Staging: pata_rdc: remove DRIVER macros
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / linux / sched.h
blob4d075426988428820aae1f451015744bc2e50440
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
33 * Scheduling policies
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
42 #ifdef __KERNEL__
44 struct sched_param {
45 int sched_priority;
48 #include <asm/param.h> /* for HZ */
50 #include <linux/capability.h>
51 #include <linux/threads.h>
52 #include <linux/kernel.h>
53 #include <linux/types.h>
54 #include <linux/timex.h>
55 #include <linux/jiffies.h>
56 #include <linux/rbtree.h>
57 #include <linux/thread_info.h>
58 #include <linux/cpumask.h>
59 #include <linux/errno.h>
60 #include <linux/nodemask.h>
61 #include <linux/mm_types.h>
63 #include <asm/system.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/cputime.h>
68 #include <linux/smp.h>
69 #include <linux/sem.h>
70 #include <linux/signal.h>
71 #include <linux/path.h>
72 #include <linux/compiler.h>
73 #include <linux/completion.h>
74 #include <linux/pid.h>
75 #include <linux/percpu.h>
76 #include <linux/topology.h>
77 #include <linux/proportions.h>
78 #include <linux/seccomp.h>
79 #include <linux/rcupdate.h>
80 #include <linux/rculist.h>
81 #include <linux/rtmutex.h>
83 #include <linux/time.h>
84 #include <linux/param.h>
85 #include <linux/resource.h>
86 #include <linux/timer.h>
87 #include <linux/hrtimer.h>
88 #include <linux/task_io_accounting.h>
89 #include <linux/kobject.h>
90 #include <linux/latencytop.h>
91 #include <linux/cred.h>
93 #include <asm/processor.h>
95 struct exec_domain;
96 struct futex_pi_state;
97 struct robust_list_head;
98 struct bio;
99 struct fs_struct;
100 struct bts_context;
101 struct perf_counter_context;
104 * List of flags we want to share for kernel threads,
105 * if only because they are not used by them anyway.
107 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
110 * These are the constant used to fake the fixed-point load-average
111 * counting. Some notes:
112 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
113 * a load-average precision of 10 bits integer + 11 bits fractional
114 * - if you want to count load-averages more often, you need more
115 * precision, or rounding will get you. With 2-second counting freq,
116 * the EXP_n values would be 1981, 2034 and 2043 if still using only
117 * 11 bit fractions.
119 extern unsigned long avenrun[]; /* Load averages */
120 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
122 #define FSHIFT 11 /* nr of bits of precision */
123 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
124 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
125 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
126 #define EXP_5 2014 /* 1/exp(5sec/5min) */
127 #define EXP_15 2037 /* 1/exp(5sec/15min) */
129 #define CALC_LOAD(load,exp,n) \
130 load *= exp; \
131 load += n*(FIXED_1-exp); \
132 load >>= FSHIFT;
134 extern unsigned long total_forks;
135 extern int nr_threads;
136 DECLARE_PER_CPU(unsigned long, process_counts);
137 extern int nr_processes(void);
138 extern unsigned long nr_running(void);
139 extern unsigned long nr_uninterruptible(void);
140 extern unsigned long nr_iowait(void);
141 extern void calc_global_load(void);
142 extern u64 cpu_nr_migrations(int cpu);
144 extern unsigned long get_parent_ip(unsigned long addr);
146 struct seq_file;
147 struct cfs_rq;
148 struct task_group;
149 #ifdef CONFIG_SCHED_DEBUG
150 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
151 extern void proc_sched_set_task(struct task_struct *p);
152 extern void
153 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
154 #else
155 static inline void
156 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
159 static inline void proc_sched_set_task(struct task_struct *p)
162 static inline void
163 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
166 #endif
168 extern unsigned long long time_sync_thresh;
171 * Task state bitmask. NOTE! These bits are also
172 * encoded in fs/proc/array.c: get_task_state().
174 * We have two separate sets of flags: task->state
175 * is about runnability, while task->exit_state are
176 * about the task exiting. Confusing, but this way
177 * modifying one set can't modify the other one by
178 * mistake.
180 #define TASK_RUNNING 0
181 #define TASK_INTERRUPTIBLE 1
182 #define TASK_UNINTERRUPTIBLE 2
183 #define __TASK_STOPPED 4
184 #define __TASK_TRACED 8
185 /* in tsk->exit_state */
186 #define EXIT_ZOMBIE 16
187 #define EXIT_DEAD 32
188 /* in tsk->state again */
189 #define TASK_DEAD 64
190 #define TASK_WAKEKILL 128
192 /* Convenience macros for the sake of set_task_state */
193 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
194 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
195 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
197 /* Convenience macros for the sake of wake_up */
198 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
199 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
201 /* get_task_state() */
202 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
203 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
204 __TASK_TRACED)
206 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
207 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
208 #define task_is_stopped_or_traced(task) \
209 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
210 #define task_contributes_to_load(task) \
211 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
212 (task->flags & PF_FROZEN) == 0)
214 #define __set_task_state(tsk, state_value) \
215 do { (tsk)->state = (state_value); } while (0)
216 #define set_task_state(tsk, state_value) \
217 set_mb((tsk)->state, (state_value))
220 * set_current_state() includes a barrier so that the write of current->state
221 * is correctly serialised wrt the caller's subsequent test of whether to
222 * actually sleep:
224 * set_current_state(TASK_UNINTERRUPTIBLE);
225 * if (do_i_need_to_sleep())
226 * schedule();
228 * If the caller does not need such serialisation then use __set_current_state()
230 #define __set_current_state(state_value) \
231 do { current->state = (state_value); } while (0)
232 #define set_current_state(state_value) \
233 set_mb(current->state, (state_value))
235 /* Task command name length */
236 #define TASK_COMM_LEN 16
238 #include <linux/spinlock.h>
241 * This serializes "schedule()" and also protects
242 * the run-queue from deletions/modifications (but
243 * _adding_ to the beginning of the run-queue has
244 * a separate lock).
246 extern rwlock_t tasklist_lock;
247 extern spinlock_t mmlist_lock;
249 struct task_struct;
251 extern void sched_init(void);
252 extern void sched_init_smp(void);
253 extern asmlinkage void schedule_tail(struct task_struct *prev);
254 extern void init_idle(struct task_struct *idle, int cpu);
255 extern void init_idle_bootup_task(struct task_struct *idle);
257 extern int runqueue_is_locked(void);
258 extern void task_rq_unlock_wait(struct task_struct *p);
260 extern cpumask_var_t nohz_cpu_mask;
261 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
262 extern int select_nohz_load_balancer(int cpu);
263 extern int get_nohz_load_balancer(void);
264 #else
265 static inline int select_nohz_load_balancer(int cpu)
267 return 0;
269 #endif
272 * Only dump TASK_* tasks. (0 for all tasks)
274 extern void show_state_filter(unsigned long state_filter);
276 static inline void show_state(void)
278 show_state_filter(0);
281 extern void show_regs(struct pt_regs *);
284 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
285 * task), SP is the stack pointer of the first frame that should be shown in the back
286 * trace (or NULL if the entire call-chain of the task should be shown).
