2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/vmalloc.h>
29 #include <linux/hardirq.h>
30 #include <linux/rculist.h>
31 #include <linux/uaccess.h>
32 #include <linux/syscalls.h>
33 #include <linux/anon_inodes.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/perf_event.h>
36 #include <linux/ftrace_event.h>
37 #include <linux/hw_breakpoint.h>
39 #include <asm/irq_regs.h>
41 struct remote_function_call
{
42 struct task_struct
*p
;
43 int (*func
)(void *info
);
48 static void remote_function(void *data
)
50 struct remote_function_call
*tfc
= data
;
51 struct task_struct
*p
= tfc
->p
;
55 if (task_cpu(p
) != smp_processor_id() || !task_curr(p
))
59 tfc
->ret
= tfc
->func(tfc
->info
);
63 * task_function_call - call a function on the cpu on which a task runs
64 * @p: the task to evaluate
65 * @func: the function to be called
66 * @info: the function call argument
68 * Calls the function @func when the task is currently running. This might
69 * be on the current CPU, which just calls the function directly
71 * returns: @func return value, or
72 * -ESRCH - when the process isn't running
73 * -EAGAIN - when the process moved away
76 task_function_call(struct task_struct
*p
, int (*func
) (void *info
), void *info
)
78 struct remote_function_call data
= {
82 .ret
= -ESRCH
, /* No such (running) process */
86 smp_call_function_single(task_cpu(p
), remote_function
, &data
, 1);
92 * cpu_function_call - call a function on the cpu
93 * @func: the function to be called
94 * @info: the function call argument
96 * Calls the function @func on the remote cpu.
98 * returns: @func return value or -ENXIO when the cpu is offline
100 static int cpu_function_call(int cpu
, int (*func
) (void *info
), void *info
)
102 struct remote_function_call data
= {
106 .ret
= -ENXIO
, /* No such CPU */
109 smp_call_function_single(cpu
, remote_function
, &data
, 1);
114 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
115 PERF_FLAG_FD_OUTPUT |\
116 PERF_FLAG_PID_CGROUP)
119 EVENT_FLEXIBLE
= 0x1,
121 EVENT_ALL
= EVENT_FLEXIBLE
| EVENT_PINNED
,
125 * perf_sched_events : >0 events exist
126 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
128 atomic_t perf_sched_events __read_mostly
;
129 static DEFINE_PER_CPU(atomic_t
, perf_cgroup_events
);
131 static atomic_t nr_mmap_events __read_mostly
;
132 static atomic_t nr_comm_events __read_mostly
;
133 static atomic_t nr_task_events __read_mostly
;
135 static LIST_HEAD(pmus
);
136 static DEFINE_MUTEX(pmus_lock
);
137 static struct srcu_struct pmus_srcu
;
140 * perf event paranoia level:
141 * -1 - not paranoid at all
142 * 0 - disallow raw tracepoint access for unpriv
143 * 1 - disallow cpu events for unpriv
144 * 2 - disallow kernel profiling for unpriv
146 int sysctl_perf_event_paranoid __read_mostly
= 1;
148 /* Minimum for 512 kiB + 1 user control page */
149 int sysctl_perf_event_mlock __read_mostly
= 512 + (PAGE_SIZE
/ 1024); /* 'free' kiB per user */
152 * max perf event sample rate
154 #define DEFAULT_MAX_SAMPLE_RATE 100000
155 int sysctl_perf_event_sample_rate __read_mostly
= DEFAULT_MAX_SAMPLE_RATE
;
156 static int max_samples_per_tick __read_mostly
=
157 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE
, HZ
);
159 int perf_proc_update_handler(struct ctl_table
*table
, int write
,
160 void __user
*buffer
, size_t *lenp
,
163 int ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
168 max_samples_per_tick
= DIV_ROUND_UP(sysctl_perf_event_sample_rate
, HZ
);
173 static atomic64_t perf_event_id
;
175 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
176 enum event_type_t event_type
);
178 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
179 enum event_type_t event_type
,
180 struct task_struct
*task
);
182 static void update_context_time(struct perf_event_context
*ctx
);
183 static u64
perf_event_time(struct perf_event
*event
);
185 void __weak
perf_event_print_debug(void) { }
187 extern __weak
const char *perf_pmu_name(void)
192 static inline u64
perf_clock(void)
194 return local_clock();
197 static inline struct perf_cpu_context
*
198 __get_cpu_context(struct perf_event_context
*ctx
)
200 return this_cpu_ptr(ctx
->pmu
->pmu_cpu_context
);
203 #ifdef CONFIG_CGROUP_PERF
206 * Must ensure cgroup is pinned (css_get) before calling
207 * this function. In other words, we cannot call this function
208 * if there is no cgroup event for the current CPU context.
