2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #include <linux/cgroup.h>
30 #include <linux/ctype.h>
31 #include <linux/errno.h>
33 #include <linux/kernel.h>
34 #include <linux/list.h>
36 #include <linux/mutex.h>
37 #include <linux/mount.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/rcupdate.h>
41 #include <linux/sched.h>
42 #include <linux/backing-dev.h>
43 #include <linux/seq_file.h>
44 #include <linux/slab.h>
45 #include <linux/magic.h>
46 #include <linux/spinlock.h>
47 #include <linux/string.h>
48 #include <linux/sort.h>
49 #include <linux/kmod.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/cgroupstats.h>
53 #include <linux/hash.h>
54 #include <linux/namei.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/eventfd.h>
59 #include <linux/poll.h>
61 #include <asm/atomic.h>
63 static DEFINE_MUTEX(cgroup_mutex
);
66 * Generate an array of cgroup subsystem pointers. At boot time, this is
67 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
68 * registered after that. The mutable section of this array is protected by
71 #define SUBSYS(_x) &_x ## _subsys,
72 static struct cgroup_subsys
*subsys
[CGROUP_SUBSYS_COUNT
] = {
73 #include <linux/cgroup_subsys.h>
76 #define MAX_CGROUP_ROOT_NAMELEN 64
79 * A cgroupfs_root represents the root of a cgroup hierarchy,
80 * and may be associated with a superblock to form an active
83 struct cgroupfs_root
{
84 struct super_block
*sb
;
87 * The bitmask of subsystems intended to be attached to this
90 unsigned long subsys_bits
;
92 /* Unique id for this hierarchy. */
95 /* The bitmask of subsystems currently attached to this hierarchy */
96 unsigned long actual_subsys_bits
;
98 /* A list running through the attached subsystems */
99 struct list_head subsys_list
;
101 /* The root cgroup for this hierarchy */
102 struct cgroup top_cgroup
;
104 /* Tracks how many cgroups are currently defined in hierarchy.*/
105 int number_of_cgroups
;
107 /* A list running through the active hierarchies */
108 struct list_head root_list
;
110 /* Hierarchy-specific flags */
113 /* The path to use for release notifications. */
114 char release_agent_path
[PATH_MAX
];
116 /* The name for this hierarchy - may be empty */
117 char name
[MAX_CGROUP_ROOT_NAMELEN
];
121 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
122 * subsystems that are otherwise unattached - it never has more than a
123 * single cgroup, and all tasks are part of that cgroup.
125 static struct cgroupfs_root rootnode
;
128 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
129 * cgroup_subsys->use_id != 0.
131 #define CSS_ID_MAX (65535)
134 * The css to which this ID points. This pointer is set to valid value
135 * after cgroup is populated. If cgroup is removed, this will be NULL.
136 * This pointer is expected to be RCU-safe because destroy()
137 * is called after synchronize_rcu(). But for safe use, css_is_removed()
138 * css_tryget() should be used for avoiding race.
140 struct cgroup_subsys_state __rcu
*css
;
146 * Depth in hierarchy which this ID belongs to.
148 unsigned short depth
;
150 * ID is freed by RCU. (and lookup routine is RCU safe.)
152 struct rcu_head rcu_head
;
154 * Hierarchy of CSS ID belongs to.
156 unsigned short stack
[0]; /* Array of Length (depth+1) */
160 * cgroup_event represents events which userspace want to recieve.
162 struct cgroup_event
{
164 * Cgroup which the event belongs to.
168 * Control file which the event associated.
172 * eventfd to signal userspace about the event.
174 struct eventfd_ctx
*eventfd
;
176 * Each of these stored in a list by the cgroup.
178 struct list_head list
;
180 * All fields below needed to unregister event when
181 * userspace closes eventfd.
184 wait_queue_head_t
*wqh
;
186 struct work_struct remove
;
189 /* The list of hierarchy roots */
191 static LIST_HEAD(roots
);
192 static int root_count
;
194 static DEFINE_IDA(hierarchy_ida
);
195 static int next_hierarchy_id
;
196 static DEFINE_SPINLOCK(hierarchy_id_lock
);
198 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
199 #define dummytop (&rootnode.top_cgroup)
201 /* This flag indicates whether tasks in the fork and exit paths should
202 * check for fork/exit handlers to call. This avoids us having to do
203 * extra work in the fork/exit path if none of the subsystems need to
206 static int need_forkexit_callback __read_mostly
;
208 #ifdef CONFIG_PROVE_LOCKING
209 int cgroup_lock_is_held(void)
211 return lockdep_is_held(&cgroup_mutex
);
213 #else /* #ifdef CONFIG_PROVE_LOCKING */
214 int cgroup_lock_is_held(void)
216 return mutex_is_locked(&cgroup_mutex
);
218 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
220 EXPORT_SYMBOL_GPL(cgroup_lock_is_held
);
222 /* convenient tests for these bits */
223 inline int cgroup_is_removed(const struct cgroup
*cgrp
)
225 return test_bit(CGRP_REMOVED
, &cgrp
->flags
);
228 /* bits in struct cgroupfs_root flags field */
230 ROOT_NOPREFIX
, /* mounted subsystems have no named prefix */
233 static int cgroup_is_releasable(const struct cgroup
*cgrp
)
236 (1 << CGRP_RELEASABLE
) |
237 (1 << CGRP_NOTIFY_ON_RELEASE
);
238 return (cgrp
->flags
& bits
) == bits
;
241 static int notify_on_release(const struct cgroup
*cgrp
)
243 return test_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
247 * for_each_subsys() allows you to iterate on each subsystem attached to
248 * an active hierarchy
250 #define for_each_subsys(_root, _ss) \
251 list_for_each_entry(_ss, &_root->subsys_list, sibling)
253 /* for_each_active_root() allows you to iterate across the active hierarchies */
254 #define for_each_active_root(_root) \
255 list_for_each_entry(_root, &roots, root_list)
257 /* the list of cgroups eligible for automatic release. Protected by
258 * release_list_lock */
259 static LIST_HEAD(release_list
);
260 static DEFINE_SPINLOCK(release_list_lock
);
261 static void cgroup_release_agent(struct work_struct
*work
);
262 static DECLARE_WORK(release_agent_work
, cgroup_release_agent
);
263 static void check_for_release(struct cgroup
*cgrp
);
265 /* Link structure for associating css_set objects with cgroups */
266 struct cg_cgroup_link
{
268 * List running through cg_cgroup_links associated with a
269 * cgroup, anchored on cgroup->css_sets
271 struct list_head cgrp_link_list
;
274 * List running through cg_cgroup_links pointing at a
275 * single css_set object, anchored on css_set->cg_links
277 struct list_head cg_link_list
;
281 /* The default css_set - used by init and its children prior to any
282 * hierarchies being mounted. It contains a pointer to the root state
283 * for each subsystem. Also used to anchor the list of css_sets. Not
284 * reference-counted, to improve performance when child cgroups
285 * haven't been created.
288 static struct css_set init_css_set
;
289 static struct cg_cgroup_link init_css_set_link
;
291 static int cgroup_init_idr(struct cgroup_subsys
*ss
,
292 struct cgroup_subsys_state
*css
);
294 /* css_set_lock protects the list of css_set objects, and the
295 * chain of tasks off each css_set. Nests outside task->alloc_lock
296 * due to cgroup_iter_start() */
297 static DEFINE_RWLOCK(css_set_lock
);
298 static int css_set_count
;
301 * hash table for cgroup groups. This improves the performance to find
302 * an existing css_set. This hash doesn't (currently) take into
303 * account cgroups in empty hierarchies.
305 #define CSS_SET_HASH_BITS 7
306 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
307 static struct hlist_head css_set_table
[CSS_SET_TABLE_SIZE
];
309 static struct hlist_head
*css_set_hash(struct cgroup_subsys_state
*css
[])
313 unsigned long tmp
= 0UL;
315 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++)
316 tmp
+= (unsigned long)css
[i
];
317 tmp
= (tmp
>> 16) ^ tmp
;
319 index
= hash_long(tmp
, CSS_SET_HASH_BITS
);
321 return &css_set_table
[index
];
324 static void free_css_set_rcu(struct rcu_head
*obj
)
326 struct css_set
*cg
= container_of(obj
, struct css_set
, rcu_head
);
330 /* We don't maintain the lists running through each css_set to its
331 * task until after the first call to cgroup_iter_start(). This
332 * reduces the fork()/exit() overhead for people who have cgroups
333 * compiled into their kernel but not actually in use */
334 static int use_task_css_set_links __read_mostly
;
336 static void __put_css_set(struct css_set
*cg
, int taskexit
)
338 struct cg_cgroup_link
*link
;
339 struct cg_cgroup_link
*saved_link
;
341 * Ensure that the refcount doesn't hit zero while any readers
342 * can see it. Similar to atomic_dec_and_lock(), but for an
345 if (atomic_add_unless(&cg
->refcount
, -1, 1))
347 write_lock(&css_set_lock
);
348 if (!atomic_dec_and_test(&cg
->refcount
)) {
349 write_unlock(&css_set_lock
);
353 /* This css_set is dead. unlink it and release cgroup refcounts */
354 hlist_del(&cg
->hlist
);
357 list_for_each_entry_safe(link
, saved_link
, &cg
->cg_links
,
359 struct cgroup
*cgrp
= link
->cgrp
;
360 list_del(&link
->cg_link_list
);
361 list_del(&link
->cgrp_link_list
);
362 if (atomic_dec_and_test(&cgrp
->count
) &&
363 notify_on_release(cgrp
)) {
365 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
366 check_for_release(cgrp
);
372 write_unlock(&css_set_lock
);
373 call_rcu(&cg
->rcu_head
, free_css_set_rcu
);
377 * refcounted get/put for css_set objects
379 static inline void get_css_set(struct css_set
*cg
)
381 atomic_inc(&cg
->refcount
);
384 static inline void put_css_set(struct css_set
*cg
)
386 __put_css_set(cg
, 0);
389 static inline void put_css_set_taskexit(struct css_set
*cg
)
391 __put_css_set(cg
, 1);
395 * compare_css_sets - helper function for find_existing_css_set().
396 * @cg: candidate css_set being tested
397 * @old_cg: existing css_set for a task
398 * @new_cgrp: cgroup that's being entered by the task
399 * @template: desired set of css pointers in css_set (pre-calculated)
401 * Returns true if "cg" matches "old_cg" except for the hierarchy
402 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
404 static bool compare_css_sets(struct css_set
*cg
,
405 struct css_set
*old_cg
,
406 struct cgroup
*new_cgrp
,
407 struct cgroup_subsys_state
*template[])
409 struct list_head
*l1
, *l2
;
411 if (memcmp(template, cg
->subsys
, sizeof(cg
->subsys
))) {
412 /* Not all subsystems matched */
417 * Compare cgroup pointers in order to distinguish between
418 * different cgroups in heirarchies with no subsystems. We
419 * could get by with just this check alone (and skip the
420 * memcmp above) but on most setups the memcmp check will
421 * avoid the need for this more expensive check on almost all
426 l2
= &old_cg
->cg_links
;
428 struct cg_cgroup_link
*cgl1
, *cgl2
;
429 struct cgroup
*cg1
, *cg2
;
433 /* See if we reached the end - both lists are equal length. */
434 if (l1
== &cg
->cg_links
) {
435 BUG_ON(l2
!= &old_cg
->cg_links
);
438 BUG_ON(l2
== &old_cg
->cg_links
);
440 /* Locate the cgroups associated with these links. */
441 cgl1
= list_entry(l1
, struct cg_cgroup_link
, cg_link_list
);
442 cgl2
= list_entry(l2
, struct cg_cgroup_link
, cg_link_list
);
445 /* Hierarchies should be linked in the same order. */
446 BUG_ON(cg1
->root
!= cg2
->root
);
449 * If this hierarchy is the hierarchy of the cgroup
450 * that's changing, then we need to check that this
451 * css_set points to the new cgroup; if it's any other
452 * hierarchy, then this css_set should point to the
453 * same cgroup as the old css_set.
455 if (cg1
->root
== new_cgrp
->root
) {
467 * find_existing_css_set() is a helper for
468 * find_css_set(), and checks to see whether an existing
469 * css_set is suitable.
471 * oldcg: the cgroup group that we're using before the cgroup
474 * cgrp: the cgroup that we're moving into
476 * template: location in which to build the desired set of subsystem
477 * state objects for the new cgroup group
479 static struct css_set
*find_existing_css_set(
480 struct css_set
*oldcg
,
482 struct cgroup_subsys_state
*template[])
485 struct cgroupfs_root
*root
= cgrp
->root
;
486 struct hlist_head
*hhead
;
487 struct hlist_node
*node
;
491 * Build the set of subsystem state objects that we want to see in the
492 * new css_set. while subsystems can change globally, the entries here
493 * won't change, so no need for locking.
495 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
496 if (root
->subsys_bits
& (1UL << i
)) {
497 /* Subsystem is in this hierarchy. So we want
498 * the subsystem state from the new
500 template[i
] = cgrp
->subsys
[i
];
502 /* Subsystem is not in this hierarchy, so we
503 * don't want to change the subsystem state */
504 template[i
] = oldcg
->subsys
[i
];
508 hhead
= css_set_hash(template);
509 hlist_for_each_entry(cg
, node
, hhead
, hlist
) {
510 if (!compare_css_sets(cg
, oldcg
, cgrp
, template))
513 /* This css_set matches what we need */
517 /* No existing cgroup group matched */
521 static void free_cg_links(struct list_head
*tmp
)
523 struct cg_cgroup_link
*link
;
524 struct cg_cgroup_link
*saved_link
;
526 list_for_each_entry_safe(link
, saved_link
, tmp
, cgrp_link_list
) {
527 list_del(&link
->cgrp_link_list
);
533 * allocate_cg_links() allocates "count" cg_cgroup_link structures
534 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
535 * success or a negative error
537 static int allocate_cg_links(int count
, struct list_head
*tmp
)
539 struct cg_cgroup_link
*link
;
542 for (i
= 0; i
< count
; i
++) {
543 link
= kmalloc(sizeof(*link
), GFP_KERNEL
);
548 list_add(&link
->cgrp_link_list
, tmp
);
554 * link_css_set - a helper function to link a css_set to a cgroup
555 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
556 * @cg: the css_set to be linked
557 * @cgrp: the destination cgroup
559 static void link_css_set(struct list_head
*tmp_cg_links
,
560 struct css_set
*cg
, struct cgroup
*cgrp
)
562 struct cg_cgroup_link
*link
;
564 BUG_ON(list_empty(tmp_cg_links
));
565 link
= list_first_entry(tmp_cg_links
, struct cg_cgroup_link
,
569 atomic_inc(&cgrp
->count
);
570 list_move(&link
->cgrp_link_list
, &cgrp
->css_sets
);
572 * Always add links to the tail of the list so that the list
573 * is sorted by order of hierarchy creation
575 list_add_tail(&link
->cg_link_list
, &cg
->cg_links
);
579 * find_css_set() takes an existing cgroup group and a
580 * cgroup object, and returns a css_set object that's
581 * equivalent to the old group, but with the given cgroup
582 * substituted into the appropriate hierarchy. Must be called with
585 static struct css_set
*find_css_set(
586 struct css_set
*oldcg
, struct cgroup
*cgrp
)
589 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
];
591 struct list_head tmp_cg_links
;
593 struct hlist_head
*hhead
;
594 struct cg_cgroup_link
*link
;
596 /* First see if we already have a cgroup group that matches
598 read_lock(&css_set_lock
);
599 res
= find_existing_css_set(oldcg
, cgrp
, template);
602 read_unlock(&css_set_lock
);
607 res
= kmalloc(sizeof(*res
), GFP_KERNEL
);
611 /* Allocate all the cg_cgroup_link objects that we'll need */
612 if (allocate_cg_links(root_count
, &tmp_cg_links
) < 0) {
617 atomic_set(&res
->refcount
, 1);
618 INIT_LIST_HEAD(&res
->cg_links
);
619 INIT_LIST_HEAD(&res
->tasks
);
620 INIT_HLIST_NODE(&res
->hlist
);
622 /* Copy the set of subsystem state objects generated in
623 * find_existing_css_set() */
624 memcpy(res
->subsys
, template, sizeof(res
->subsys
));
626 write_lock(&css_set_lock
);
627 /* Add reference counts and links from the new css_set. */
628 list_for_each_entry(link
, &oldcg
->cg_links
, cg_link_list
) {
629 struct cgroup
*c
= link
->cgrp
;
630 if (c
->root
== cgrp
->root
)
632 link_css_set(&tmp_cg_links
, res
, c
);
635 BUG_ON(!list_empty(&tmp_cg_links
));
639 /* Add this cgroup group to the hash table */
640 hhead
= css_set_hash(res
->subsys
);
641 hlist_add_head(&res
->hlist
, hhead
);
643 write_unlock(&css_set_lock
);
649 * Return the cgroup for "task" from the given hierarchy. Must be
650 * called with cgroup_mutex held.
652 static struct cgroup
*task_cgroup_from_root(struct task_struct
*task
,
653 struct cgroupfs_root
*root
)
656 struct cgroup
*res
= NULL
;
658 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
659 read_lock(&css_set_lock
);
661 * No need to lock the task - since we hold cgroup_mutex the
662 * task can't change groups, so the only thing that can happen
663 * is that it exits and its css is set back to init_css_set.