288 extern void show_stack(struct task_struct *task, unsigned long *sp);
290 void io_schedule(void);
291 long io_schedule_timeout(long timeout);
293 extern void cpu_init (void);
294 extern void trap_init(void);
295 extern void update_process_times(int user);
296 extern void scheduler_tick(void);
298 extern void sched_show_task(struct task_struct *p);
300 #ifdef CONFIG_DETECT_SOFTLOCKUP
301 extern void softlockup_tick(void);
302 extern void touch_softlockup_watchdog(void);
303 extern void touch_all_softlockup_watchdogs(void);
304 extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
305 struct file *filp, void __user *buffer,
306 size_t *lenp, loff_t *ppos);
307 extern unsigned int softlockup_panic;
308 extern int softlockup_thresh;
309 #else
310 static inline void softlockup_tick(void)
313 static inline void touch_softlockup_watchdog(void)
316 static inline void touch_all_softlockup_watchdogs(void)
319 #endif
321 #ifdef CONFIG_DETECT_HUNG_TASK
322 extern unsigned int sysctl_hung_task_panic;
323 extern unsigned long sysctl_hung_task_check_count;
324 extern unsigned long sysctl_hung_task_timeout_secs;
325 extern unsigned long sysctl_hung_task_warnings;
326 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
327 struct file *filp, void __user *buffer,
328 size_t *lenp, loff_t *ppos);
329 #endif
331 /* Attach to any functions which should be ignored in wchan output. */
332 #define __sched __attribute__((__section__(".sched.text")))
334 /* Linker adds these: start and end of __sched functions */
335 extern char __sched_text_start[], __sched_text_end[];
337 /* Is this address in the __sched functions? */
338 extern int in_sched_functions(unsigned long addr);
340 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
341 extern signed long schedule_timeout(signed long timeout);
342 extern signed long schedule_timeout_interruptible(signed long timeout);
343 extern signed long schedule_timeout_killable(signed long timeout);
344 extern signed long schedule_timeout_uninterruptible(signed long timeout);
345 asmlinkage void __schedule(void);
346 asmlinkage void schedule(void);
347 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
349 struct nsproxy;
350 struct user_namespace;
352 /* Maximum number of active map areas.. This is a random (large) number */
353 #define DEFAULT_MAX_MAP_COUNT 65536
355 extern int sysctl_max_map_count;
357 #include <linux/aio.h>
359 extern unsigned long
360 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
361 unsigned long, unsigned long);
362 extern unsigned long
363 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
364 unsigned long len, unsigned long pgoff,
365 unsigned long flags);
366 extern void arch_unmap_area(struct mm_struct *, unsigned long);
367 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
369 #if USE_SPLIT_PTLOCKS
371 * The mm counters are not protected by its page_table_lock,
372 * so must be incremented atomically.
374 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
375 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
376 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
377 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
378 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
380 #else /* !USE_SPLIT_PTLOCKS */
382 * The mm counters are protected by its page_table_lock,
383 * so can be incremented directly.
385 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
386 #define get_mm_counter(mm, member) ((mm)->_##member)
387 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
388 #define inc_mm_counter(mm, member) (mm)->_##member++
389 #define dec_mm_counter(mm, member) (mm)->_##member--
391 #endif /* !USE_SPLIT_PTLOCKS */
393 #define get_mm_rss(mm) \
394 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
395 #define update_hiwater_rss(mm) do { \
396 unsigned long _rss = get_mm_rss(mm); \
397 if ((mm)->hiwater_rss < _rss) \
398 (mm)->hiwater_rss = _rss; \
399 } while (0)
400 #define update_hiwater_vm(mm) do { \
401 if ((mm)->hiwater_vm < (mm)->total_vm) \
402 (mm)->hiwater_vm = (mm)->total_vm; \
403 } while (0)
405 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
407 return max(mm->hiwater_rss, get_mm_rss(mm));
410 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
412 return max(mm->hiwater_vm, mm->total_vm);
415 extern void set_dumpable(struct mm_struct *mm, int value);
416 extern int get_dumpable(struct mm_struct *mm);
418 /* mm flags */
419 /* dumpable bits */
420 #define MMF_DUMPABLE 0 /* core dump is permitted */
421 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
422 #define MMF_DUMPABLE_BITS 2
424 /* coredump filter bits */
425 #define MMF_DUMP_ANON_PRIVATE 2
426 #define MMF_DUMP_ANON_SHARED 3
427 #define MMF_DUMP_MAPPED_PRIVATE 4
428 #define MMF_DUMP_MAPPED_SHARED 5
429 #define MMF_DUMP_ELF_HEADERS 6
430 #define MMF_DUMP_HUGETLB_PRIVATE 7
431 #define MMF_DUMP_HUGETLB_SHARED 8
432 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
433 #define MMF_DUMP_FILTER_BITS 7
434 #define MMF_DUMP_FILTER_MASK \
435 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
436 #define MMF_DUMP_FILTER_DEFAULT \
437 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
438 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
440 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
441 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
442 #else
443 # define MMF_DUMP_MASK_DEFAULT_ELF 0
444 #endif
446 struct sighand_struct {
447 atomic_t count;
448 struct k_sigaction action[_NSIG];
449 spinlock_t siglock;
450 wait_queue_head_t signalfd_wqh;
453 struct pacct_struct {
454 int ac_flag;
455 long ac_exitcode;
456 unsigned long ac_mem;
457 cputime_t ac_utime, ac_stime;
458 unsigned long ac_minflt, ac_majflt;
462 * struct task_cputime - collected CPU time counts
463 * @utime: time spent in user mode, in &cputime_t units
464 * @stime: time spent in kernel mode, in &cputime_t units
465 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
467 * This structure groups together three kinds of CPU time that are
468 * tracked for threads and thread groups. Most things considering
469 * CPU time want to group these counts together and treat all three
470 * of them in parallel.
472 struct task_cputime {
473 cputime_t utime;
474 cputime_t stime;
475 unsigned long long sum_exec_runtime;
477 /* Alternate field names when used to cache expirations. */
478 #define prof_exp stime
479 #define virt_exp utime
480 #define sched_exp sum_exec_runtime
482 #define INIT_CPUTIME \
483 (struct task_cputime) { \
484 .utime = cputime_zero, \
485 .stime = cputime_zero, \
486 .sum_exec_runtime = 0, \
490 * struct thread_group_cputimer - thread group interval timer counts
491 * @cputime: thread group interval timers.
492 * @running: non-zero when there are timers running and
493 * @cputime receives updates.
494 * @lock: lock for fields in this struct.
496 * This structure contains the version of task_cputime, above, that is
497 * used for thread group CPU timer calculations.
499 struct thread_group_cputimer {
500 struct task_cputime cputime;
501 int running;
502 spinlock_t lock;
506 * NOTE! "signal_struct" does not have it's own
507 * locking, because a shared signal_struct always
508 * implies a shared sighand_struct, so locking
509 * sighand_struct is always a proper superset of
510 * the locking of signal_struct.
512 struct signal_struct {
513 atomic_t count;
514 atomic_t live;
516 wait_queue_head_t wait_chldexit; /* for wait4() */
518 /* current thread group signal load-balancing target: */
519 struct task_struct *curr_target;
521 /* shared signal handling: */
522 struct sigpending shared_pending;
524 /* thread group exit support */
525 int group_exit_code;
526 /* overloaded:
527 * - notify group_exit_task when ->count is equal to notify_count
528 * - everyone except group_exit_task is stopped during signal delivery
529 * of fatal signals, group_exit_task processes the signal.
531 int notify_count;
532 struct task_struct *group_exit_task;
534 /* thread group stop support, overloads group_exit_code too */
535 int group_stop_count;
536 unsigned int flags; /* see SIGNAL_* flags below */
538 /* POSIX.1b Interval Timers */
539 struct list_head posix_timers;
541 /* ITIMER_REAL timer for the process */
542 struct hrtimer real_timer;
543 struct pid *leader_pid;
544 ktime_t it_real_incr;
546 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
547 cputime_t it_prof_expires, it_virt_expires;
548 cputime_t it_prof_incr, it_virt_incr;
551 * Thread group totals for process CPU timers.
552 * See thread_group_cputimer(), et al, for details.
554 struct thread_group_cputimer cputimer;
556 /* Earliest-expiration cache. */
557 struct task_cputime cputime_expires;
559 struct list_head cpu_timers[3];
561 struct pid *tty_old_pgrp;
563 /* boolean value for session group leader */
564 int leader;
566 struct tty_struct *tty; /* NULL if no tty */
569 * Cumulative resource counters for dead threads in the group,
570 * and for reaped dead child processes forked by this group.
571 * Live threads maintain their own counters and add to these
572 * in __exit_signal, except for the group leader.
574 cputime_t utime, stime, cutime, cstime;
575 cputime_t gtime;
576 cputime_t cgtime;
577 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
578 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
579 unsigned long inblock, oublock, cinblock, coublock;
580 struct task_io_accounting ioac;
583 * Cumulative ns of schedule CPU time fo dead threads in the
584 * group, not including a zombie group leader, (This only differs
585 * from jiffies_to_ns(utime + stime) if sched_clock uses something
586 * other than jiffies.)
588 unsigned long long sum_sched_runtime;
591 * We don't bother to synchronize most readers of this at all,
592 * because there is no reader checking a limit that actually needs
593 * to get both rlim_cur and rlim_max atomically, and either one
594 * alone is a single word that can safely be read normally.
595 * getrlimit/setrlimit use task_lock(current->group_leader) to
596 * protect this instead of the siglock, because they really
597 * have no need to disable irqs.