210 static inline struct perf_cgroup
*
211 perf_cgroup_from_task(struct task_struct
*task
)
213 return container_of(task_subsys_state(task
, perf_subsys_id
),
214 struct perf_cgroup
, css
);
218 perf_cgroup_match(struct perf_event
*event
)
220 struct perf_event_context
*ctx
= event
->ctx
;
221 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
223 return !event
->cgrp
|| event
->cgrp
== cpuctx
->cgrp
;
226 static inline void perf_get_cgroup(struct perf_event
*event
)
228 css_get(&event
->cgrp
->css
);
231 static inline void perf_put_cgroup(struct perf_event
*event
)
233 css_put(&event
->cgrp
->css
);
236 static inline void perf_detach_cgroup(struct perf_event
*event
)
238 perf_put_cgroup(event
);
242 static inline int is_cgroup_event(struct perf_event
*event
)
244 return event
->cgrp
!= NULL
;
247 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
249 struct perf_cgroup_info
*t
;
251 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
255 static inline void __update_cgrp_time(struct perf_cgroup
*cgrp
)
257 struct perf_cgroup_info
*info
;
262 info
= this_cpu_ptr(cgrp
->info
);
264 info
->time
+= now
- info
->timestamp
;
265 info
->timestamp
= now
;
268 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
270 struct perf_cgroup
*cgrp_out
= cpuctx
->cgrp
;
272 __update_cgrp_time(cgrp_out
);
275 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
277 struct perf_cgroup
*cgrp
;
280 * ensure we access cgroup data only when needed and
281 * when we know the cgroup is pinned (css_get)
283 if (!is_cgroup_event(event
))
286 cgrp
= perf_cgroup_from_task(current
);
288 * Do not update time when cgroup is not active
290 if (cgrp
== event
->cgrp
)
291 __update_cgrp_time(event
->cgrp
);
295 perf_cgroup_set_timestamp(struct task_struct
*task
,
296 struct perf_event_context
*ctx
)
298 struct perf_cgroup
*cgrp
;
299 struct perf_cgroup_info
*info
;
302 * ctx->lock held by caller
303 * ensure we do not access cgroup data
304 * unless we have the cgroup pinned (css_get)
306 if (!task
|| !ctx
->nr_cgroups
)
309 cgrp
= perf_cgroup_from_task(task
);
310 info
= this_cpu_ptr(cgrp
->info
);
311 info
->timestamp
= ctx
->timestamp
;
314 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
315 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
318 * reschedule events based on the cgroup constraint of task.
320 * mode SWOUT : schedule out everything
321 * mode SWIN : schedule in based on cgroup for next
323 void perf_cgroup_switch(struct task_struct
*task
, int mode
)
325 struct perf_cpu_context
*cpuctx
;
330 * disable interrupts to avoid geting nr_cgroup
331 * changes via __perf_event_disable(). Also
334 local_irq_save(flags
);
337 * we reschedule only in the presence of cgroup
338 * constrained events.
342 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
344 cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
346 perf_pmu_disable(cpuctx
->ctx
.pmu
);
349 * perf_cgroup_events says at least one
350 * context on this CPU has cgroup events.
352 * ctx->nr_cgroups reports the number of cgroup
353 * events for a context.