666 if (css
== &init_css_set
) {
667 res
= &root
->top_cgroup
;
669 struct cg_cgroup_link
*link
;
670 list_for_each_entry(link
, &css
->cg_links
, cg_link_list
) {
671 struct cgroup
*c
= link
->cgrp
;
672 if (c
->root
== root
) {
678 read_unlock(&css_set_lock
);
684 * There is one global cgroup mutex. We also require taking
685 * task_lock() when dereferencing a task's cgroup subsys pointers.
686 * See "The task_lock() exception", at the end of this comment.
688 * A task must hold cgroup_mutex to modify cgroups.
690 * Any task can increment and decrement the count field without lock.
691 * So in general, code holding cgroup_mutex can't rely on the count
692 * field not changing. However, if the count goes to zero, then only
693 * cgroup_attach_task() can increment it again. Because a count of zero
694 * means that no tasks are currently attached, therefore there is no
695 * way a task attached to that cgroup can fork (the other way to
696 * increment the count). So code holding cgroup_mutex can safely
697 * assume that if the count is zero, it will stay zero. Similarly, if
698 * a task holds cgroup_mutex on a cgroup with zero count, it
699 * knows that the cgroup won't be removed, as cgroup_rmdir()
702 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
703 * (usually) take cgroup_mutex. These are the two most performance
704 * critical pieces of code here. The exception occurs on cgroup_exit(),
705 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
706 * is taken, and if the cgroup count is zero, a usermode call made
707 * to the release agent with the name of the cgroup (path relative to
708 * the root of cgroup file system) as the argument.
710 * A cgroup can only be deleted if both its 'count' of using tasks
711 * is zero, and its list of 'children' cgroups is empty. Since all
712 * tasks in the system use _some_ cgroup, and since there is always at
713 * least one task in the system (init, pid == 1), therefore, top_cgroup
714 * always has either children cgroups and/or using tasks. So we don't
715 * need a special hack to ensure that top_cgroup cannot be deleted.
717 * The task_lock() exception
719 * The need for this exception arises from the action of
720 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
721 * another. It does so using cgroup_mutex, however there are
722 * several performance critical places that need to reference
723 * task->cgroup without the expense of grabbing a system global
724 * mutex. Therefore except as noted below, when dereferencing or, as
725 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
726 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
727 * the task_struct routinely used for such matters.
729 * P.S. One more locking exception. RCU is used to guard the
730 * update of a tasks cgroup pointer by cgroup_attach_task()
734 * cgroup_lock - lock out any changes to cgroup structures
737 void cgroup_lock(void)
739 mutex_lock(&cgroup_mutex
);
741 EXPORT_SYMBOL_GPL(cgroup_lock
);
744 * cgroup_unlock - release lock on cgroup changes
746 * Undo the lock taken in a previous cgroup_lock() call.
748 void cgroup_unlock(void)
750 mutex_unlock(&cgroup_mutex
);
752 EXPORT_SYMBOL_GPL(cgroup_unlock
);
755 * A couple of forward declarations required, due to cyclic reference loop:
756 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
757 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
761 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
);
762 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
);
763 static int cgroup_populate_dir(struct cgroup
*cgrp
);
764 static const struct inode_operations cgroup_dir_inode_operations
;
765 static const struct file_operations proc_cgroupstats_operations
;
767 static struct backing_dev_info cgroup_backing_dev_info
= {
769 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
,
772 static int alloc_css_id(struct cgroup_subsys
*ss
,
773 struct cgroup
*parent
, struct cgroup
*child
);
775 static struct inode
*cgroup_new_inode(mode_t mode
, struct super_block
*sb
)
777 struct inode
*inode
= new_inode(sb
);
780 inode
->i_ino
= get_next_ino();
781 inode
->i_mode
= mode
;
782 inode
->i_uid
= current_fsuid();
783 inode
->i_gid
= current_fsgid();
784 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
785 inode
->i_mapping
->backing_dev_info
= &cgroup_backing_dev_info
;
791 * Call subsys's pre_destroy handler.
792 * This is called before css refcnt check.
794 static int cgroup_call_pre_destroy(struct cgroup
*cgrp
)
796 struct cgroup_subsys
*ss
;
799 for_each_subsys(cgrp
->root
, ss
)
800 if (ss
->pre_destroy
) {
801 ret
= ss
->pre_destroy(ss
, cgrp
);
809 static void free_cgroup_rcu(struct rcu_head
*obj
)
811 struct cgroup
*cgrp
= container_of(obj
, struct cgroup
, rcu_head
);
816 static void cgroup_diput(struct dentry
*dentry
, struct inode
*inode
)
818 /* is dentry a directory ? if so, kfree() associated cgroup */
819 if (S_ISDIR(inode
->i_mode
)) {
820 struct cgroup
*cgrp
= dentry
->d_fsdata
;
821 struct cgroup_subsys
*ss
;
822 BUG_ON(!(cgroup_is_removed(cgrp
)));
823 /* It's possible for external users to be holding css
824 * reference counts on a cgroup; css_put() needs to
825 * be able to access the cgroup after decrementing
826 * the reference count in order to know if it needs to
827 * queue the cgroup to be handled by the release
831 mutex_lock(&cgroup_mutex
);
833 * Release the subsystem state objects.
835 for_each_subsys(cgrp
->root
, ss
)
836 ss
->destroy(ss
, cgrp
);
838 cgrp
->root
->number_of_cgroups
--;
839 mutex_unlock(&cgroup_mutex
);
842 * Drop the active superblock reference that we took when we
845 deactivate_super(cgrp
->root
->sb
);
848 * if we're getting rid of the cgroup, refcount should ensure
849 * that there are no pidlists left.
851 BUG_ON(!list_empty(&cgrp
->pidlists
));
853 call_rcu(&cgrp
->rcu_head
, free_cgroup_rcu
);
858 static void remove_dir(struct dentry
*d
)
860 struct dentry
*parent
= dget(d
->d_parent
);
863 simple_rmdir(parent
->d_inode
, d
);
867 static void cgroup_clear_directory(struct dentry
*dentry
)
869 struct list_head
*node
;
871 BUG_ON(!mutex_is_locked(&dentry
->d_inode
->i_mutex
));
872 spin_lock(&dcache_lock
);
873 node
= dentry
->d_subdirs
.next
;
874 while (node
!= &dentry
->d_subdirs
) {
875 struct dentry
*d
= list_entry(node
, struct dentry
, d_u
.d_child
);
878 /* This should never be called on a cgroup
879 * directory with child cgroups */
880 BUG_ON(d
->d_inode
->i_mode
& S_IFDIR
);
882 spin_unlock(&dcache_lock
);
884 simple_unlink(dentry
->d_inode
, d
);
886 spin_lock(&dcache_lock
);
888 node
= dentry
->d_subdirs
.next
;
890 spin_unlock(&dcache_lock
);
894 * NOTE : the dentry must have been dget()'ed
896 static void cgroup_d_remove_dir(struct dentry
*dentry
)
898 cgroup_clear_directory(dentry
);
900 spin_lock(&dcache_lock
);
901 list_del_init(&dentry
->d_u
.d_child
);
902 spin_unlock(&dcache_lock
);
907 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
908 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
909 * reference to css->refcnt. In general, this refcnt is expected to goes down
912 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
914 DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq
);
916 static void cgroup_wakeup_rmdir_waiter(struct cgroup
*cgrp
)
918 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
)))
919 wake_up_all(&cgroup_rmdir_waitq
);
922 void cgroup_exclude_rmdir(struct cgroup_subsys_state
*css
)
927 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state
*css
)
929 cgroup_wakeup_rmdir_waiter(css
->cgroup
);
934 * Call with cgroup_mutex held. Drops reference counts on modules, including
935 * any duplicate ones that parse_cgroupfs_options took. If this function
936 * returns an error, no reference counts are touched.
938 static int rebind_subsystems(struct cgroupfs_root
*root
,
939 unsigned long final_bits
)
941 unsigned long added_bits
, removed_bits
;
942 struct cgroup
*cgrp
= &root
->top_cgroup
;
945 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
947 removed_bits
= root
->actual_subsys_bits
& ~final_bits
;
948 added_bits
= final_bits
& ~root
->actual_subsys_bits
;
949 /* Check that any added subsystems are currently free */
950 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
951 unsigned long bit
= 1UL << i
;
952 struct cgroup_subsys
*ss
= subsys
[i
];
953 if (!(bit
& added_bits
))
956 * Nobody should tell us to do a subsys that doesn't exist:
957 * parse_cgroupfs_options should catch that case and refcounts
958 * ensure that subsystems won't disappear once selected.
961 if (ss
->root
!= &rootnode
) {
962 /* Subsystem isn't free */
967 /* Currently we don't handle adding/removing subsystems when
968 * any child cgroups exist. This is theoretically supportable
969 * but involves complex error handling, so it's being left until
971 if (root
->number_of_cgroups
> 1)
974 /* Process each subsystem */
975 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
976 struct cgroup_subsys
*ss
= subsys
[i
];
977 unsigned long bit
= 1UL << i
;
978 if (bit
& added_bits
) {
979 /* We're binding this subsystem to this hierarchy */
981 BUG_ON(cgrp
->subsys
[i
]);
982 BUG_ON(!dummytop
->subsys
[i
]);
983 BUG_ON(dummytop
->subsys
[i
]->cgroup
!= dummytop
);
984 mutex_lock(&ss
->hierarchy_mutex
);
985 cgrp
->subsys
[i
] = dummytop
->subsys
[i
];
986 cgrp
->subsys
[i
]->cgroup
= cgrp
;
987 list_move(&ss
->sibling
, &root
->subsys_list
);
991 mutex_unlock(&ss
->hierarchy_mutex
);
992 /* refcount was already taken, and we're keeping it */
993 } else if (bit
& removed_bits
) {
994 /* We're removing this subsystem */
996 BUG_ON(cgrp
->subsys
[i
] != dummytop
->subsys
[i
]);
997 BUG_ON(cgrp
->subsys
[i
]->cgroup
!= cgrp
);
998 mutex_lock(&ss
->hierarchy_mutex
);
1000 ss
->bind(ss
, dummytop
);
1001 dummytop
->subsys
[i
]->cgroup
= dummytop
;
1002 cgrp
->subsys
[i
] = NULL
;
1003 subsys
[i
]->root
= &rootnode
;
1004 list_move(&ss
->sibling
, &rootnode
.subsys_list
);
1005 mutex_unlock(&ss
->hierarchy_mutex
);
1006 /* subsystem is now free - drop reference on module */
1007 module_put(ss
->module
);
1008 } else if (bit
& final_bits
) {
1009 /* Subsystem state should already exist */
1011 BUG_ON(!cgrp
->subsys
[i
]);
1013 * a refcount was taken, but we already had one, so
1014 * drop the extra reference.
1016 module_put(ss
->module
);
1017 #ifdef CONFIG_MODULE_UNLOAD
1018 BUG_ON(ss
->module
&& !module_refcount(ss
->module
));
1021 /* Subsystem state shouldn't exist */
1022 BUG_ON(cgrp
->subsys
[i
]);
1025 root
->subsys_bits
= root
->actual_subsys_bits
= final_bits
;
1031 static int cgroup_show_options(struct seq_file
*seq
, struct vfsmount
*vfs
)
1033 struct cgroupfs_root
*root
= vfs
->mnt_sb
->s_fs_info
;
1034 struct cgroup_subsys
*ss
;
1036 mutex_lock(&cgroup_mutex
);
1037 for_each_subsys(root
, ss
)
1038 seq_printf(seq
, ",%s", ss
->name
);
1039 if (test_bit(ROOT_NOPREFIX
, &root
->flags
))
1040 seq_puts(seq
, ",noprefix");
1041 if (strlen(root
->release_agent_path
))
1042 seq_printf(seq
, ",release_agent=%s", root
->release_agent_path
);
1043 if (strlen(root
->name
))
1044 seq_printf(seq
, ",name=%s", root
->name
);
1045 mutex_unlock(&cgroup_mutex
);
1049 struct cgroup_sb_opts
{
1050 unsigned long subsys_bits
;
1051 unsigned long flags
;
1052 char *release_agent
;
1054 /* User explicitly requested empty subsystem */
1057 struct cgroupfs_root
*new_root
;
1062 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1063 * with cgroup_mutex held to protect the subsys[] array. This function takes
1064 * refcounts on subsystems to be used, unless it returns error, in which case
1065 * no refcounts are taken.
1067 static int parse_cgroupfs_options(char *data
, struct cgroup_sb_opts
*opts
)
1069 char *token
, *o
= data
?: "all";
1070 unsigned long mask
= (unsigned long)-1;
1072 bool module_pin_failed
= false;
1074 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
1076 #ifdef CONFIG_CPUSETS
1077 mask
= ~(1UL << cpuset_subsys_id
);
1080 memset(opts
, 0, sizeof(*opts
));
1082 while ((token
= strsep(&o
, ",")) != NULL
) {
1085 if (!strcmp(token
, "all")) {
1086 /* Add all non-disabled subsystems */
1087 opts
->subsys_bits
= 0;
1088 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1089 struct cgroup_subsys
*ss
= subsys
[i
];
1093 opts
->subsys_bits
|= 1ul << i
;
1095 } else if (!strcmp(token
, "none")) {
1096 /* Explicitly have no subsystems */
1098 } else if (!strcmp(token
, "noprefix")) {
1099 set_bit(ROOT_NOPREFIX
, &opts
->flags
);
1100 } else if (!strncmp(token
, "release_agent=", 14)) {
1101 /* Specifying two release agents is forbidden */
1102 if (opts
->release_agent
)
1104 opts
->release_agent
=
1105 kstrndup(token
+ 14, PATH_MAX
- 1, GFP_KERNEL
);
1106 if (!opts
->release_agent
)
1108 } else if (!strncmp(token
, "name=", 5)) {
1109 const char *name
= token
+ 5;
1110 /* Can't specify an empty name */
1113 /* Must match [\w.-]+ */
1114 for (i
= 0; i
< strlen(name
); i
++) {
1118 if ((c
== '.') || (c
== '-') || (c
== '_'))
1122 /* Specifying two names is forbidden */
1125 opts
->name
= kstrndup(name
,
1126 MAX_CGROUP_ROOT_NAMELEN
- 1,
1131 struct cgroup_subsys
*ss
;
1132 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1136 if (!strcmp(token
, ss
->name
)) {
1138 set_bit(i
, &opts
->subsys_bits
);
1142 if (i
== CGROUP_SUBSYS_COUNT
)
1147 /* Consistency checks */
1150 * Option noprefix was introduced just for backward compatibility
1151 * with the old cpuset, so we allow noprefix only if mounting just
1152 * the cpuset subsystem.
1154 if (test_bit(ROOT_NOPREFIX
, &opts
->flags
) &&
1155 (opts
->subsys_bits
& mask
))
1159 /* Can't specify "none" and some subsystems */
1160 if (opts
->subsys_bits
&& opts
->none
)
1164 * We either have to specify by name or by subsystems. (So all
1165 * empty hierarchies must have a name).
1167 if (!opts
->subsys_bits
&& !opts
->name
)
1171 * Grab references on all the modules we'll need, so the subsystems
1172 * don't dance around before rebind_subsystems attaches them. This may
1173 * take duplicate reference counts on a subsystem that's already used,
1174 * but rebind_subsystems handles this case.
1176 for (i
= CGROUP_BUILTIN_SUBSYS_COUNT
; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1177 unsigned long bit
= 1UL << i
;
1179 if (!(bit
& opts
->subsys_bits
))
1181 if (!try_module_get(subsys
[i
]->module
)) {
1182 module_pin_failed
= true;
1186 if (module_pin_failed
) {
1188 * oops, one of the modules was going away. this means that we
1189 * raced with a module_delete call, and to the user this is
1190 * essentially a "subsystem doesn't exist" case.