599 struct rlimit rlim[RLIM_NLIMITS];
601 #ifdef CONFIG_BSD_PROCESS_ACCT
602 struct pacct_struct pacct; /* per-process accounting information */
603 #endif
604 #ifdef CONFIG_TASKSTATS
605 struct taskstats *stats;
606 #endif
607 #ifdef CONFIG_AUDIT
608 unsigned audit_tty;
609 struct tty_audit_buf *tty_audit_buf;
610 #endif
613 /* Context switch must be unlocked if interrupts are to be enabled */
614 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
615 # define __ARCH_WANT_UNLOCKED_CTXSW
616 #endif
619 * Bits in flags field of signal_struct.
621 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
622 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
623 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
624 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
626 * Pending notifications to parent.
628 #define SIGNAL_CLD_STOPPED 0x00000010
629 #define SIGNAL_CLD_CONTINUED 0x00000020
630 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
632 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
634 /* If true, all threads except ->group_exit_task have pending SIGKILL */
635 static inline int signal_group_exit(const struct signal_struct *sig)
637 return (sig->flags & SIGNAL_GROUP_EXIT) ||
638 (sig->group_exit_task != NULL);
642 * Some day this will be a full-fledged user tracking system..
644 struct user_struct {
645 atomic_t __count; /* reference count */
646 atomic_t processes; /* How many processes does this user have? */
647 atomic_t files; /* How many open files does this user have? */
648 atomic_t sigpending; /* How many pending signals does this user have? */
649 #ifdef CONFIG_INOTIFY_USER
650 atomic_t inotify_watches; /* How many inotify watches does this user have? */
651 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
652 #endif
653 #ifdef CONFIG_EPOLL
654 atomic_t epoll_watches; /* The number of file descriptors currently watched */
655 #endif
656 #ifdef CONFIG_POSIX_MQUEUE
657 /* protected by mq_lock */
658 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
659 #endif
660 unsigned long locked_shm; /* How many pages of mlocked shm ? */
662 #ifdef CONFIG_KEYS
663 struct key *uid_keyring; /* UID specific keyring */
664 struct key *session_keyring; /* UID's default session keyring */
665 #endif
667 /* Hash table maintenance information */
668 struct hlist_node uidhash_node;
669 uid_t uid;
670 struct user_namespace *user_ns;
672 #ifdef CONFIG_USER_SCHED
673 struct task_group *tg;
674 #ifdef CONFIG_SYSFS
675 struct kobject kobj;
676 struct delayed_work work;
677 #endif
678 #endif
680 #ifdef CONFIG_PERF_COUNTERS
681 atomic_long_t locked_vm;
682 #endif
685 extern int uids_sysfs_init(void);
687 extern struct user_struct *find_user(uid_t);
689 extern struct user_struct root_user;
690 #define INIT_USER (&root_user)
693 struct backing_dev_info;
694 struct reclaim_state;
696 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
697 struct sched_info {
698 /* cumulative counters */
699 unsigned long pcount; /* # of times run on this cpu */
700 unsigned long long run_delay; /* time spent waiting on a runqueue */
702 /* timestamps */
703 unsigned long long last_arrival,/* when we last ran on a cpu */
704 last_queued; /* when we were last queued to run */
705 #ifdef CONFIG_SCHEDSTATS
706 /* BKL stats */
707 unsigned int bkl_count;
708 #endif
710 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
712 #ifdef CONFIG_TASK_DELAY_ACCT
713 struct task_delay_info {
714 spinlock_t lock;
715 unsigned int flags; /* Private per-task flags */
717 /* For each stat XXX, add following, aligned appropriately
719 * struct timespec XXX_start, XXX_end;
720 * u64 XXX_delay;
721 * u32 XXX_count;
723 * Atomicity of updates to XXX_delay, XXX_count protected by
724 * single lock above (split into XXX_lock if contention is an issue).
728 * XXX_count is incremented on every XXX operation, the delay
729 * associated with the operation is added to XXX_delay.
730 * XXX_delay contains the accumulated delay time in nanoseconds.
732 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
733 u64 blkio_delay; /* wait for sync block io completion */
734 u64 swapin_delay; /* wait for swapin block io completion */
735 u32 blkio_count; /* total count of the number of sync block */
736 /* io operations performed */
737 u32 swapin_count; /* total count of the number of swapin block */
738 /* io operations performed */
740 struct timespec freepages_start, freepages_end;
741 u64 freepages_delay; /* wait for memory reclaim */
742 u32 freepages_count; /* total count of memory reclaim */
744 #endif /* CONFIG_TASK_DELAY_ACCT */
746 static inline int sched_info_on(void)
748 #ifdef CONFIG_SCHEDSTATS
749 return 1;
750 #elif defined(CONFIG_TASK_DELAY_ACCT)
751 extern int delayacct_on;
752 return delayacct_on;
753 #else
754 return 0;
755 #endif
758 enum cpu_idle_type {
759 CPU_IDLE,
760 CPU_NOT_IDLE,
761 CPU_NEWLY_IDLE,
762 CPU_MAX_IDLE_TYPES
766 * sched-domains (multiprocessor balancing) declarations:
770 * Increase resolution of nice-level calculations:
772 #define SCHED_LOAD_SHIFT 10
773 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
775 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
777 #ifdef CONFIG_SMP
778 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
779 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
780 #define SD_BALANCE_EXEC 4 /* Balance on exec */
781 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
782 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
783 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
784 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
785 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
786 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
787 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
788 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
789 #define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */
791 enum powersavings_balance_level {
792 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
793 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
794 * first for long running threads
796 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
797 * cpu package for power savings
799 MAX_POWERSAVINGS_BALANCE_LEVELS
802 extern int sched_mc_power_savings, sched_smt_power_savings;
804 static inline int sd_balance_for_mc_power(void)
806 if (sched_smt_power_savings)
807 return SD_POWERSAVINGS_BALANCE;
809 return 0;
812 static inline int sd_balance_for_package_power(void)
814 if (sched_mc_power_savings | sched_smt_power_savings)
815 return SD_POWERSAVINGS_BALANCE;
817 return 0;
821 * Optimise SD flags for power savings:
822 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
823 * Keep default SD flags if sched_{smt,mc}_power_saving=0
826 static inline int sd_power_saving_flags(void)
828 if (sched_mc_power_savings | sched_smt_power_savings)
829 return SD_BALANCE_NEWIDLE;
831 return 0;
834 struct sched_group {
835 struct sched_group *next; /* Must be a circular list */
838 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
839 * single CPU. This is read only (except for setup, hotplug CPU).
840 * Note : Never change cpu_power without recompute its reciprocal
842 unsigned int __cpu_power;
844 * reciprocal value of cpu_power to avoid expensive divides
845 * (see include/linux/reciprocal_div.h)
847 u32 reciprocal_cpu_power;
850 * The CPUs this group covers.
852 * NOTE: this field is variable length. (Allocated dynamically
853 * by attaching extra space to the end of the structure,
854 * depending on how many CPUs the kernel has booted up with)
856 * It is also be embedded into static data structures at build
857 * time. (See 'struct static_sched_group' in kernel/sched.c)
859 unsigned long cpumask[0];
862 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
864 return to_cpumask(sg->cpumask);
867 enum sched_domain_level {
868 SD_LV_NONE = 0,
869 SD_LV_SIBLING,
870 SD_LV_MC,
871 SD_LV_CPU,
872 SD_LV_NODE,
873 SD_LV_ALLNODES,
874 SD_LV_MAX
877 struct sched_domain_attr {
878 int relax_domain_level;
881 #define SD_ATTR_INIT (struct sched_domain_attr) { \
882 .relax_domain_level = -1, \
885 struct sched_domain {
886 /* These fields must be setup */
887 struct sched_domain *parent; /* top domain must be null terminated */
888 struct sched_domain *child; /* bottom domain must be null terminated */
889 struct sched_group *groups; /* the balancing groups of the domain */
890 unsigned long min_interval; /* Minimum balance interval ms */
891 unsigned long max_interval; /* Maximum balance interval ms */
892 unsigned int busy_factor; /* less balancing by factor if busy */
893 unsigned int imbalance_pct; /* No balance until over watermark */
894 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
895 unsigned int busy_idx;
896 unsigned int idle_idx;
897 unsigned int newidle_idx;
898 unsigned int wake_idx;
899 unsigned int forkexec_idx;
900 int flags; /* See SD_* */
901 enum sched_domain_level level;
903 /* Runtime fields. */
904 unsigned long last_balance; /* init to jiffies. units in jiffies */
905 unsigned int balance_interval; /* initialise to 1. units in ms. */
906 unsigned int nr_balance_failed; /* initialise to 0 */
908 u64 last_update;
910 #ifdef CONFIG_SCHEDSTATS
911 /* load_balance() stats */
912 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
913 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
914 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
915 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
916 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
917 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
918 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
919 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
921 /* Active load balancing */
922 unsigned int alb_count;
923 unsigned int alb_failed;
924 unsigned int alb_pushed;
926 /* SD_BALANCE_EXEC stats */
927 unsigned int sbe_count;
928 unsigned int sbe_balanced;
929 unsigned int sbe_pushed;
931 /* SD_BALANCE_FORK stats */
932 unsigned int sbf_count;
933 unsigned int sbf_balanced;
934 unsigned int sbf_pushed;
936 /* try_to_wake_up() stats */
937 unsigned int ttwu_wake_remote;
938 unsigned int ttwu_move_affine;
939 unsigned int ttwu_move_balance;
940 #endif
941 #ifdef CONFIG_SCHED_DEBUG
942 char *name;
943 #endif
946 * Span of all CPUs in this domain.