355 if (cpuctx
->ctx
.nr_cgroups
> 0) {
357 if (mode
& PERF_CGROUP_SWOUT
) {
358 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
360 * must not be done before ctxswout due
361 * to event_filter_match() in event_sched_out()
366 if (mode
& PERF_CGROUP_SWIN
) {
367 /* set cgrp before ctxsw in to
368 * allow event_filter_match() to not
369 * have to pass task around
371 cpuctx
->cgrp
= perf_cgroup_from_task(task
);
372 cpu_ctx_sched_in(cpuctx
, EVENT_ALL
, task
);
376 perf_pmu_enable(cpuctx
->ctx
.pmu
);
381 local_irq_restore(flags
);
384 static inline void perf_cgroup_sched_out(struct task_struct
*task
)
386 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
);
389 static inline void perf_cgroup_sched_in(struct task_struct
*task
)
391 perf_cgroup_switch(task
, PERF_CGROUP_SWIN
);
394 static inline int perf_cgroup_connect(int fd
, struct perf_event
*event
,
395 struct perf_event_attr
*attr
,
396 struct perf_event
*group_leader
)
398 struct perf_cgroup
*cgrp
;
399 struct cgroup_subsys_state
*css
;
401 int ret
= 0, fput_needed
;
403 file
= fget_light(fd
, &fput_needed
);
407 css
= cgroup_css_from_dir(file
, perf_subsys_id
);
413 cgrp
= container_of(css
, struct perf_cgroup
, css
);
416 /* must be done before we fput() the file */
417 perf_get_cgroup(event
);
420 * all events in a group must monitor
421 * the same cgroup because a task belongs
422 * to only one perf cgroup at a time
424 if (group_leader
&& group_leader
->cgrp
!= cgrp
) {
425 perf_detach_cgroup(event
);
429 fput_light(file
, fput_needed
);
434 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
436 struct perf_cgroup_info
*t
;
437 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
438 event
->shadow_ctx_time
= now
- t
->timestamp
;
442 perf_cgroup_defer_enabled(struct perf_event
*event
)
445 * when the current task's perf cgroup does not match
446 * the event's, we need to remember to call the
447 * perf_mark_enable() function the first time a task with
448 * a matching perf cgroup is scheduled in.
450 if (is_cgroup_event(event
) && !perf_cgroup_match(event
))
451 event
->cgrp_defer_enabled
= 1;
455 perf_cgroup_mark_enabled(struct perf_event
*event
,
456 struct perf_event_context
*ctx
)
458 struct perf_event
*sub
;
459 u64 tstamp
= perf_event_time(event
);
461 if (!event
->cgrp_defer_enabled
)
464 event
->cgrp_defer_enabled
= 0;
466 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
467 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
468 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
) {
469 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
470 sub
->cgrp_defer_enabled
= 0;
474 #else /* !CONFIG_CGROUP_PERF */
477 perf_cgroup_match(struct perf_event
*event
)
482 static inline void perf_detach_cgroup(struct perf_event
*event
)
485 static inline int is_cgroup_event(struct perf_event
*event
)
490 static inline u64
perf_cgroup_event_cgrp_time(struct perf_event
*event
)
495 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
499 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
503 static inline void perf_cgroup_sched_out(struct task_struct
*task
)
507 static inline void perf_cgroup_sched_in(struct task_struct
*task
)
511 static inline int perf_cgroup_connect(pid_t pid
, struct perf_event
*event
,
512 struct perf_event_attr
*attr
,
513 struct perf_event
*group_leader
)
519 perf_cgroup_set_timestamp(struct task_struct
*task
,
520 struct perf_event_context
*ctx
)
525 perf_cgroup_switch(struct task_struct
*task
, struct task_struct
*next
)
530 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
534 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
540 perf_cgroup_defer_enabled(struct perf_event
*event
)
545 perf_cgroup_mark_enabled(struct perf_event
*event
,
546 struct perf_event_context
*ctx
)
551 void perf_pmu_disable(struct pmu
*pmu
)
553 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
555 pmu
->pmu_disable(pmu
);
558 void perf_pmu_enable(struct pmu
*pmu
)
560 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
562 pmu
->pmu_enable(pmu
);
565 static DEFINE_PER_CPU(struct list_head
, rotation_list
);
568 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
569 * because they're strictly cpu affine and rotate_start is called with IRQs
570 * disabled, while rotate_context is called from IRQ context.
