LAST;
4376 else
4377 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4378 BNX2_NVM_COMMAND_LAST;
4380 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4382 memcpy(ret_buf, buf, 4 - extra);
4384 else if (len32 > 0) {
4385 u8 buf[4];
4387 /* Read the first word. */
4388 if (cmd_flags)
4389 cmd_flags = 0;
4390 else
4391 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4393 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
4395 /* Advance to the next dword. */
4396 offset32 += 4;
4397 ret_buf += 4;
4398 len32 -= 4;
4400 while (len32 > 4 && rc == 0) {
4401 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
4403 /* Advance to the next dword. */
4404 offset32 += 4;
4405 ret_buf += 4;
4406 len32 -= 4;
4409 if (rc)
4410 return rc;
4412 cmd_flags = BNX2_NVM_COMMAND_LAST;
4413 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4415 memcpy(ret_buf, buf, 4 - extra);
4418 /* Disable access to flash interface */
4419 bnx2_disable_nvram_access(bp);
4421 bnx2_release_nvram_lock(bp);
4423 return rc;
4426 static int
4427 bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
4428 int buf_size)
4430 u32 written, offset32, len32;
4431 u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
4432 int rc = 0;
4433 int align_start, align_end;
4435 buf = data_buf;
4436 offset32 = offset;
4437 len32 = buf_size;
4438 align_start = align_end = 0;
4440 if ((align_start = (offset32 & 3))) {
4441 offset32 &= ~3;
4442 len32 += align_start;
4443 if (len32 < 4)
4444 len32 = 4;
4445 if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
4446 return rc;
4449 if (len32 & 3) {
4450 align_end = 4 - (len32 & 3);
4451 len32 += align_end;
4452 if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
4453 return rc;
4456 if (align_start || align_end) {
4457 align_buf = kmalloc(len32, GFP_KERNEL);
4458 if (align_buf == NULL)
4459 return -ENOMEM;
4460 if (align_start) {
4461 memcpy(align_buf, start, 4);
4463 if (align_end) {
4464 memcpy(align_buf + len32 - 4, end, 4);
4466 memcpy(align_buf + align_start, data_buf, buf_size);
4467 buf = align_buf;
4470 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4471 flash_buffer = kmalloc(264, GFP_KERNEL);
4472 if (flash_buffer == NULL) {
4473 rc = -ENOMEM;
4474 goto nvram_write_end;
4478 written = 0;
4479 while ((written < len32) && (rc == 0)) {
4480 u32 page_start, page_end, data_start, data_end;
4481 u32 addr, cmd_flags;
4482 int i;
4484 /* Find the page_start addr */
4485 page_start = offset32 + written;
4486 page_start -= (page_start % bp->flash_info->page_size);
4487 /* Find the page_end addr */
4488 page_end = page_start + bp->flash_info->page_size;
4489 /* Find the data_start addr */
4490 data_start = (written == 0) ? offset32 : page_start;
4491 /* Find the data_end addr */
4492 data_end = (page_end > offset32 + len32) ?
4493 (offset32 + len32) : page_end;
4495 /* Request access to the flash interface. */
4496 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4497 goto nvram_write_end;
4499 /* Enable access to flash interface */
4500 bnx2_enable_nvram_access(bp);
4502 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4503 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4504 int j;
4506 /* Read the whole page into the buffer
4507 * (non-buffer flash only) */
4508 for (j = 0; j < bp->flash_info->page_size; j += 4) {
4509 if (j == (bp->flash_info->page_size - 4)) {
4510 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4512 rc = bnx2_nvram_read_dword(bp,
4513 page_start + j,
4514 &flash_buffer[j],
4515 cmd_flags);
4517 if (rc)
4518 goto nvram_write_end;
4520 cmd_flags = 0;
4524 /* Enable writes to flash interface (unlock write-protect) */
4525 if ((rc = bnx2_enable_nvram_write(bp)) != 0)
4526 goto nvram_write_end;
4528 /* Loop to write back the buffer data from page_start to
4529 * data_start */
4530 i = 0;
4531 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4532 /* Erase the page */
4533 if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
4534 goto nvram_write_end;
4536 /* Re-enable the write again for the actual write */
4537 bnx2_enable_nvram_write(bp);
4539 for (addr = page_start; addr < data_start;
4540 addr += 4, i += 4) {
4542 rc = bnx2_nvram_write_dword(bp, addr,
4543 &flash_buffer[i], cmd_flags);
4545 if (rc != 0)
4546 goto nvram_write_end;
4548 cmd_flags = 0;
4552 /* Loop to write the new data from data_start to data_end */
4553 for (addr = data_start; addr < data_end; addr += 4, i += 4) {
4554 if ((addr == page_end - 4) ||
4555 ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
4556 (addr == data_end - 4))) {
4558 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4560 rc = bnx2_nvram_write_dword(bp, addr, buf,
4561 cmd_flags);
4563 if (rc != 0)
4564 goto nvram_write_end;
4566 cmd_flags = 0;
4567 buf += 4;
4570 /* Loop to write back the buffer data from data_end
4571 * to page_end */
4572 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4573 for (addr = data_end; addr < page_end;
4574 addr += 4, i += 4) {
4576 if (addr == page_end-4) {
4577 cmd_flags = BNX2_NVM_COMMAND_LAST;
4579 rc = bnx2_nvram_write_dword(bp, addr,
4580 &flash_buffer[i], cmd_flags);
4582 if (rc != 0)
4583 goto nvram_write_end;
4585 cmd_flags = 0;
4589 /* Disable writes to flash interface (lock write-protect) */
4590 bnx2_disable_nvram_write(bp);
4592 /* Disable access to flash interface */
4593 bnx2_disable_nvram_access(bp);
4594 bnx2_release_nvram_lock(bp);
4596 /* Increment written */
4597 written += data_end - data_start;
4600 nvram_write_end:
4601 kfree(flash_buffer);
4602 kfree(align_buf);
4603 return rc;
4606 static void
4607 bnx2_init_fw_cap(struct bnx2 *bp)
4609 u32 val, sig = 0;
4611 bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4612 bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
4614 if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
4615 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4617 val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
4618 if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
4619 return;
4621 if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
4622 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4623 sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
4626 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
4627 (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
4628 u32 link;
4630 bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4632 link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
4633 if (link & BNX2_LINK_STATUS_SERDES_LINK)
4634 bp->phy_port = PORT_FIBRE;
4635 else
4636 bp->phy_port = PORT_TP;
4638 sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
4639 BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
4642 if (netif_running(bp->dev) && sig)
4643 bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
4646 static void
4647 bnx2_setup_msix_tbl(struct bnx2 *bp)
4649 REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
4651 REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
4652 REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
4655 static int
4656 bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
4658 u32 val;
4659 int i, rc = 0;
4660 u8 old_port;
4662 /* Wait for the current PCI transaction to complete before
4663 * issuing a reset. */
4664 REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
4665 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4666 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4667 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4668 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4669 val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
4670 udelay(5);
4672 /* Wait for the firmware to tell us it is ok to issue a reset. */
4673 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
4675 /* Deposit a driver reset signature so the firmware knows that
4676 * this is a soft reset. */
4677 bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
4678 BNX2_DRV_RESET_SIGNATURE_MAGIC);
4680 /* Do a dummy read to force the chip to complete all current transaction
4681 * before we issue a reset. */
4682 val = REG_RD(bp, BNX2_MISC_ID);
4684 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4685 REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
4686 REG_RD(bp, BNX2_MISC_COMMAND);
4687 udelay(5);
4689 val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4690 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4692 pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
4694 } else {
4695 val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4696 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4697 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4699 /* Chip reset. */
4700 REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
4702 /* Reading back any register after chip reset will hang the
4703 * bus on 5706 A0 and A1. The msleep below provides plenty
4704 * of margin for write posting.
4706 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
4707 (CHIP_ID(bp) == CHIP_ID_5706_A1))
4708 msleep(20);
4710 /* Reset takes approximate 30 usec */
4711 for (i = 0; i < 10; i++) {
4712 val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
4713 if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4714 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
4715 break;
4716 udelay(10);
4719 if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4720 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
4721 printk(KERN_ERR PFX "Chip reset did not complete\n");
4722 return -EBUSY;
4726 /* Make sure byte swapping is properly configured. */
4727 val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
4728 if (val != 0x01020304) {
4729 printk(KERN_ERR PFX "Chip not in correct endian mode\n");
4730 return -ENODEV;
4733 /* Wait for the firmware to finish its initialization. */
4734 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
4735 if (rc)
4736 return rc;
4738 spin_lock_bh(&bp->phy_lock);
4739 old_port = bp->phy_port;
4740 bnx2_init_fw_cap(bp);
4741 if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
4742 old_port != bp->phy_port)
4743 bnx2_set_default_remote_link(bp);
4744 spin_unlock_bh(&bp->phy_lock);
4746 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4747 /* Adjust the voltage regular to two steps lower. The default
4748 * of this register is 0x0000000e. */
4749 REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
4751 /* Remove bad rbuf memory from the free pool. */
4752 rc = bnx2_alloc_bad_rbuf(bp);
4755 if (bp->flags & BNX2_FLAG_USING_MSIX) {
4756 bnx2_setup_msix_tbl(bp);
4757 /* Prevent MSIX table reads and write from timing out */
4758 REG_WR(bp, BNX2_MISC_ECO_HW_CTL,
4759 BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN);
4762 return rc;
4765 static int
4766 bnx2_init_chip(struct bnx2 *bp)
4768 u32 val, mtu;
4769 int rc, i;
4771 /* Make sure the interrupt is not active. */
4772 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
4774 val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
4775 BNX2_DMA_CONFIG_DATA_WORD_SWAP |
4776 #ifdef __BIG_ENDIAN
4777 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
4778 #endif
4779 BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
4780 DMA_READ_CHANS << 12 |
4781 DMA_WRITE_CHANS << 16;
4783 val |= (0x2 << 20) | (1 << 11);
4785 if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
4786 val |= (1 << 23);
4788 if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
4789 (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
4790 val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
4792 REG_WR(bp, BNX2_DMA_CONFIG, val);
4794 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4795 val = REG_RD(bp, BNX2_TDMA_CONFIG);
4796 val |= BNX2_TDMA_CONFIG_ONE_DMA;
4797 REG_WR(bp, BNX2_TDMA_CONFIG, val);
4800 if (bp->flags & BNX2_FLAG_PCIX) {
4801 u16 val16;
4803 pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4804 &val16);
4805 pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4806 val16 & ~PCI_X_CMD_ERO);
4809 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
4810 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
4811 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
4812 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
4814 /* Initialize context mapping and zero out the quick contexts. The
4815 * context block must have already been enabled. */
4816 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4817 rc = bnx2_init_5709_context(bp);
4818 if (rc)
4819 return rc;
4820 } else
4821 bnx2_init_context(bp);
4823 if ((rc = bnx2_init_cpus(bp)) != 0)
4824 return rc;
4826 bnx2_init_nvram(bp);
4828 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
4830 val = REG_RD(bp, BNX2_MQ_CONFIG);
4831 val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
4832 val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
4833 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4834 val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
4835 if (CHIP_REV(bp) == CHIP_REV_Ax)
4836 val |= BNX2_MQ_CONFIG_HALT_DIS;
4839 REG_WR(bp, BNX2_MQ_CONFIG, val);
4841 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
4842 REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
4843 REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
4845 val = (BCM_PAGE_BITS - 8) << 24;
4846 REG_WR(bp, BNX2_RV2P_CONFIG, val);
4848 /* Configure page size. */
4849 val = REG_RD(bp, BNX2_TBDR_CONFIG);
4850 val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
4851 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
4852 REG_WR(bp, BNX2_TBDR_CONFIG, val);
4854 val = bp->mac_addr[0] +
4855 (bp->mac_addr[1] << 8) +
4856 (bp->mac_addr[2] << 16) +
4857 bp->mac_addr[3] +
4858 (bp->mac_addr[4] << 8) +
4859 (bp->mac_addr[5] << 16);
4860 REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
4862 /* Program the MTU. Also include 4 bytes for CRC32. */
