V4L/DVB: drivers/media/video/uvc: Use kmemdup
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / jffs2 / file.c
blob8134970244376526710bd99922d823a699306170
1 /*
2 * JFFS2 -- Journalling Flash File System, Version 2.
4 * Copyright © 2001-2007 Red Hat, Inc.
6 * Created by David Woodhouse <dwmw2@infradead.org>
8 * For licensing information, see the file 'LICENCE' in this directory.
12 #include <linux/kernel.h>
13 #include <linux/fs.h>
14 #include <linux/time.h>
15 #include <linux/pagemap.h>
16 #include <linux/highmem.h>
17 #include <linux/crc32.h>
18 #include <linux/jffs2.h>
19 #include "nodelist.h"
21 static int jffs2_write_end(struct file *filp, struct address_space *mapping,
22 loff_t pos, unsigned len, unsigned copied,
23 struct page *pg, void *fsdata);
24 static int jffs2_write_begin(struct file *filp, struct address_space *mapping,
25 loff_t pos, unsigned len, unsigned flags,
26 struct page **pagep, void **fsdata);
27 static int jffs2_readpage (struct file *filp, struct page *pg);
29 int jffs2_fsync(struct file *filp, int datasync)
31 struct inode *inode = filp->f_mapping->host;
32 struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
34 /* Trigger GC to flush any pending writes for this inode */
35 jffs2_flush_wbuf_gc(c, inode->i_ino);
37 return 0;
40 const struct file_operations jffs2_file_operations =
42 .llseek = generic_file_llseek,
43 .open = generic_file_open,
44 .read = do_sync_read,
45 .aio_read = generic_file_aio_read,
46 .write = do_sync_write,
47 .aio_write = generic_file_aio_write,
48 .unlocked_ioctl=jffs2_ioctl,
49 .mmap = generic_file_readonly_mmap,
50 .fsync = jffs2_fsync,
51 .splice_read = generic_file_splice_read,
54 /* jffs2_file_inode_operations */
56 const struct inode_operations jffs2_file_inode_operations =
58 .check_acl = jffs2_check_acl,
59 .setattr = jffs2_setattr,
60 .setxattr = jffs2_setxattr,
61 .getxattr = jffs2_getxattr,
62 .listxattr = jffs2_listxattr,
63 .removexattr = jffs2_removexattr
66 const struct address_space_operations jffs2_file_address_operations =
68 .readpage = jffs2_readpage,
69 .write_begin = jffs2_write_begin,
70 .write_end = jffs2_write_end,
73 static int jffs2_do_readpage_nolock (struct inode *inode, struct page *pg)
75 struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
76 struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
77 unsigned char *pg_buf;
78 int ret;
80 D2(printk(KERN_DEBUG "jffs2_do_readpage_nolock(): ino #%lu, page at offset 0x%lx\n", inode->i_ino, pg->index << PAGE_CACHE_SHIFT));
82 BUG_ON(!PageLocked(pg));
84 pg_buf = kmap(pg);
85 /* FIXME: Can kmap fail? */
87 ret = jffs2_read_inode_range(c, f, pg_buf, pg->index << PAGE_CACHE_SHIFT, PAGE_CACHE_SIZE);
89 if (ret) {
90 ClearPageUptodate(pg);
91 SetPageError(pg);
92 } else {
93 SetPageUptodate(pg);
94 ClearPageError(pg);
97 flush_dcache_page(pg);
98 kunmap(pg);
100 D2(printk(KERN_DEBUG "readpage finished\n"));
101 return ret;
104 int jffs2_do_readpage_unlock(struct inode *inode, struct page *pg)
106 int ret = jffs2_do_readpage_nolock(inode, pg);
107 unlock_page(pg);
108 return ret;
112 static int jffs2_readpage (struct file *filp, struct page *pg)