1192 for (i
--; i
>= CGROUP_BUILTIN_SUBSYS_COUNT
; i
--) {
1193 /* drop refcounts only on the ones we took */
1194 unsigned long bit
= 1UL << i
;
1196 if (!(bit
& opts
->subsys_bits
))
1198 module_put(subsys
[i
]->module
);
1206 static void drop_parsed_module_refcounts(unsigned long subsys_bits
)
1209 for (i
= CGROUP_BUILTIN_SUBSYS_COUNT
; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1210 unsigned long bit
= 1UL << i
;
1212 if (!(bit
& subsys_bits
))
1214 module_put(subsys
[i
]->module
);
1218 static int cgroup_remount(struct super_block
*sb
, int *flags
, char *data
)
1221 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1222 struct cgroup
*cgrp
= &root
->top_cgroup
;
1223 struct cgroup_sb_opts opts
;
1225 mutex_lock(&cgrp
->dentry
->d_inode
->i_mutex
);
1226 mutex_lock(&cgroup_mutex
);
1228 /* See what subsystems are wanted */
1229 ret
= parse_cgroupfs_options(data
, &opts
);
1233 /* Don't allow flags or name to change at remount */
1234 if (opts
.flags
!= root
->flags
||
1235 (opts
.name
&& strcmp(opts
.name
, root
->name
))) {
1237 drop_parsed_module_refcounts(opts
.subsys_bits
);
1241 ret
= rebind_subsystems(root
, opts
.subsys_bits
);
1243 drop_parsed_module_refcounts(opts
.subsys_bits
);
1247 /* (re)populate subsystem files */
1248 cgroup_populate_dir(cgrp
);
1250 if (opts
.release_agent
)
1251 strcpy(root
->release_agent_path
, opts
.release_agent
);
1253 kfree(opts
.release_agent
);
1255 mutex_unlock(&cgroup_mutex
);
1256 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
1260 static const struct super_operations cgroup_ops
= {
1261 .statfs
= simple_statfs
,
1262 .drop_inode
= generic_delete_inode
,
1263 .show_options
= cgroup_show_options
,
1264 .remount_fs
= cgroup_remount
,
1267 static void init_cgroup_housekeeping(struct cgroup
*cgrp
)
1269 INIT_LIST_HEAD(&cgrp
->sibling
);
1270 INIT_LIST_HEAD(&cgrp
->children
);
1271 INIT_LIST_HEAD(&cgrp
->css_sets
);
1272 INIT_LIST_HEAD(&cgrp
->release_list
);
1273 INIT_LIST_HEAD(&cgrp
->pidlists
);
1274 mutex_init(&cgrp
->pidlist_mutex
);
1275 INIT_LIST_HEAD(&cgrp
->event_list
);
1276 spin_lock_init(&cgrp
->event_list_lock
);
1279 static void init_cgroup_root(struct cgroupfs_root
*root
)
1281 struct cgroup
*cgrp
= &root
->top_cgroup
;
1282 INIT_LIST_HEAD(&root
->subsys_list
);
1283 INIT_LIST_HEAD(&root
->root_list
);
1284 root
->number_of_cgroups
= 1;
1286 cgrp
->top_cgroup
= cgrp
;
1287 init_cgroup_housekeeping(cgrp
);
1290 static bool init_root_id(struct cgroupfs_root
*root
)
1295 if (!ida_pre_get(&hierarchy_ida
, GFP_KERNEL
))
1297 spin_lock(&hierarchy_id_lock
);
1298 /* Try to allocate the next unused ID */
1299 ret
= ida_get_new_above(&hierarchy_ida
, next_hierarchy_id
,
1300 &root
->hierarchy_id
);
1302 /* Try again starting from 0 */
1303 ret
= ida_get_new(&hierarchy_ida
, &root
->hierarchy_id
);
1305 next_hierarchy_id
= root
->hierarchy_id
+ 1;
1306 } else if (ret
!= -EAGAIN
) {
1307 /* Can only get here if the 31-bit IDR is full ... */
1310 spin_unlock(&hierarchy_id_lock
);
1315 static int cgroup_test_super(struct super_block
*sb
, void *data
)
1317 struct cgroup_sb_opts
*opts
= data
;
1318 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1320 /* If we asked for a name then it must match */
1321 if (opts
->name
&& strcmp(opts
->name
, root
->name
))
1325 * If we asked for subsystems (or explicitly for no
1326 * subsystems) then they must match
1328 if ((opts
->subsys_bits
|| opts
->none
)
1329 && (opts
->subsys_bits
!= root
->subsys_bits
))
1335 static struct cgroupfs_root
*cgroup_root_from_opts(struct cgroup_sb_opts
*opts
)
1337 struct cgroupfs_root
*root
;
1339 if (!opts
->subsys_bits
&& !opts
->none
)
1342 root
= kzalloc(sizeof(*root
), GFP_KERNEL
);
1344 return ERR_PTR(-ENOMEM
);
1346 if (!init_root_id(root
)) {
1348 return ERR_PTR(-ENOMEM
);
1350 init_cgroup_root(root
);
1352 root
->subsys_bits
= opts
->subsys_bits
;
1353 root
->flags
= opts
->flags
;
1354 if (opts
->release_agent
)
1355 strcpy(root
->release_agent_path
, opts
->release_agent
);
1357 strcpy(root
->name
, opts
->name
);
1361 static void cgroup_drop_root(struct cgroupfs_root
*root
)
1366 BUG_ON(!root
->hierarchy_id
);
1367 spin_lock(&hierarchy_id_lock
);
1368 ida_remove(&hierarchy_ida
, root
->hierarchy_id
);
1369 spin_unlock(&hierarchy_id_lock
);
1373 static int cgroup_set_super(struct super_block
*sb
, void *data
)
1376 struct cgroup_sb_opts
*opts
= data
;
1378 /* If we don't have a new root, we can't set up a new sb */
1379 if (!opts
->new_root
)
1382 BUG_ON(!opts
->subsys_bits
&& !opts
->none
);
1384 ret
= set_anon_super(sb
, NULL
);
1388 sb
->s_fs_info
= opts
->new_root
;
1389 opts
->new_root
->sb
= sb
;
1391 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
1392 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
1393 sb
->s_magic
= CGROUP_SUPER_MAGIC
;
1394 sb
->s_op
= &cgroup_ops
;
1399 static int cgroup_get_rootdir(struct super_block
*sb
)
1401 struct inode
*inode
=
1402 cgroup_new_inode(S_IFDIR
| S_IRUGO
| S_IXUGO
| S_IWUSR
, sb
);
1403 struct dentry
*dentry
;
1408 inode
->i_fop
= &simple_dir_operations
;
1409 inode
->i_op
= &cgroup_dir_inode_operations
;
1410 /* directories start off with i_nlink == 2 (for "." entry) */
1412 dentry
= d_alloc_root(inode
);
1417 sb
->s_root
= dentry
;
1421 static int cgroup_get_sb(struct file_system_type
*fs_type
,
1422 int flags
, const char *unused_dev_name
,
1423 void *data
, struct vfsmount
*mnt
)
1425 struct cgroup_sb_opts opts
;
1426 struct cgroupfs_root
*root
;
1428 struct super_block
*sb
;
1429 struct cgroupfs_root
*new_root
;
1431 /* First find the desired set of subsystems */
1432 mutex_lock(&cgroup_mutex
);
1433 ret
= parse_cgroupfs_options(data
, &opts
);
1434 mutex_unlock(&cgroup_mutex
);
1439 * Allocate a new cgroup root. We may not need it if we're
1440 * reusing an existing hierarchy.
1442 new_root
= cgroup_root_from_opts(&opts
);
1443 if (IS_ERR(new_root
)) {
1444 ret
= PTR_ERR(new_root
);
1447 opts
.new_root
= new_root
;
1449 /* Locate an existing or new sb for this hierarchy */
1450 sb
= sget(fs_type
, cgroup_test_super
, cgroup_set_super
, &opts
);
1453 cgroup_drop_root(opts
.new_root
);
1457 root
= sb
->s_fs_info
;
1459 if (root
== opts
.new_root
) {
1460 /* We used the new root structure, so this is a new hierarchy */
1461 struct list_head tmp_cg_links
;
1462 struct cgroup
*root_cgrp
= &root
->top_cgroup
;
1463 struct inode
*inode
;
1464 struct cgroupfs_root
*existing_root
;
1467 BUG_ON(sb
->s_root
!= NULL
);
1469 ret
= cgroup_get_rootdir(sb
);
1471 goto drop_new_super
;
1472 inode
= sb
->s_root
->d_inode
;
1474 mutex_lock(&inode
->i_mutex
);
1475 mutex_lock(&cgroup_mutex
);
1477 if (strlen(root
->name
)) {
1478 /* Check for name clashes with existing mounts */
1479 for_each_active_root(existing_root
) {
1480 if (!strcmp(existing_root
->name
, root
->name
)) {
1482 mutex_unlock(&cgroup_mutex
);
1483 mutex_unlock(&inode
->i_mutex
);
1484 goto drop_new_super
;
1490 * We're accessing css_set_count without locking
1491 * css_set_lock here, but that's OK - it can only be
1492 * increased by someone holding cgroup_lock, and
1493 * that's us. The worst that can happen is that we
1494 * have some link structures left over
1496 ret
= allocate_cg_links(css_set_count
, &tmp_cg_links
);
1498 mutex_unlock(&cgroup_mutex
);
1499 mutex_unlock(&inode
->i_mutex
);
1500 goto drop_new_super
;
1503 ret
= rebind_subsystems(root
, root
->subsys_bits
);
1504 if (ret
== -EBUSY
) {
1505 mutex_unlock(&cgroup_mutex
);
1506 mutex_unlock(&inode
->i_mutex
);
1507 free_cg_links(&tmp_cg_links
);
1508 goto drop_new_super
;
1511 * There must be no failure case after here, since rebinding
1512 * takes care of subsystems' refcounts, which are explicitly
1513 * dropped in the failure exit path.
1516 /* EBUSY should be the only error here */
1519 list_add(&root
->root_list
, &roots
);
1522 sb
->s_root
->d_fsdata
= root_cgrp
;
1523 root
->top_cgroup
.dentry
= sb
->s_root
;
1525 /* Link the top cgroup in this hierarchy into all
1526 * the css_set objects */
1527 write_lock(&css_set_lock
);
1528 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++) {
1529 struct hlist_head
*hhead
= &css_set_table
[i
];
1530 struct hlist_node
*node
;
1533 hlist_for_each_entry(cg
, node
, hhead
, hlist
)
1534 link_css_set(&tmp_cg_links
, cg
, root_cgrp
);
1536 write_unlock(&css_set_lock
);
1538 free_cg_links(&tmp_cg_links
);
1540 BUG_ON(!list_empty(&root_cgrp
->sibling
));
1541 BUG_ON(!list_empty(&root_cgrp
->children
));
1542 BUG_ON(root
->number_of_cgroups
!= 1);
1544 cgroup_populate_dir(root_cgrp
);
1545 mutex_unlock(&cgroup_mutex
);
1546 mutex_unlock(&inode
->i_mutex
);
1549 * We re-used an existing hierarchy - the new root (if
1550 * any) is not needed
1552 cgroup_drop_root(opts
.new_root
);
1553 /* no subsys rebinding, so refcounts don't change */
1554 drop_parsed_module_refcounts(opts
.subsys_bits
);
1557 simple_set_mnt(mnt
, sb
);
1558 kfree(opts
.release_agent
);
1563 deactivate_locked_super(sb
);
1565 drop_parsed_module_refcounts(opts
.subsys_bits
);
1567 kfree(opts
.release_agent
);
1572 static void cgroup_kill_sb(struct super_block
*sb
) {
1573 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1574 struct cgroup
*cgrp
= &root
->top_cgroup
;
1576 struct cg_cgroup_link
*link
;
1577 struct cg_cgroup_link
*saved_link
;
1581 BUG_ON(root
->number_of_cgroups
!= 1);
1582 BUG_ON(!list_empty(&cgrp
->children
));
1583 BUG_ON(!list_empty(&cgrp
->sibling
));
1585 mutex_lock(&cgroup_mutex
);
1587 /* Rebind all subsystems back to the default hierarchy */
1588 ret
= rebind_subsystems(root
, 0);
1589 /* Shouldn't be able to fail ... */
1593 * Release all the links from css_sets to this hierarchy's
1596 write_lock(&css_set_lock
);
1598 list_for_each_entry_safe(link
, saved_link
, &cgrp
->css_sets
,
1600 list_del(&link
->cg_link_list
);
1601 list_del(&link
->cgrp_link_list
);
1604 write_unlock(&css_set_lock
);
1606 if (!list_empty(&root
->root_list
)) {
1607 list_del(&root
->root_list
);
1611 mutex_unlock(&cgroup_mutex
);
1613 kill_litter_super(sb
);
1614 cgroup_drop_root(root
);
1617 static struct file_system_type cgroup_fs_type
= {
1619 .get_sb
= cgroup_get_sb
,
1620 .kill_sb
= cgroup_kill_sb
,
1623 static struct kobject
*cgroup_kobj
;
1625 static inline struct cgroup
*__d_cgrp(struct dentry
*dentry
)
1627 return dentry
->d_fsdata
;
1630 static inline struct cftype
*__d_cft(struct dentry
*dentry
)
1632 return dentry
->d_fsdata
;
1636 * cgroup_path - generate the path of a cgroup
1637 * @cgrp: the cgroup in question
1638 * @buf: the buffer to write the path into
1639 * @buflen: the length of the buffer
1641 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1642 * reference. Writes path of cgroup into buf. Returns 0 on success,
1645 int cgroup_path(const struct cgroup
*cgrp
, char *buf
, int buflen
)
1648 struct dentry
*dentry
= rcu_dereference_check(cgrp
->dentry
,
1649 rcu_read_lock_held() ||
1650 cgroup_lock_is_held());
1652 if (!dentry
|| cgrp
== dummytop
) {
1654 * Inactive subsystems have no dentry for their root
1661 start
= buf
+ buflen
;
1665 int len
= dentry
->d_name
.len
;
1667 if ((start
-= len
) < buf
)
1668 return -ENAMETOOLONG
;
1669 memcpy(start
, dentry
->d_name
.name
, len
);
1670 cgrp
= cgrp
->parent
;
1674 dentry
= rcu_dereference_check(cgrp
->dentry
,
1675 rcu_read_lock_held() ||
1676 cgroup_lock_is_held());
1680 return -ENAMETOOLONG
;
1683 memmove(buf
, start
, buf
+ buflen
- start
);
1686 EXPORT_SYMBOL_GPL(cgroup_path
);
1689 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1690 * @cgrp: the cgroup the task is attaching to
1691 * @tsk: the task to be attached
1693 * Call holding cgroup_mutex. May take task_lock of
1694 * the task 'tsk' during call.
1696 int cgroup_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
1699 struct cgroup_subsys
*ss
, *failed_ss
= NULL
;
1700 struct cgroup
*oldcgrp
;
1702 struct css_set
*newcg
;
1703 struct cgroupfs_root
*root
= cgrp
->root
;
1705 /* Nothing to do if the task is already in that cgroup */
1706 oldcgrp
= task_cgroup_from_root(tsk
, root
);
1707 if (cgrp
== oldcgrp
)
1710 for_each_subsys(root
, ss
) {
1711 if (ss
->can_attach
) {
1712 retval
= ss
->can_attach(ss
, cgrp
, tsk
, false);
1715 * Remember on which subsystem the can_attach()
1716 * failed, so that we only call cancel_attach()
1717 * against the subsystems whose can_attach()
1718 * succeeded. (See below)
1731 * Locate or allocate a new css_set for this task,
1732 * based on its final set of cgroups
1734 newcg
= find_css_set(cg
, cgrp
);
1742 if (tsk
->flags
& PF_EXITING
) {
1748 rcu_assign_pointer(tsk
->cgroups
, newcg
);
1751 /* Update the css_set linked lists if we're using them */
1752 write_lock(&css_set_lock
);
1753 if (!list_empty(&tsk
->cg_list
)) {
1754 list_del(&tsk
->cg_list
);
1755 list_add(&tsk
->cg_list
, &newcg
->tasks
);
1757 write_unlock(&css_set_lock
);
1759 for_each_subsys(root
, ss
) {
1761 ss
->attach(ss
, cgrp
, oldcgrp
, tsk
, false);
1763 set_bit(CGRP_RELEASABLE
, &oldcgrp
->flags
);
1768 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1769 * is no longer empty.
1771 cgroup_wakeup_rmdir_waiter(cgrp
);
1774 for_each_subsys(root
, ss
) {
1775 if (ss
== failed_ss
)
1777 * This subsystem was the one that failed the
1778 * can_attach() check earlier, so we don't need
1779 * to call cancel_attach() against it or any
1780 * remaining subsystems.
1783 if (ss
->cancel_attach
)
1784 ss
->cancel_attach(ss
, cgrp
, tsk
, false);
1791 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1792 * @from: attach to all cgroups of a given task
1793 * @tsk: the task to be attached
1795 int cgroup_attach_task_all(struct task_struct
*from
, struct task_struct
*tsk
)
1797 struct cgroupfs_root
*root
;
1801 for_each_active_root(root
) {
1802 struct cgroup
*from_cg
= task_cgroup_from_root(from
, root
);
1804 retval
= cgroup_attach_task(from_cg
, tsk
);
1812 EXPORT_SYMBOL_GPL(cgroup_attach_task_all
);
1815 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1816 * held. May take task_lock of task
1818 static int attach_task_by_pid(struct cgroup
*cgrp
, u64 pid
)
1820 struct task_struct
*tsk
;
1821 const struct cred
*cred
= current_cred(), *tcred
;
1826 tsk
= find_task_by_vpid(pid
);
1827 if (!tsk
|| tsk
->flags
& PF_EXITING
) {
1832 tcred
= __task_cred(tsk
);
1834 cred
->euid
!= tcred
->uid
&&
1835 cred
->euid
!= tcred
->suid
) {
1839 get_task_struct(tsk
);
1843 get_task_struct(tsk
);
1846 ret
= cgroup_attach_task(cgrp
, tsk
);
1847 put_task_struct(tsk
);
1851 static int cgroup_tasks_write(struct cgroup
*cgrp
, struct cftype
*cft
, u64 pid
)
1854 if (!cgroup_lock_live_group(cgrp
))
1856 ret
= attach_task_by_pid(cgrp
, pid
);
1862 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1863 * @cgrp: the cgroup to be checked for liveness
1865 * On success, returns true; the lock should be later released with
1866 * cgroup_unlock(). On failure returns false with no lock held.