4863 mtu = bp->dev->mtu;
4864 val = mtu + ETH_HLEN + ETH_FCS_LEN;
4865 if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
4866 val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
4867 REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
4869 if (mtu < 1500)
4870 mtu = 1500;
4872 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
4873 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
4874 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
4876 memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
4877 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
4878 bp->bnx2_napi[i].last_status_idx = 0;
4880 bp->idle_chk_status_idx = 0xffff;
4882 bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
4884 /* Set up how to generate a link change interrupt. */
4885 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
4887 REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
4888 (u64) bp->status_blk_mapping & 0xffffffff);
4889 REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
4891 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
4892 (u64) bp->stats_blk_mapping & 0xffffffff);
4893 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
4894 (u64) bp->stats_blk_mapping >> 32);
4896 REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
4897 (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
4899 REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
4900 (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
4902 REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
4903 (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
4905 REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
4907 REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
4909 REG_WR(bp, BNX2_HC_COM_TICKS,
4910 (bp->com_ticks_int << 16) | bp->com_ticks);
4912 REG_WR(bp, BNX2_HC_CMD_TICKS,
4913 (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
4915 if (bp->flags & BNX2_FLAG_BROKEN_STATS)
4916 REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
4917 else
4918 REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
4919 REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
4921 if (CHIP_ID(bp) == CHIP_ID_5706_A1)
4922 val = BNX2_HC_CONFIG_COLLECT_STATS;
4923 else {
4924 val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
4925 BNX2_HC_CONFIG_COLLECT_STATS;
4928 if (bp->irq_nvecs > 1) {
4929 REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
4930 BNX2_HC_MSIX_BIT_VECTOR_VAL);
4932 val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
4935 if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
4936 val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
4938 REG_WR(bp, BNX2_HC_CONFIG, val);
4940 for (i = 1; i < bp->irq_nvecs; i++) {
4941 u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
4942 BNX2_HC_SB_CONFIG_1;
4944 REG_WR(bp, base,
4945 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
4946 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
4947 BNX2_HC_SB_CONFIG_1_ONE_SHOT);
4949 REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
4950 (bp->tx_quick_cons_trip_int << 16) |
4951 bp->tx_quick_cons_trip);
4953 REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
4954 (bp->tx_ticks_int << 16) | bp->tx_ticks);
4956 REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
4957 (bp->rx_quick_cons_trip_int << 16) |
4958 bp->rx_quick_cons_trip);
4960 REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
4961 (bp->rx_ticks_int << 16) | bp->rx_ticks);
4964 /* Clear internal stats counters. */
4965 REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
4967 REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
4969 /* Initialize the receive filter. */
4970 bnx2_set_rx_mode(bp->dev);
4972 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4973 val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
4974 val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
4975 REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
4977 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
4978 1, 0);
4980 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
4981 REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
4983 udelay(20);
4985 bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
4987 return rc;
4990 static void
4991 bnx2_clear_ring_states(struct bnx2 *bp)
4993 struct bnx2_napi *bnapi;
4994 struct bnx2_tx_ring_info *txr;
4995 struct bnx2_rx_ring_info *rxr;
4996 int i;
4998 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
4999 bnapi = &bp->bnx2_napi[i];
5000 txr = &bnapi->tx_ring;
5001 rxr = &bnapi->rx_ring;
5003 txr->tx_cons = 0;
5004 txr->hw_tx_cons = 0;
5005 rxr->rx_prod_bseq = 0;
5006 rxr->rx_prod = 0;
5007 rxr->rx_cons = 0;
5008 rxr->rx_pg_prod = 0;
5009 rxr->rx_pg_cons = 0;
5013 static void
5014 bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
5016 u32 val, offset0, offset1, offset2, offset3;
5017 u32 cid_addr = GET_CID_ADDR(cid);
5019 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5020 offset0 = BNX2_L2CTX_TYPE_XI;
5021 offset1 = BNX2_L2CTX_CMD_TYPE_XI;
5022 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
5023 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
5024 } else {
5025 offset0 = BNX2_L2CTX_TYPE;
5026 offset1 = BNX2_L2CTX_CMD_TYPE;
5027 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
5028 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
5030 val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
5031 bnx2_ctx_wr(bp, cid_addr, offset0, val);
5033 val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
5034 bnx2_ctx_wr(bp, cid_addr, offset1, val);
5036 val = (u64) txr->tx_desc_mapping >> 32;
5037 bnx2_ctx_wr(bp, cid_addr, offset2, val);
5039 val = (u64) txr->tx_desc_mapping & 0xffffffff;
5040 bnx2_ctx_wr(bp, cid_addr, offset3, val);
5043 static void
5044 bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
5046 struct tx_bd *txbd;
5047 u32 cid = TX_CID;
5048 struct bnx2_napi *bnapi;
5049 struct bnx2_tx_ring_info *txr;
5051 bnapi = &bp->bnx2_napi[ring_num];
5052 txr = &bnapi->tx_ring;
5054 if (ring_num == 0)
5055 cid = TX_CID;
5056 else
5057 cid = TX_TSS_CID + ring_num - 1;
5059 bp->tx_wake_thresh = bp->tx_ring_size / 2;
5061 txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
5063 txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
5064 txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
5066 txr->tx_prod = 0;
5067 txr->tx_prod_bseq = 0;
5069 txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
5070 txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
5072 bnx2_init_tx_context(bp, cid, txr);
5075 static void
5076 bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
5077 int num_rings)
5079 int i;
5080 struct rx_bd *rxbd;
5082 for (i = 0; i < num_rings; i++) {
5083 int j;
5085 rxbd = &rx_ring[i][0];
5086 for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
5087 rxbd->rx_bd_len = buf_size;
5088 rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
5090 if (i == (num_rings - 1))
5091 j = 0;
5092 else
5093 j = i + 1;
5094 rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
5095 rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
5099 static void
5100 bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
5102 int i;
5103 u16 prod, ring_prod;
5104 u32 cid, rx_cid_addr, val;
5105 struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
5106 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5108 if (ring_num == 0)
5109 cid = RX_CID;
5110 else
5111 cid = RX_RSS_CID + ring_num - 1;
5113 rx_cid_addr = GET_CID_ADDR(cid);
5115 bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
5116 bp->rx_buf_use_size, bp->rx_max_ring);
5118 bnx2_init_rx_context(bp, cid);
5120 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5121 val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
5122 REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
5125 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
5126 if (bp->rx_pg_ring_size) {
5127 bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
5128 rxr->rx_pg_desc_mapping,
5129 PAGE_SIZE, bp->rx_max_pg_ring);
5130 val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
5131 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
5132 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
5133 BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
5135 val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
5136 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
5138 val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
5139 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
5141 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5142 REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
5145 val = (u64) rxr->rx_desc_mapping[0] >> 32;
5146 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
5148 val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
5149 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
5151 ring_prod = prod = rxr->rx_pg_prod;
5152 for (i = 0; i < bp->rx_pg_ring_size; i++) {
5153 if (bnx2_alloc_rx_page(bp, rxr, ring_prod) < 0)
5154 break;
5155 prod = NEXT_RX_BD(prod);
5156 ring_prod = RX_PG_RING_IDX(prod);
5158 rxr->rx_pg_prod = prod;
5160 ring_prod = prod = rxr->rx_prod;
5161 for (i = 0; i < bp->rx_ring_size; i++) {
5162 if (bnx2_alloc_rx_skb(bp, rxr, ring_prod) < 0)
5163 break;
5164 prod = NEXT_RX_BD(prod);
5165 ring_prod = RX_RING_IDX(prod);
5167 rxr->rx_prod = prod;
5169 rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
5170 rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
5171 rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
5173 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
5174 REG_WR16(bp, rxr->rx_bidx_addr, prod);
5176 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
5179 static void
5180 bnx2_init_all_rings(struct bnx2 *bp)
5182 int i;
5183 u32 val;
5185 bnx2_clear_ring_states(bp);
5187 REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
5188 for (i = 0; i < bp->num_tx_rings; i++)
5189 bnx2_init_tx_ring(bp, i);
5191 if (bp->num_tx_rings > 1)
5192 REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
5193 (TX_TSS_CID << 7));
5195 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
5196 bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
5198 for (i = 0; i < bp->num_rx_rings; i++)
5199 bnx2_init_rx_ring(bp, i);
5201 if (bp->num_rx_rings > 1) {
5202 u32 tbl_32;
5203 u8 *tbl = (u8 *) &tbl_32;
5205 bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ,
5206 BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES);
5208 for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
5209 tbl[i % 4] = i % (bp->num_rx_rings - 1);
5210 if ((i % 4) == 3)
5211 bnx2_reg_wr_ind(bp,
5212 BNX2_RXP_SCRATCH_RSS_TBL + i,
5213 cpu_to_be32(tbl_32));
5216 val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
5217 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
5219 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
5224 static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
5226 u32 max, num_rings = 1;
5228 while (ring_size > MAX_RX_DESC_CNT) {
5229 ring_size -= MAX_RX_DESC_CNT;
5230 num_rings++;
5232 /* round to next power of 2 */
5233 max = max_size;
5234 while ((max & num_rings) == 0)
5235 max >>= 1;
5237 if (num_rings != max)
5238 max <<= 1;
5240 return max;
5243 static void
5244 bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
5246 u32 rx_size, rx_space, jumbo_size;
5248 /* 8 for CRC and VLAN */
5249 rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
5251 rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
5252 sizeof(struct skb_shared_info);
5254 bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
5255 bp->rx_pg_ring_size = 0;
5256 bp->rx_max_pg_ring = 0;
5257 bp->rx_max_pg_ring_idx = 0;
5258 if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
5259 int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
5261 jumbo_size = size * pages;
5262 if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
5263 jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
5265 bp->rx_pg_ring_size = jumbo_size;
5266 bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
5267 MAX_RX_PG_RINGS);
5268 bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
5269 rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
5270 bp->rx_copy_thresh = 0;
5273 bp->rx_buf_use_size = rx_size;
5274 /* hw alignment */
5275 bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
5276 bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
5277 bp->rx_ring_size = size;
5278 bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
5279 bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
5282 static void
5283 bnx2_free_tx_skbs(struct bnx2 *bp)
5285 int i;
5287 for (i = 0; i < bp->num_tx_rings; i++) {
5288 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5289 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5290 int j;
5292 if (txr->tx_buf_ring == NULL)
5293 continue;
5295 for (j = 0; j < TX_DESC_CNT; ) {
5296 struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
5297 struct sk_buff *skb = tx_buf->skb;
5299 if (skb == NULL) {
5300 j++;
5301 continue;
5304 skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
5306 tx_buf->skb = NULL;
5308 j += skb_shinfo(skb)->nr_frags + 1;
5309 dev_kfree_skb(skb);
5314 static void
5315 bnx2_free_rx_skbs(struct bnx2 *bp)
5317 int i;
5319 for (i = 0; i < bp->num_rx_rings; i++) {
5320 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5321 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5322 int j;
5324 if (rxr->rx_buf_ring == NULL)
5325 return;
5327 for (j = 0; j < bp->rx_max_ring_idx; j++) {
5328 struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
5329 struct sk_buff *skb = rx_buf->skb;
5331 if (skb == NULL)
5332 continue;
5334 pci_unmap_single(bp->pdev,
5335 pci_unmap_addr(rx_buf, mapping),
5336 bp->rx_buf_use_size,
5337 PCI_DMA_FROMDEVICE);
5339 rx_buf->skb = NULL;