114 struct jffs2_inode_info *f = JFFS2_INODE_INFO(pg->mapping->host);
115 int ret;
117 mutex_lock(&f->sem);
118 ret = jffs2_do_readpage_unlock(pg->mapping->host, pg);
119 mutex_unlock(&f->sem);
120 return ret;
123 static int jffs2_write_begin(struct file *filp, struct address_space *mapping,
124 loff_t pos, unsigned len, unsigned flags,
125 struct page **pagep, void **fsdata)
127 struct page *pg;
128 struct inode *inode = mapping->host;
129 struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
130 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
131 uint32_t pageofs = index << PAGE_CACHE_SHIFT;
132 int ret = 0;
134 pg = grab_cache_page_write_begin(mapping, index, flags);
135 if (!pg)
136 return -ENOMEM;
137 *pagep = pg;
139 D1(printk(KERN_DEBUG "jffs2_write_begin()\n"));
141 if (pageofs > inode->i_size) {
142 /* Make new hole frag from old EOF to new page */
143 struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
144 struct jffs2_raw_inode ri;
145 struct jffs2_full_dnode *fn;
146 uint32_t alloc_len;
148 D1(printk(KERN_DEBUG "Writing new hole frag 0x%x-0x%x between current EOF and new page\n",
149 (unsigned int)inode->i_size, pageofs));
151 ret = jffs2_reserve_space(c, sizeof(ri), &alloc_len,
152 ALLOC_NORMAL, JFFS2_SUMMARY_INODE_SIZE);
153 if (ret)
154 goto out_page;
156 mutex_lock(&f->sem);
157 memset(&ri, 0, sizeof(ri));
159 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
160 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
161 ri.totlen = cpu_to_je32(sizeof(ri));
162 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
164 ri.ino = cpu_to_je32(f->inocache->ino);
165 ri.version = cpu_to_je32(++f->highest_version);
166 ri.mode = cpu_to_jemode(inode->i_mode);
167 ri.uid = cpu_to_je16(inode->i_uid);
168 ri.gid = cpu_to_je16(inode->i_gid);
169 ri.isize = cpu_to_je32(max((uint32_t)inode->i_size, pageofs));
170 ri.atime = ri.ctime = ri.mtime = cpu_to_je32(get_seconds());
171 ri.offset = cpu_to_je32(inode->i_size);
172 ri.dsize = cpu_to_je32(pageofs - inode->i_size);
173 ri.csize = cpu_to_je32(0);
174 ri.compr = JFFS2_COMPR_ZERO;
175 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
176 ri.data_crc = cpu_to_je32(0);
178 fn = jffs2_write_dnode(c, f, &ri, NULL, 0, ALLOC_NORMAL);
180 if (IS_ERR(fn)) {
181 ret = PTR_ERR(fn);
182 jffs2_complete_reservation(c);
183 mutex_unlock(&f->sem);
184 goto out_page;
186 ret = jffs2_add_full_dnode_to_inode(c, f, fn);
187 if (f->metadata) {
188 jffs2_mark_node_obsolete(c, f->metadata->raw);
189 jffs2_free_full_dnode(f->metadata);
190 f->metadata = NULL;
192 if (ret) {
193 D1(printk(KERN_DEBUG "Eep. add_full_dnode_to_inode() failed in write_begin, returned %d\n", ret));
194 jffs2_mark_node_obsolete(c, fn->raw);
195 jffs2_free_full_dnode(fn);
196 jffs2_complete_reservation(c);
197 mutex_unlock(&f->sem);
198 goto out_page;
200 jffs2_complete_reservation(c);
201 inode->i_size = pageofs;
202 mutex_unlock(&f->sem);
206 * Read in the page if it wasn't already present. Cannot optimize away
207 * the whole page write case until jffs2_write_end can handle the
208 * case of a short-copy.