1868 bool cgroup_lock_live_group(struct cgroup
*cgrp
)
1870 mutex_lock(&cgroup_mutex
);
1871 if (cgroup_is_removed(cgrp
)) {
1872 mutex_unlock(&cgroup_mutex
);
1877 EXPORT_SYMBOL_GPL(cgroup_lock_live_group
);
1879 static int cgroup_release_agent_write(struct cgroup
*cgrp
, struct cftype
*cft
,
1882 BUILD_BUG_ON(sizeof(cgrp
->root
->release_agent_path
) < PATH_MAX
);
1883 if (!cgroup_lock_live_group(cgrp
))
1885 strcpy(cgrp
->root
->release_agent_path
, buffer
);
1890 static int cgroup_release_agent_show(struct cgroup
*cgrp
, struct cftype
*cft
,
1891 struct seq_file
*seq
)
1893 if (!cgroup_lock_live_group(cgrp
))
1895 seq_puts(seq
, cgrp
->root
->release_agent_path
);
1896 seq_putc(seq
, '\n');
1901 /* A buffer size big enough for numbers or short strings */
1902 #define CGROUP_LOCAL_BUFFER_SIZE 64
1904 static ssize_t
cgroup_write_X64(struct cgroup
*cgrp
, struct cftype
*cft
,
1906 const char __user
*userbuf
,
1907 size_t nbytes
, loff_t
*unused_ppos
)
1909 char buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
1915 if (nbytes
>= sizeof(buffer
))
1917 if (copy_from_user(buffer
, userbuf
, nbytes
))
1920 buffer
[nbytes
] = 0; /* nul-terminate */
1921 if (cft
->write_u64
) {
1922 u64 val
= simple_strtoull(strstrip(buffer
), &end
, 0);
1925 retval
= cft
->write_u64(cgrp
, cft
, val
);
1927 s64 val
= simple_strtoll(strstrip(buffer
), &end
, 0);
1930 retval
= cft
->write_s64(cgrp
, cft
, val
);
1937 static ssize_t
cgroup_write_string(struct cgroup
*cgrp
, struct cftype
*cft
,
1939 const char __user
*userbuf
,
1940 size_t nbytes
, loff_t
*unused_ppos
)
1942 char local_buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
1944 size_t max_bytes
= cft
->max_write_len
;
1945 char *buffer
= local_buffer
;
1948 max_bytes
= sizeof(local_buffer
) - 1;
1949 if (nbytes
>= max_bytes
)
1951 /* Allocate a dynamic buffer if we need one */
1952 if (nbytes
>= sizeof(local_buffer
)) {
1953 buffer
= kmalloc(nbytes
+ 1, GFP_KERNEL
);
1957 if (nbytes
&& copy_from_user(buffer
, userbuf
, nbytes
)) {
1962 buffer
[nbytes
] = 0; /* nul-terminate */
1963 retval
= cft
->write_string(cgrp
, cft
, strstrip(buffer
));
1967 if (buffer
!= local_buffer
)
1972 static ssize_t
cgroup_file_write(struct file
*file
, const char __user
*buf
,
1973 size_t nbytes
, loff_t
*ppos
)
1975 struct cftype
*cft
= __d_cft(file
->f_dentry
);
1976 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
1978 if (cgroup_is_removed(cgrp
))
1981 return cft
->write(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1982 if (cft
->write_u64
|| cft
->write_s64
)
1983 return cgroup_write_X64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1984 if (cft
->write_string
)
1985 return cgroup_write_string(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1987 int ret
= cft
->trigger(cgrp
, (unsigned int)cft
->private);
1988 return ret
? ret
: nbytes
;
1993 static ssize_t
cgroup_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
,
1995 char __user
*buf
, size_t nbytes
,
1998 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
1999 u64 val
= cft
->read_u64(cgrp
, cft
);
2000 int len
= sprintf(tmp
, "%llu\n", (unsigned long long) val
);
2002 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
2005 static ssize_t
cgroup_read_s64(struct cgroup
*cgrp
, struct cftype
*cft
,
2007 char __user
*buf
, size_t nbytes
,
2010 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
2011 s64 val
= cft
->read_s64(cgrp
, cft
);
2012 int len
= sprintf(tmp
, "%lld\n", (long long) val
);
2014 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
2017 static ssize_t
cgroup_file_read(struct file
*file
, char __user
*buf
,
2018 size_t nbytes
, loff_t
*ppos
)
2020 struct cftype
*cft
= __d_cft(file
->f_dentry
);
2021 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
2023 if (cgroup_is_removed(cgrp
))
2027 return cft
->read(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2029 return cgroup_read_u64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2031 return cgroup_read_s64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2036 * seqfile ops/methods for returning structured data. Currently just
2037 * supports string->u64 maps, but can be extended in future.
2040 struct cgroup_seqfile_state
{
2042 struct cgroup
*cgroup
;
2045 static int cgroup_map_add(struct cgroup_map_cb
*cb
, const char *key
, u64 value
)
2047 struct seq_file
*sf
= cb
->state
;
2048 return seq_printf(sf
, "%s %llu\n", key
, (unsigned long long)value
);
2051 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
2053 struct cgroup_seqfile_state
*state
= m
->private;
2054 struct cftype
*cft
= state
->cft
;
2055 if (cft
->read_map
) {
2056 struct cgroup_map_cb cb
= {
2057 .fill
= cgroup_map_add
,
2060 return cft
->read_map(state
->cgroup
, cft
, &cb
);
2062 return cft
->read_seq_string(state
->cgroup
, cft
, m
);
2065 static int cgroup_seqfile_release(struct inode
*inode
, struct file
*file
)
2067 struct seq_file
*seq
= file
->private_data
;
2068 kfree(seq
->private);
2069 return single_release(inode
, file
);
2072 static const struct file_operations cgroup_seqfile_operations
= {
2074 .write
= cgroup_file_write
,
2075 .llseek
= seq_lseek
,
2076 .release
= cgroup_seqfile_release
,
2079 static int cgroup_file_open(struct inode
*inode
, struct file
*file
)
2084 err
= generic_file_open(inode
, file
);
2087 cft
= __d_cft(file
->f_dentry
);
2089 if (cft
->read_map
|| cft
->read_seq_string
) {
2090 struct cgroup_seqfile_state
*state
=
2091 kzalloc(sizeof(*state
), GFP_USER
);
2095 state
->cgroup
= __d_cgrp(file
->f_dentry
->d_parent
);
2096 file
->f_op
= &cgroup_seqfile_operations
;
2097 err
= single_open(file
, cgroup_seqfile_show
, state
);
2100 } else if (cft
->open
)
2101 err
= cft
->open(inode
, file
);
2108 static int cgroup_file_release(struct inode
*inode
, struct file
*file
)
2110 struct cftype
*cft
= __d_cft(file
->f_dentry
);
2112 return cft
->release(inode
, file
);
2117 * cgroup_rename - Only allow simple rename of directories in place.
2119 static int cgroup_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
2120 struct inode
*new_dir
, struct dentry
*new_dentry
)
2122 if (!S_ISDIR(old_dentry
->d_inode
->i_mode
))
2124 if (new_dentry
->d_inode
)
2126 if (old_dir
!= new_dir
)
2128 return simple_rename(old_dir
, old_dentry
, new_dir
, new_dentry
);
2131 static const struct file_operations cgroup_file_operations
= {
2132 .read
= cgroup_file_read
,
2133 .write
= cgroup_file_write
,
2134 .llseek
= generic_file_llseek
,
2135 .open
= cgroup_file_open
,
2136 .release
= cgroup_file_release
,
2139 static const struct inode_operations cgroup_dir_inode_operations
= {
2140 .lookup
= simple_lookup
,
2141 .mkdir
= cgroup_mkdir
,
2142 .rmdir
= cgroup_rmdir
,
2143 .rename
= cgroup_rename
,
2147 * Check if a file is a control file
2149 static inline struct cftype
*__file_cft(struct file
*file
)
2151 if (file
->f_dentry
->d_inode
->i_fop
!= &cgroup_file_operations
)
2152 return ERR_PTR(-EINVAL
);
2153 return __d_cft(file
->f_dentry
);
2156 static int cgroup_create_file(struct dentry
*dentry
, mode_t mode
,
2157 struct super_block
*sb
)
2159 static const struct dentry_operations cgroup_dops
= {
2160 .d_iput
= cgroup_diput
,
2163 struct inode
*inode
;
2167 if (dentry
->d_inode
)
2170 inode
= cgroup_new_inode(mode
, sb
);
2174 if (S_ISDIR(mode
)) {
2175 inode
->i_op
= &cgroup_dir_inode_operations
;
2176 inode
->i_fop
= &simple_dir_operations
;
2178 /* start off with i_nlink == 2 (for "." entry) */
2181 /* start with the directory inode held, so that we can
2182 * populate it without racing with another mkdir */
2183 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_CHILD
);
2184 } else if (S_ISREG(mode
)) {
2186 inode
->i_fop
= &cgroup_file_operations
;
2188 dentry
->d_op
= &cgroup_dops
;
2189 d_instantiate(dentry
, inode
);
2190 dget(dentry
); /* Extra count - pin the dentry in core */
2195 * cgroup_create_dir - create a directory for an object.
2196 * @cgrp: the cgroup we create the directory for. It must have a valid
2197 * ->parent field. And we are going to fill its ->dentry field.
2198 * @dentry: dentry of the new cgroup
2199 * @mode: mode to set on new directory.
2201 static int cgroup_create_dir(struct cgroup
*cgrp
, struct dentry
*dentry
,
2204 struct dentry
*parent
;
2207 parent
= cgrp
->parent
->dentry
;
2208 error
= cgroup_create_file(dentry
, S_IFDIR
| mode
, cgrp
->root
->sb
);
2210 dentry
->d_fsdata
= cgrp
;
2211 inc_nlink(parent
->d_inode
);
2212 rcu_assign_pointer(cgrp
->dentry
, dentry
);
2221 * cgroup_file_mode - deduce file mode of a control file
2222 * @cft: the control file in question
2224 * returns cft->mode if ->mode is not 0
2225 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2226 * returns S_IRUGO if it has only a read handler
2227 * returns S_IWUSR if it has only a write hander
2229 static mode_t
cgroup_file_mode(const struct cftype
*cft
)
2236 if (cft
->read
|| cft
->read_u64
|| cft
->read_s64
||
2237 cft
->read_map
|| cft
->read_seq_string
)
2240 if (cft
->write
|| cft
->write_u64
|| cft
->write_s64
||
2241 cft
->write_string
|| cft
->trigger
)
2247 int cgroup_add_file(struct cgroup
*cgrp
,
2248 struct cgroup_subsys
*subsys
,
2249 const struct cftype
*cft
)
2251 struct dentry
*dir
= cgrp
->dentry
;
2252 struct dentry
*dentry
;
2256 char name
[MAX_CGROUP_TYPE_NAMELEN
+ MAX_CFTYPE_NAME
+ 2] = { 0 };
2257 if (subsys
&& !test_bit(ROOT_NOPREFIX
, &cgrp
->root
->flags
)) {
2258 strcpy(name
, subsys
->name
);
2261 strcat(name
, cft
->name
);
2262 BUG_ON(!mutex_is_locked(&dir
->d_inode
->i_mutex
));
2263 dentry
= lookup_one_len(name
, dir
, strlen(name
));
2264 if (!IS_ERR(dentry
)) {
2265 mode
= cgroup_file_mode(cft
);
2266 error
= cgroup_create_file(dentry
, mode
| S_IFREG
,
2269 dentry
->d_fsdata
= (void *)cft
;
2272 error
= PTR_ERR(dentry
);
2275 EXPORT_SYMBOL_GPL(cgroup_add_file
);
2277 int cgroup_add_files(struct cgroup
*cgrp
,
2278 struct cgroup_subsys
*subsys
,
2279 const struct cftype cft
[],
2283 for (i
= 0; i
< count
; i
++) {
2284 err
= cgroup_add_file(cgrp
, subsys
, &cft
[i
]);
2290 EXPORT_SYMBOL_GPL(cgroup_add_files
);
2293 * cgroup_task_count - count the number of tasks in a cgroup.
2294 * @cgrp: the cgroup in question
2296 * Return the number of tasks in the cgroup.
2298 int cgroup_task_count(const struct cgroup
*cgrp
)
2301 struct cg_cgroup_link
*link
;
2303 read_lock(&css_set_lock
);
2304 list_for_each_entry(link
, &cgrp
->css_sets
, cgrp_link_list
) {
2305 count
+= atomic_read(&link
->cg
->refcount
);
2307 read_unlock(&css_set_lock
);
2312 * Advance a list_head iterator. The iterator should be positioned at
2313 * the start of a css_set
2315 static void cgroup_advance_iter(struct cgroup
*cgrp
,
2316 struct cgroup_iter
*it
)
2318 struct list_head
*l
= it
->cg_link
;
2319 struct cg_cgroup_link
*link
;
2322 /* Advance to the next non-empty css_set */
2325 if (l
== &cgrp
->css_sets
) {
2329 link
= list_entry(l
, struct cg_cgroup_link
, cgrp_link_list
);
2331 } while (list_empty(&cg
->tasks
));
2333 it
->task
= cg
->tasks
.next
;
2337 * To reduce the fork() overhead for systems that are not actually
2338 * using their cgroups capability, we don't maintain the lists running
2339 * through each css_set to its tasks until we see the list actually
2340 * used - in other words after the first call to cgroup_iter_start().
2342 * The tasklist_lock is not held here, as do_each_thread() and
2343 * while_each_thread() are protected by RCU.
2345 static void cgroup_enable_task_cg_lists(void)
2347 struct task_struct
*p
, *g
;
2348 write_lock(&css_set_lock
);
2349 use_task_css_set_links
= 1;
2350 do_each_thread(g
, p
) {
2353 * We should check if the process is exiting, otherwise
2354 * it will race with cgroup_exit() in that the list
2355 * entry won't be deleted though the process has exited.
2357 if (!(p
->flags
& PF_EXITING
) && list_empty(&p
->cg_list
))
2358 list_add(&p
->cg_list
, &p
->cgroups
->tasks
);
2360 } while_each_thread(g
, p
);
2361 write_unlock(&css_set_lock
);
2364 void cgroup_iter_start(struct cgroup
*cgrp
, struct cgroup_iter
*it
)
2367 * The first time anyone tries to iterate across a cgroup,
2368 * we need to enable the list linking each css_set to its
2369 * tasks, and fix up all existing tasks.
2371 if (!use_task_css_set_links
)
2372 cgroup_enable_task_cg_lists();
2374 read_lock(&css_set_lock
);
2375 it
->cg_link
= &cgrp
->css_sets
;
2376 cgroup_advance_iter(cgrp
, it
);
2379 struct task_struct
*cgroup_iter_next(struct cgroup
*cgrp
,
2380 struct cgroup_iter
*it
)
2382 struct task_struct
*res
;
2383 struct list_head
*l
= it
->task
;
2384 struct cg_cgroup_link
*link
;
2386 /* If the iterator cg is NULL, we have no tasks */
2389 res
= list_entry(l
, struct task_struct
, cg_list
);
2390 /* Advance iterator to find next entry */
2392 link
= list_entry(it
->cg_link
, struct cg_cgroup_link
, cgrp_link_list
);
2393 if (l
== &link
->cg
->tasks
) {
2394 /* We reached the end of this task list - move on to
2395 * the next cg_cgroup_link */
2396 cgroup_advance_iter(cgrp
, it
);
2403 void cgroup_iter_end(struct cgroup
*cgrp
, struct cgroup_iter
*it
)
2405 read_unlock(&css_set_lock
);
2408 static inline int started_after_time(struct task_struct
*t1
,
2409 struct timespec
*time
,
2410 struct task_struct
*t2
)
2412 int start_diff
= timespec_compare(&t1
->start_time
, time
);
2413 if (start_diff
> 0) {
2415 } else if (start_diff
< 0) {
2419 * Arbitrarily, if two processes started at the same
2420 * time, we'll say that the lower pointer value
2421 * started first. Note that t2 may have exited by now
2422 * so this may not be a valid pointer any longer, but
2423 * that's fine - it still serves to distinguish
2424 * between two tasks started (effectively) simultaneously.
2431 * This function is a callback from heap_insert() and is used to order
2433 * In this case we order the heap in descending task start time.
2435 static inline int started_after(void *p1
, void *p2
)
2437 struct task_struct
*t1
= p1
;
2438 struct task_struct
*t2
= p2
;
2439 return started_after_time(t1
, &t2
->start_time
, t2
);
2443 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2444 * @scan: struct cgroup_scanner containing arguments for the scan
2446 * Arguments include pointers to callback functions test_task() and
2448 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2449 * and if it returns true, call process_task() for it also.
2450 * The test_task pointer may be NULL, meaning always true (select all tasks).
2451 * Effectively duplicates cgroup_iter_{start,next,end}()
2452 * but does not lock css_set_lock for the call to process_task().
2453 * The struct cgroup_scanner may be embedded in any structure of the caller's
2455 * It is guaranteed that process_task() will act on every task that
2456 * is a member of the cgroup for the duration of this call. This
2457 * function may or may not call process_task() for tasks that exit
2458 * or move to a different cgroup during the call, or are forked or
2459 * move into the cgroup during the call.
2461 * Note that test_task() may be called with locks held, and may in some
2462 * situations be called multiple times for the same task, so it should
2464 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2465 * pre-allocated and will be used for heap operations (and its "gt" member will
2466 * be overwritten), else a temporary heap will be used (allocation of which
2467 * may cause this function to fail).