5341 dev_kfree_skb(skb);
5343 for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
5344 bnx2_free_rx_page(bp, rxr, j);
5348 static void
5349 bnx2_free_skbs(struct bnx2 *bp)
5351 bnx2_free_tx_skbs(bp);
5352 bnx2_free_rx_skbs(bp);
5355 static int
5356 bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
5358 int rc;
5360 rc = bnx2_reset_chip(bp, reset_code);
5361 bnx2_free_skbs(bp);
5362 if (rc)
5363 return rc;
5365 if ((rc = bnx2_init_chip(bp)) != 0)
5366 return rc;
5368 bnx2_init_all_rings(bp);
5369 return 0;
5372 static int
5373 bnx2_init_nic(struct bnx2 *bp, int reset_phy)
5375 int rc;
5377 if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
5378 return rc;
5380 spin_lock_bh(&bp->phy_lock);
5381 bnx2_init_phy(bp, reset_phy);
5382 bnx2_set_link(bp);
5383 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5384 bnx2_remote_phy_event(bp);
5385 spin_unlock_bh(&bp->phy_lock);
5386 return 0;
5389 static int
5390 bnx2_shutdown_chip(struct bnx2 *bp)
5392 u32 reset_code;
5394 if (bp->flags & BNX2_FLAG_NO_WOL)
5395 reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
5396 else if (bp->wol)
5397 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
5398 else
5399 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
5401 return bnx2_reset_chip(bp, reset_code);
5404 static int
5405 bnx2_test_registers(struct bnx2 *bp)
5407 int ret;
5408 int i, is_5709;
5409 static const struct {
5410 u16 offset;
5411 u16 flags;
5412 #define BNX2_FL_NOT_5709 1
5413 u32 rw_mask;
5414 u32 ro_mask;
5415 } reg_tbl[] = {
5416 { 0x006c, 0, 0x00000000, 0x0000003f },
5417 { 0x0090, 0, 0xffffffff, 0x00000000 },
5418 { 0x0094, 0, 0x00000000, 0x00000000 },
5420 { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
5421 { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5422 { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5423 { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
5424 { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
5425 { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5426 { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
5427 { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5428 { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5430 { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5431 { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5432 { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5433 { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5434 { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5435 { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5437 { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5438 { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
5439 { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
5441 { 0x1000, 0, 0x00000000, 0x00000001 },
5442 { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
5444 { 0x1408, 0, 0x01c00800, 0x00000000 },
5445 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5446 { 0x14a8, 0, 0x00000000, 0x000001ff },
5447 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5448 { 0x14b0, 0, 0x00000002, 0x00000001 },
5449 { 0x14b8, 0, 0x00000000, 0x00000000 },
5450 { 0x14c0, 0, 0x00000000, 0x00000009 },
5451 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5452 { 0x14cc, 0, 0x00000000, 0x00000001 },
5453 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5455 { 0x1800, 0, 0x00000000, 0x00000001 },
5456 { 0x1804, 0, 0x00000000, 0x00000003 },
5458 { 0x2800, 0, 0x00000000, 0x00000001 },
5459 { 0x2804, 0, 0x00000000, 0x00003f01 },
5460 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5461 { 0x2810, 0, 0xffff0000, 0x00000000 },
5462 { 0x2814, 0, 0xffff0000, 0x00000000 },
5463 { 0x2818, 0, 0xffff0000, 0x00000000 },
5464 { 0x281c, 0, 0xffff0000, 0x00000000 },
5465 { 0x2834, 0, 0xffffffff, 0x00000000 },
5466 { 0x2840, 0, 0x00000000, 0xffffffff },
5467 { 0x2844, 0, 0x00000000, 0xffffffff },
5468 { 0x2848, 0, 0xffffffff, 0x00000000 },
5469 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5471 { 0x2c00, 0, 0x00000000, 0x00000011 },
5472 { 0x2c04, 0, 0x00000000, 0x00030007 },
5474 { 0x3c00, 0, 0x00000000, 0x00000001 },
5475 { 0x3c04, 0, 0x00000000, 0x00070000 },
5476 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5477 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5478 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5479 { 0x3c14, 0, 0x00000000, 0xffffffff },
5480 { 0x3c18, 0, 0x00000000, 0xffffffff },
5481 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5482 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5484 { 0x5004, 0, 0x00000000, 0x0000007f },
5485 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5487 { 0x5c00, 0, 0x00000000, 0x00000001 },
5488 { 0x5c04, 0, 0x00000000, 0x0003000f },
5489 { 0x5c08, 0, 0x00000003, 0x00000000 },
5490 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5491 { 0x5c10, 0, 0x00000000, 0xffffffff },
5492 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5493 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5494 { 0x5c88, 0, 0x00000000, 0x00077373 },
5495 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5497 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5498 { 0x680c, 0, 0xffffffff, 0x00000000 },
5499 { 0x6810, 0, 0xffffffff, 0x00000000 },
5500 { 0x6814, 0, 0xffffffff, 0x00000000 },
5501 { 0x6818, 0, 0xffffffff, 0x00000000 },
5502 { 0x681c, 0, 0xffffffff, 0x00000000 },
5503 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5504 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5505 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5506 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5507 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5508 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5509 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5510 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5511 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5512 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5513 { 0x684c, 0, 0xffffffff, 0x00000000 },
5514 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5515 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5516 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5517 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5518 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5519 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5521 { 0xffff, 0, 0x00000000, 0x00000000 },
5524 ret = 0;
5525 is_5709 = 0;
5526 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5527 is_5709 = 1;
5529 for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
5530 u32 offset, rw_mask, ro_mask, save_val, val;
5531 u16 flags = reg_tbl[i].flags;
5533 if (is_5709 && (flags & BNX2_FL_NOT_5709))
5534 continue;
5536 offset = (u32) reg_tbl[i].offset;
5537 rw_mask = reg_tbl[i].rw_mask;
5538 ro_mask = reg_tbl[i].ro_mask;
5540 save_val = readl(bp->regview + offset);
5542 writel(0, bp->regview + offset);
5544 val = readl(bp->regview + offset);
5545 if ((val & rw_mask) != 0) {
5546 goto reg_test_err;
5549 if ((val & ro_mask) != (save_val & ro_mask)) {
5550 goto reg_test_err;
5553 writel(0xffffffff, bp->regview + offset);
5555 val = readl(bp->regview + offset);
5556 if ((val & rw_mask) != rw_mask) {
5557 goto reg_test_err;
5560 if ((val & ro_mask) != (save_val & ro_mask)) {
5561 goto reg_test_err;
5564 writel(save_val, bp->regview + offset);
5565 continue;
5567 reg_test_err:
5568 writel(save_val, bp->regview + offset);
5569 ret = -ENODEV;
5570 break;
5572 return ret;
5575 static int
5576 bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
5578 static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
5579 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5580 int i;
5582 for (i = 0; i < sizeof(test_pattern) / 4; i++) {
5583 u32 offset;
5585 for (offset = 0; offset < size; offset += 4) {
5587 bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
5589 if (bnx2_reg_rd_ind(bp, start + offset) !=
5590 test_pattern[i]) {
5591 return -ENODEV;
5595 return 0;
5598 static int
5599 bnx2_test_memory(struct bnx2 *bp)
5601 int ret = 0;
5602 int i;
5603 static struct mem_entry {
5604 u32 offset;
5605 u32 len;
5606 } mem_tbl_5706[] = {
5607 { 0x60000, 0x4000 },
5608 { 0xa0000, 0x3000 },
5609 { 0xe0000, 0x4000 },
5610 { 0x120000, 0x4000 },
5611 { 0x1a0000, 0x4000 },
5612 { 0x160000, 0x4000 },
5613 { 0xffffffff, 0 },
5615 mem_tbl_5709[] = {
5616 { 0x60000, 0x4000 },
5617 { 0xa0000, 0x3000 },
5618 { 0xe0000, 0x4000 },
5619 { 0x120000, 0x4000 },
5620 { 0x1a0000, 0x4000 },
5621 { 0xffffffff, 0 },
5623 struct mem_entry *mem_tbl;
5625 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5626 mem_tbl = mem_tbl_5709;
5627 else
5628 mem_tbl = mem_tbl_5706;
5630 for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
5631 if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
5632 mem_tbl[i].len)) != 0) {
5633 return ret;
5637 return ret;
5640 #define BNX2_MAC_LOOPBACK 0
5641 #define BNX2_PHY_LOOPBACK 1
5643 static int
5644 bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
5646 unsigned int pkt_size, num_pkts, i;
5647 struct sk_buff *skb, *rx_skb;
5648 unsigned char *packet;
5649 u16 rx_start_idx, rx_idx;
5650 dma_addr_t map;
5651 struct tx_bd *txbd;
5652 struct sw_bd *rx_buf;
5653 struct l2_fhdr *rx_hdr;
5654 int ret = -ENODEV;
5655 struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
5656 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5657 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5659 tx_napi = bnapi;
5661 txr = &tx_napi->tx_ring;
5662 rxr = &bnapi->rx_ring;
5663 if (loopback_mode == BNX2_MAC_LOOPBACK) {
5664 bp->loopback = MAC_LOOPBACK;
5665 bnx2_set_mac_loopback(bp);
5667 else if (loopback_mode == BNX2_PHY_LOOPBACK) {
5668 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5669 return 0;
5671 bp->loopback = PHY_LOOPBACK;
5672 bnx2_set_phy_loopback(bp);
5674 else
5675 return -EINVAL;
5677 pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
5678 skb = netdev_alloc_skb(bp->dev, pkt_size);
5679 if (!skb)
5680 return -ENOMEM;
5681 packet = skb_put(skb, pkt_size);
5682 memcpy(packet, bp->dev->dev_addr, 6);
5683 memset(packet + 6, 0x0, 8);
5684 for (i = 14; i < pkt_size; i++)
5685 packet[i] = (unsigned char) (i & 0xff);
5687 if (skb_dma_map(&bp->pdev->dev, skb, DMA_TO_DEVICE)) {
5688 dev_kfree_skb(skb);
5689 return -EIO;
5691 map = skb_shinfo(skb)->dma_head;
5693 REG_WR(bp, BNX2_HC_COMMAND,
5694 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5696 REG_RD(bp, BNX2_HC_COMMAND);
5698 udelay(5);
5699 rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
5701 num_pkts = 0;
5703 txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
5705 txbd->tx_bd_haddr_hi = (u64) map >> 32;
5706 txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
5707 txbd->tx_bd_mss_nbytes = pkt_size;
5708 txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
5710 num_pkts++;
5711 txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
5712 txr->tx_prod_bseq += pkt_size;
5714 REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
5715 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
5717 udelay(100);
5719 REG_WR(bp, BNX2_HC_COMMAND,
5720 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5722 REG_RD(bp, BNX2_HC_COMMAND);
5724 udelay(5);
5726 skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
5727 dev_kfree_skb(skb);
5729 if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
5730 goto loopback_test_done;
5732 rx_idx = bnx2_get_hw_rx_cons(bnapi);
5733 if (rx_idx != rx_start_idx + num_pkts) {
5734 goto loopback_test_done;
5737 rx_buf = &rxr->rx_buf_ring[rx_start_idx];
5738 rx_skb = rx_buf->skb;
5740 rx_hdr = (struct l2_fhdr *) rx_skb->data;
5741 skb_reserve(rx_skb, BNX2_RX_OFFSET);
5743 pci_dma_sync_single_for_cpu(bp->pdev,
5744 pci_unmap_addr(rx_buf, mapping),
5745 bp->rx_buf_size, PCI_DMA_FROMDEVICE);
5747 if (rx_hdr->l2_fhdr_status &
5748 (L2_FHDR_ERRORS_BAD_CRC |
5749 L2_FHDR_ERRORS_PHY_DECODE |
5750 L2_FHDR_ERRORS_ALIGNMENT |
5751 L2_FHDR_ERRORS_TOO_SHORT |
5752 L2_FHDR_ERRORS_GIANT_FRAME)) {
5754 goto loopback_test_done;
5757 if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
5758 goto loopback_test_done;
5761 for (i = 14; i < pkt_size; i++) {
5762 if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
5763 goto loopback_test_done;
5767 ret = 0;
5769 loopback_test_done:
5770 bp->loopback = 0;
5771 return ret;
5774 #define BNX2_MAC_LOOPBACK_FAILED 1
5775 #define BNX2_PHY_LOOPBACK_FAILED 2
5776 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5777 BNX2_PHY_LOOPBACK_FAILED)
5779 static int
5780 bnx2_test_loopback(struct bnx2 *bp)
5782 int rc = 0;
5784 if (!netif_running(bp->dev))
5785 return BNX2_LOOPBACK_FAILED;
5787 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
5788 spin_lock_bh(&bp->phy_lock);
5789 bnx2_init_phy(bp, 1);
5790 spin_unlock_bh(&bp->phy_lock);
5791 if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
5792 rc |= BNX2_MAC_LOOPBACK_FAILED;
5793 if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
5794 rc |= BNX2_PHY_LOOPBACK_FAILED;
5795 return rc;
5798 #define NVRAM_SIZE 0x200
5799 #define CRC32_RESIDUAL 0xdebb20e3
5801 static int
5802 bnx2_test_nvram(struct bnx2 *bp)
5804 __be32 buf[NVRAM_SIZE / 4];
5805 u8 *data = (u8 *) buf;
5806 int rc = 0;
5807 u32 magic, csum;
5809 if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
5810 goto test_nvram_done;
5812 magic = be32_to_cpu(buf[0]);
5813 if (magic != 0x669955aa) {
5814 rc = -ENODEV;
5815 goto test_nvram_done;
5818 if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
5819 goto test_nvram_done;
5821 csum = ether_crc_le(0x100, data);
5822 if (csum != CRC32_RESIDUAL) {
5823 rc = -ENODEV;
5824 goto test_nvram_done;
5827 csum = ether_crc_le(0x100, data + 0x100);
5828 if (csum != CRC32_RESIDUAL) {
5829 rc = -ENODEV;
5832 test_nvram_done:
5833 return rc;
5836 static int