948 * NOTE: this field is variable length. (Allocated dynamically
949 * by attaching extra space to the end of the structure,
950 * depending on how many CPUs the kernel has booted up with)
952 * It is also be embedded into static data structures at build
953 * time. (See 'struct static_sched_domain' in kernel/sched.c)
955 unsigned long span[0];
958 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
960 return to_cpumask(sd->span);
963 extern void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
964 struct sched_domain_attr *dattr_new);
966 /* Test a flag in parent sched domain */
967 static inline int test_sd_parent(struct sched_domain *sd, int flag)
969 if (sd->parent && (sd->parent->flags & flag))
970 return 1;
972 return 0;
975 #else /* CONFIG_SMP */
977 struct sched_domain_attr;
979 static inline void
980 partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
981 struct sched_domain_attr *dattr_new)
984 #endif /* !CONFIG_SMP */
986 struct io_context; /* See blkdev.h */
989 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
990 extern void prefetch_stack(struct task_struct *t);
991 #else
992 static inline void prefetch_stack(struct task_struct *t) { }
993 #endif
995 struct audit_context; /* See audit.c */
996 struct mempolicy;
997 struct pipe_inode_info;
998 struct uts_namespace;
1000 struct rq;
1001 struct sched_domain;
1003 struct sched_class {
1004 const struct sched_class *next;
1006 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
1007 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
1008 void (*yield_task) (struct rq *rq);
1010 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync);
1012 struct task_struct * (*pick_next_task) (struct rq *rq);
1013 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1015 #ifdef CONFIG_SMP
1016 int (*select_task_rq)(struct task_struct *p, int sync);
1018 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
1019 struct rq *busiest, unsigned long max_load_move,
1020 struct sched_domain *sd, enum cpu_idle_type idle,
1021 int *all_pinned, int *this_best_prio);
1023 int (*move_one_task) (struct rq *this_rq, int this_cpu,
1024 struct rq *busiest, struct sched_domain *sd,
1025 enum cpu_idle_type idle);
1026 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1027 int (*needs_post_schedule) (struct rq *this_rq);
1028 void (*post_schedule) (struct rq *this_rq);
1029 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
1031 void (*set_cpus_allowed)(struct task_struct *p,
1032 const struct cpumask *newmask);
1034 void (*rq_online)(struct rq *rq);
1035 void (*rq_offline)(struct rq *rq);
1036 #endif
1038 void (*set_curr_task) (struct rq *rq);
1039 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1040 void (*task_new) (struct rq *rq, struct task_struct *p);
1042 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1043 int running);
1044 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1045 int running);
1046 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1047 int oldprio, int running);
1049 #ifdef CONFIG_FAIR_GROUP_SCHED
1050 void (*moved_group) (struct task_struct *p);
1051 #endif
1054 struct load_weight {
1055 unsigned long weight, inv_weight;
1059 * CFS stats for a schedulable entity (task, task-group etc)
1061 * Current field usage histogram:
1063 * 4 se->block_start
1064 * 4 se->run_node
1065 * 4 se->sleep_start
1066 * 6 se->load.weight
1068 struct sched_entity {
1069 struct load_weight load; /* for load-balancing */
1070 struct rb_node run_node;
1071 struct list_head group_node;
1072 unsigned int on_rq;
1074 u64 exec_start;
1075 u64 sum_exec_runtime;
1076 u64 vruntime;
1077 u64 prev_sum_exec_runtime;
1079 u64 last_wakeup;
1080 u64 avg_overlap;
1082 u64 nr_migrations;
1084 u64 start_runtime;
1085 u64 avg_wakeup;
1087 #ifdef CONFIG_SCHEDSTATS
1088 u64 wait_start;
1089 u64 wait_max;
1090 u64 wait_count;
1091 u64 wait_sum;
1093 u64 sleep_start;
1094 u64 sleep_max;
1095 s64 sum_sleep_runtime;
1097 u64 block_start;
1098 u64 block_max;
1099 u64 exec_max;
1100 u64 slice_max;
1102 u64 nr_migrations_cold;
1103 u64 nr_failed_migrations_affine;
1104 u64 nr_failed_migrations_running;
1105 u64 nr_failed_migrations_hot;
1106 u64 nr_forced_migrations;
1107 u64 nr_forced2_migrations;
1109 u64 nr_wakeups;
1110 u64 nr_wakeups_sync;
1111 u64 nr_wakeups_migrate;
1112 u64 nr_wakeups_local;
1113 u64 nr_wakeups_remote;
1114 u64 nr_wakeups_affine;
1115 u64 nr_wakeups_affine_attempts;
1116 u64 nr_wakeups_passive;
1117 u64 nr_wakeups_idle;
1118 #endif
1120 #ifdef CONFIG_FAIR_GROUP_SCHED
1121 struct sched_entity *parent;
1122 /* rq on which this entity is (to be) queued: */
1123 struct cfs_rq *cfs_rq;
1124 /* rq "owned" by this entity/group: */
1125 struct cfs_rq *my_q;
1126 #endif
1129 struct sched_rt_entity {
1130 struct list_head run_list;
1131 unsigned long timeout;
1132 unsigned int time_slice;
1133 int nr_cpus_allowed;
1135 struct sched_rt_entity *back;
1136 #ifdef CONFIG_RT_GROUP_SCHED
1137 struct sched_rt_entity *parent;
1138 /* rq on which this entity is (to be) queued: */
1139 struct rt_rq *rt_rq;
1140 /* rq "owned" by this entity/group: */
1141 struct rt_rq *my_q;
1142 #endif
1145 struct task_struct {
1146 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1147 void *stack;
1148 atomic_t usage;
1149 unsigned int flags; /* per process flags, defined below */
1150 unsigned int ptrace;
1152 int lock_depth; /* BKL lock depth */
1154 #ifdef CONFIG_SMP
1155 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1156 int oncpu;
1157 #endif
1158 #endif
1160 int prio, static_prio, normal_prio;
1161 unsigned int rt_priority;
1162 const struct sched_class *sched_class;
1163 struct sched_entity se;
1164 struct sched_rt_entity rt;
1166 #ifdef CONFIG_PREEMPT_NOTIFIERS
1167 /* list of struct preempt_notifier: */
1168 struct hlist_head preempt_notifiers;
1169 #endif
1172 * fpu_counter contains the number of consecutive context switches
1173 * that the FPU is used. If this is over a threshold, the lazy fpu
1174 * saving becomes unlazy to save the trap. This is an unsigned char
1175 * so that after 256 times the counter wraps and the behavior turns
1176 * lazy again; this to deal with bursty apps that only use FPU for
1177 * a short time
1179 unsigned char fpu_counter;
1180 #ifdef CONFIG_BLK_DEV_IO_TRACE
1181 unsigned int btrace_seq;
1182 #endif
1184 unsigned int policy;
1185 cpumask_t cpus_allowed;
1187 #ifdef CONFIG_PREEMPT_RCU
1188 int rcu_read_lock_nesting;
1189 int rcu_flipctr_idx;
1190 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1192 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1193 struct sched_info sched_info;
1194 #endif
1196 struct list_head tasks;
1197 struct plist_node pushable_tasks;
1199 struct mm_struct *mm, *active_mm;
1201 /* task state */
1202 struct linux_binfmt *binfmt;
1203 int exit_state;
1204 int exit_code, exit_signal;
1205 int pdeath_signal; /* The signal sent when the parent dies */
1206 /* ??? */
1207 unsigned int personality;
1208 unsigned did_exec:1;
1209 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1210 * execve */
1211 pid_t pid;
1212 pid_t tgid;
1214 /* Canary value for the -fstack-protector gcc feature */
1215 unsigned long stack_canary;
1218 * pointers to (original) parent process, youngest child, younger sibling,
1219 * older sibling, respectively. (p->father can be replaced with
1220 * p->real_parent->pid)
1222 struct task_struct *real_parent; /* real parent process */
1223 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1225 * children/sibling forms the list of my natural children
1227 struct list_head children; /* list of my children */
1228 struct list_head sibling; /* linkage in my parent's children list */
1229 struct task_struct *group_leader; /* threadgroup leader */
1232 * ptraced is the list of tasks this task is using ptrace on.