2469 int cgroup_scan_tasks(struct cgroup_scanner
*scan
)
2472 struct cgroup_iter it
;
2473 struct task_struct
*p
, *dropped
;
2474 /* Never dereference latest_task, since it's not refcounted */
2475 struct task_struct
*latest_task
= NULL
;
2476 struct ptr_heap tmp_heap
;
2477 struct ptr_heap
*heap
;
2478 struct timespec latest_time
= { 0, 0 };
2481 /* The caller supplied our heap and pre-allocated its memory */
2483 heap
->gt
= &started_after
;
2485 /* We need to allocate our own heap memory */
2487 retval
= heap_init(heap
, PAGE_SIZE
, GFP_KERNEL
, &started_after
);
2489 /* cannot allocate the heap */
2495 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2496 * to determine which are of interest, and using the scanner's
2497 * "process_task" callback to process any of them that need an update.
2498 * Since we don't want to hold any locks during the task updates,
2499 * gather tasks to be processed in a heap structure.
2500 * The heap is sorted by descending task start time.
2501 * If the statically-sized heap fills up, we overflow tasks that
2502 * started later, and in future iterations only consider tasks that
2503 * started after the latest task in the previous pass. This
2504 * guarantees forward progress and that we don't miss any tasks.
2507 cgroup_iter_start(scan
->cg
, &it
);
2508 while ((p
= cgroup_iter_next(scan
->cg
, &it
))) {
2510 * Only affect tasks that qualify per the caller's callback,
2511 * if he provided one
2513 if (scan
->test_task
&& !scan
->test_task(p
, scan
))
2516 * Only process tasks that started after the last task
2519 if (!started_after_time(p
, &latest_time
, latest_task
))
2521 dropped
= heap_insert(heap
, p
);
2522 if (dropped
== NULL
) {
2524 * The new task was inserted; the heap wasn't
2528 } else if (dropped
!= p
) {
2530 * The new task was inserted, and pushed out a
2534 put_task_struct(dropped
);
2537 * Else the new task was newer than anything already in
2538 * the heap and wasn't inserted
2541 cgroup_iter_end(scan
->cg
, &it
);
2544 for (i
= 0; i
< heap
->size
; i
++) {
2545 struct task_struct
*q
= heap
->ptrs
[i
];
2547 latest_time
= q
->start_time
;
2550 /* Process the task per the caller's callback */
2551 scan
->process_task(q
, scan
);
2555 * If we had to process any tasks at all, scan again
2556 * in case some of them were in the middle of forking
2557 * children that didn't get processed.
2558 * Not the most efficient way to do it, but it avoids
2559 * having to take callback_mutex in the fork path
2563 if (heap
== &tmp_heap
)
2564 heap_free(&tmp_heap
);
2569 * Stuff for reading the 'tasks'/'procs' files.
2571 * Reading this file can return large amounts of data if a cgroup has
2572 * *lots* of attached tasks. So it may need several calls to read(),
2573 * but we cannot guarantee that the information we produce is correct
2574 * unless we produce it entirely atomically.
2579 * The following two functions "fix" the issue where there are more pids
2580 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2581 * TODO: replace with a kernel-wide solution to this problem
2583 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2584 static void *pidlist_allocate(int count
)
2586 if (PIDLIST_TOO_LARGE(count
))
2587 return vmalloc(count
* sizeof(pid_t
));
2589 return kmalloc(count
* sizeof(pid_t
), GFP_KERNEL
);
2591 static void pidlist_free(void *p
)
2593 if (is_vmalloc_addr(p
))
2598 static void *pidlist_resize(void *p
, int newcount
)
2601 /* note: if new alloc fails, old p will still be valid either way */
2602 if (is_vmalloc_addr(p
)) {
2603 newlist
= vmalloc(newcount
* sizeof(pid_t
));
2606 memcpy(newlist
, p
, newcount
* sizeof(pid_t
));
2609 newlist
= krealloc(p
, newcount
* sizeof(pid_t
), GFP_KERNEL
);
2615 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
2616 * If the new stripped list is sufficiently smaller and there's enough memory
2617 * to allocate a new buffer, will let go of the unneeded memory. Returns the
2618 * number of unique elements.
2620 /* is the size difference enough that we should re-allocate the array? */
2621 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
2622 static int pidlist_uniq(pid_t
**p
, int length
)
2629 * we presume the 0th element is unique, so i starts at 1. trivial
2630 * edge cases first; no work needs to be done for either
2632 if (length
== 0 || length
== 1)
2634 /* src and dest walk down the list; dest counts unique elements */
2635 for (src
= 1; src
< length
; src
++) {
2636 /* find next unique element */
2637 while (list
[src
] == list
[src
-1]) {
2642 /* dest always points to where the next unique element goes */
2643 list
[dest
] = list
[src
];
2648 * if the length difference is large enough, we want to allocate a
2649 * smaller buffer to save memory. if this fails due to out of memory,
2650 * we'll just stay with what we've got.
2652 if (PIDLIST_REALLOC_DIFFERENCE(length
, dest
)) {
2653 newlist
= pidlist_resize(list
, dest
);
2660 static int cmppid(const void *a
, const void *b
)
2662 return *(pid_t
*)a
- *(pid_t
*)b
;
2666 * find the appropriate pidlist for our purpose (given procs vs tasks)
2667 * returns with the lock on that pidlist already held, and takes care
2668 * of the use count, or returns NULL with no locks held if we're out of
2671 static struct cgroup_pidlist
*cgroup_pidlist_find(struct cgroup
*cgrp
,
2672 enum cgroup_filetype type
)
2674 struct cgroup_pidlist
*l
;
2675 /* don't need task_nsproxy() if we're looking at ourself */
2676 struct pid_namespace
*ns
= current
->nsproxy
->pid_ns
;
2679 * We can't drop the pidlist_mutex before taking the l->mutex in case
2680 * the last ref-holder is trying to remove l from the list at the same
2681 * time. Holding the pidlist_mutex precludes somebody taking whichever
2682 * list we find out from under us - compare release_pid_array().
2684 mutex_lock(&cgrp
->pidlist_mutex
);
2685 list_for_each_entry(l
, &cgrp
->pidlists
, links
) {
2686 if (l
->key
.type
== type
&& l
->key
.ns
== ns
) {
2687 /* make sure l doesn't vanish out from under us */
2688 down_write(&l
->mutex
);
2689 mutex_unlock(&cgrp
->pidlist_mutex
);
2693 /* entry not found; create a new one */
2694 l
= kmalloc(sizeof(struct cgroup_pidlist
), GFP_KERNEL
);
2696 mutex_unlock(&cgrp
->pidlist_mutex
);
2699 init_rwsem(&l
->mutex
);
2700 down_write(&l
->mutex
);
2702 l
->key
.ns
= get_pid_ns(ns
);
2703 l
->use_count
= 0; /* don't increment here */
2706 list_add(&l
->links
, &cgrp
->pidlists
);
2707 mutex_unlock(&cgrp
->pidlist_mutex
);
2712 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
2714 static int pidlist_array_load(struct cgroup
*cgrp
, enum cgroup_filetype type
,
2715 struct cgroup_pidlist
**lp
)
2719 int pid
, n
= 0; /* used for populating the array */
2720 struct cgroup_iter it
;
2721 struct task_struct
*tsk
;
2722 struct cgroup_pidlist
*l
;
2725 * If cgroup gets more users after we read count, we won't have
2726 * enough space - tough. This race is indistinguishable to the
2727 * caller from the case that the additional cgroup users didn't
2728 * show up until sometime later on.
2730 length
= cgroup_task_count(cgrp
);
2731 array
= pidlist_allocate(length
);
2734 /* now, populate the array */
2735 cgroup_iter_start(cgrp
, &it
);
2736 while ((tsk
= cgroup_iter_next(cgrp
, &it
))) {
2737 if (unlikely(n
== length
))
2739 /* get tgid or pid for procs or tasks file respectively */
2740 if (type
== CGROUP_FILE_PROCS
)
2741 pid
= task_tgid_vnr(tsk
);
2743 pid
= task_pid_vnr(tsk
);
2744 if (pid
> 0) /* make sure to only use valid results */
2747 cgroup_iter_end(cgrp
, &it
);
2749 /* now sort & (if procs) strip out duplicates */
2750 sort(array
, length
, sizeof(pid_t
), cmppid
, NULL
);
2751 if (type
== CGROUP_FILE_PROCS
)
2752 length
= pidlist_uniq(&array
, length
);
2753 l
= cgroup_pidlist_find(cgrp
, type
);
2755 pidlist_free(array
);
2758 /* store array, freeing old if necessary - lock already held */
2759 pidlist_free(l
->list
);
2763 up_write(&l
->mutex
);
2769 * cgroupstats_build - build and fill cgroupstats
2770 * @stats: cgroupstats to fill information into
2771 * @dentry: A dentry entry belonging to the cgroup for which stats have
2774 * Build and fill cgroupstats so that taskstats can export it to user
2777 int cgroupstats_build(struct cgroupstats
*stats
, struct dentry
*dentry
)
2780 struct cgroup
*cgrp
;
2781 struct cgroup_iter it
;
2782 struct task_struct
*tsk
;
2785 * Validate dentry by checking the superblock operations,
2786 * and make sure it's a directory.
2788 if (dentry
->d_sb
->s_op
!= &cgroup_ops
||
2789 !S_ISDIR(dentry
->d_inode
->i_mode
))
2793 cgrp
= dentry
->d_fsdata
;
2795 cgroup_iter_start(cgrp
, &it
);
2796 while ((tsk
= cgroup_iter_next(cgrp
, &it
))) {
2797 switch (tsk
->state
) {
2799 stats
->nr_running
++;
2801 case TASK_INTERRUPTIBLE
:
2802 stats
->nr_sleeping
++;
2804 case TASK_UNINTERRUPTIBLE
:
2805 stats
->nr_uninterruptible
++;
2808 stats
->nr_stopped
++;
2811 if (delayacct_is_task_waiting_on_io(tsk
))
2812 stats
->nr_io_wait
++;
2816 cgroup_iter_end(cgrp
, &it
);
2824 * seq_file methods for the tasks/procs files. The seq_file position is the
2825 * next pid to display; the seq_file iterator is a pointer to the pid
2826 * in the cgroup->l->list array.
2829 static void *cgroup_pidlist_start(struct seq_file
*s
, loff_t
*pos
)
2832 * Initially we receive a position value that corresponds to
2833 * one more than the last pid shown (or 0 on the first call or
2834 * after a seek to the start). Use a binary-search to find the
2835 * next pid to display, if any
2837 struct cgroup_pidlist
*l
= s
->private;
2838 int index
= 0, pid
= *pos
;
2841 down_read(&l
->mutex
);
2843 int end
= l
->length
;
2845 while (index
< end
) {
2846 int mid
= (index
+ end
) / 2;
2847 if (l
->list
[mid
] == pid
) {
2850 } else if (l
->list
[mid
] <= pid
)
2856 /* If we're off the end of the array, we're done */
2857 if (index
>= l
->length
)
2859 /* Update the abstract position to be the actual pid that we found */
2860 iter
= l
->list
+ index
;
2865 static void cgroup_pidlist_stop(struct seq_file
*s
, void *v
)
2867 struct cgroup_pidlist
*l
= s
->private;
2871 static void *cgroup_pidlist_next(struct seq_file
*s
, void *v
, loff_t
*pos
)
2873 struct cgroup_pidlist
*l
= s
->private;
2875 pid_t
*end
= l
->list
+ l
->length
;
2877 * Advance to the next pid in the array. If this goes off the
2889 static int cgroup_pidlist_show(struct seq_file
*s
, void *v
)
2891 return seq_printf(s
, "%d\n", *(int *)v
);
2895 * seq_operations functions for iterating on pidlists through seq_file -
2896 * independent of whether it's tasks or procs
2898 static const struct seq_operations cgroup_pidlist_seq_operations
= {
2899 .start
= cgroup_pidlist_start
,
2900 .stop
= cgroup_pidlist_stop
,
2901 .next
= cgroup_pidlist_next
,
2902 .show
= cgroup_pidlist_show
,
2905 static void cgroup_release_pid_array(struct cgroup_pidlist
*l
)
2908 * the case where we're the last user of this particular pidlist will
2909 * have us remove it from the cgroup's list, which entails taking the
2910 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
2911 * pidlist_mutex, we have to take pidlist_mutex first.
2913 mutex_lock(&l
->owner
->pidlist_mutex
);
2914 down_write(&l
->mutex
);
2915 BUG_ON(!l
->use_count
);
2916 if (!--l
->use_count
) {
2917 /* we're the last user if refcount is 0; remove and free */
2918 list_del(&l
->links
);
2919 mutex_unlock(&l
->owner
->pidlist_mutex
);
2920 pidlist_free(l
->list
);
2921 put_pid_ns(l
->key
.ns
);
2922 up_write(&l
->mutex
);
2926 mutex_unlock(&l
->owner
->pidlist_mutex
);
2927 up_write(&l
->mutex
);
2930 static int cgroup_pidlist_release(struct inode
*inode
, struct file
*file
)
2932 struct cgroup_pidlist
*l
;
2933 if (!(file
->f_mode
& FMODE_READ
))
2936 * the seq_file will only be initialized if the file was opened for
2937 * reading; hence we check if it's not null only in that case.
2939 l
= ((struct seq_file
*)file
->private_data
)->private;
2940 cgroup_release_pid_array(l
);
2941 return seq_release(inode
, file
);
2944 static const struct file_operations cgroup_pidlist_operations
= {
2946 .llseek
= seq_lseek
,
2947 .write
= cgroup_file_write
,
2948 .release
= cgroup_pidlist_release
,
2952 * The following functions handle opens on a file that displays a pidlist
2953 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
2956 /* helper function for the two below it */
2957 static int cgroup_pidlist_open(struct file
*file
, enum cgroup_filetype type
)
2959 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
2960 struct cgroup_pidlist
*l
;
2963 /* Nothing to do for write-only files */
2964 if (!(file
->f_mode
& FMODE_READ
))
2967 /* have the array populated */
2968 retval
= pidlist_array_load(cgrp
, type
, &l
);
2971 /* configure file information */
2972 file
->f_op
= &cgroup_pidlist_operations
;
2974 retval
= seq_open(file
, &cgroup_pidlist_seq_operations
);
2976 cgroup_release_pid_array(l
);
2979 ((struct seq_file
*)file
->private_data
)->private = l
;
2982 static int cgroup_tasks_open(struct inode
*unused
, struct file
*file
)
2984 return cgroup_pidlist_open(file
, CGROUP_FILE_TASKS
);
2986 static int cgroup_procs_open(struct inode
*unused
, struct file
*file
)
2988 return cgroup_pidlist_open(file
, CGROUP_FILE_PROCS
);
2991 static u64
cgroup_read_notify_on_release(struct cgroup
*cgrp
,
2994 return notify_on_release(cgrp
);
2997 static int cgroup_write_notify_on_release(struct cgroup
*cgrp
,
3001 clear_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
3003 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
3005 clear_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
3010 * Unregister event and free resources.
3012 * Gets called from workqueue.
3014 static void cgroup_event_remove(struct work_struct
*work
)
3016 struct cgroup_event
*event
= container_of(work
, struct cgroup_event
,
3018 struct cgroup
*cgrp
= event
->cgrp
;
3020 event
->cft
->unregister_event(cgrp
, event
->cft
, event
->eventfd
);
3022 eventfd_ctx_put(event
->eventfd
);
3028 * Gets called on POLLHUP on eventfd when user closes it.
3030 * Called with wqh->lock held and interrupts disabled.
3032 static int cgroup_event_wake(wait_queue_t
*wait
, unsigned mode
,
3033 int sync
, void *key
)
3035 struct cgroup_event
*event
= container_of(wait
,
3036 struct cgroup_event
, wait
);
3037 struct cgroup
*cgrp
= event
->cgrp
;
3038 unsigned long flags
= (unsigned long)key
;
3040 if (flags
& POLLHUP
) {
3041 __remove_wait_queue(event
->wqh
, &event
->wait
);
3042 spin_lock(&cgrp
->event_list_lock
);
3043 list_del(&event
->list
);
3044 spin_unlock(&cgrp
->event_list_lock
);
3046 * We are in atomic context, but cgroup_event_remove() may
3047 * sleep, so we have to call it in workqueue.
3049 schedule_work(&event
->remove
);
3055 static void cgroup_event_ptable_queue_proc(struct file
*file
,
3056 wait_queue_head_t
*wqh
, poll_table
*pt
)
3058 struct cgroup_event
*event
= container_of(pt
,
3059 struct cgroup_event
, pt
);
3062 add_wait_queue(wqh
, &event
->wait
);
3066 * Parse input and register new cgroup event handler.
3068 * Input must be in format '<event_fd> <control_fd> <args>'.
3069 * Interpretation of args is defined by control file implementation.