5837 bnx2_test_link(struct bnx2 *bp)
5839 u32 bmsr;
5841 if (!netif_running(bp->dev))
5842 return -ENODEV;
5844 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
5845 if (bp->link_up)
5846 return 0;
5847 return -ENODEV;
5849 spin_lock_bh(&bp->phy_lock);
5850 bnx2_enable_bmsr1(bp);
5851 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5852 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5853 bnx2_disable_bmsr1(bp);
5854 spin_unlock_bh(&bp->phy_lock);
5856 if (bmsr & BMSR_LSTATUS) {
5857 return 0;
5859 return -ENODEV;
5862 static int
5863 bnx2_test_intr(struct bnx2 *bp)
5865 int i;
5866 u16 status_idx;
5868 if (!netif_running(bp->dev))
5869 return -ENODEV;
5871 status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
5873 /* This register is not touched during run-time. */
5874 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
5875 REG_RD(bp, BNX2_HC_COMMAND);
5877 for (i = 0; i < 10; i++) {
5878 if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
5879 status_idx) {
5881 break;
5884 msleep_interruptible(10);
5886 if (i < 10)
5887 return 0;
5889 return -ENODEV;
5892 /* Determining link for parallel detection. */
5893 static int
5894 bnx2_5706_serdes_has_link(struct bnx2 *bp)
5896 u32 mode_ctl, an_dbg, exp;
5898 if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
5899 return 0;
5901 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
5902 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
5904 if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
5905 return 0;
5907 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
5908 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5909 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5911 if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
5912 return 0;
5914 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
5915 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5916 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5918 if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
5919 return 0;
5921 return 1;
5924 static void
5925 bnx2_5706_serdes_timer(struct bnx2 *bp)
5927 int check_link = 1;
5929 spin_lock(&bp->phy_lock);
5930 if (bp->serdes_an_pending) {
5931 bp->serdes_an_pending--;
5932 check_link = 0;
5933 } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
5934 u32 bmcr;
5936 bp->current_interval = BNX2_TIMER_INTERVAL;
5938 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5940 if (bmcr & BMCR_ANENABLE) {
5941 if (bnx2_5706_serdes_has_link(bp)) {
5942 bmcr &= ~BMCR_ANENABLE;
5943 bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
5944 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
5945 bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
5949 else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
5950 (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
5951 u32 phy2;
5953 bnx2_write_phy(bp, 0x17, 0x0f01);
5954 bnx2_read_phy(bp, 0x15, &phy2);
5955 if (phy2 & 0x20) {
5956 u32 bmcr;
5958 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5959 bmcr |= BMCR_ANENABLE;
5960 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
5962 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
5964 } else
5965 bp->current_interval = BNX2_TIMER_INTERVAL;
5967 if (check_link) {
5968 u32 val;
5970 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
5971 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
5972 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
5974 if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
5975 if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
5976 bnx2_5706s_force_link_dn(bp, 1);
5977 bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
5978 } else
5979 bnx2_set_link(bp);
5980 } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
5981 bnx2_set_link(bp);
5983 spin_unlock(&bp->phy_lock);
5986 static void
5987 bnx2_5708_serdes_timer(struct bnx2 *bp)
5989 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5990 return;
5992 if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
5993 bp->serdes_an_pending = 0;
5994 return;
5997 spin_lock(&bp->phy_lock);
5998 if (bp->serdes_an_pending)
5999 bp->serdes_an_pending--;
6000 else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
6001 u32 bmcr;
6003 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6004 if (bmcr & BMCR_ANENABLE) {
6005 bnx2_enable_forced_2g5(bp);
6006 bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
6007 } else {
6008 bnx2_disable_forced_2g5(bp);
6009 bp->serdes_an_pending = 2;
6010 bp->current_interval = BNX2_TIMER_INTERVAL;
6013 } else
6014 bp->current_interval = BNX2_TIMER_INTERVAL;
6016 spin_unlock(&bp->phy_lock);
6019 static void
6020 bnx2_timer(unsigned long data)
6022 struct bnx2 *bp = (struct bnx2 *) data;
6024 if (!netif_running(bp->dev))
6025 return;
6027 if (atomic_read(&bp->intr_sem) != 0)
6028 goto bnx2_restart_timer;
6030 if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
6031 BNX2_FLAG_USING_MSI)
6032 bnx2_chk_missed_msi(bp);
6034 bnx2_send_heart_beat(bp);
6036 bp->stats_blk->stat_FwRxDrop =
6037 bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
6039 /* workaround occasional corrupted counters */
6040 if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
6041 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
6042 BNX2_HC_COMMAND_STATS_NOW);
6044 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
6045 if (CHIP_NUM(bp) == CHIP_NUM_5706)
6046 bnx2_5706_serdes_timer(bp);
6047 else
6048 bnx2_5708_serdes_timer(bp);
6051 bnx2_restart_timer:
6052 mod_timer(&bp->timer, jiffies + bp->current_interval);
6055 static int
6056 bnx2_request_irq(struct bnx2 *bp)
6058 unsigned long flags;
6059 struct bnx2_irq *irq;
6060 int rc = 0, i;
6062 if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
6063 flags = 0;
6064 else
6065 flags = IRQF_SHARED;
6067 for (i = 0; i < bp->irq_nvecs; i++) {
6068 irq = &bp->irq_tbl[i];
6069 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
6070 &bp->bnx2_napi[i]);
6071 if (rc)
6072 break;
6073 irq->requested = 1;
6075 return rc;
6078 static void
6079 bnx2_free_irq(struct bnx2 *bp)
6081 struct bnx2_irq *irq;
6082 int i;
6084 for (i = 0; i < bp->irq_nvecs; i++) {
6085 irq = &bp->irq_tbl[i];
6086 if (irq->requested)
6087 free_irq(irq->vector, &bp->bnx2_napi[i]);
6088 irq->requested = 0;
6090 if (bp->flags & BNX2_FLAG_USING_MSI)
6091 pci_disable_msi(bp->pdev);
6092 else if (bp->flags & BNX2_FLAG_USING_MSIX)
6093 pci_disable_msix(bp->pdev);
6095 bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
6098 static void
6099 bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
6101 int i, rc;
6102 struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
6103 struct net_device *dev = bp->dev;
6104 const int len = sizeof(bp->irq_tbl[0].name);
6106 bnx2_setup_msix_tbl(bp);
6107 REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
6108 REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
6109 REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
6111 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
6112 msix_ent[i].entry = i;
6113 msix_ent[i].vector = 0;
6116 rc = pci_enable_msix(bp->pdev, msix_ent, BNX2_MAX_MSIX_VEC);
6117 if (rc != 0)
6118 return;
6120 bp->irq_nvecs = msix_vecs;
6121 bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
6122 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
6123 bp->irq_tbl[i].vector = msix_ent[i].vector;
6124 snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
6125 bp->irq_tbl[i].handler = bnx2_msi_1shot;
6129 static void
6130 bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
6132 int cpus = num_online_cpus();
6133 int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
6135 bp->irq_tbl[0].handler = bnx2_interrupt;
6136 strcpy(bp->irq_tbl[0].name, bp->dev->name);
6137 bp->irq_nvecs = 1;
6138 bp->irq_tbl[0].vector = bp->pdev->irq;
6140 if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi && cpus > 1)
6141 bnx2_enable_msix(bp, msix_vecs);
6143 if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
6144 !(bp->flags & BNX2_FLAG_USING_MSIX)) {
6145 if (pci_enable_msi(bp->pdev) == 0) {
6146 bp->flags |= BNX2_FLAG_USING_MSI;
6147 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
6148 bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
6149 bp->irq_tbl[0].handler = bnx2_msi_1shot;
6150 } else
6151 bp->irq_tbl[0].handler = bnx2_msi;
6153 bp->irq_tbl[0].vector = bp->pdev->irq;
6157 bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
6158 bp->dev->real_num_tx_queues = bp->num_tx_rings;
6160 bp->num_rx_rings = bp->irq_nvecs;
6163 /* Called with rtnl_lock */
6164 static int
6165 bnx2_open(struct net_device *dev)
6167 struct bnx2 *bp = netdev_priv(dev);
6168 int rc;
6170 netif_carrier_off(dev);
6172 bnx2_set_power_state(bp, PCI_D0);
6173 bnx2_disable_int(bp);
6175 bnx2_setup_int_mode(bp, disable_msi);
6176 bnx2_napi_enable(bp);
6177 rc = bnx2_alloc_mem(bp);
6178 if (rc)
6179 goto open_err;
6181 rc = bnx2_request_irq(bp);
6182 if (rc)
6183 goto open_err;
6185 rc = bnx2_init_nic(bp, 1);
6186 if (rc)
6187 goto open_err;
6189 mod_timer(&bp->timer, jiffies + bp->current_interval);
6191 atomic_set(&bp->intr_sem, 0);
6193 bnx2_enable_int(bp);
6195 if (bp->flags & BNX2_FLAG_USING_MSI) {
6196 /* Test MSI to make sure it is working
6197 * If MSI test fails, go back to INTx mode
6199 if (bnx2_test_intr(bp) != 0) {
6200 printk(KERN_WARNING PFX "%s: No interrupt was generated"
6201 " using MSI, switching to INTx mode. Please"
6202 " report this failure to the PCI maintainer"
6203 " and include system chipset information.\n",
6204 bp->dev->name);
6206 bnx2_disable_int(bp);
6207 bnx2_free_irq(bp);
6209 bnx2_setup_int_mode(bp, 1);
6211 rc = bnx2_init_nic(bp, 0);
6213 if (!rc)
6214 rc = bnx2_request_irq(bp);
6216 if (rc) {
6217 del_timer_sync(&bp->timer);
6218 goto open_err;
6220 bnx2_enable_int(bp);
6223 if (bp->flags & BNX2_FLAG_USING_MSI)
6224 printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
6225 else if (bp->flags & BNX2_FLAG_USING_MSIX)
6226 printk(KERN_INFO PFX "%s: using MSIX\n", dev->name);
6228 netif_tx_start_all_queues(dev);
6230 return 0;
6232 open_err:
6233 bnx2_napi_disable(bp);
6234 bnx2_free_skbs(bp);
6235 bnx2_free_irq(bp);
6236 bnx2_free_mem(bp);
6237 return rc;
6240 static void
6241 bnx2_reset_task(struct work_struct *work)
6243 struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
6245 if (!netif_running(bp->dev))
6246 return;
6248 bnx2_netif_stop(bp);
6250 bnx2_init_nic(bp, 1);
6252 atomic_set(&bp->intr_sem, 1);
6253 bnx2_netif_start(bp);
6256 static void
6257 bnx2_tx_timeout(struct net_device *dev)
6259 struct bnx2 *bp = netdev_priv(dev);
6261 /* This allows the netif to be shutdown gracefully before resetting */
6262 schedule_work(&bp->reset_task);
6265 #ifdef BCM_VLAN
6266 /* Called with rtnl_lock */
6267 static void
6268 bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
6270 struct bnx2 *bp = netdev_priv(dev);
6272 if (netif_running(dev))
6273 bnx2_netif_stop(bp);
6275 bp->vlgrp = vlgrp;
6277 if (!netif_running(dev))
6278 return;
6280 bnx2_set_rx_mode(dev);
6281 if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
6282 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
6284 bnx2_netif_start(bp);
6286 #endif
6288 /* Called with netif_tx_lock.
6289 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
6290 * netif_wake_queue().
6292 static netdev_tx_t
6293 bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
6295 struct bnx2 *bp = netdev_priv(dev);
6296 dma_addr_t mapping;
6297 struct tx_bd *txbd;
6298 struct sw_tx_bd *tx_buf;
6299 u32 len, vlan_tag_flags, last_frag, mss;
6300 u16 prod, ring_prod;
6301 int i;
6302 struct bnx2_napi *bnapi;
6303 struct bnx2_tx_ring_info *txr;
6304 struct netdev_queue *txq;
6305 struct skb_shared_info *sp;
6307 /* Determine which tx ring we will be placed on */
6308 i = skb_get_queue_mapping(skb);
6309 bnapi = &bp->bnx2_napi[i];
6310 txr = &bnapi->tx_ring;
6311 txq = netdev_get_tx_queue(dev, i);
6313 if (unlikely(bnx2_tx_avail(bp, txr) <
6314 (skb_shinfo(skb)->nr_frags + 1))) {
6315 netif_tx_stop_queue(txq);
6316 printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
6317 dev->name);
6319 return NETDEV_TX_BUSY;
6321 len = skb_headlen(skb);
6322 prod = txr->tx_prod;
6323 ring_prod = TX_RING_IDX(prod);
6325 vlan_tag_flags = 0;
6326 if (skb->ip_summed == CHECKSUM_PARTIAL) {
6327 vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
6330 #ifdef BCM_VLAN
6331 if (bp->vlgrp && vlan_tx_tag_present(skb)) {
6332 vlan_tag_flags |=
6333 (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
6335 #endif
6336 if ((mss = skb_shinfo(skb)->gso_size)) {
6337 u32 tcp_opt_len;
6338 struct iphdr *iph;
6340 vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
6342 tcp_opt_len = tcp_optlen(skb);
6344 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
6345 u32 tcp_off = skb_transport_offset(skb) -
6346 sizeof(struct ipv6hdr) - ETH_HLEN;
6348 vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
6349 TX_BD_FLAGS_SW_FLAGS;
6350 if (likely(tcp_off == 0))
6351 vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
6352 else {
6353 tcp_off >>= 3;
6354 vlan_tag_flags |= ((tcp_off & 0x3) <<
6355 TX_BD_FLAGS_TCP6_OFF0_SHL) |
6356 ((tcp_off & 0x10) <<
6357 TX_BD_FLAGS_TCP6_OFF4_SHL);
6358 mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
6360 } else {
6361 iph = ip_hdr(skb);
6362 if (tcp_opt_len || (iph->ihl > 5)) {
6363 vlan_tag_flags |= ((iph->ihl - 5) +
6364 (tcp_opt_len >> 2)) << 8;
6367 } else
6368 mss = 0;
6370 if (skb_dma_map(&bp->pdev->dev, skb, DMA_TO_DEVICE)) {
6371 dev_kfree_skb(skb);
6372 return NETDEV_TX_OK;
6375 sp = skb_shinfo(skb);
6376 mapping = sp->dma_head;
6378 tx_buf = &txr->tx_buf_ring[ring_prod];
6379 tx_buf->skb = skb;
6381 txbd = &txr->tx_desc_ring[ring_prod];