1233 * This includes both natural children and PTRACE_ATTACH targets.
1234 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1236 struct list_head ptraced;
1237 struct list_head ptrace_entry;
1240 * This is the tracer handle for the ptrace BTS extension.
1241 * This field actually belongs to the ptracer task.
1243 struct bts_context *bts;
1245 /* PID/PID hash table linkage. */
1246 struct pid_link pids[PIDTYPE_MAX];
1247 struct list_head thread_group;
1249 struct completion *vfork_done; /* for vfork() */
1250 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1251 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1253 cputime_t utime, stime, utimescaled, stimescaled;
1254 cputime_t gtime;
1255 cputime_t prev_utime, prev_stime;
1256 unsigned long nvcsw, nivcsw; /* context switch counts */
1257 struct timespec start_time; /* monotonic time */
1258 struct timespec real_start_time; /* boot based time */
1259 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1260 unsigned long min_flt, maj_flt;
1262 struct task_cputime cputime_expires;
1263 struct list_head cpu_timers[3];
1265 /* process credentials */
1266 const struct cred *real_cred; /* objective and real subjective task
1267 * credentials (COW) */
1268 const struct cred *cred; /* effective (overridable) subjective task
1269 * credentials (COW) */
1270 struct mutex cred_guard_mutex; /* guard against foreign influences on
1271 * credential calculations
1272 * (notably. ptrace) */
1274 char comm[TASK_COMM_LEN]; /* executable name excluding path
1275 - access with [gs]et_task_comm (which lock
1276 it with task_lock())
1277 - initialized normally by flush_old_exec */
1278 /* file system info */
1279 int link_count, total_link_count;
1280 #ifdef CONFIG_SYSVIPC
1281 /* ipc stuff */
1282 struct sysv_sem sysvsem;
1283 #endif
1284 #ifdef CONFIG_DETECT_HUNG_TASK
1285 /* hung task detection */
1286 unsigned long last_switch_count;
1287 #endif
1288 /* CPU-specific state of this task */
1289 struct thread_struct thread;
1290 /* filesystem information */
1291 struct fs_struct *fs;
1292 /* open file information */
1293 struct files_struct *files;
1294 /* namespaces */
1295 struct nsproxy *nsproxy;
1296 /* signal handlers */
1297 struct signal_struct *signal;
1298 struct sighand_struct *sighand;
1300 sigset_t blocked, real_blocked;
1301 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1302 struct sigpending pending;
1304 unsigned long sas_ss_sp;
1305 size_t sas_ss_size;
1306 int (*notifier)(void *priv);
1307 void *notifier_data;
1308 sigset_t *notifier_mask;
1309 struct audit_context *audit_context;
1310 #ifdef CONFIG_AUDITSYSCALL
1311 uid_t loginuid;
1312 unsigned int sessionid;
1313 #endif
1314 seccomp_t seccomp;
1316 /* Thread group tracking */
1317 u32 parent_exec_id;
1318 u32 self_exec_id;
1319 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1320 * mempolicy */
1321 spinlock_t alloc_lock;
1323 #ifdef CONFIG_GENERIC_HARDIRQS
1324 /* IRQ handler threads */
1325 struct irqaction *irqaction;
1326 #endif
1328 /* Protection of the PI data structures: */
1329 spinlock_t pi_lock;
1331 #ifdef CONFIG_RT_MUTEXES
1332 /* PI waiters blocked on a rt_mutex held by this task */
1333 struct plist_head pi_waiters;
1334 /* Deadlock detection and priority inheritance handling */
1335 struct rt_mutex_waiter *pi_blocked_on;
1336 #endif
1338 #ifdef CONFIG_DEBUG_MUTEXES
1339 /* mutex deadlock detection */
1340 struct mutex_waiter *blocked_on;
1341 #endif
1342 #ifdef CONFIG_TRACE_IRQFLAGS
1343 unsigned int irq_events;
1344 int hardirqs_enabled;
1345 unsigned long hardirq_enable_ip;
1346 unsigned int hardirq_enable_event;
1347 unsigned long hardirq_disable_ip;
1348 unsigned int hardirq_disable_event;
1349 int softirqs_enabled;
1350 unsigned long softirq_disable_ip;
1351 unsigned int softirq_disable_event;
1352 unsigned long softirq_enable_ip;
1353 unsigned int softirq_enable_event;
1354 int hardirq_context;
1355 int softirq_context;
1356 #endif
1357 #ifdef CONFIG_LOCKDEP
1358 # define MAX_LOCK_DEPTH 48UL
1359 u64 curr_chain_key;
1360 int lockdep_depth;
1361 unsigned int lockdep_recursion;
1362 struct held_lock held_locks[MAX_LOCK_DEPTH];
1363 gfp_t lockdep_reclaim_gfp;
1364 #endif
1366 /* journalling filesystem info */
1367 void *journal_info;
1369 /* stacked block device info */
1370 struct bio *bio_list, **bio_tail;
1372 /* VM state */
1373 struct reclaim_state *reclaim_state;
1375 struct backing_dev_info *backing_dev_info;
1377 struct io_context *io_context;
1379 unsigned long ptrace_message;
1380 siginfo_t *last_siginfo; /* For ptrace use. */
1381 struct task_io_accounting ioac;
1382 #if defined(CONFIG_TASK_XACCT)
1383 u64 acct_rss_mem1; /* accumulated rss usage */
1384 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1385 cputime_t acct_timexpd; /* stime + utime since last update */
1386 #endif
1387 #ifdef CONFIG_CPUSETS
1388 nodemask_t mems_allowed; /* Protected by alloc_lock */
1389 int cpuset_mem_spread_rotor;
1390 #endif
1391 #ifdef CONFIG_CGROUPS
1392 /* Control Group info protected by css_set_lock */
1393 struct css_set *cgroups;
1394 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1395 struct list_head cg_list;
1396 #endif
1397 #ifdef CONFIG_FUTEX
1398 struct robust_list_head __user *robust_list;
1399 #ifdef CONFIG_COMPAT
1400 struct compat_robust_list_head __user *compat_robust_list;
1401 #endif
1402 struct list_head pi_state_list;
1403 struct futex_pi_state *pi_state_cache;
1404 #endif
1405 #ifdef CONFIG_PERF_COUNTERS
1406 struct perf_counter_context *perf_counter_ctxp;
1407 struct mutex perf_counter_mutex;
1408 struct list_head perf_counter_list;
1409 #endif
1410 #ifdef CONFIG_NUMA
1411 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1412 short il_next;
1413 #endif
1414 atomic_t fs_excl; /* holding fs exclusive resources */
1415 struct rcu_head rcu;
1418 * cache last used pipe for splice
1420 struct pipe_inode_info *splice_pipe;
1421 #ifdef CONFIG_TASK_DELAY_ACCT
1422 struct task_delay_info *delays;
1423 #endif
1424 #ifdef CONFIG_FAULT_INJECTION
1425 int make_it_fail;
1426 #endif
1427 struct prop_local_single dirties;
1428 #ifdef CONFIG_LATENCYTOP
1429 int latency_record_count;
1430 struct latency_record latency_record[LT_SAVECOUNT];
1431 #endif
1433 * time slack values; these are used to round up poll() and
1434 * select() etc timeout values. These are in nanoseconds.
1436 unsigned long timer_slack_ns;
1437 unsigned long default_timer_slack_ns;
1439 struct list_head *scm_work_list;
1440 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1441 /* Index of current stored adress in ret_stack */
1442 int curr_ret_stack;
1443 /* Stack of return addresses for return function tracing */
1444 struct ftrace_ret_stack *ret_stack;
1445 /* time stamp for last schedule */
1446 unsigned long long ftrace_timestamp;
1448 * Number of functions that haven't been traced
1449 * because of depth overrun.