3071 static int cgroup_write_event_control(struct cgroup
*cgrp
, struct cftype
*cft
,
3074 struct cgroup_event
*event
= NULL
;
3075 unsigned int efd
, cfd
;
3076 struct file
*efile
= NULL
;
3077 struct file
*cfile
= NULL
;
3081 efd
= simple_strtoul(buffer
, &endp
, 10);
3086 cfd
= simple_strtoul(buffer
, &endp
, 10);
3087 if ((*endp
!= ' ') && (*endp
!= '\0'))
3091 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
3095 INIT_LIST_HEAD(&event
->list
);
3096 init_poll_funcptr(&event
->pt
, cgroup_event_ptable_queue_proc
);
3097 init_waitqueue_func_entry(&event
->wait
, cgroup_event_wake
);
3098 INIT_WORK(&event
->remove
, cgroup_event_remove
);
3100 efile
= eventfd_fget(efd
);
3101 if (IS_ERR(efile
)) {
3102 ret
= PTR_ERR(efile
);
3106 event
->eventfd
= eventfd_ctx_fileget(efile
);
3107 if (IS_ERR(event
->eventfd
)) {
3108 ret
= PTR_ERR(event
->eventfd
);
3118 /* the process need read permission on control file */
3119 ret
= file_permission(cfile
, MAY_READ
);
3123 event
->cft
= __file_cft(cfile
);
3124 if (IS_ERR(event
->cft
)) {
3125 ret
= PTR_ERR(event
->cft
);
3129 if (!event
->cft
->register_event
|| !event
->cft
->unregister_event
) {
3134 ret
= event
->cft
->register_event(cgrp
, event
->cft
,
3135 event
->eventfd
, buffer
);
3139 if (efile
->f_op
->poll(efile
, &event
->pt
) & POLLHUP
) {
3140 event
->cft
->unregister_event(cgrp
, event
->cft
, event
->eventfd
);
3146 * Events should be removed after rmdir of cgroup directory, but before
3147 * destroying subsystem state objects. Let's take reference to cgroup
3148 * directory dentry to do that.
3152 spin_lock(&cgrp
->event_list_lock
);
3153 list_add(&event
->list
, &cgrp
->event_list
);
3154 spin_unlock(&cgrp
->event_list_lock
);
3165 if (event
&& event
->eventfd
&& !IS_ERR(event
->eventfd
))
3166 eventfd_ctx_put(event
->eventfd
);
3168 if (!IS_ERR_OR_NULL(efile
))
3177 * for the common functions, 'private' gives the type of file
3179 /* for hysterical raisins, we can't put this on the older files */
3180 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3181 static struct cftype files
[] = {
3184 .open
= cgroup_tasks_open
,
3185 .write_u64
= cgroup_tasks_write
,
3186 .release
= cgroup_pidlist_release
,
3187 .mode
= S_IRUGO
| S_IWUSR
,
3190 .name
= CGROUP_FILE_GENERIC_PREFIX
"procs",
3191 .open
= cgroup_procs_open
,
3192 /* .write_u64 = cgroup_procs_write, TODO */
3193 .release
= cgroup_pidlist_release
,
3197 .name
= "notify_on_release",
3198 .read_u64
= cgroup_read_notify_on_release
,
3199 .write_u64
= cgroup_write_notify_on_release
,
3202 .name
= CGROUP_FILE_GENERIC_PREFIX
"event_control",
3203 .write_string
= cgroup_write_event_control
,
3208 static struct cftype cft_release_agent
= {
3209 .name
= "release_agent",
3210 .read_seq_string
= cgroup_release_agent_show
,
3211 .write_string
= cgroup_release_agent_write
,
3212 .max_write_len
= PATH_MAX
,
3215 static int cgroup_populate_dir(struct cgroup
*cgrp
)
3218 struct cgroup_subsys
*ss
;
3220 /* First clear out any existing files */
3221 cgroup_clear_directory(cgrp
->dentry
);
3223 err
= cgroup_add_files(cgrp
, NULL
, files
, ARRAY_SIZE(files
));
3227 if (cgrp
== cgrp
->top_cgroup
) {
3228 if ((err
= cgroup_add_file(cgrp
, NULL
, &cft_release_agent
)) < 0)
3232 for_each_subsys(cgrp
->root
, ss
) {
3233 if (ss
->populate
&& (err
= ss
->populate(ss
, cgrp
)) < 0)
3236 /* This cgroup is ready now */
3237 for_each_subsys(cgrp
->root
, ss
) {
3238 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
3240 * Update id->css pointer and make this css visible from
3241 * CSS ID functions. This pointer will be dereferened
3242 * from RCU-read-side without locks.
3245 rcu_assign_pointer(css
->id
->css
, css
);
3251 static void init_cgroup_css(struct cgroup_subsys_state
*css
,
3252 struct cgroup_subsys
*ss
,
3253 struct cgroup
*cgrp
)
3256 atomic_set(&css
->refcnt
, 1);
3259 if (cgrp
== dummytop
)
3260 set_bit(CSS_ROOT
, &css
->flags
);
3261 BUG_ON(cgrp
->subsys
[ss
->subsys_id
]);
3262 cgrp
->subsys
[ss
->subsys_id
] = css
;
3265 static void cgroup_lock_hierarchy(struct cgroupfs_root
*root
)
3267 /* We need to take each hierarchy_mutex in a consistent order */
3271 * No worry about a race with rebind_subsystems that might mess up the
3272 * locking order, since both parties are under cgroup_mutex.
3274 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3275 struct cgroup_subsys
*ss
= subsys
[i
];
3278 if (ss
->root
== root
)
3279 mutex_lock(&ss
->hierarchy_mutex
);
3283 static void cgroup_unlock_hierarchy(struct cgroupfs_root
*root
)
3287 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3288 struct cgroup_subsys
*ss
= subsys
[i
];
3291 if (ss
->root
== root
)
3292 mutex_unlock(&ss
->hierarchy_mutex
);
3297 * cgroup_create - create a cgroup
3298 * @parent: cgroup that will be parent of the new cgroup
3299 * @dentry: dentry of the new cgroup
3300 * @mode: mode to set on new inode
3302 * Must be called with the mutex on the parent inode held
3304 static long cgroup_create(struct cgroup
*parent
, struct dentry
*dentry
,
3307 struct cgroup
*cgrp
;
3308 struct cgroupfs_root
*root
= parent
->root
;
3310 struct cgroup_subsys
*ss
;
3311 struct super_block
*sb
= root
->sb
;
3313 cgrp
= kzalloc(sizeof(*cgrp
), GFP_KERNEL
);
3317 /* Grab a reference on the superblock so the hierarchy doesn't
3318 * get deleted on unmount if there are child cgroups. This
3319 * can be done outside cgroup_mutex, since the sb can't
3320 * disappear while someone has an open control file on the
3322 atomic_inc(&sb
->s_active
);
3324 mutex_lock(&cgroup_mutex
);
3326 init_cgroup_housekeeping(cgrp
);
3328 cgrp
->parent
= parent
;
3329 cgrp
->root
= parent
->root
;
3330 cgrp
->top_cgroup
= parent
->top_cgroup
;
3332 if (notify_on_release(parent
))
3333 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
3335 for_each_subsys(root
, ss
) {
3336 struct cgroup_subsys_state
*css
= ss
->create(ss
, cgrp
);
3342 init_cgroup_css(css
, ss
, cgrp
);
3344 err
= alloc_css_id(ss
, parent
, cgrp
);
3348 /* At error, ->destroy() callback has to free assigned ID. */
3351 cgroup_lock_hierarchy(root
);
3352 list_add(&cgrp
->sibling
, &cgrp
->parent
->children
);
3353 cgroup_unlock_hierarchy(root
);
3354 root
->number_of_cgroups
++;
3356 err
= cgroup_create_dir(cgrp
, dentry
, mode
);
3360 /* The cgroup directory was pre-locked for us */
3361 BUG_ON(!mutex_is_locked(&cgrp
->dentry
->d_inode
->i_mutex
));
3363 err
= cgroup_populate_dir(cgrp
);
3364 /* If err < 0, we have a half-filled directory - oh well ;) */
3366 mutex_unlock(&cgroup_mutex
);
3367 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
3373 cgroup_lock_hierarchy(root
);
3374 list_del(&cgrp
->sibling
);
3375 cgroup_unlock_hierarchy(root
);
3376 root
->number_of_cgroups
--;
3380 for_each_subsys(root
, ss
) {
3381 if (cgrp
->subsys
[ss
->subsys_id
])
3382 ss
->destroy(ss
, cgrp
);
3385 mutex_unlock(&cgroup_mutex
);
3387 /* Release the reference count that we took on the superblock */
3388 deactivate_super(sb
);
3394 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
3396 struct cgroup
*c_parent
= dentry
->d_parent
->d_fsdata
;
3398 /* the vfs holds inode->i_mutex already */
3399 return cgroup_create(c_parent
, dentry
, mode
| S_IFDIR
);
3402 static int cgroup_has_css_refs(struct cgroup
*cgrp
)
3404 /* Check the reference count on each subsystem. Since we
3405 * already established that there are no tasks in the
3406 * cgroup, if the css refcount is also 1, then there should
3407 * be no outstanding references, so the subsystem is safe to
3408 * destroy. We scan across all subsystems rather than using
3409 * the per-hierarchy linked list of mounted subsystems since
3410 * we can be called via check_for_release() with no
3411 * synchronization other than RCU, and the subsystem linked
3412 * list isn't RCU-safe */
3415 * We won't need to lock the subsys array, because the subsystems
3416 * we're concerned about aren't going anywhere since our cgroup root
3417 * has a reference on them.
3419 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3420 struct cgroup_subsys
*ss
= subsys
[i
];
3421 struct cgroup_subsys_state
*css
;
3422 /* Skip subsystems not present or not in this hierarchy */
3423 if (ss
== NULL
|| ss
->root
!= cgrp
->root
)
3425 css
= cgrp
->subsys
[ss
->subsys_id
];
3426 /* When called from check_for_release() it's possible
3427 * that by this point the cgroup has been removed
3428 * and the css deleted. But a false-positive doesn't
3429 * matter, since it can only happen if the cgroup
3430 * has been deleted and hence no longer needs the
3431 * release agent to be called anyway. */
3432 if (css
&& (atomic_read(&css
->refcnt
) > 1))
3439 * Atomically mark all (or else none) of the cgroup's CSS objects as
3440 * CSS_REMOVED. Return true on success, or false if the cgroup has
3441 * busy subsystems. Call with cgroup_mutex held
3444 static int cgroup_clear_css_refs(struct cgroup
*cgrp
)
3446 struct cgroup_subsys
*ss
;
3447 unsigned long flags
;
3448 bool failed
= false;
3449 local_irq_save(flags
);
3450 for_each_subsys(cgrp
->root
, ss
) {
3451 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
3454 /* We can only remove a CSS with a refcnt==1 */
3455 refcnt
= atomic_read(&css
->refcnt
);
3462 * Drop the refcnt to 0 while we check other
3463 * subsystems. This will cause any racing
3464 * css_tryget() to spin until we set the
3465 * CSS_REMOVED bits or abort
3467 if (atomic_cmpxchg(&css
->refcnt
, refcnt
, 0) == refcnt
)
3473 for_each_subsys(cgrp
->root
, ss
) {
3474 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
3477 * Restore old refcnt if we previously managed
3478 * to clear it from 1 to 0
3480 if (!atomic_read(&css
->refcnt
))
3481 atomic_set(&css
->refcnt
, 1);
3483 /* Commit the fact that the CSS is removed */
3484 set_bit(CSS_REMOVED
, &css
->flags
);
3487 local_irq_restore(flags
);
3491 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
)
3493 struct cgroup
*cgrp
= dentry
->d_fsdata
;
3495 struct cgroup
*parent
;
3497 struct cgroup_event
*event
, *tmp
;
3500 /* the vfs holds both inode->i_mutex already */
3502 mutex_lock(&cgroup_mutex
);
3503 if (atomic_read(&cgrp
->count
) != 0) {
3504 mutex_unlock(&cgroup_mutex
);
3507 if (!list_empty(&cgrp
->children
)) {
3508 mutex_unlock(&cgroup_mutex
);
3511 mutex_unlock(&cgroup_mutex
);
3514 * In general, subsystem has no css->refcnt after pre_destroy(). But
3515 * in racy cases, subsystem may have to get css->refcnt after
3516 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3517 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3518 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3519 * and subsystem's reference count handling. Please see css_get/put
3520 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
3522 set_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
3525 * Call pre_destroy handlers of subsys. Notify subsystems
3526 * that rmdir() request comes.
3528 ret
= cgroup_call_pre_destroy(cgrp
);
3530 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
3534 mutex_lock(&cgroup_mutex
);
3535 parent
= cgrp
->parent
;
3536 if (atomic_read(&cgrp
->count
) || !list_empty(&cgrp
->children
)) {
3537 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
3538 mutex_unlock(&cgroup_mutex
);
3541 prepare_to_wait(&cgroup_rmdir_waitq
, &wait
, TASK_INTERRUPTIBLE
);
3542 if (!cgroup_clear_css_refs(cgrp
)) {
3543 mutex_unlock(&cgroup_mutex
);
3545 * Because someone may call cgroup_wakeup_rmdir_waiter() before
3546 * prepare_to_wait(), we need to check this flag.
3548 if (test_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
))
3550 finish_wait(&cgroup_rmdir_waitq
, &wait
);
3551 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
3552 if (signal_pending(current
))
3556 /* NO css_tryget() can success after here. */
3557 finish_wait(&cgroup_rmdir_waitq
, &wait
);
3558 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
3560 spin_lock(&release_list_lock
);
3561 set_bit(CGRP_REMOVED
, &cgrp
->flags
);
3562 if (!list_empty(&cgrp
->release_list
))
3563 list_del(&cgrp
->release_list
);
3564 spin_unlock(&release_list_lock
);
3566 cgroup_lock_hierarchy(cgrp
->root
);
3567 /* delete this cgroup from parent->children */
3568 list_del(&cgrp
->sibling
);
3569 cgroup_unlock_hierarchy(cgrp
->root
);
3571 spin_lock(&cgrp
->dentry
->d_lock
);
3572 d
= dget(cgrp
->dentry
);
3573 spin_unlock(&d
->d_lock
);
3575 cgroup_d_remove_dir(d
);
3578 set_bit(CGRP_RELEASABLE
, &parent
->flags
);
3579 check_for_release(parent
);
3582 * Unregister events and notify userspace.
3583 * Notify userspace about cgroup removing only after rmdir of cgroup
3584 * directory to avoid race between userspace and kernelspace
3586 spin_lock(&cgrp
->event_list_lock
);
3587 list_for_each_entry_safe(event
, tmp
, &cgrp
->event_list
, list
) {
3588 list_del(&event
->list
);
3589 remove_wait_queue(event
->wqh
, &event
->wait
);
3590 eventfd_signal(event
->eventfd
, 1);
3591 schedule_work(&event
->remove
);
3593 spin_unlock(&cgrp
->event_list_lock
);
3595 mutex_unlock(&cgroup_mutex
);
3599 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
)
3601 struct cgroup_subsys_state
*css
;
3603 printk(KERN_INFO
"Initializing cgroup subsys %s\n", ss
->name
);
3605 /* Create the top cgroup state for this subsystem */
3606 list_add(&ss
->sibling
, &rootnode
.subsys_list
);
3607 ss
->root
= &rootnode
;
3608 css
= ss
->create(ss
, dummytop
);
3609 /* We don't handle early failures gracefully */
3610 BUG_ON(IS_ERR(css
));
3611 init_cgroup_css(css
, ss
, dummytop
);
3613 /* Update the init_css_set to contain a subsys
3614 * pointer to this state - since the subsystem is
3615 * newly registered, all tasks and hence the
3616 * init_css_set is in the subsystem's top cgroup. */
3617 init_css_set
.subsys
[ss
->subsys_id
] = dummytop
->subsys
[ss
->subsys_id
];
3619 need_forkexit_callback
|= ss
->fork
|| ss
->exit
;
3621 /* At system boot, before all subsystems have been
3622 * registered, no tasks have been forked, so we don't
3623 * need to invoke fork callbacks here. */
3624 BUG_ON(!list_empty(&init_task
.tasks
));
3626 mutex_init(&ss
->hierarchy_mutex
);
3627 lockdep_set_class(&ss
->hierarchy_mutex
, &ss
->subsys_key
);
3630 /* this function shouldn't be used with modular subsystems, since they
3631 * need to register a subsys_id, among other things */
3636 * cgroup_load_subsys: load and register a modular subsystem at runtime
3637 * @ss: the subsystem to load
3639 * This function should be called in a modular subsystem's initcall. If the
3640 * subsystem is built as a module, it will be assigned a new subsys_id and set
3641 * up for use. If the subsystem is built-in anyway, work is delegated to the
3642 * simpler cgroup_init_subsys.
3644 int __init_or_module
cgroup_load_subsys(struct cgroup_subsys
*ss
)
3647 struct cgroup_subsys_state
*css
;
3649 /* check name and function validity */
3650 if (ss
->name
== NULL
|| strlen(ss
->name
) > MAX_CGROUP_TYPE_NAMELEN
||
3651 ss
->create
== NULL
|| ss
->destroy
== NULL
)
3655 * we don't support callbacks in modular subsystems. this check is
3656 * before the ss->module check for consistency; a subsystem that could
3657 * be a module should still have no callbacks even if the user isn't
3658 * compiling it as one.
3660 if (ss
->fork
|| ss
->exit
)
3664 * an optionally modular subsystem is built-in: we want to do nothing,
3665 * since cgroup_init_subsys will have already taken care of it.
3667 if (ss
->module
== NULL
) {
3668 /* a few sanity checks */
3669 BUG_ON(ss
->subsys_id
>= CGROUP_BUILTIN_SUBSYS_COUNT
);
3670 BUG_ON(subsys
[ss
->subsys_id
] != ss
);
3675 * need to register a subsys id before anything else - for example,
3676 * init_cgroup_css needs it.