6383 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6384 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6385 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6386 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
6388 last_frag = skb_shinfo(skb)->nr_frags;
6389 tx_buf->nr_frags = last_frag;
6390 tx_buf->is_gso = skb_is_gso(skb);
6392 for (i = 0; i < last_frag; i++) {
6393 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
6395 prod = NEXT_TX_BD(prod);
6396 ring_prod = TX_RING_IDX(prod);
6397 txbd = &txr->tx_desc_ring[ring_prod];
6399 len = frag->size;
6400 mapping = sp->dma_maps[i];
6402 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6403 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6404 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6405 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
6408 txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
6410 prod = NEXT_TX_BD(prod);
6411 txr->tx_prod_bseq += skb->len;
6413 REG_WR16(bp, txr->tx_bidx_addr, prod);
6414 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
6416 mmiowb();
6418 txr->tx_prod = prod;
6420 if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
6421 netif_tx_stop_queue(txq);
6422 if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
6423 netif_tx_wake_queue(txq);
6426 return NETDEV_TX_OK;
6429 /* Called with rtnl_lock */
6430 static int
6431 bnx2_close(struct net_device *dev)
6433 struct bnx2 *bp = netdev_priv(dev);
6435 cancel_work_sync(&bp->reset_task);
6437 bnx2_disable_int_sync(bp);
6438 bnx2_napi_disable(bp);
6439 del_timer_sync(&bp->timer);
6440 bnx2_shutdown_chip(bp);
6441 bnx2_free_irq(bp);
6442 bnx2_free_skbs(bp);
6443 bnx2_free_mem(bp);
6444 bp->link_up = 0;
6445 netif_carrier_off(bp->dev);
6446 bnx2_set_power_state(bp, PCI_D3hot);
6447 return 0;
6450 #define GET_NET_STATS64(ctr) \
6451 (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
6452 (unsigned long) (ctr##_lo)
6454 #define GET_NET_STATS32(ctr) \
6455 (ctr##_lo)
6457 #if (BITS_PER_LONG == 64)
6458 #define GET_NET_STATS GET_NET_STATS64
6459 #else
6460 #define GET_NET_STATS GET_NET_STATS32
6461 #endif
6463 static struct net_device_stats *
6464 bnx2_get_stats(struct net_device *dev)
6466 struct bnx2 *bp = netdev_priv(dev);
6467 struct statistics_block *stats_blk = bp->stats_blk;
6468 struct net_device_stats *net_stats = &dev->stats;
6470 if (bp->stats_blk == NULL) {
6471 return net_stats;
6473 net_stats->rx_packets =
6474 GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) +
6475 GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) +
6476 GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts);
6478 net_stats->tx_packets =
6479 GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) +
6480 GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) +
6481 GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts);
6483 net_stats->rx_bytes =
6484 GET_NET_STATS(stats_blk->stat_IfHCInOctets);
6486 net_stats->tx_bytes =
6487 GET_NET_STATS(stats_blk->stat_IfHCOutOctets);
6489 net_stats->multicast =
6490 GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts);
6492 net_stats->collisions =
6493 (unsigned long) stats_blk->stat_EtherStatsCollisions;
6495 net_stats->rx_length_errors =
6496 (unsigned long) (stats_blk->stat_EtherStatsUndersizePkts +
6497 stats_blk->stat_EtherStatsOverrsizePkts);
6499 net_stats->rx_over_errors =
6500 (unsigned long) (stats_blk->stat_IfInFTQDiscards +
6501 stats_blk->stat_IfInMBUFDiscards);
6503 net_stats->rx_frame_errors =
6504 (unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors;
6506 net_stats->rx_crc_errors =
6507 (unsigned long) stats_blk->stat_Dot3StatsFCSErrors;
6509 net_stats->rx_errors = net_stats->rx_length_errors +
6510 net_stats->rx_over_errors + net_stats->rx_frame_errors +
6511 net_stats->rx_crc_errors;
6513 net_stats->tx_aborted_errors =
6514 (unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions +
6515 stats_blk->stat_Dot3StatsLateCollisions);
6517 if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
6518 (CHIP_ID(bp) == CHIP_ID_5708_A0))
6519 net_stats->tx_carrier_errors = 0;
6520 else {
6521 net_stats->tx_carrier_errors =
6522 (unsigned long)
6523 stats_blk->stat_Dot3StatsCarrierSenseErrors;
6526 net_stats->tx_errors =
6527 (unsigned long)
6528 stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
6530 net_stats->tx_aborted_errors +
6531 net_stats->tx_carrier_errors;
6533 net_stats->rx_missed_errors =
6534 (unsigned long) (stats_blk->stat_IfInFTQDiscards +
6535 stats_blk->stat_IfInMBUFDiscards + stats_blk->stat_FwRxDrop);
6537 return net_stats;
6540 /* All ethtool functions called with rtnl_lock */
6542 static int
6543 bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6545 struct bnx2 *bp = netdev_priv(dev);
6546 int support_serdes = 0, support_copper = 0;
6548 cmd->supported = SUPPORTED_Autoneg;
6549 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6550 support_serdes = 1;
6551 support_copper = 1;
6552 } else if (bp->phy_port == PORT_FIBRE)
6553 support_serdes = 1;
6554 else
6555 support_copper = 1;
6557 if (support_serdes) {
6558 cmd->supported |= SUPPORTED_1000baseT_Full |
6559 SUPPORTED_FIBRE;
6560 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
6561 cmd->supported |= SUPPORTED_2500baseX_Full;
6564 if (support_copper) {
6565 cmd->supported |= SUPPORTED_10baseT_Half |
6566 SUPPORTED_10baseT_Full |
6567 SUPPORTED_100baseT_Half |
6568 SUPPORTED_100baseT_Full |
6569 SUPPORTED_1000baseT_Full |
6570 SUPPORTED_TP;
6574 spin_lock_bh(&bp->phy_lock);
6575 cmd->port = bp->phy_port;
6576 cmd->advertising = bp->advertising;
6578 if (bp->autoneg & AUTONEG_SPEED) {
6579 cmd->autoneg = AUTONEG_ENABLE;
6581 else {
6582 cmd->autoneg = AUTONEG_DISABLE;
6585 if (netif_carrier_ok(dev)) {
6586 cmd->speed = bp->line_speed;
6587 cmd->duplex = bp->duplex;
6589 else {
6590 cmd->speed = -1;
6591 cmd->duplex = -1;
6593 spin_unlock_bh(&bp->phy_lock);
6595 cmd->transceiver = XCVR_INTERNAL;
6596 cmd->phy_address = bp->phy_addr;
6598 return 0;
6601 static int
6602 bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6604 struct bnx2 *bp = netdev_priv(dev);
6605 u8 autoneg = bp->autoneg;
6606 u8 req_duplex = bp->req_duplex;
6607 u16 req_line_speed = bp->req_line_speed;
6608 u32 advertising = bp->advertising;
6609 int err = -EINVAL;
6611 spin_lock_bh(&bp->phy_lock);
6613 if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
6614 goto err_out_unlock;
6616 if (cmd->port != bp->phy_port &&
6617 !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
6618 goto err_out_unlock;
6620 /* If device is down, we can store the settings only if the user
6621 * is setting the currently active port.
6623 if (!netif_running(dev) && cmd->port != bp->phy_port)
6624 goto err_out_unlock;
6626 if (cmd->autoneg == AUTONEG_ENABLE) {
6627 autoneg |= AUTONEG_SPEED;
6629 cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED;
6631 /* allow advertising 1 speed */
6632 if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
6633 (cmd->advertising == ADVERTISED_10baseT_Full) ||
6634 (cmd->advertising == ADVERTISED_100baseT_Half) ||
6635 (cmd->advertising == ADVERTISED_100baseT_Full)) {
6637 if (cmd->port == PORT_FIBRE)
6638 goto err_out_unlock;
6640 advertising = cmd->advertising;
6642 } else if (cmd->advertising == ADVERTISED_2500baseX_Full) {
6643 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ||
6644 (cmd->port == PORT_TP))
6645 goto err_out_unlock;
6646 } else if (cmd->advertising == ADVERTISED_1000baseT_Full)
6647 advertising = cmd->advertising;
6648 else if (cmd->advertising == ADVERTISED_1000baseT_Half)
6649 goto err_out_unlock;
6650 else {
6651 if (cmd->port == PORT_FIBRE)
6652 advertising = ETHTOOL_ALL_FIBRE_SPEED;
6653 else
6654 advertising = ETHTOOL_ALL_COPPER_SPEED;
6656 advertising |= ADVERTISED_Autoneg;
6658 else {
6659 if (cmd->port == PORT_FIBRE) {
6660 if ((cmd->speed != SPEED_1000 &&
6661 cmd->speed != SPEED_2500) ||
6662 (cmd->duplex != DUPLEX_FULL))
6663 goto err_out_unlock;
6665 if (cmd->speed == SPEED_2500 &&
6666 !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
6667 goto err_out_unlock;
6669 else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
6670 goto err_out_unlock;
6672 autoneg &= ~AUTONEG_SPEED;
6673 req_line_speed = cmd->speed;
6674 req_duplex = cmd->duplex;
6675 advertising = 0;
6678 bp->autoneg = autoneg;
6679 bp->advertising = advertising;
6680 bp->req_line_speed = req_line_speed;
6681 bp->req_duplex = req_duplex;
6683 err = 0;
6684 /* If device is down, the new settings will be picked up when it is
6685 * brought up.
6687 if (netif_running(dev))
6688 err = bnx2_setup_phy(bp, cmd->port);
6690 err_out_unlock:
6691 spin_unlock_bh(&bp->phy_lock);
6693 return err;
6696 static void
6697 bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
6699 struct bnx2 *bp = netdev_priv(dev);
6701 strcpy(info->driver, DRV_MODULE_NAME);
6702 strcpy(info->version, DRV_MODULE_VERSION);
6703 strcpy(info->bus_info, pci_name(bp->pdev));
6704 strcpy(info->fw_version, bp->fw_version);
6707 #define BNX2_REGDUMP_LEN (32 * 1024)
6709 static int
6710 bnx2_get_regs_len(struct net_device *dev)
6712 return BNX2_REGDUMP_LEN;
6715 static void
6716 bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
6718 u32 *p = _p, i, offset;
6719 u8 *orig_p = _p;
6720 struct bnx2 *bp = netdev_priv(dev);
6721 u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
6722 0x0800, 0x0880, 0x0c00, 0x0c10,
6723 0x0c30, 0x0d08, 0x1000, 0x101c,
6724 0x1040, 0x1048, 0x1080, 0x10a4,
6725 0x1400, 0x1490, 0x1498, 0x14f0,
6726 0x1500, 0x155c, 0x1580, 0x15dc,
6727 0x1600, 0x1658, 0x1680, 0x16d8,
6728 0x1800, 0x1820, 0x1840, 0x1854,
6729 0x1880, 0x1894, 0x1900, 0x1984,
6730 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
6731 0x1c80, 0x1c94, 0x1d00, 0x1d84,
6732 0x2000, 0x2030, 0x23c0, 0x2400,
6733 0x2800, 0x2820, 0x2830, 0x2850,
6734 0x2b40, 0x2c10, 0x2fc0, 0x3058,
6735 0x3c00, 0x3c94, 0x4000, 0x4010,
6736 0x4080, 0x4090, 0x43c0, 0x4458,
6737 0x4c00, 0x4c18, 0x4c40, 0x4c54,
6738 0x4fc0, 0x5010, 0x53c0, 0x5444,
6739 0x5c00, 0x5c18, 0x5c80, 0x5c90,
6740 0x5fc0, 0x6000, 0x6400, 0x6428,
6741 0x6800, 0x6848, 0x684c, 0x6860,
6742 0x6888, 0x6910, 0x8000 };
6744 regs->version = 0;
6746 memset(p, 0, BNX2_REGDUMP_LEN);
6748 if (!netif_running(bp->dev))
6749 return;
6751 i = 0;
6752 offset = reg_boundaries[0];
6753 p += offset;
6754 while (offset < BNX2_REGDUMP_LEN) {
6755 *p++ = REG_RD(bp, offset);
6756 offset += 4;
6757 if (offset == reg_boundaries[i + 1]) {
6758 offset = reg_boundaries[i + 2];
6759 p = (u32 *) (orig_p + offset);
6760 i += 2;
6765 static void
6766 bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6768 struct bnx2 *bp = netdev_priv(dev);
6770 if (bp->flags & BNX2_FLAG_NO_WOL) {
6771 wol->supported = 0;
6772 wol->wolopts = 0;
6774 else {
6775 wol->supported = WAKE_MAGIC;
6776 if (bp->wol)
6777 wol->wolopts = WAKE_MAGIC;
6778 else
6779 wol->wolopts = 0;
6781 memset(&wol->sopass, 0, sizeof(wol->sopass));
6784 static int
6785 bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6787 struct bnx2 *bp = netdev_priv(dev);
6789 if (wol->wolopts & ~WAKE_MAGIC)
6790 return -EINVAL;
6792 if (wol->wolopts & WAKE_MAGIC) {
6793 if (bp->flags & BNX2_FLAG_NO_WOL)
6794 return -EINVAL;
6796 bp->wol = 1;
6798 else {
6799 bp->wol = 0;
6801 return 0;
6804 static int
6805 bnx2_nway_reset(struct net_device *dev)
6807 struct bnx2 *bp = netdev_priv(dev);
6808 u32 bmcr;
6810 if (!netif_running(dev))
6811 return -EAGAIN;
6813 if (!(bp->autoneg & AUTONEG_SPEED)) {
6814 return -EINVAL;
6817 spin_lock_bh(&bp->phy_lock);
6819 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6820 int rc;
6822 rc = bnx2_setup_remote_phy(bp, bp->phy_port);
6823 spin_unlock_bh(&bp->phy_lock);
6824 return rc;
6827 /* Force a link down visible on the other side */
6828 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
6829 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
6830 spin_unlock_bh(&bp->phy_lock);
6832 msleep(20);
6834 spin_lock_bh(&bp->phy_lock);
6836 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
6837 bp->serdes_an_pending = 1;
6838 mod_timer(&bp->timer, jiffies + bp->current_interval);
6841 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6842 bmcr &= ~BMCR_LOOPBACK;
6843 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
6845 spin_unlock_bh(&bp->phy_lock);
6847 return 0;
6850 static u32
6851 bnx2_get_link(struct net_device *dev)
6853 struct bnx2 *bp = netdev_priv(dev);
6855 return bp->link_up;
6858 static int
6859 bnx2_get_eeprom_len(struct net_device *dev)
6861 struct bnx2 *bp = netdev_priv(dev);
6863 if (bp->flash_info == NULL)
6864 return 0;
6866 return (int) bp->flash_size;
6869 static int
6870 bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
6871 u8 *eebuf)
6873 struct bnx2 *bp = netdev_priv(dev);
6874 int rc;
6876 if (!netif_running(dev))
6877 return -EAGAIN;
6879 /* parameters already validated in ethtool_get_eeprom */
6881 rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
6883 return rc;
6886 static int
6887 bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
6888 u8 *eebuf)
6890 struct bnx2 *bp = netdev_priv(dev);
6891 int rc;
6893 if (!netif_running(dev))
6894 return -EAGAIN;
6896 /* parameters already validated in ethtool_set_eeprom */
6898 rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
6900 return rc;
6903 static int
6904 bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
6906 struct bnx2 *bp = netdev_priv(dev);
6908 memset(coal, 0, sizeof(struct ethtool_coalesce));
6910 coal->rx_coalesce_usecs = bp->rx_ticks;
6911 coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
6912 coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
6913 coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
6915 coal->tx_coalesce_usecs = bp->tx_ticks;
6916 coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
6917 coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
6918 coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