1451 atomic_t trace_overrun;
1452 /* Pause for the tracing */
1453 atomic_t tracing_graph_pause;
1454 #endif
1455 #ifdef CONFIG_TRACING
1456 /* state flags for use by tracers */
1457 unsigned long trace;
1458 /* bitmask of trace recursion */
1459 unsigned long trace_recursion;
1460 #endif /* CONFIG_TRACING */
1463 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1464 #define tsk_cpumask(tsk) (&(tsk)->cpus_allowed)
1467 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1468 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1469 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1470 * values are inverted: lower p->prio value means higher priority.
1472 * The MAX_USER_RT_PRIO value allows the actual maximum
1473 * RT priority to be separate from the value exported to
1474 * user-space. This allows kernel threads to set their
1475 * priority to a value higher than any user task. Note:
1476 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1479 #define MAX_USER_RT_PRIO 100
1480 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1482 #define MAX_PRIO (MAX_RT_PRIO + 40)
1483 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1485 static inline int rt_prio(int prio)
1487 if (unlikely(prio < MAX_RT_PRIO))
1488 return 1;
1489 return 0;
1492 static inline int rt_task(struct task_struct *p)
1494 return rt_prio(p->prio);
1497 static inline struct pid *task_pid(struct task_struct *task)
1499 return task->pids[PIDTYPE_PID].pid;
1502 static inline struct pid *task_tgid(struct task_struct *task)
1504 return task->group_leader->pids[PIDTYPE_PID].pid;
1508 * Without tasklist or rcu lock it is not safe to dereference
1509 * the result of task_pgrp/task_session even if task == current,
1510 * we can race with another thread doing sys_setsid/sys_setpgid.
1512 static inline struct pid *task_pgrp(struct task_struct *task)
1514 return task->group_leader->pids[PIDTYPE_PGID].pid;
1517 static inline struct pid *task_session(struct task_struct *task)
1519 return task->group_leader->pids[PIDTYPE_SID].pid;
1522 struct pid_namespace;
1525 * the helpers to get the task's different pids as they are seen
1526 * from various namespaces
1528 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1529 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1530 * current.
1531 * task_xid_nr_ns() : id seen from the ns specified;
1533 * set_task_vxid() : assigns a virtual id to a task;
1535 * see also pid_nr() etc in include/linux/pid.h
1537 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1538 struct pid_namespace *ns);
1540 static inline pid_t task_pid_nr(struct task_struct *tsk)
1542 return tsk->pid;
1545 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1546 struct pid_namespace *ns)
1548 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1551 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1553 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1557 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1559 return tsk->tgid;
1562 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1564 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1566 return pid_vnr(task_tgid(tsk));
1570 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1571 struct pid_namespace *ns)
1573 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1576 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1578 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1582 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1583 struct pid_namespace *ns)
1585 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1588 static inline pid_t task_session_vnr(struct task_struct *tsk)
1590 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1593 /* obsolete, do not use */
1594 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1596 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1600 * pid_alive - check that a task structure is not stale
1601 * @p: Task structure to be checked.
1603 * Test if a process is not yet dead (at most zombie state)
1604 * If pid_alive fails, then pointers within the task structure
1605 * can be stale and must not be dereferenced.
1607 static inline int pid_alive(struct task_struct *p)
1609 return p->pids[PIDTYPE_PID].pid != NULL;
1613 * is_global_init - check if a task structure is init
1614 * @tsk: Task structure to be checked.
1616 * Check if a task structure is the first user space task the kernel created.
1618 static inline int is_global_init(struct task_struct *tsk)
1620 return tsk->pid == 1;
1624 * is_container_init:
1625 * check whether in the task is init in its own pid namespace.
1627 extern int is_container_init(struct task_struct *tsk);
1629 extern struct pid *cad_pid;
1631 extern void free_task(struct task_struct *tsk);
1632 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1634 extern void __put_task_struct(struct task_struct *t);
1636 static inline void put_task_struct(struct task_struct *t)
1638 if (atomic_dec_and_test(&t->usage))
1639 __put_task_struct(t);
1642 extern cputime_t task_utime(struct task_struct *p);
1643 extern cputime_t task_stime(struct task_struct *p);
1644 extern cputime_t task_gtime(struct task_struct *p);
1647 * Per process flags
1649 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1650 /* Not implemented yet, only for 486*/
1651 #define PF_STARTING 0x00000002 /* being created */
1652 #define PF_EXITING 0x00000004 /* getting shut down */
1653 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1654 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1655 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1656 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1657 #define PF_DUMPCORE 0x00000200 /* dumped core */
1658 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1659 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1660 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1661 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1662 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1663 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1664 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1665 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1666 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1667 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1668 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1669 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1670 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1671 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1672 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1673 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1674 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1675 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1676 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1677 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1680 * Only the _current_ task can read/write to tsk->flags, but other
1681 * tasks can access tsk->flags in readonly mode for example
1682 * with tsk_used_math (like during threaded core dumping).
1683 * There is however an exception to this rule during ptrace
1684 * or during fork: the ptracer task is allowed to write to the
1685 * child->flags of its traced child (same goes for fork, the parent
1686 * can write to the child->flags), because we're guaranteed the
1687 * child is not running and in turn not changing child->flags
1688 * at the same time the parent does it.
1690 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1691 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1692 #define clear_used_math() clear_stopped_child_used_math(current)
1693 #define set_used_math() set_stopped_child_used_math(current)
1694 #define conditional_stopped_child_used_math(condition, child) \
1695 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1696 #define conditional_used_math(condition) \
1697 conditional_stopped_child_used_math(condition, current)
1698 #define copy_to_stopped_child_used_math(child) \
1699 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1700 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1701 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1702 #define used_math() tsk_used_math(current)
1704 #ifdef CONFIG_SMP
1705 extern int set_cpus_allowed_ptr(struct task_struct *p,
1706 const struct cpumask *new_mask);
1707 #else
1708 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1709 const struct cpumask *new_mask)
1711 if (!cpumask_test_cpu(0, new_mask))
1712 return -EINVAL;
1713 return 0;
1715 #endif
1716 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1718 return set_cpus_allowed_ptr(p, &new_mask);
1722 * Architectures can set this to 1 if they have specified
1723 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1724 * but then during bootup it turns out that sched_clock()
1725 * is reliable after all:
1727 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1728 extern int sched_clock_stable;
1729 #endif
1731 extern unsigned long long sched_clock(void);
1733 extern void sched_clock_init(void);
1734 extern u64 sched_clock_cpu(int cpu);
1736 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1737 static inline void sched_clock_tick(void)
1741 static inline void sched_clock_idle_sleep_event(void)
1745 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1748 #else
1749 extern void sched_clock_tick(void);
1750 extern void sched_clock_idle_sleep_event(void);
1751 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1752 #endif
1755 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1756 * clock constructed from sched_clock():
1758 extern unsigned long long cpu_clock(int cpu);
1760 extern unsigned long long
1761 task_sched_runtime(struct task_struct *task);
1762 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1764 /* sched_exec is called by processes performing an exec */
1765 #ifdef CONFIG_SMP
1766 extern void sched_exec(void);
1767 #else
1768 #define sched_exec() {}
1769 #endif
1771 extern void sched_clock_idle_sleep_event(void);
1772 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1774 #ifdef CONFIG_HOTPLUG_CPU
1775 extern void idle_task_exit(void);
1776 #else
1777 static inline void idle_task_exit(void) {}
1778 #endif
1780 extern void sched_idle_next(void);
1782 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1783 extern void wake_up_idle_cpu(int cpu);
1784 #else
1785 static inline void wake_up_idle_cpu(int cpu) { }
1786 #endif
1788 extern unsigned int sysctl_sched_latency;
1789 extern unsigned int sysctl_sched_min_granularity;
1790 extern unsigned int sysctl_sched_wakeup_granularity;
1791 extern unsigned int sysctl_sched_shares_ratelimit;
1792 extern unsigned int sysctl_sched_shares_thresh;
1793 #ifdef CONFIG_SCHED_DEBUG
1794 extern unsigned int sysctl_sched_child_runs_first;
1795 extern unsigned int sysctl_sched_features;
1796 extern unsigned int sysctl_sched_migration_cost;
1797 extern unsigned int sysctl_sched_nr_migrate;
1798 extern unsigned int sysctl_timer_migration;
1800 int sched_nr_latency_handler(struct ctl_table *table, int write,
1801 struct file *file, void __user *buffer, size_t *length,
1802 loff_t *ppos);
1803 #endif
1804 #ifdef CONFIG_SCHED_DEBUG
1805 static inline unsigned int get_sysctl_timer_migration(void)
1807 return sysctl_timer_migration;
1809 #else
1810 static inline unsigned int get_sysctl_timer_migration(void)
1812 return 1;
1814 #endif
1815 extern unsigned int sysctl_sched_rt_period;
1816 extern int sysctl_sched_rt_runtime;
1818 int sched_rt_handler(struct ctl_table *table, int write,
1819 struct file *filp, void __user *buffer, size_t *lenp,
1820 loff_t *ppos);
1822 extern unsigned int sysctl_sched_compat_yield;
1824 #ifdef CONFIG_RT_MUTEXES
1825 extern int rt_mutex_getprio(struct task_struct *p);
1826 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1827 extern void rt_mutex_adjust_pi(struct task_struct *p);
1828 #else
1829 static inline int rt_mutex_getprio(struct task_struct *p)
1831 return p->normal_prio;
1833 # define rt_mutex_adjust_pi(p) do { } while (0)
1834 #endif
1836 extern void set_user_nice(struct task_struct *p, long nice);
1837 extern int task_prio(const struct task_struct *p);
1838 extern int task_nice(const struct task_struct *p);
1839 extern int can_nice(const struct task_struct *p, const int nice);
1840 extern int task_curr(const struct task_struct *p);
1841 extern int idle_cpu(int cpu);
1842 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1843 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1844 struct sched_param *);
1845 extern struct task_struct *idle_task(int cpu);
1846 extern struct task_struct *curr_task(int cpu);
1847 extern void set_curr_task(int cpu, struct task_struct *p);
1849 void yield(void);
1852 * The default (Linux) execution domain.