3678 mutex_lock(&cgroup_mutex
);
3679 /* find the first empty slot in the array */
3680 for (i
= CGROUP_BUILTIN_SUBSYS_COUNT
; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3681 if (subsys
[i
] == NULL
)
3684 if (i
== CGROUP_SUBSYS_COUNT
) {
3685 /* maximum number of subsystems already registered! */
3686 mutex_unlock(&cgroup_mutex
);
3689 /* assign ourselves the subsys_id */
3694 * no ss->create seems to need anything important in the ss struct, so
3695 * this can happen first (i.e. before the rootnode attachment).
3697 css
= ss
->create(ss
, dummytop
);
3699 /* failure case - need to deassign the subsys[] slot. */
3701 mutex_unlock(&cgroup_mutex
);
3702 return PTR_ERR(css
);
3705 list_add(&ss
->sibling
, &rootnode
.subsys_list
);
3706 ss
->root
= &rootnode
;
3708 /* our new subsystem will be attached to the dummy hierarchy. */
3709 init_cgroup_css(css
, ss
, dummytop
);
3710 /* init_idr must be after init_cgroup_css because it sets css->id. */
3712 int ret
= cgroup_init_idr(ss
, css
);
3714 dummytop
->subsys
[ss
->subsys_id
] = NULL
;
3715 ss
->destroy(ss
, dummytop
);
3717 mutex_unlock(&cgroup_mutex
);
3723 * Now we need to entangle the css into the existing css_sets. unlike
3724 * in cgroup_init_subsys, there are now multiple css_sets, so each one
3725 * will need a new pointer to it; done by iterating the css_set_table.
3726 * furthermore, modifying the existing css_sets will corrupt the hash
3727 * table state, so each changed css_set will need its hash recomputed.
3728 * this is all done under the css_set_lock.
3730 write_lock(&css_set_lock
);
3731 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++) {
3733 struct hlist_node
*node
, *tmp
;
3734 struct hlist_head
*bucket
= &css_set_table
[i
], *new_bucket
;
3736 hlist_for_each_entry_safe(cg
, node
, tmp
, bucket
, hlist
) {
3737 /* skip entries that we already rehashed */
3738 if (cg
->subsys
[ss
->subsys_id
])
3740 /* remove existing entry */
3741 hlist_del(&cg
->hlist
);
3743 cg
->subsys
[ss
->subsys_id
] = css
;
3744 /* recompute hash and restore entry */
3745 new_bucket
= css_set_hash(cg
->subsys
);
3746 hlist_add_head(&cg
->hlist
, new_bucket
);
3749 write_unlock(&css_set_lock
);
3751 mutex_init(&ss
->hierarchy_mutex
);
3752 lockdep_set_class(&ss
->hierarchy_mutex
, &ss
->subsys_key
);
3756 mutex_unlock(&cgroup_mutex
);
3759 EXPORT_SYMBOL_GPL(cgroup_load_subsys
);
3762 * cgroup_unload_subsys: unload a modular subsystem
3763 * @ss: the subsystem to unload
3765 * This function should be called in a modular subsystem's exitcall. When this
3766 * function is invoked, the refcount on the subsystem's module will be 0, so
3767 * the subsystem will not be attached to any hierarchy.
3769 void cgroup_unload_subsys(struct cgroup_subsys
*ss
)
3771 struct cg_cgroup_link
*link
;
3772 struct hlist_head
*hhead
;
3774 BUG_ON(ss
->module
== NULL
);
3777 * we shouldn't be called if the subsystem is in use, and the use of
3778 * try_module_get in parse_cgroupfs_options should ensure that it
3779 * doesn't start being used while we're killing it off.
3781 BUG_ON(ss
->root
!= &rootnode
);
3783 mutex_lock(&cgroup_mutex
);
3784 /* deassign the subsys_id */
3785 BUG_ON(ss
->subsys_id
< CGROUP_BUILTIN_SUBSYS_COUNT
);
3786 subsys
[ss
->subsys_id
] = NULL
;
3788 /* remove subsystem from rootnode's list of subsystems */
3789 list_del(&ss
->sibling
);
3792 * disentangle the css from all css_sets attached to the dummytop. as
3793 * in loading, we need to pay our respects to the hashtable gods.
3795 write_lock(&css_set_lock
);
3796 list_for_each_entry(link
, &dummytop
->css_sets
, cgrp_link_list
) {
3797 struct css_set
*cg
= link
->cg
;
3799 hlist_del(&cg
->hlist
);
3800 BUG_ON(!cg
->subsys
[ss
->subsys_id
]);
3801 cg
->subsys
[ss
->subsys_id
] = NULL
;
3802 hhead
= css_set_hash(cg
->subsys
);
3803 hlist_add_head(&cg
->hlist
, hhead
);
3805 write_unlock(&css_set_lock
);
3808 * remove subsystem's css from the dummytop and free it - need to free
3809 * before marking as null because ss->destroy needs the cgrp->subsys
3810 * pointer to find their state. note that this also takes care of
3811 * freeing the css_id.
3813 ss
->destroy(ss
, dummytop
);
3814 dummytop
->subsys
[ss
->subsys_id
] = NULL
;
3816 mutex_unlock(&cgroup_mutex
);
3818 EXPORT_SYMBOL_GPL(cgroup_unload_subsys
);
3821 * cgroup_init_early - cgroup initialization at system boot
3823 * Initialize cgroups at system boot, and initialize any
3824 * subsystems that request early init.
3826 int __init
cgroup_init_early(void)
3829 atomic_set(&init_css_set
.refcount
, 1);
3830 INIT_LIST_HEAD(&init_css_set
.cg_links
);
3831 INIT_LIST_HEAD(&init_css_set
.tasks
);
3832 INIT_HLIST_NODE(&init_css_set
.hlist
);
3834 init_cgroup_root(&rootnode
);
3836 init_task
.cgroups
= &init_css_set
;
3838 init_css_set_link
.cg
= &init_css_set
;
3839 init_css_set_link
.cgrp
= dummytop
;
3840 list_add(&init_css_set_link
.cgrp_link_list
,
3841 &rootnode
.top_cgroup
.css_sets
);
3842 list_add(&init_css_set_link
.cg_link_list
,
3843 &init_css_set
.cg_links
);
3845 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++)
3846 INIT_HLIST_HEAD(&css_set_table
[i
]);
3848 /* at bootup time, we don't worry about modular subsystems */
3849 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
3850 struct cgroup_subsys
*ss
= subsys
[i
];
3853 BUG_ON(strlen(ss
->name
) > MAX_CGROUP_TYPE_NAMELEN
);
3854 BUG_ON(!ss
->create
);
3855 BUG_ON(!ss
->destroy
);
3856 if (ss
->subsys_id
!= i
) {
3857 printk(KERN_ERR
"cgroup: Subsys %s id == %d\n",
3858 ss
->name
, ss
->subsys_id
);
3863 cgroup_init_subsys(ss
);
3869 * cgroup_init - cgroup initialization
3871 * Register cgroup filesystem and /proc file, and initialize
3872 * any subsystems that didn't request early init.
3874 int __init
cgroup_init(void)
3878 struct hlist_head
*hhead
;
3880 err
= bdi_init(&cgroup_backing_dev_info
);
3884 /* at bootup time, we don't worry about modular subsystems */
3885 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
3886 struct cgroup_subsys
*ss
= subsys
[i
];
3887 if (!ss
->early_init
)
3888 cgroup_init_subsys(ss
);
3890 cgroup_init_idr(ss
, init_css_set
.subsys
[ss
->subsys_id
]);
3893 /* Add init_css_set to the hash table */
3894 hhead
= css_set_hash(init_css_set
.subsys
);
3895 hlist_add_head(&init_css_set
.hlist
, hhead
);
3896 BUG_ON(!init_root_id(&rootnode
));
3898 cgroup_kobj
= kobject_create_and_add("cgroup", fs_kobj
);
3904 err
= register_filesystem(&cgroup_fs_type
);
3906 kobject_put(cgroup_kobj
);
3910 proc_create("cgroups", 0, NULL
, &proc_cgroupstats_operations
);
3914 bdi_destroy(&cgroup_backing_dev_info
);
3920 * proc_cgroup_show()
3921 * - Print task's cgroup paths into seq_file, one line for each hierarchy
3922 * - Used for /proc/<pid>/cgroup.
3923 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
3924 * doesn't really matter if tsk->cgroup changes after we read it,
3925 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
3926 * anyway. No need to check that tsk->cgroup != NULL, thanks to
3927 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
3928 * cgroup to top_cgroup.
3931 /* TODO: Use a proper seq_file iterator */
3932 static int proc_cgroup_show(struct seq_file
*m
, void *v
)
3935 struct task_struct
*tsk
;
3938 struct cgroupfs_root
*root
;
3941 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
3947 tsk
= get_pid_task(pid
, PIDTYPE_PID
);
3953 mutex_lock(&cgroup_mutex
);
3955 for_each_active_root(root
) {
3956 struct cgroup_subsys
*ss
;
3957 struct cgroup
*cgrp
;
3960 seq_printf(m
, "%d:", root
->hierarchy_id
);
3961 for_each_subsys(root
, ss
)
3962 seq_printf(m
, "%s%s", count
++ ? "," : "", ss
->name
);
3963 if (strlen(root
->name
))
3964 seq_printf(m
, "%sname=%s", count
? "," : "",
3967 cgrp
= task_cgroup_from_root(tsk
, root
);
3968 retval
= cgroup_path(cgrp
, buf
, PAGE_SIZE
);
3976 mutex_unlock(&cgroup_mutex
);
3977 put_task_struct(tsk
);
3984 static int cgroup_open(struct inode
*inode
, struct file
*file
)
3986 struct pid
*pid
= PROC_I(inode
)->pid
;
3987 return single_open(file
, proc_cgroup_show
, pid
);
3990 const struct file_operations proc_cgroup_operations
= {
3991 .open
= cgroup_open
,
3993 .llseek
= seq_lseek
,
3994 .release
= single_release
,
3997 /* Display information about each subsystem and each hierarchy */
3998 static int proc_cgroupstats_show(struct seq_file
*m
, void *v
)
4002 seq_puts(m
, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4004 * ideally we don't want subsystems moving around while we do this.
4005 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4006 * subsys/hierarchy state.
4008 mutex_lock(&cgroup_mutex
);
4009 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
4010 struct cgroup_subsys
*ss
= subsys
[i
];
4013 seq_printf(m
, "%s\t%d\t%d\t%d\n",
4014 ss
->name
, ss
->root
->hierarchy_id
,
4015 ss
->root
->number_of_cgroups
, !ss
->disabled
);
4017 mutex_unlock(&cgroup_mutex
);
4021 static int cgroupstats_open(struct inode
*inode
, struct file
*file
)
4023 return single_open(file
, proc_cgroupstats_show
, NULL
);
4026 static const struct file_operations proc_cgroupstats_operations
= {
4027 .open
= cgroupstats_open
,
4029 .llseek
= seq_lseek
,
4030 .release
= single_release
,
4034 * cgroup_fork - attach newly forked task to its parents cgroup.
4035 * @child: pointer to task_struct of forking parent process.
4037 * Description: A task inherits its parent's cgroup at fork().
4039 * A pointer to the shared css_set was automatically copied in
4040 * fork.c by dup_task_struct(). However, we ignore that copy, since
4041 * it was not made under the protection of RCU or cgroup_mutex, so
4042 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4043 * have already changed current->cgroups, allowing the previously
4044 * referenced cgroup group to be removed and freed.
4046 * At the point that cgroup_fork() is called, 'current' is the parent
4047 * task, and the passed argument 'child' points to the child task.
4049 void cgroup_fork(struct task_struct
*child
)
4052 child
->cgroups
= current
->cgroups
;
4053 get_css_set(child
->cgroups
);
4054 task_unlock(current
);
4055 INIT_LIST_HEAD(&child
->cg_list
);
4059 * cgroup_fork_callbacks - run fork callbacks
4060 * @child: the new task
4062 * Called on a new task very soon before adding it to the
4063 * tasklist. No need to take any locks since no-one can
4064 * be operating on this task.
4066 void cgroup_fork_callbacks(struct task_struct
*child
)
4068 if (need_forkexit_callback
) {
4071 * forkexit callbacks are only supported for builtin
4072 * subsystems, and the builtin section of the subsys array is
4073 * immutable, so we don't need to lock the subsys array here.
4075 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
4076 struct cgroup_subsys
*ss
= subsys
[i
];
4078 ss
->fork(ss
, child
);
4084 * cgroup_post_fork - called on a new task after adding it to the task list
4085 * @child: the task in question
4087 * Adds the task to the list running through its css_set if necessary.
4088 * Has to be after the task is visible on the task list in case we race
4089 * with the first call to cgroup_iter_start() - to guarantee that the
4090 * new task ends up on its list.
4092 void cgroup_post_fork(struct task_struct
*child
)
4094 if (use_task_css_set_links
) {
4095 write_lock(&css_set_lock
);
4097 if (list_empty(&child
->cg_list
))
4098 list_add(&child
->cg_list
, &child
->cgroups
->tasks
);
4100 write_unlock(&css_set_lock
);
4104 * cgroup_exit - detach cgroup from exiting task
4105 * @tsk: pointer to task_struct of exiting process
4106 * @run_callback: run exit callbacks?
4108 * Description: Detach cgroup from @tsk and release it.
4110 * Note that cgroups marked notify_on_release force every task in
4111 * them to take the global cgroup_mutex mutex when exiting.
4112 * This could impact scaling on very large systems. Be reluctant to
4113 * use notify_on_release cgroups where very high task exit scaling
4114 * is required on large systems.
4116 * the_top_cgroup_hack:
4118 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4120 * We call cgroup_exit() while the task is still competent to
4121 * handle notify_on_release(), then leave the task attached to the
4122 * root cgroup in each hierarchy for the remainder of its exit.
4124 * To do this properly, we would increment the reference count on
4125 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4126 * code we would add a second cgroup function call, to drop that
4127 * reference. This would just create an unnecessary hot spot on
4128 * the top_cgroup reference count, to no avail.
4130 * Normally, holding a reference to a cgroup without bumping its
4131 * count is unsafe. The cgroup could go away, or someone could
4132 * attach us to a different cgroup, decrementing the count on
4133 * the first cgroup that we never incremented. But in this case,
4134 * top_cgroup isn't going away, and either task has PF_EXITING set,
4135 * which wards off any cgroup_attach_task() attempts, or task is a failed
4136 * fork, never visible to cgroup_attach_task.
4138 void cgroup_exit(struct task_struct
*tsk
, int run_callbacks
)
4143 if (run_callbacks
&& need_forkexit_callback
) {
4145 * modular subsystems can't use callbacks, so no need to lock
4148 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
4149 struct cgroup_subsys
*ss
= subsys
[i
];
4156 * Unlink from the css_set task list if necessary.
4157 * Optimistically check cg_list before taking
4160 if (!list_empty(&tsk
->cg_list
)) {
4161 write_lock(&css_set_lock
);
4162 if (!list_empty(&tsk
->cg_list
))
4163 list_del(&tsk
->cg_list
);
4164 write_unlock(&css_set_lock
);
4167 /* Reassign the task to the init_css_set. */
4170 tsk
->cgroups
= &init_css_set
;
4173 put_css_set_taskexit(cg
);
4177 * cgroup_clone - clone the cgroup the given subsystem is attached to
4178 * @tsk: the task to be moved
4179 * @subsys: the given subsystem
4180 * @nodename: the name for the new cgroup
4182 * Duplicate the current cgroup in the hierarchy that the given
4183 * subsystem is attached to, and move this task into the new
4186 int cgroup_clone(struct task_struct
*tsk
, struct cgroup_subsys
*subsys
,
4189 struct dentry
*dentry
;
4191 struct cgroup
*parent
, *child
;
4192 struct inode
*inode
;
4194 struct cgroupfs_root
*root
;
4195 struct cgroup_subsys
*ss
;
4197 /* We shouldn't be called by an unregistered subsystem */
4198 BUG_ON(!subsys
->active
);
4200 /* First figure out what hierarchy and cgroup we're dealing
4201 * with, and pin them so we can drop cgroup_mutex */
4202 mutex_lock(&cgroup_mutex
);
4204 root
= subsys
->root
;
4205 if (root
== &rootnode
) {
4206 mutex_unlock(&cgroup_mutex
);
4210 /* Pin the hierarchy */
4211 if (!atomic_inc_not_zero(&root
->sb
->s_active
)) {
4212 /* We race with the final deactivate_super() */
4213 mutex_unlock(&cgroup_mutex
);
4217 /* Keep the cgroup alive */
4219 parent
= task_cgroup(tsk
, subsys
->subsys_id
);
4224 mutex_unlock(&cgroup_mutex
);
4226 /* Now do the VFS work to create a cgroup */
4227 inode
= parent
->dentry
->d_inode
;
4229 /* Hold the parent directory mutex across this operation to
4230 * stop anyone else deleting the new cgroup */
4231 mutex_lock(&inode
->i_mutex
);
4232 dentry
= lookup_one_len(nodename
, parent
->dentry
, strlen(nodename
));
4233 if (IS_ERR(dentry
)) {
4235 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename
,
4237 ret
= PTR_ERR(dentry
);
4241 /* Create the cgroup directory, which also creates the cgroup */
4242 ret
= vfs_mkdir(inode
, dentry
, 0755);
4243 child
= __d_cgrp(dentry
);
4247 "Failed to create cgroup %s: %d\n", nodename
,
4252 /* The cgroup now exists. Retake cgroup_mutex and check
4253 * that we're still in the same state that we thought we
4255 mutex_lock(&cgroup_mutex
);
4256 if ((root
!= subsys
->root
) ||
4257 (parent
!= task_cgroup(tsk
, subsys
->subsys_id
))) {
4258 /* Aargh, we raced ... */
4259 mutex_unlock(&inode
->i_mutex
);
4262 deactivate_super(root
->sb
);
4263 /* The cgroup is still accessible in the VFS, but
4264 * we're not going to try to rmdir() it at this
4267 "Race in cgroup_clone() - leaking cgroup %s\n",
4272 /* do any required auto-setup */
4273 for_each_subsys(root
, ss
) {
4275 ss
->post_clone(ss
, child
);
4278 /* All seems fine. Finish by moving the task into the new cgroup */
4279 ret
= cgroup_attach_task(child
, tsk
);
4280 mutex_unlock(&cgroup_mutex
);
4283 mutex_unlock(&inode
->i_mutex
);
4285 mutex_lock(&cgroup_mutex
);
4287 mutex_unlock(&cgroup_mutex
);
4288 deactivate_super(root
->sb
);
4293 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4294 * @cgrp: the cgroup in question
4295 * @task: the task in question
4297 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4300 * If we are sending in dummytop, then presumably we are creating
4301 * the top cgroup in the subsystem.