6920 coal->stats_block_coalesce_usecs = bp->stats_ticks;
6922 return 0;
6925 static int
6926 bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
6928 struct bnx2 *bp = netdev_priv(dev);
6930 bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
6931 if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
6933 bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
6934 if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
6936 bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
6937 if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
6939 bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
6940 if (bp->rx_quick_cons_trip_int > 0xff)
6941 bp->rx_quick_cons_trip_int = 0xff;
6943 bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
6944 if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
6946 bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
6947 if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
6949 bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
6950 if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
6952 bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
6953 if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
6954 0xff;
6956 bp->stats_ticks = coal->stats_block_coalesce_usecs;
6957 if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
6958 if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
6959 bp->stats_ticks = USEC_PER_SEC;
6961 if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
6962 bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
6963 bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
6965 if (netif_running(bp->dev)) {
6966 bnx2_netif_stop(bp);
6967 bnx2_init_nic(bp, 0);
6968 bnx2_netif_start(bp);
6971 return 0;
6974 static void
6975 bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
6977 struct bnx2 *bp = netdev_priv(dev);
6979 ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
6980 ering->rx_mini_max_pending = 0;
6981 ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
6983 ering->rx_pending = bp->rx_ring_size;
6984 ering->rx_mini_pending = 0;
6985 ering->rx_jumbo_pending = bp->rx_pg_ring_size;
6987 ering->tx_max_pending = MAX_TX_DESC_CNT;
6988 ering->tx_pending = bp->tx_ring_size;
6991 static int
6992 bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
6994 if (netif_running(bp->dev)) {
6995 bnx2_netif_stop(bp);
6996 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
6997 bnx2_free_skbs(bp);
6998 bnx2_free_mem(bp);
7001 bnx2_set_rx_ring_size(bp, rx);
7002 bp->tx_ring_size = tx;
7004 if (netif_running(bp->dev)) {
7005 int rc;
7007 rc = bnx2_alloc_mem(bp);
7008 if (!rc)
7009 rc = bnx2_init_nic(bp, 0);
7011 if (rc) {
7012 bnx2_napi_enable(bp);
7013 dev_close(bp->dev);
7014 return rc;
7016 bnx2_netif_start(bp);
7018 return 0;
7021 static int
7022 bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
7024 struct bnx2 *bp = netdev_priv(dev);
7025 int rc;
7027 if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
7028 (ering->tx_pending > MAX_TX_DESC_CNT) ||
7029 (ering->tx_pending <= MAX_SKB_FRAGS)) {
7031 return -EINVAL;
7033 rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
7034 return rc;
7037 static void
7038 bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
7040 struct bnx2 *bp = netdev_priv(dev);
7042 epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
7043 epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
7044 epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
7047 static int
7048 bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
7050 struct bnx2 *bp = netdev_priv(dev);
7052 bp->req_flow_ctrl = 0;
7053 if (epause->rx_pause)
7054 bp->req_flow_ctrl |= FLOW_CTRL_RX;
7055 if (epause->tx_pause)
7056 bp->req_flow_ctrl |= FLOW_CTRL_TX;
7058 if (epause->autoneg) {
7059 bp->autoneg |= AUTONEG_FLOW_CTRL;
7061 else {
7062 bp->autoneg &= ~AUTONEG_FLOW_CTRL;
7065 if (netif_running(dev)) {
7066 spin_lock_bh(&bp->phy_lock);
7067 bnx2_setup_phy(bp, bp->phy_port);
7068 spin_unlock_bh(&bp->phy_lock);
7071 return 0;
7074 static u32
7075 bnx2_get_rx_csum(struct net_device *dev)
7077 struct bnx2 *bp = netdev_priv(dev);
7079 return bp->rx_csum;
7082 static int
7083 bnx2_set_rx_csum(struct net_device *dev, u32 data)
7085 struct bnx2 *bp = netdev_priv(dev);
7087 bp->rx_csum = data;
7088 return 0;
7091 static int
7092 bnx2_set_tso(struct net_device *dev, u32 data)
7094 struct bnx2 *bp = netdev_priv(dev);
7096 if (data) {
7097 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
7098 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7099 dev->features |= NETIF_F_TSO6;
7100 } else
7101 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
7102 NETIF_F_TSO_ECN);
7103 return 0;
7106 static struct {
7107 char string[ETH_GSTRING_LEN];
7108 } bnx2_stats_str_arr[] = {
7109 { "rx_bytes" },
7110 { "rx_error_bytes" },
7111 { "tx_bytes" },
7112 { "tx_error_bytes" },
7113 { "rx_ucast_packets" },
7114 { "rx_mcast_packets" },
7115 { "rx_bcast_packets" },
7116 { "tx_ucast_packets" },
7117 { "tx_mcast_packets" },
7118 { "tx_bcast_packets" },
7119 { "tx_mac_errors" },
7120 { "tx_carrier_errors" },
7121 { "rx_crc_errors" },
7122 { "rx_align_errors" },
7123 { "tx_single_collisions" },
7124 { "tx_multi_collisions" },
7125 { "tx_deferred" },
7126 { "tx_excess_collisions" },
7127 { "tx_late_collisions" },
7128 { "tx_total_collisions" },
7129 { "rx_fragments" },
7130 { "rx_jabbers" },
7131 { "rx_undersize_packets" },
7132 { "rx_oversize_packets" },
7133 { "rx_64_byte_packets" },
7134 { "rx_65_to_127_byte_packets" },
7135 { "rx_128_to_255_byte_packets" },
7136 { "rx_256_to_511_byte_packets" },
7137 { "rx_512_to_1023_byte_packets" },
7138 { "rx_1024_to_1522_byte_packets" },
7139 { "rx_1523_to_9022_byte_packets" },
7140 { "tx_64_byte_packets" },
7141 { "tx_65_to_127_byte_packets" },
7142 { "tx_128_to_255_byte_packets" },
7143 { "tx_256_to_511_byte_packets" },
7144 { "tx_512_to_1023_byte_packets" },
7145 { "tx_1024_to_1522_byte_packets" },
7146 { "tx_1523_to_9022_byte_packets" },
7147 { "rx_xon_frames" },
7148 { "rx_xoff_frames" },
7149 { "tx_xon_frames" },
7150 { "tx_xoff_frames" },
7151 { "rx_mac_ctrl_frames" },
7152 { "rx_filtered_packets" },
7153 { "rx_ftq_discards" },
7154 { "rx_discards" },
7155 { "rx_fw_discards" },
7158 #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
7159 sizeof(bnx2_stats_str_arr[0]))
7161 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
7163 static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
7164 STATS_OFFSET32(stat_IfHCInOctets_hi),
7165 STATS_OFFSET32(stat_IfHCInBadOctets_hi),
7166 STATS_OFFSET32(stat_IfHCOutOctets_hi),
7167 STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
7168 STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
7169 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
7170 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
7171 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
7172 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
7173 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
7174 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
7175 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
7176 STATS_OFFSET32(stat_Dot3StatsFCSErrors),
7177 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
7178 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
7179 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
7180 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
7181 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
7182 STATS_OFFSET32(stat_Dot3StatsLateCollisions),
7183 STATS_OFFSET32(stat_EtherStatsCollisions),
7184 STATS_OFFSET32(stat_EtherStatsFragments),
7185 STATS_OFFSET32(stat_EtherStatsJabbers),
7186 STATS_OFFSET32(stat_EtherStatsUndersizePkts),
7187 STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
7188 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
7189 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
7190 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
7191 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
7192 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
7193 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
7194 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
7195 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
7196 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
7197 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
7198 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
7199 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
7200 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
7201 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
7202 STATS_OFFSET32(stat_XonPauseFramesReceived),
7203 STATS_OFFSET32(stat_XoffPauseFramesReceived),
7204 STATS_OFFSET32(stat_OutXonSent),
7205 STATS_OFFSET32(stat_OutXoffSent),
7206 STATS_OFFSET32(stat_MacControlFramesReceived),
7207 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
7208 STATS_OFFSET32(stat_IfInFTQDiscards),
7209 STATS_OFFSET32(stat_IfInMBUFDiscards),
7210 STATS_OFFSET32(stat_FwRxDrop),
7213 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
7214 * skipped because of errata.
7216 static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
7217 8,0,8,8,8,8,8,8,8,8,
7218 4,0,4,4,4,4,4,4,4,4,
7219 4,4,4,4,4,4,4,4,4,4,
7220 4,4,4,4,4,4,4,4,4,4,
7221 4,4,4,4,4,4,4,
7224 static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
7225 8,0,8,8,8,8,8,8,8,8,
7226 4,4,4,4,4,4,4,4,4,4,
7227 4,4,4,4,4,4,4,4,4,4,
7228 4,4,4,4,4,4,4,4,4,4,
7229 4,4,4,4,4,4,4,
7232 #define BNX2_NUM_TESTS 6
7234 static struct {
7235 char string[ETH_GSTRING_LEN];
7236 } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
7237 { "register_test (offline)" },
7238 { "memory_test (offline)" },
7239 { "loopback_test (offline)" },
7240 { "nvram_test (online)" },
7241 { "interrupt_test (online)" },
7242 { "link_test (online)" },
7245 static int
7246 bnx2_get_sset_count(struct net_device *dev, int sset)
7248 switch (sset) {
7249 case ETH_SS_TEST:
7250 return BNX2_NUM_TESTS;
7251 case ETH_SS_STATS:
7252 return BNX2_NUM_STATS;
7253 default:
7254 return -EOPNOTSUPP;
7258 static void
7259 bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
7261 struct bnx2 *bp = netdev_priv(dev);
7263 bnx2_set_power_state(bp, PCI_D0);
7265 memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
7266 if (etest->flags & ETH_TEST_FL_OFFLINE) {
7267 int i;
7269 bnx2_netif_stop(bp);
7270 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
7271 bnx2_free_skbs(bp);
7273 if (bnx2_test_registers(bp) != 0) {
7274 buf[0] = 1;
7275 etest->flags |= ETH_TEST_FL_FAILED;
7277 if (bnx2_test_memory(bp) != 0) {
7278 buf[1] = 1;
7279 etest->flags |= ETH_TEST_FL_FAILED;
7281 if ((buf[2] = bnx2_test_loopback(bp)) != 0)
7282 etest->flags |= ETH_TEST_FL_FAILED;
7284 if (!netif_running(bp->dev))
7285 bnx2_shutdown_chip(bp);
7286 else {
7287 bnx2_init_nic(bp, 1);
7288 bnx2_netif_start(bp);
7291 /* wait for link up */
7292 for (i = 0; i < 7; i++) {
7293 if (bp->link_up)
7294 break;
7295 msleep_interruptible(1000);
7299 if (bnx2_test_nvram(bp) != 0) {
7300 buf[3] = 1;
7301 etest->flags |= ETH_TEST_FL_FAILED;
7303 if (bnx2_test_intr(bp) != 0) {
7304 buf[4] = 1;
7305 etest->flags |= ETH_TEST_FL_FAILED;
7308 if (bnx2_test_link(bp) != 0) {
7309 buf[5] = 1;
7310 etest->flags |= ETH_TEST_FL_FAILED;
7313 if (!netif_running(bp->dev))
7314 bnx2_set_power_state(bp, PCI_D3hot);
7317 static void
7318 bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
7320 switch (stringset) {
7321 case ETH_SS_STATS:
7322 memcpy(buf, bnx2_stats_str_arr,
7323 sizeof(bnx2_stats_str_arr));
7324 break;
7325 case ETH_SS_TEST:
7326 memcpy(buf, bnx2_tests_str_arr,
7327 sizeof(bnx2_tests_str_arr));
7328 break;
7332 static void
7333 bnx2_get_ethtool_stats(struct net_device *dev,
7334 struct ethtool_stats *stats, u64 *buf)
7336 struct bnx2 *bp = netdev_priv(dev);
7337 int i;
7338 u32 *hw_stats = (u32 *) bp->stats_blk;
7339 u8 *stats_len_arr = NULL;
7341 if (hw_stats == NULL) {
7342 memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
7343 return;
7346 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
7347 (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
7348 (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
7349 (CHIP_ID(bp) == CHIP_ID_5708_A0))
7350 stats_len_arr = bnx2_5706_stats_len_arr;
7351 else
7352 stats_len_arr = bnx2_5708_stats_len_arr;
7354 for (i = 0; i < BNX2_NUM_STATS; i++) {
7355 if (stats_len_arr[i] == 0) {
7356 /* skip this counter */
7357 buf[i] = 0;
7358 continue;
7360 if (stats_len_arr[i] == 4) {
7361 /* 4-byte counter */
7362 buf[i] = (u64)
7363 *(hw_stats + bnx2_stats_offset_arr[i]);
7364 continue;
7366 /* 8-byte counter */
7367 buf[i] = (((u64) *(hw_stats +
7368 bnx2_stats_offset_arr[i])) << 32) +
7369 *(hw_stats + bnx2_stats_offset_arr[i] + 1);
7373 static int
7374 bnx2_phys_id(struct net_device *dev, u32 data)
7376 struct bnx2 *bp = netdev_priv(dev);
7377 int i;
7378 u32 save;
7380 bnx2_set_power_state(bp, PCI_D0);
7382 if (data == 0)
7383 data = 2;
7385 save = REG_RD(bp, BNX2_MISC_CFG);
7386 REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
7388 for (i = 0; i < (data * 2); i++) {
7389 if ((i % 2) == 0) {
7390 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
7392 else {
7393 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
7394 BNX2_EMAC_LED_1000MB_OVERRIDE |
7395 BNX2_EMAC_LED_100MB_OVERRIDE |
7396 BNX2_EMAC_LED_10MB_OVERRIDE |
7397 BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
7398 BNX2_EMAC_LED_TRAFFIC);
7400 msleep_interruptible(500);
7401 if (signal_pending(current))
7402 break;
7404 REG_WR(bp, BNX2_EMAC_LED, 0);
7405 REG_WR(bp, BNX2_MISC_CFG, save);
7407 if (!netif_running(dev))
7408 bnx2_set_power_state(bp, PCI_D3hot);
7410 return 0;
7413 static int
7414 bnx2_set_tx_csum(struct net_device *dev, u32 data)