1854 extern struct exec_domain default_exec_domain;
1856 union thread_union {
1857 struct thread_info thread_info;
1858 unsigned long stack[THREAD_SIZE/sizeof(long)];
1861 #ifndef __HAVE_ARCH_KSTACK_END
1862 static inline int kstack_end(void *addr)
1864 /* Reliable end of stack detection:
1865 * Some APM bios versions misalign the stack
1867 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1869 #endif
1871 extern union thread_union init_thread_union;
1872 extern struct task_struct init_task;
1874 extern struct mm_struct init_mm;
1876 extern struct pid_namespace init_pid_ns;
1879 * find a task by one of its numerical ids
1881 * find_task_by_pid_ns():
1882 * finds a task by its pid in the specified namespace
1883 * find_task_by_vpid():
1884 * finds a task by its virtual pid
1886 * see also find_vpid() etc in include/linux/pid.h
1889 extern struct task_struct *find_task_by_vpid(pid_t nr);
1890 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1891 struct pid_namespace *ns);
1893 extern void __set_special_pids(struct pid *pid);
1895 /* per-UID process charging. */
1896 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1897 static inline struct user_struct *get_uid(struct user_struct *u)
1899 atomic_inc(&u->__count);
1900 return u;
1902 extern void free_uid(struct user_struct *);
1903 extern void release_uids(struct user_namespace *ns);
1905 #include <asm/current.h>
1907 extern void do_timer(unsigned long ticks);
1909 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1910 extern int wake_up_process(struct task_struct *tsk);
1911 extern void wake_up_new_task(struct task_struct *tsk,
1912 unsigned long clone_flags);
1913 #ifdef CONFIG_SMP
1914 extern void kick_process(struct task_struct *tsk);
1915 #else
1916 static inline void kick_process(struct task_struct *tsk) { }
1917 #endif
1918 extern void sched_fork(struct task_struct *p, int clone_flags);
1919 extern void sched_dead(struct task_struct *p);
1921 extern void proc_caches_init(void);
1922 extern void flush_signals(struct task_struct *);
1923 extern void __flush_signals(struct task_struct *);
1924 extern void ignore_signals(struct task_struct *);
1925 extern void flush_signal_handlers(struct task_struct *, int force_default);
1926 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1928 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1930 unsigned long flags;
1931 int ret;
1933 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1934 ret = dequeue_signal(tsk, mask, info);
1935 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1937 return ret;
1940 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1941 sigset_t *mask);
1942 extern void unblock_all_signals(void);
1943 extern void release_task(struct task_struct * p);
1944 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1945 extern int force_sigsegv(int, struct task_struct *);
1946 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1947 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1948 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1949 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1950 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1951 extern int kill_pid(struct pid *pid, int sig, int priv);
1952 extern int kill_proc_info(int, struct siginfo *, pid_t);
1953 extern int do_notify_parent(struct task_struct *, int);
1954 extern void force_sig(int, struct task_struct *);
1955 extern void force_sig_specific(int, struct task_struct *);
1956 extern int send_sig(int, struct task_struct *, int);
1957 extern void zap_other_threads(struct task_struct *p);
1958 extern struct sigqueue *sigqueue_alloc(void);
1959 extern void sigqueue_free(struct sigqueue *);
1960 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
1961 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1962 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1964 static inline int kill_cad_pid(int sig, int priv)
1966 return kill_pid(cad_pid, sig, priv);
1969 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1970 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1971 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1972 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1974 static inline int is_si_special(const struct siginfo *info)
1976 return info <= SEND_SIG_FORCED;
1979 /* True if we are on the alternate signal stack. */
1981 static inline int on_sig_stack(unsigned long sp)
1983 return (sp - current->sas_ss_sp < current->sas_ss_size);
1986 static inline int sas_ss_flags(unsigned long sp)
1988 return (current->sas_ss_size == 0 ? SS_DISABLE
1989 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1993 * Routines for handling mm_structs
1995 extern struct mm_struct * mm_alloc(void);
1997 /* mmdrop drops the mm and the page tables */
1998 extern void __mmdrop(struct mm_struct *);
1999 static inline void mmdrop(struct mm_struct * mm)
2001 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2002 __mmdrop(mm);
2005 /* mmput gets rid of the mappings and all user-space */
2006 extern void mmput(struct mm_struct *);
2007 /* Grab a reference to a task's mm, if it is not already going away */
2008 extern struct mm_struct *get_task_mm(struct task_struct *task);
2009 /* Remove the current tasks stale references to the old mm_struct */
2010 extern void mm_release(struct task_struct *, struct mm_struct *);
2011 /* Allocate a new mm structure and copy contents from tsk->mm */
2012 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2014 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2015 struct task_struct *, struct pt_regs *);
2016 extern void flush_thread(void);
2017 extern void exit_thread(void);
2019 extern void exit_files(struct task_struct *);
2020 extern void __cleanup_signal(struct signal_struct *);
2021 extern void __cleanup_sighand(struct sighand_struct *);
2023 extern void exit_itimers(struct signal_struct *);
2024 extern void flush_itimer_signals(void);
2026 extern NORET_TYPE void do_group_exit(int);
2028 extern void daemonize(const char *, ...);
2029 extern int allow_signal(int);
2030 extern int disallow_signal(int);
2032 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
2033 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2034 struct task_struct *fork_idle(int);
2036 extern void set_task_comm(struct task_struct *tsk, char *from);
2037 extern char *get_task_comm(char *to, struct task_struct *tsk);
2039 #ifdef CONFIG_SMP
2040 extern void wait_task_context_switch(struct task_struct *p);
2041 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2042 #else
2043 static inline void wait_task_context_switch(struct task_struct *p) {}
2044 static inline unsigned long wait_task_inactive(struct task_struct *p,
2045 long match_state)
2047 return 1;
2049 #endif
2051 #define next_task(p) \
2052 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2054 #define for_each_process(p) \
2055 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2057 extern bool is_single_threaded(struct task_struct *);
2060 * Careful: do_each_thread/while_each_thread is a double loop so
2061 * 'break' will not work as expected - use goto instead.
2063 #define do_each_thread(g, t) \
2064 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2066 #define while_each_thread(g, t) \
2067 while ((t = next_thread(t)) != g)
2069 /* de_thread depends on thread_group_leader not being a pid based check */
2070 #define thread_group_leader(p) (p == p->group_leader)
2072 /* Do to the insanities of de_thread it is possible for a process
2073 * to have the pid of the thread group leader without actually being
2074 * the thread group leader. For iteration through the pids in proc
2075 * all we care about is that we have a task with the appropriate
2076 * pid, we don't actually care if we have the right task.