4303 * Called only by the ns (nsproxy) cgroup.
4305 int cgroup_is_descendant(const struct cgroup
*cgrp
, struct task_struct
*task
)
4308 struct cgroup
*target
;
4310 if (cgrp
== dummytop
)
4313 target
= task_cgroup_from_root(task
, cgrp
->root
);
4314 while (cgrp
!= target
&& cgrp
!= cgrp
->top_cgroup
)
4315 cgrp
= cgrp
->parent
;
4316 ret
= (cgrp
== target
);
4320 static void check_for_release(struct cgroup
*cgrp
)
4322 /* All of these checks rely on RCU to keep the cgroup
4323 * structure alive */
4324 if (cgroup_is_releasable(cgrp
) && !atomic_read(&cgrp
->count
)
4325 && list_empty(&cgrp
->children
) && !cgroup_has_css_refs(cgrp
)) {
4326 /* Control Group is currently removeable. If it's not
4327 * already queued for a userspace notification, queue
4329 int need_schedule_work
= 0;
4330 spin_lock(&release_list_lock
);
4331 if (!cgroup_is_removed(cgrp
) &&
4332 list_empty(&cgrp
->release_list
)) {
4333 list_add(&cgrp
->release_list
, &release_list
);
4334 need_schedule_work
= 1;
4336 spin_unlock(&release_list_lock
);
4337 if (need_schedule_work
)
4338 schedule_work(&release_agent_work
);
4342 /* Caller must verify that the css is not for root cgroup */
4343 void __css_put(struct cgroup_subsys_state
*css
, int count
)
4345 struct cgroup
*cgrp
= css
->cgroup
;
4348 val
= atomic_sub_return(count
, &css
->refcnt
);
4350 if (notify_on_release(cgrp
)) {
4351 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
4352 check_for_release(cgrp
);
4354 cgroup_wakeup_rmdir_waiter(cgrp
);
4357 WARN_ON_ONCE(val
< 1);
4359 EXPORT_SYMBOL_GPL(__css_put
);
4362 * Notify userspace when a cgroup is released, by running the
4363 * configured release agent with the name of the cgroup (path
4364 * relative to the root of cgroup file system) as the argument.
4366 * Most likely, this user command will try to rmdir this cgroup.
4368 * This races with the possibility that some other task will be
4369 * attached to this cgroup before it is removed, or that some other
4370 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4371 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4372 * unused, and this cgroup will be reprieved from its death sentence,
4373 * to continue to serve a useful existence. Next time it's released,
4374 * we will get notified again, if it still has 'notify_on_release' set.
4376 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4377 * means only wait until the task is successfully execve()'d. The
4378 * separate release agent task is forked by call_usermodehelper(),
4379 * then control in this thread returns here, without waiting for the
4380 * release agent task. We don't bother to wait because the caller of
4381 * this routine has no use for the exit status of the release agent
4382 * task, so no sense holding our caller up for that.
4384 static void cgroup_release_agent(struct work_struct
*work
)
4386 BUG_ON(work
!= &release_agent_work
);
4387 mutex_lock(&cgroup_mutex
);
4388 spin_lock(&release_list_lock
);
4389 while (!list_empty(&release_list
)) {
4390 char *argv
[3], *envp
[3];
4392 char *pathbuf
= NULL
, *agentbuf
= NULL
;
4393 struct cgroup
*cgrp
= list_entry(release_list
.next
,
4396 list_del_init(&cgrp
->release_list
);
4397 spin_unlock(&release_list_lock
);
4398 pathbuf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
4401 if (cgroup_path(cgrp
, pathbuf
, PAGE_SIZE
) < 0)
4403 agentbuf
= kstrdup(cgrp
->root
->release_agent_path
, GFP_KERNEL
);
4408 argv
[i
++] = agentbuf
;
4409 argv
[i
++] = pathbuf
;
4413 /* minimal command environment */
4414 envp
[i
++] = "HOME=/";
4415 envp
[i
++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4418 /* Drop the lock while we invoke the usermode helper,
4419 * since the exec could involve hitting disk and hence
4420 * be a slow process */
4421 mutex_unlock(&cgroup_mutex
);
4422 call_usermodehelper(argv
[0], argv
, envp
, UMH_WAIT_EXEC
);
4423 mutex_lock(&cgroup_mutex
);
4427 spin_lock(&release_list_lock
);
4429 spin_unlock(&release_list_lock
);
4430 mutex_unlock(&cgroup_mutex
);
4433 static int __init
cgroup_disable(char *str
)
4438 while ((token
= strsep(&str
, ",")) != NULL
) {
4442 * cgroup_disable, being at boot time, can't know about module
4443 * subsystems, so we don't worry about them.
4445 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
4446 struct cgroup_subsys
*ss
= subsys
[i
];
4448 if (!strcmp(token
, ss
->name
)) {
4450 printk(KERN_INFO
"Disabling %s control group"
4451 " subsystem\n", ss
->name
);
4458 __setup("cgroup_disable=", cgroup_disable
);
4461 * Functons for CSS ID.
4465 *To get ID other than 0, this should be called when !cgroup_is_removed().
4467 unsigned short css_id(struct cgroup_subsys_state
*css
)
4469 struct css_id
*cssid
;
4472 * This css_id() can return correct value when somone has refcnt
4473 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4474 * it's unchanged until freed.
4476 cssid
= rcu_dereference_check(css
->id
,
4477 rcu_read_lock_held() || atomic_read(&css
->refcnt
));
4483 EXPORT_SYMBOL_GPL(css_id
);
4485 unsigned short css_depth(struct cgroup_subsys_state
*css
)
4487 struct css_id
*cssid
;
4489 cssid
= rcu_dereference_check(css
->id
,
4490 rcu_read_lock_held() || atomic_read(&css
->refcnt
));
4493 return cssid
->depth
;
4496 EXPORT_SYMBOL_GPL(css_depth
);
4499 * css_is_ancestor - test "root" css is an ancestor of "child"
4500 * @child: the css to be tested.
4501 * @root: the css supporsed to be an ancestor of the child.
4503 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4504 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4505 * But, considering usual usage, the csses should be valid objects after test.
4506 * Assuming that the caller will do some action to the child if this returns
4507 * returns true, the caller must take "child";s reference count.
4508 * If "child" is valid object and this returns true, "root" is valid, too.
4511 bool css_is_ancestor(struct cgroup_subsys_state
*child
,
4512 const struct cgroup_subsys_state
*root
)
4514 struct css_id
*child_id
;
4515 struct css_id
*root_id
;
4519 child_id
= rcu_dereference(child
->id
);
4520 root_id
= rcu_dereference(root
->id
);
4523 || (child_id
->depth
< root_id
->depth
)
4524 || (child_id
->stack
[root_id
->depth
] != root_id
->id
))
4530 static void __free_css_id_cb(struct rcu_head
*head
)
4534 id
= container_of(head
, struct css_id
, rcu_head
);
4538 void free_css_id(struct cgroup_subsys
*ss
, struct cgroup_subsys_state
*css
)
4540 struct css_id
*id
= css
->id
;
4541 /* When this is called before css_id initialization, id can be NULL */
4545 BUG_ON(!ss
->use_id
);
4547 rcu_assign_pointer(id
->css
, NULL
);
4548 rcu_assign_pointer(css
->id
, NULL
);
4549 spin_lock(&ss
->id_lock
);
4550 idr_remove(&ss
->idr
, id
->id
);
4551 spin_unlock(&ss
->id_lock
);
4552 call_rcu(&id
->rcu_head
, __free_css_id_cb
);
4554 EXPORT_SYMBOL_GPL(free_css_id
);
4557 * This is called by init or create(). Then, calls to this function are
4558 * always serialized (By cgroup_mutex() at create()).
4561 static struct css_id
*get_new_cssid(struct cgroup_subsys
*ss
, int depth
)
4563 struct css_id
*newid
;
4564 int myid
, error
, size
;
4566 BUG_ON(!ss
->use_id
);
4568 size
= sizeof(*newid
) + sizeof(unsigned short) * (depth
+ 1);
4569 newid
= kzalloc(size
, GFP_KERNEL
);
4571 return ERR_PTR(-ENOMEM
);
4573 if (unlikely(!idr_pre_get(&ss
->idr
, GFP_KERNEL
))) {
4577 spin_lock(&ss
->id_lock
);
4578 /* Don't use 0. allocates an ID of 1-65535 */
4579 error
= idr_get_new_above(&ss
->idr
, newid
, 1, &myid
);
4580 spin_unlock(&ss
->id_lock
);
4582 /* Returns error when there are no free spaces for new ID.*/
4587 if (myid
> CSS_ID_MAX
)
4591 newid
->depth
= depth
;
4595 spin_lock(&ss
->id_lock
);
4596 idr_remove(&ss
->idr
, myid
);
4597 spin_unlock(&ss
->id_lock
);
4600 return ERR_PTR(error
);
4604 static int __init_or_module
cgroup_init_idr(struct cgroup_subsys
*ss
,
4605 struct cgroup_subsys_state
*rootcss
)
4607 struct css_id
*newid
;
4609 spin_lock_init(&ss
->id_lock
);
4612 newid
= get_new_cssid(ss
, 0);
4614 return PTR_ERR(newid
);
4616 newid
->stack
[0] = newid
->id
;
4617 newid
->css
= rootcss
;
4618 rootcss
->id
= newid
;
4622 static int alloc_css_id(struct cgroup_subsys
*ss
, struct cgroup
*parent
,
4623 struct cgroup
*child
)
4625 int subsys_id
, i
, depth
= 0;
4626 struct cgroup_subsys_state
*parent_css
, *child_css
;
4627 struct css_id
*child_id
, *parent_id
;
4629 subsys_id
= ss
->subsys_id
;
4630 parent_css
= parent
->subsys
[subsys_id
];
4631 child_css
= child
->subsys
[subsys_id
];
4632 parent_id
= parent_css
->id
;
4633 depth
= parent_id
->depth
+ 1;
4635 child_id
= get_new_cssid(ss
, depth
);
4636 if (IS_ERR(child_id
))
4637 return PTR_ERR(child_id
);
4639 for (i
= 0; i
< depth
; i
++)
4640 child_id
->stack
[i
] = parent_id
->stack
[i
];
4641 child_id
->stack
[depth
] = child_id
->id
;
4643 * child_id->css pointer will be set after this cgroup is available
4644 * see cgroup_populate_dir()
4646 rcu_assign_pointer(child_css
->id
, child_id
);
4652 * css_lookup - lookup css by id
4653 * @ss: cgroup subsys to be looked into.
4656 * Returns pointer to cgroup_subsys_state if there is valid one with id.
4657 * NULL if not. Should be called under rcu_read_lock()
4659 struct cgroup_subsys_state
*css_lookup(struct cgroup_subsys
*ss
, int id
)
4661 struct css_id
*cssid
= NULL
;
4663 BUG_ON(!ss
->use_id
);
4664 cssid
= idr_find(&ss
->idr
, id
);
4666 if (unlikely(!cssid
))
4669 return rcu_dereference(cssid
->css
);
4671 EXPORT_SYMBOL_GPL(css_lookup
);
4674 * css_get_next - lookup next cgroup under specified hierarchy.
4675 * @ss: pointer to subsystem
4676 * @id: current position of iteration.
4677 * @root: pointer to css. search tree under this.
4678 * @foundid: position of found object.
4680 * Search next css under the specified hierarchy of rootid. Calling under
4681 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
4683 struct cgroup_subsys_state
*
4684 css_get_next(struct cgroup_subsys
*ss
, int id
,
4685 struct cgroup_subsys_state
*root
, int *foundid
)
4687 struct cgroup_subsys_state
*ret
= NULL
;
4690 int rootid
= css_id(root
);
4691 int depth
= css_depth(root
);
4696 BUG_ON(!ss
->use_id
);
4697 /* fill start point for scan */
4701 * scan next entry from bitmap(tree), tmpid is updated after
4704 spin_lock(&ss
->id_lock
);
4705 tmp
= idr_get_next(&ss
->idr
, &tmpid
);
4706 spin_unlock(&ss
->id_lock
);
4710 if (tmp
->depth
>= depth
&& tmp
->stack
[depth
] == rootid
) {
4711 ret
= rcu_dereference(tmp
->css
);
4717 /* continue to scan from next id */
4723 #ifdef CONFIG_CGROUP_DEBUG
4724 static struct cgroup_subsys_state
*debug_create(struct cgroup_subsys
*ss
,
4725 struct cgroup
*cont
)
4727 struct cgroup_subsys_state
*css
= kzalloc(sizeof(*css
), GFP_KERNEL
);
4730 return ERR_PTR(-ENOMEM
);
4735 static void debug_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
4737 kfree(cont
->subsys
[debug_subsys_id
]);
4740 static u64
cgroup_refcount_read(struct cgroup
*cont
, struct cftype
*cft
)
4742 return atomic_read(&cont
->count
);
4745 static u64
debug_taskcount_read(struct cgroup
*cont
, struct cftype
*cft
)
4747 return cgroup_task_count(cont
);
4750 static u64
current_css_set_read(struct cgroup
*cont
, struct cftype
*cft
)
4752 return (u64
)(unsigned long)current
->cgroups
;
4755 static u64
current_css_set_refcount_read(struct cgroup
*cont
,
4761 count
= atomic_read(¤t
->cgroups
->refcount
);
4766 static int current_css_set_cg_links_read(struct cgroup
*cont
,
4768 struct seq_file
*seq
)
4770 struct cg_cgroup_link
*link
;
4773 read_lock(&css_set_lock
);
4775 cg
= rcu_dereference(current
->cgroups
);
4776 list_for_each_entry(link
, &cg
->cg_links
, cg_link_list
) {
4777 struct cgroup
*c
= link
->cgrp
;
4781 name
= c
->dentry
->d_name
.name
;
4784 seq_printf(seq
, "Root %d group %s\n",
4785 c
->root
->hierarchy_id
, name
);
4788 read_unlock(&css_set_lock
);
4792 #define MAX_TASKS_SHOWN_PER_CSS 25
4793 static int cgroup_css_links_read(struct cgroup
*cont
,
4795 struct seq_file
*seq
)
4797 struct cg_cgroup_link
*link
;
4799 read_lock(&css_set_lock
);
4800 list_for_each_entry(link
, &cont
->css_sets
, cgrp_link_list
) {
4801 struct css_set
*cg
= link
->cg
;
4802 struct task_struct
*task
;
4804 seq_printf(seq
, "css_set %p\n", cg
);
4805 list_for_each_entry(task
, &cg
->tasks
, cg_list
) {
4806 if (count
++ > MAX_TASKS_SHOWN_PER_CSS
) {
4807 seq_puts(seq
, " ...\n");
4810 seq_printf(seq
, " task %d\n",
4811 task_pid_vnr(task
));
4815 read_unlock(&css_set_lock
);
4819 static u64
releasable_read(struct cgroup
*cgrp
, struct cftype
*cft
)
4821 return test_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
4824 static struct cftype debug_files
[] = {
4826 .name
= "cgroup_refcount",
4827 .read_u64
= cgroup_refcount_read
,
4830 .name
= "taskcount",
4831 .read_u64
= debug_taskcount_read
,
4835 .name
= "current_css_set",
4836 .read_u64
= current_css_set_read
,
4840 .name
= "current_css_set_refcount",
4841 .read_u64
= current_css_set_refcount_read
,
4845 .name
= "current_css_set_cg_links",
4846 .read_seq_string
= current_css_set_cg_links_read
,
4850 .name
= "cgroup_css_links",
4851 .read_seq_string
= cgroup_css_links_read
,
4855 .name
= "releasable",
4856 .read_u64
= releasable_read
,
4860 static int debug_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
4862 return cgroup_add_files(cont
, ss
, debug_files
,
4863 ARRAY_SIZE(debug_files
));
4866 struct cgroup_subsys debug_subsys
= {
4868 .create
= debug_create
,
4869 .destroy
= debug_destroy
,
4870 .populate
= debug_populate
,
4871 .subsys_id
= debug_subsys_id
,
4873 #endif /* CONFIG_CGROUP_DEBUG */