7416 struct bnx2 *bp = netdev_priv(dev);
7418 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7419 return (ethtool_op_set_tx_ipv6_csum(dev, data));
7420 else
7421 return (ethtool_op_set_tx_csum(dev, data));
7424 static const struct ethtool_ops bnx2_ethtool_ops = {
7425 .get_settings = bnx2_get_settings,
7426 .set_settings = bnx2_set_settings,
7427 .get_drvinfo = bnx2_get_drvinfo,
7428 .get_regs_len = bnx2_get_regs_len,
7429 .get_regs = bnx2_get_regs,
7430 .get_wol = bnx2_get_wol,
7431 .set_wol = bnx2_set_wol,
7432 .nway_reset = bnx2_nway_reset,
7433 .get_link = bnx2_get_link,
7434 .get_eeprom_len = bnx2_get_eeprom_len,
7435 .get_eeprom = bnx2_get_eeprom,
7436 .set_eeprom = bnx2_set_eeprom,
7437 .get_coalesce = bnx2_get_coalesce,
7438 .set_coalesce = bnx2_set_coalesce,
7439 .get_ringparam = bnx2_get_ringparam,
7440 .set_ringparam = bnx2_set_ringparam,
7441 .get_pauseparam = bnx2_get_pauseparam,
7442 .set_pauseparam = bnx2_set_pauseparam,
7443 .get_rx_csum = bnx2_get_rx_csum,
7444 .set_rx_csum = bnx2_set_rx_csum,
7445 .set_tx_csum = bnx2_set_tx_csum,
7446 .set_sg = ethtool_op_set_sg,
7447 .set_tso = bnx2_set_tso,
7448 .self_test = bnx2_self_test,
7449 .get_strings = bnx2_get_strings,
7450 .phys_id = bnx2_phys_id,
7451 .get_ethtool_stats = bnx2_get_ethtool_stats,
7452 .get_sset_count = bnx2_get_sset_count,
7455 /* Called with rtnl_lock */
7456 static int
7457 bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
7459 struct mii_ioctl_data *data = if_mii(ifr);
7460 struct bnx2 *bp = netdev_priv(dev);
7461 int err;
7463 switch(cmd) {
7464 case SIOCGMIIPHY:
7465 data->phy_id = bp->phy_addr;
7467 /* fallthru */
7468 case SIOCGMIIREG: {
7469 u32 mii_regval;
7471 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7472 return -EOPNOTSUPP;
7474 if (!netif_running(dev))
7475 return -EAGAIN;
7477 spin_lock_bh(&bp->phy_lock);
7478 err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
7479 spin_unlock_bh(&bp->phy_lock);
7481 data->val_out = mii_regval;
7483 return err;
7486 case SIOCSMIIREG:
7487 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7488 return -EOPNOTSUPP;
7490 if (!netif_running(dev))
7491 return -EAGAIN;
7493 spin_lock_bh(&bp->phy_lock);
7494 err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
7495 spin_unlock_bh(&bp->phy_lock);
7497 return err;
7499 default:
7500 /* do nothing */
7501 break;
7503 return -EOPNOTSUPP;
7506 /* Called with rtnl_lock */
7507 static int
7508 bnx2_change_mac_addr(struct net_device *dev, void *p)
7510 struct sockaddr *addr = p;
7511 struct bnx2 *bp = netdev_priv(dev);
7513 if (!is_valid_ether_addr(addr->sa_data))
7514 return -EINVAL;
7516 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
7517 if (netif_running(dev))
7518 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
7520 return 0;
7523 /* Called with rtnl_lock */
7524 static int
7525 bnx2_change_mtu(struct net_device *dev, int new_mtu)
7527 struct bnx2 *bp = netdev_priv(dev);
7529 if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
7530 ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
7531 return -EINVAL;
7533 dev->mtu = new_mtu;
7534 return (bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size));
7537 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
7538 static void
7539 poll_bnx2(struct net_device *dev)
7541 struct bnx2 *bp = netdev_priv(dev);
7542 int i;
7544 for (i = 0; i < bp->irq_nvecs; i++) {
7545 disable_irq(bp->irq_tbl[i].vector);
7546 bnx2_interrupt(bp->irq_tbl[i].vector, &bp->bnx2_napi[i]);
7547 enable_irq(bp->irq_tbl[i].vector);
7550 #endif
7552 static void __devinit
7553 bnx2_get_5709_media(struct bnx2 *bp)
7555 u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
7556 u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
7557 u32 strap;
7559 if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
7560 return;
7561 else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
7562 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7563 return;
7566 if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
7567 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
7568 else
7569 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
7571 if (PCI_FUNC(bp->pdev->devfn) == 0) {
7572 switch (strap) {
7573 case 0x4:
7574 case 0x5:
7575 case 0x6:
7576 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7577 return;
7579 } else {
7580 switch (strap) {
7581 case 0x1:
7582 case 0x2:
7583 case 0x4:
7584 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7585 return;
7590 static void __devinit
7591 bnx2_get_pci_speed(struct bnx2 *bp)
7593 u32 reg;
7595 reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
7596 if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
7597 u32 clkreg;
7599 bp->flags |= BNX2_FLAG_PCIX;
7601 clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
7603 clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
7604 switch (clkreg) {
7605 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
7606 bp->bus_speed_mhz = 133;
7607 break;
7609 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
7610 bp->bus_speed_mhz = 100;
7611 break;
7613 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
7614 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
7615 bp->bus_speed_mhz = 66;
7616 break;
7618 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
7619 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
7620 bp->bus_speed_mhz = 50;
7621 break;
7623 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
7624 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
7625 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
7626 bp->bus_speed_mhz = 33;
7627 break;
7630 else {
7631 if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
7632 bp->bus_speed_mhz = 66;
7633 else
7634 bp->bus_speed_mhz = 33;
7637 if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
7638 bp->flags |= BNX2_FLAG_PCI_32BIT;
7642 static int __devinit
7643 bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
7645 struct bnx2 *bp;
7646 unsigned long mem_len;
7647 int rc, i, j;
7648 u32 reg;
7649 u64 dma_mask, persist_dma_mask;
7651 SET_NETDEV_DEV(dev, &pdev->dev);
7652 bp = netdev_priv(dev);
7654 bp->flags = 0;
7655 bp->phy_flags = 0;
7657 /* enable device (incl. PCI PM wakeup), and bus-mastering */
7658 rc = pci_enable_device(pdev);
7659 if (rc) {
7660 dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
7661 goto err_out;
7664 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
7665 dev_err(&pdev->dev,
7666 "Cannot find PCI device base address, aborting.\n");
7667 rc = -ENODEV;
7668 goto err_out_disable;
7671 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
7672 if (rc) {
7673 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
7674 goto err_out_disable;
7677 pci_set_master(pdev);
7678 pci_save_state(pdev);
7680 bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
7681 if (bp->pm_cap == 0) {
7682 dev_err(&pdev->dev,
7683 "Cannot find power management capability, aborting.\n");
7684 rc = -EIO;
7685 goto err_out_release;
7688 bp->dev = dev;
7689 bp->pdev = pdev;
7691 spin_lock_init(&bp->phy_lock);
7692 spin_lock_init(&bp->indirect_lock);
7693 #ifdef BCM_CNIC
7694 mutex_init(&bp->cnic_lock);
7695 #endif
7696 INIT_WORK(&bp->reset_task, bnx2_reset_task);
7698 dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
7699 mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS + 1);
7700 dev->mem_end = dev->mem_start + mem_len;
7701 dev->irq = pdev->irq;
7703 bp->regview = ioremap_nocache(dev->base_addr, mem_len);
7705 if (!bp->regview) {
7706 dev_err(&pdev->dev, "Cannot map register space, aborting.\n");
7707 rc = -ENOMEM;
7708 goto err_out_release;
7711 /* Configure byte swap and enable write to the reg_window registers.
7712 * Rely on CPU to do target byte swapping on big endian systems
7713 * The chip's target access swapping will not swap all accesses
7715 pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
7716 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
7717 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
7719 bnx2_set_power_state(bp, PCI_D0);
7721 bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
7723 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
7724 if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
7725 dev_err(&pdev->dev,
7726 "Cannot find PCIE capability, aborting.\n");
7727 rc = -EIO;
7728 goto err_out_unmap;
7730 bp->flags |= BNX2_FLAG_PCIE;
7731 if (CHIP_REV(bp) == CHIP_REV_Ax)
7732 bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
7733 } else {
7734 bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
7735 if (bp->pcix_cap == 0) {
7736 dev_err(&pdev->dev,
7737 "Cannot find PCIX capability, aborting.\n");
7738 rc = -EIO;
7739 goto err_out_unmap;
7741 bp->flags |= BNX2_FLAG_BROKEN_STATS;
7744 if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
7745 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
7746 bp->flags |= BNX2_FLAG_MSIX_CAP;
7749 if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
7750 if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
7751 bp->flags |= BNX2_FLAG_MSI_CAP;
7754 /* 5708 cannot support DMA addresses > 40-bit. */
7755 if (CHIP_NUM(bp) == CHIP_NUM_5708)
7756 persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
7757 else
7758 persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
7760 /* Configure DMA attributes. */
7761 if (pci_set_dma_mask(pdev, dma_mask) == 0) {
7762 dev->features |= NETIF_F_HIGHDMA;
7763 rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
7764 if (rc) {
7765 dev_err(&pdev->dev,
7766 "pci_set_consistent_dma_mask failed, aborting.\n");
7767 goto err_out_unmap;
7769 } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
7770 dev_err(&pdev->dev, "System does not support DMA, aborting.\n");
7771 goto err_out_unmap;
7774 if (!(bp->flags & BNX2_FLAG_PCIE))
7775 bnx2_get_pci_speed(bp);
7777 /* 5706A0 may falsely detect SERR and PERR. */
7778 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
7779 reg = REG_RD(bp, PCI_COMMAND);
7780 reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
7781 REG_WR(bp, PCI_COMMAND, reg);
7783 else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
7784 !(bp->flags & BNX2_FLAG_PCIX)) {
7786 dev_err(&pdev->dev,
7787 "5706 A1 can only be used in a PCIX bus, aborting.\n");
7788 goto err_out_unmap;
7791 bnx2_init_nvram(bp);
7793 reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
7795 if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
7796 BNX2_SHM_HDR_SIGNATURE_SIG) {
7797 u32 off = PCI_FUNC(pdev->devfn) << 2;
7799 bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
7800 } else
7801 bp->shmem_base = HOST_VIEW_SHMEM_BASE;
7803 /* Get the permanent MAC address. First we need to make sure the
7804 * firmware is actually running.
7806 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
7808 if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
7809 BNX2_DEV_INFO_SIGNATURE_MAGIC) {
7810 dev_err(&pdev->dev, "Firmware not running, aborting.\n");
7811 rc = -ENODEV;
7812 goto err_out_unmap;
7815 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
7816 for (i = 0, j = 0; i < 3; i++) {
7817 u8 num, k, skip0;
7819 num = (u8) (reg >> (24 - (i * 8)));
7820 for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
7821 if (num >= k || !skip0 || k == 1) {
7822 bp->fw_version[j++] = (num / k) + '0';
7823 skip0 = 0;
7826 if (i != 2)
7827 bp->fw_version[j++] = '.';
7829 reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
7830 if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
7831 bp->wol = 1;
7833 if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
7834 bp->flags |= BNX2_FLAG_ASF_ENABLE;
7836 for (i = 0; i < 30; i++) {
7837 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
7838 if (reg & BNX2_CONDITION_MFW_RUN_MASK)
7839 break;
7840 msleep(10);
7843 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
7844 reg &= BNX2_CONDITION_MFW_RUN_MASK;
7845 if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
7846 reg != BNX2_CONDITION_MFW_RUN_NONE) {
7847 u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
7849 bp->fw_version[j++] = ' ';
7850 for (i = 0; i < 3; i++) {
7851 reg = bnx2_reg_rd_ind(bp, addr + i * 4);
7852 reg = swab32(reg);
7853 memcpy(&bp->fw_version[j], &reg, 4);
7854 j += 4;
7858 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
7859 bp->mac_addr[0] = (u8) (reg >> 8);
7860 bp->mac_addr[1] = (u8) reg;
7862 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
7863 bp->mac_addr[2] = (u8) (reg >> 24);
7864 bp->mac_addr[3] = (u8) (reg >> 16);
7865 bp->mac_addr[4] = (u8) (reg >> 8);
7866 bp->mac_addr[5] = (u8) reg;
7868 bp->tx_ring_size = MAX_TX_DESC_CNT;
7869 bnx2_set_rx_ring_size(bp, 255);
7871 bp->rx_csum = 1;
7873 bp->tx_quick_cons_trip_int = 2;
7874 bp->tx_quick_cons_trip = 20;
7875 bp->tx_ticks_int = 18;
7876 bp->tx_ticks = 80;
7878 bp->rx_quick_cons_trip_int = 2;
7879 bp->rx_quick_cons_trip = 12;
7880 bp->rx_ticks_int = 18;
7881 bp->rx_ticks = 18;
7883 bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
7885 bp->current_interval = BNX2_TIMER_INTERVAL;
7887 bp->phy_addr = 1;
7889 /* Disable WOL support if we are running on a SERDES chip. */
7890 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7891 bnx2_get_5709_media(bp);
7892 else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
7893 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7895 bp->phy_port = PORT_TP;
7896 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
7897 bp->phy_port = PORT_FIBRE;
7898 reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
7899 if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
7900 bp->flags |= BNX2_FLAG_NO_WOL;
7901 bp->wol = 0;
7903 if (CHIP_NUM(bp) == CHIP_NUM_5706) {
7904 /* Don't do parallel detect on this board because of
7905 * some board problems. The link will not go down
7906 * if we do parallel detect.