2078 static inline int has_group_leader_pid(struct task_struct *p)
2080 return p->pid == p->tgid;
2083 static inline
2084 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2086 return p1->tgid == p2->tgid;
2089 static inline struct task_struct *next_thread(const struct task_struct *p)
2091 return list_entry_rcu(p->thread_group.next,
2092 struct task_struct, thread_group);
2095 static inline int thread_group_empty(struct task_struct *p)
2097 return list_empty(&p->thread_group);
2100 #define delay_group_leader(p) \
2101 (thread_group_leader(p) && !thread_group_empty(p))
2103 static inline int task_detached(struct task_struct *p)
2105 return p->exit_signal == -1;
2109 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2110 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2111 * pins the final release of task.io_context. Also protects ->cpuset and
2112 * ->cgroup.subsys[].
2114 * Nests both inside and outside of read_lock(&tasklist_lock).
2115 * It must not be nested with write_lock_irq(&tasklist_lock),
2116 * neither inside nor outside.
2118 static inline void task_lock(struct task_struct *p)
2120 spin_lock(&p->alloc_lock);
2123 static inline void task_unlock(struct task_struct *p)
2125 spin_unlock(&p->alloc_lock);
2128 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2129 unsigned long *flags);
2131 static inline void unlock_task_sighand(struct task_struct *tsk,
2132 unsigned long *flags)
2134 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2137 #ifndef __HAVE_THREAD_FUNCTIONS
2139 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2140 #define task_stack_page(task) ((task)->stack)
2142 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2144 *task_thread_info(p) = *task_thread_info(org);
2145 task_thread_info(p)->task = p;
2148 static inline unsigned long *end_of_stack(struct task_struct *p)
2150 return (unsigned long *)(task_thread_info(p) + 1);
2153 #endif
2155 static inline int object_is_on_stack(void *obj)
2157 void *stack = task_stack_page(current);
2159 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2162 extern void thread_info_cache_init(void);
2164 #ifdef CONFIG_DEBUG_STACK_USAGE
2165 static inline unsigned long stack_not_used(struct task_struct *p)
2167 unsigned long *n = end_of_stack(p);
2169 do { /* Skip over canary */
2170 n++;
2171 } while (!*n);
2173 return (unsigned long)n - (unsigned long)end_of_stack(p);
2175 #endif
2177 /* set thread flags in other task's structures
2178 * - see asm/thread_info.h for TIF_xxxx flags available
2180 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2182 set_ti_thread_flag(task_thread_info(tsk), flag);
2185 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2187 clear_ti_thread_flag(task_thread_info(tsk), flag);
2190 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2192 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2195 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2197 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2200 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2202 return test_ti_thread_flag(task_thread_info(tsk), flag);
2205 static inline void set_tsk_need_resched(struct task_struct *tsk)
2207 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2210 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2212 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2215 static inline int test_tsk_need_resched(struct task_struct *tsk)
2217 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2220 static inline int restart_syscall(void)
2222 set_tsk_thread_flag(current, TIF_SIGPENDING);
2223 return -ERESTARTNOINTR;
2226 static inline int signal_pending(struct task_struct *p)
2228 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2231 extern int __fatal_signal_pending(struct task_struct *p);
2233 static inline int fatal_signal_pending(struct task_struct *p)
2235 return signal_pending(p) && __fatal_signal_pending(p);
2238 static inline int signal_pending_state(long state, struct task_struct *p)
2240 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2241 return 0;
2242 if (!signal_pending(p))
2243 return 0;
2245 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2248 static inline int need_resched(void)
2250 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2254 * cond_resched() and cond_resched_lock(): latency reduction via
2255 * explicit rescheduling in places that are safe. The return
2256 * value indicates whether a reschedule was done in fact.
2257 * cond_resched_lock() will drop the spinlock before scheduling,
2258 * cond_resched_softirq() will enable bhs before scheduling.
2260 extern int _cond_resched(void);
2261 #ifdef CONFIG_PREEMPT_BKL
2262 static inline int cond_resched(void)
2264 return 0;
2266 #else
2267 static inline int cond_resched(void)
2269 return _cond_resched();
2271 #endif
2272 extern int cond_resched_lock(spinlock_t * lock);
2273 extern int cond_resched_softirq(void);
2274 static inline int cond_resched_bkl(void)
2276 return _cond_resched();
2280 * Does a critical section need to be broken due to another
2281 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2282 * but a general need for low latency)
2284 static inline int spin_needbreak(spinlock_t *lock)
2286 #ifdef CONFIG_PREEMPT
2287 return spin_is_contended(lock);
2288 #else
2289 return 0;
2290 #endif
2294 * Thread group CPU time accounting.
2296 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2297 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2299 static inline void thread_group_cputime_init(struct signal_struct *sig)
2301 sig->cputimer.cputime = INIT_CPUTIME;
2302 spin_lock_init(&sig->cputimer.lock);
2303 sig->cputimer.running = 0;
2306 static inline void thread_group_cputime_free(struct signal_struct *sig)
2311 * Reevaluate whether the task has signals pending delivery.
2312 * Wake the task if so.
2313 * This is required every time the blocked sigset_t changes.
2314 * callers must hold sighand->siglock.
2316 extern void recalc_sigpending_and_wake(struct task_struct *t);
2317 extern void recalc_sigpending(void);
2319 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2322 * Wrappers for p->thread_info->cpu access. No-op on UP.
2324 #ifdef CONFIG_SMP
2326 static inline unsigned int task_cpu(const struct task_struct *p)
2328 return task_thread_info(p)->cpu;
2331 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2333 #else
2335 static inline unsigned int task_cpu(const struct task_struct *p)
2337 return 0;
2340 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2344 #endif /* CONFIG_SMP */
2346 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2348 #ifdef CONFIG_TRACING
2349 extern void
2350 __trace_special(void *__tr, void *__data,
2351 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2352 #else
2353 static inline void
2354 __trace_special(void *__tr, void *__data,
2355 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2358 #endif
2360 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2361 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2363 extern void normalize_rt_tasks(void);
2365 #ifdef CONFIG_GROUP_SCHED
2367 extern struct task_group init_task_group;
2368 #ifdef CONFIG_USER_SCHED
2369 extern struct task_group root_task_group;
2370 extern void set_tg_uid(struct user_struct *user);
2371 #endif
2373 extern struct task_group *sched_create_group(struct task_group *parent);
2374 extern void sched_destroy_group(struct task_group *tg);
2375 extern void sched_move_task(struct task_struct *tsk);
2376 #ifdef CONFIG_FAIR_GROUP_SCHED
2377 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2378 extern unsigned long sched_group_shares(struct task_group *tg);
2379 #endif
2380 #ifdef CONFIG_RT_GROUP_SCHED
2381 extern int sched_group_set_rt_runtime(struct task_group *tg,
2382 long rt_runtime_us);
2383 extern long sched_group_rt_runtime(struct task_group *tg);
2384 extern int sched_group_set_rt_period(struct task_group *tg,
2385 long rt_period_us);
2386 extern long sched_group_rt_period(struct task_group *tg);
2387 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2388 #endif
2389 #endif
2391 extern int task_can_switch_user(struct user_struct *up,
2392 struct task_struct *tsk);
2394 #ifdef CONFIG_TASK_XACCT
2395 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2397 tsk->ioac.rchar += amt;
2400 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2402 tsk->ioac.wchar += amt;
2405 static inline void inc_syscr(struct task_struct *tsk)
2407 tsk->ioac.syscr++;
2410 static inline void inc_syscw(struct task_struct *tsk)
2412 tsk->ioac.syscw++;
2414 #else
2415 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2419 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2423 static inline void inc_syscr(struct task_struct *tsk)
2427 static inline void inc_syscw(struct task_struct *tsk)
2430 #endif
2432 #ifndef TASK_SIZE_OF
2433 #define TASK_SIZE_OF(tsk) TASK_SIZE
2434 #endif
2437 * Call the function if the target task is executing on a CPU right now:
2439 extern void task_oncpu_function_call(struct task_struct *p,
2440 void (*func) (void *info), void *info);
2443 #ifdef CONFIG_MM_OWNER
2444 extern void mm_update_next_owner(struct mm_struct *mm);
2445 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2446 #else
2447 static inline void mm_update_next_owner(struct mm_struct *mm)
2451 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2454 #endif /* CONFIG_MM_OWNER */
2456 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2458 #endif /* __KERNEL__ */
2460 #endif