210 if (!PageUptodate(pg)) {
211 mutex_lock(&f->sem);
212 ret = jffs2_do_readpage_nolock(inode, pg);
213 mutex_unlock(&f->sem);
214 if (ret)
215 goto out_page;
217 D1(printk(KERN_DEBUG "end write_begin(). pg->flags %lx\n", pg->flags));
218 return ret;
220 out_page:
221 unlock_page(pg);
222 page_cache_release(pg);
223 return ret;
226 static int jffs2_write_end(struct file *filp, struct address_space *mapping,
227 loff_t pos, unsigned len, unsigned copied,
228 struct page *pg, void *fsdata)
230 /* Actually commit the write from the page cache page we're looking at.
231 * For now, we write the full page out each time. It sucks, but it's simple
233 struct inode *inode = mapping->host;
234 struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
235 struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
236 struct jffs2_raw_inode *ri;
237 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
238 unsigned end = start + copied;
239 unsigned aligned_start = start & ~3;
240 int ret = 0;
241 uint32_t writtenlen = 0;
243 D1(printk(KERN_DEBUG "jffs2_write_end(): ino #%lu, page at 0x%lx, range %d-%d, flags %lx\n",
244 inode->i_ino, pg->index << PAGE_CACHE_SHIFT, start, end, pg->flags));
246 /* We need to avoid deadlock with page_cache_read() in
247 jffs2_garbage_collect_pass(). So the page must be
248 up to date to prevent page_cache_read() from trying
249 to re-lock it. */
250 BUG_ON(!PageUptodate(pg));
252 if (end == PAGE_CACHE_SIZE) {
253 /* When writing out the end of a page, write out the
254 _whole_ page. This helps to reduce the number of
255 nodes in files which have many short writes, like
256 syslog files. */
257 aligned_start = 0;
260 ri = jffs2_alloc_raw_inode();
262 if (!ri) {
263 D1(printk(KERN_DEBUG "jffs2_write_end(): Allocation of raw inode failed\n"));
264 unlock_page(pg);
265 page_cache_release(pg);
266 return -ENOMEM;
269 /* Set the fields that the generic jffs2_write_inode_range() code can't find */
270 ri->ino = cpu_to_je32(inode->i_ino);
271 ri->mode = cpu_to_jemode(inode->i_mode);
272 ri->uid = cpu_to_je16(inode->i_uid);
273 ri->gid = cpu_to_je16(inode->i_gid);
274 ri->isize = cpu_to_je32((uint32_t)inode->i_size);
275 ri->atime = ri->ctime = ri->mtime = cpu_to_je32(get_seconds());
277 /* In 2.4, it was already kmapped by generic_file_write(). Doesn't
278 hurt to do it again. The alternative is ifdefs, which are ugly. */
279 kmap(pg);
281 ret = jffs2_write_inode_range(c, f, ri, page_address(pg) + aligned_start,
282 (pg->index << PAGE_CACHE_SHIFT) + aligned_start,
283 end - aligned_start, &writtenlen);
285 kunmap(pg);
287 if (ret) {
288 /* There was an error writing. */
289 SetPageError(pg);
292 /* Adjust writtenlen for the padding we did, so we don't confuse our caller */
293 writtenlen -= min(writtenlen, (start - aligned_start));
295 if (writtenlen) {
296 if (inode->i_size < pos + writtenlen) {
297 inode->i_size = pos + writtenlen;
298 inode->i_blocks = (inode->i_size + 511) >> 9;
300 inode->i_ctime = inode->i_mtime = ITIME(je32_to_cpu(ri->ctime));
304 jffs2_free_raw_inode(ri);
306 if (start+writtenlen < end) {
307 /* generic_file_write has written more to the page cache than we've
308 actually written to the medium. Mark the page !Uptodate so that
309 it gets reread */
310 D1(printk(KERN_DEBUG "jffs2_write_end(): Not all bytes written. Marking page !uptodate\n"));
311 SetPageError(pg);
312 ClearPageUptodate(pg);
315 D1(printk(KERN_DEBUG "jffs2_write_end() returning %d\n",
316 writtenlen > 0 ? writtenlen : ret));
317 unlock_page(pg);
318 page_cache_release(pg);
319 return writtenlen > 0 ? writtenlen : ret;