7908 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
7909 pdev->subsystem_device == 0x310c)
7910 bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
7911 } else {
7912 bp->phy_addr = 2;
7913 if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
7914 bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
7916 } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
7917 CHIP_NUM(bp) == CHIP_NUM_5708)
7918 bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
7919 else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
7920 (CHIP_REV(bp) == CHIP_REV_Ax ||
7921 CHIP_REV(bp) == CHIP_REV_Bx))
7922 bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
7924 bnx2_init_fw_cap(bp);
7926 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
7927 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
7928 (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
7929 !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
7930 bp->flags |= BNX2_FLAG_NO_WOL;
7931 bp->wol = 0;
7934 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
7935 bp->tx_quick_cons_trip_int =
7936 bp->tx_quick_cons_trip;
7937 bp->tx_ticks_int = bp->tx_ticks;
7938 bp->rx_quick_cons_trip_int =
7939 bp->rx_quick_cons_trip;
7940 bp->rx_ticks_int = bp->rx_ticks;
7941 bp->comp_prod_trip_int = bp->comp_prod_trip;
7942 bp->com_ticks_int = bp->com_ticks;
7943 bp->cmd_ticks_int = bp->cmd_ticks;
7946 /* Disable MSI on 5706 if AMD 8132 bridge is found.
7948 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
7949 * with byte enables disabled on the unused 32-bit word. This is legal
7950 * but causes problems on the AMD 8132 which will eventually stop
7951 * responding after a while.
7953 * AMD believes this incompatibility is unique to the 5706, and
7954 * prefers to locally disable MSI rather than globally disabling it.
7956 if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
7957 struct pci_dev *amd_8132 = NULL;
7959 while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
7960 PCI_DEVICE_ID_AMD_8132_BRIDGE,
7961 amd_8132))) {
7963 if (amd_8132->revision >= 0x10 &&
7964 amd_8132->revision <= 0x13) {
7965 disable_msi = 1;
7966 pci_dev_put(amd_8132);
7967 break;
7972 bnx2_set_default_link(bp);
7973 bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
7975 init_timer(&bp->timer);
7976 bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
7977 bp->timer.data = (unsigned long) bp;
7978 bp->timer.function = bnx2_timer;
7980 return 0;
7982 err_out_unmap:
7983 if (bp->regview) {
7984 iounmap(bp->regview);
7985 bp->regview = NULL;
7988 err_out_release:
7989 pci_release_regions(pdev);
7991 err_out_disable:
7992 pci_disable_device(pdev);
7993 pci_set_drvdata(pdev, NULL);
7995 err_out:
7996 return rc;
7999 static char * __devinit
8000 bnx2_bus_string(struct bnx2 *bp, char *str)
8002 char *s = str;
8004 if (bp->flags & BNX2_FLAG_PCIE) {
8005 s += sprintf(s, "PCI Express");
8006 } else {
8007 s += sprintf(s, "PCI");
8008 if (bp->flags & BNX2_FLAG_PCIX)
8009 s += sprintf(s, "-X");
8010 if (bp->flags & BNX2_FLAG_PCI_32BIT)
8011 s += sprintf(s, " 32-bit");
8012 else
8013 s += sprintf(s, " 64-bit");
8014 s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
8016 return str;
8019 static void __devinit
8020 bnx2_init_napi(struct bnx2 *bp)
8022 int i;
8024 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
8025 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
8026 int (*poll)(struct napi_struct *, int);
8028 if (i == 0)
8029 poll = bnx2_poll;
8030 else
8031 poll = bnx2_poll_msix;
8033 netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
8034 bnapi->bp = bp;
8038 static const struct net_device_ops bnx2_netdev_ops = {
8039 .ndo_open = bnx2_open,
8040 .ndo_start_xmit = bnx2_start_xmit,
8041 .ndo_stop = bnx2_close,
8042 .ndo_get_stats = bnx2_get_stats,
8043 .ndo_set_rx_mode = bnx2_set_rx_mode,
8044 .ndo_do_ioctl = bnx2_ioctl,
8045 .ndo_validate_addr = eth_validate_addr,
8046 .ndo_set_mac_address = bnx2_change_mac_addr,
8047 .ndo_change_mtu = bnx2_change_mtu,
8048 .ndo_tx_timeout = bnx2_tx_timeout,
8049 #ifdef BCM_VLAN
8050 .ndo_vlan_rx_register = bnx2_vlan_rx_register,
8051 #endif
8052 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
8053 .ndo_poll_controller = poll_bnx2,
8054 #endif
8057 static void inline vlan_features_add(struct net_device *dev, unsigned long flags)
8059 #ifdef BCM_VLAN
8060 dev->vlan_features |= flags;
8061 #endif
8064 static int __devinit
8065 bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8067 static int version_printed = 0;
8068 struct net_device *dev = NULL;
8069 struct bnx2 *bp;
8070 int rc;
8071 char str[40];
8073 if (version_printed++ == 0)
8074 printk(KERN_INFO "%s", version);
8076 /* dev zeroed in init_etherdev */
8077 dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
8079 if (!dev)
8080 return -ENOMEM;
8082 rc = bnx2_init_board(pdev, dev);
8083 if (rc < 0) {
8084 free_netdev(dev);
8085 return rc;
8088 dev->netdev_ops = &bnx2_netdev_ops;
8089 dev->watchdog_timeo = TX_TIMEOUT;
8090 dev->ethtool_ops = &bnx2_ethtool_ops;
8092 bp = netdev_priv(dev);
8093 bnx2_init_napi(bp);
8095 pci_set_drvdata(pdev, dev);
8097 rc = bnx2_request_firmware(bp);
8098 if (rc)
8099 goto error;
8101 memcpy(dev->dev_addr, bp->mac_addr, 6);
8102 memcpy(dev->perm_addr, bp->mac_addr, 6);
8104 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
8105 vlan_features_add(dev, NETIF_F_IP_CSUM | NETIF_F_SG);
8106 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
8107 dev->features |= NETIF_F_IPV6_CSUM;
8108 vlan_features_add(dev, NETIF_F_IPV6_CSUM);
8110 #ifdef BCM_VLAN
8111 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
8112 #endif
8113 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
8114 vlan_features_add(dev, NETIF_F_TSO | NETIF_F_TSO_ECN);
8115 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
8116 dev->features |= NETIF_F_TSO6;
8117 vlan_features_add(dev, NETIF_F_TSO6);
8119 if ((rc = register_netdev(dev))) {
8120 dev_err(&pdev->dev, "Cannot register net device\n");
8121 goto error;
8124 printk(KERN_INFO "%s: %s (%c%d) %s found at mem %lx, "
8125 "IRQ %d, node addr %pM\n",
8126 dev->name,
8127 board_info[ent->driver_data].name,
8128 ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
8129 ((CHIP_ID(bp) & 0x0ff0) >> 4),
8130 bnx2_bus_string(bp, str),
8131 dev->base_addr,
8132 bp->pdev->irq, dev->dev_addr);
8134 return 0;
8136 error:
8137 if (bp->mips_firmware)
8138 release_firmware(bp->mips_firmware);
8139 if (bp->rv2p_firmware)
8140 release_firmware(bp->rv2p_firmware);
8142 if (bp->regview)
8143 iounmap(bp->regview);
8144 pci_release_regions(pdev);
8145 pci_disable_device(pdev);
8146 pci_set_drvdata(pdev, NULL);
8147 free_netdev(dev);
8148 return rc;
8151 static void __devexit
8152 bnx2_remove_one(struct pci_dev *pdev)
8154 struct net_device *dev = pci_get_drvdata(pdev);
8155 struct bnx2 *bp = netdev_priv(dev);
8157 flush_scheduled_work();
8159 unregister_netdev(dev);
8161 if (bp->mips_firmware)
8162 release_firmware(bp->mips_firmware);
8163 if (bp->rv2p_firmware)
8164 release_firmware(bp->rv2p_firmware);
8166 if (bp->regview)
8167 iounmap(bp->regview);
8169 free_netdev(dev);
8170 pci_release_regions(pdev);
8171 pci_disable_device(pdev);
8172 pci_set_drvdata(pdev, NULL);
8175 static int
8176 bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
8178 struct net_device *dev = pci_get_drvdata(pdev);
8179 struct bnx2 *bp = netdev_priv(dev);
8181 /* PCI register 4 needs to be saved whether netif_running() or not.
8182 * MSI address and data need to be saved if using MSI and
8183 * netif_running().
8185 pci_save_state(pdev);
8186 if (!netif_running(dev))
8187 return 0;
8189 flush_scheduled_work();
8190 bnx2_netif_stop(bp);
8191 netif_device_detach(dev);
8192 del_timer_sync(&bp->timer);
8193 bnx2_shutdown_chip(bp);
8194 bnx2_free_skbs(bp);
8195 bnx2_set_power_state(bp, pci_choose_state(pdev, state));
8196 return 0;
8199 static int
8200 bnx2_resume(struct pci_dev *pdev)
8202 struct net_device *dev = pci_get_drvdata(pdev);
8203 struct bnx2 *bp = netdev_priv(dev);
8205 pci_restore_state(pdev);
8206 if (!netif_running(dev))
8207 return 0;
8209 bnx2_set_power_state(bp, PCI_D0);
8210 netif_device_attach(dev);
8211 bnx2_init_nic(bp, 1);
8212 bnx2_netif_start(bp);
8213 return 0;
8217 * bnx2_io_error_detected - called when PCI error is detected
8218 * @pdev: Pointer to PCI device
8219 * @state: The current pci connection state
8221 * This function is called after a PCI bus error affecting
8222 * this device has been detected.
8224 static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
8225 pci_channel_state_t state)
8227 struct net_device *dev = pci_get_drvdata(pdev);
8228 struct bnx2 *bp = netdev_priv(dev);
8230 rtnl_lock();
8231 netif_device_detach(dev);
8233 if (state == pci_channel_io_perm_failure) {
8234 rtnl_unlock();
8235 return PCI_ERS_RESULT_DISCONNECT;
8238 if (netif_running(dev)) {
8239 bnx2_netif_stop(bp);
8240 del_timer_sync(&bp->timer);
8241 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
8244 pci_disable_device(pdev);
8245 rtnl_unlock();
8247 /* Request a slot slot reset. */
8248 return PCI_ERS_RESULT_NEED_RESET;
8252 * bnx2_io_slot_reset - called after the pci bus has been reset.
8253 * @pdev: Pointer to PCI device
8255 * Restart the card from scratch, as if from a cold-boot.
8257 static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
8259 struct net_device *dev = pci_get_drvdata(pdev);
8260 struct bnx2 *bp = netdev_priv(dev);
8262 rtnl_lock();
8263 if (pci_enable_device(pdev)) {
8264 dev_err(&pdev->dev,
8265 "Cannot re-enable PCI device after reset.\n");
8266 rtnl_unlock();
8267 return PCI_ERS_RESULT_DISCONNECT;
8269 pci_set_master(pdev);
8270 pci_restore_state(pdev);
8272 if (netif_running(dev)) {
8273 bnx2_set_power_state(bp, PCI_D0);
8274 bnx2_init_nic(bp, 1);
8277 rtnl_unlock();
8278 return PCI_ERS_RESULT_RECOVERED;
8282 * bnx2_io_resume - called when traffic can start flowing again.
8283 * @pdev: Pointer to PCI device
8285 * This callback is called when the error recovery driver tells us that
8286 * its OK to resume normal operation.
8288 static void bnx2_io_resume(struct pci_dev *pdev)
8290 struct net_device *dev = pci_get_drvdata(pdev);
8291 struct bnx2 *bp = netdev_priv(dev);
8293 rtnl_lock();
8294 if (netif_running(dev))
8295 bnx2_netif_start(bp);
8297 netif_device_attach(dev);
8298 rtnl_unlock();
8301 static struct pci_error_handlers bnx2_err_handler = {
8302 .error_detected = bnx2_io_error_detected,
8303 .slot_reset = bnx2_io_slot_reset,
8304 .resume = bnx2_io_resume,
8307 static struct pci_driver bnx2_pci_driver = {
8308 .name = DRV_MODULE_NAME,
8309 .id_table = bnx2_pci_tbl,
8310 .probe = bnx2_init_one,
8311 .remove = __devexit_p(bnx2_remove_one),
8312 .suspend = bnx2_suspend,
8313 .resume = bnx2_resume,
8314 .err_handler = &bnx2_err_handler,
8317 static int __init bnx2_init(void)
8319 return pci_register_driver(&bnx2_pci_driver);
8322 static void __exit bnx2_cleanup(void)
8324 pci_unregister_driver(&bnx2_pci_driver);
8327 module_init(bnx2_init);
8328 module_exit(bnx2_cleanup);