572 static void perf_pmu_rotate_start(struct pmu
*pmu
)
574 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
575 struct list_head
*head
= &__get_cpu_var(rotation_list
);
577 WARN_ON(!irqs_disabled());
579 if (list_empty(&cpuctx
->rotation_list
))
580 list_add(&cpuctx
->rotation_list
, head
);
583 static void get_ctx(struct perf_event_context
*ctx
)
585 WARN_ON(!atomic_inc_not_zero(&ctx
->refcount
));
588 static void free_ctx(struct rcu_head
*head
)
590 struct perf_event_context
*ctx
;
592 ctx
= container_of(head
, struct perf_event_context
, rcu_head
);
596 static void put_ctx(struct perf_event_context
*ctx
)
598 if (atomic_dec_and_test(&ctx
->refcount
)) {
600 put_ctx(ctx
->parent_ctx
);
602 put_task_struct(ctx
->task
);
603 call_rcu(&ctx
->rcu_head
, free_ctx
);
607 static void unclone_ctx(struct perf_event_context
*ctx
)
609 if (ctx
->parent_ctx
) {
610 put_ctx(ctx
->parent_ctx
);
611 ctx
->parent_ctx
= NULL
;
615 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
618 * only top level events have the pid namespace they were created in
621 event
= event
->parent
;
623 return task_tgid_nr_ns(p
, event
->ns
);
626 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
629 * only top level events have the pid namespace they were created in
632 event
= event
->parent
;
634 return task_pid_nr_ns(p
, event
->ns
);
638 * If we inherit events we want to return the parent event id
641 static u64
primary_event_id(struct perf_event
*event
)
646 id
= event
->parent
->id
;
652 * Get the perf_event_context for a task and lock it.
653 * This has to cope with with the fact that until it is locked,
654 * the context could get moved to another task.
656 static struct perf_event_context
*
657 perf_lock_task_context(struct task_struct
*task
, int ctxn
, unsigned long *flags
)
659 struct perf_event_context
*ctx
;
663 ctx
= rcu_dereference(task
->perf_event_ctxp
[ctxn
]);
666 * If this context is a clone of another, it might
667 * get swapped for another underneath us by
668 * perf_event_task_sched_out, though the
669 * rcu_read_lock() protects us from any context
670 * getting freed. Lock the context and check if it
671 * got swapped before we could get the lock, and retry
672 * if so. If we locked the right context, then it
673 * can't get swapped on us any more.
675 raw_spin_lock_irqsave(&ctx
->lock
, *flags
);
676 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
[ctxn
])) {
677 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
681 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
682 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
691 * Get the context for a task and increment its pin_count so it
692 * can't get swapped to another task. This also increments its
693 * reference count so that the context can't get freed.
695 static struct perf_event_context
*
696 perf_pin_task_context(struct task_struct
*task
, int ctxn
)
698 struct perf_event_context
*ctx
;
701 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
704 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
709 static void perf_unpin_context(struct perf_event_context
*ctx
)
713 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
715 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
719 * Update the record of the current time in a context.
721 static void update_context_time(struct perf_event_context
*ctx
)
723 u64 now
= perf_clock();
725 ctx
->time
+= now
- ctx
->timestamp
;
726 ctx
->timestamp
= now
;
729 static u64
perf_event_time(struct perf_event
*event
)
731 struct perf_event_context
*ctx
= event
->ctx
;
733 if (is_cgroup_event(event
))
734 return perf_cgroup_event_time(event
);
736 return ctx
? ctx
->time
: 0;
740 * Update the total_time_enabled and total_time_running fields for a event.
742 static void update_event_times(struct perf_event
*event
)
744 struct perf_event_context
*ctx
= event
->ctx
;
747 if (event
->state
< PERF_EVENT_STATE_INACTIVE
||
748 event
->group_leader
->state
< PERF_EVENT_STATE_INACTIVE
)
751 * in cgroup mode, time_enabled represents
752 * the time the event was enabled AND active
753 * tasks were in the monitored cgroup. This is
754 * independent of the activity of the context as
755 * there may be a mix of cgroup and non-cgroup events.
757 * That is why we treat cgroup events differently
760 if (is_cgroup_event(event
))
761 run_end
= perf_event_time(event
);
762 else if (ctx
->is_active
)
765 run_end
= event
->tstamp_stopped
;
767 event
->total_time_enabled
= run_end
- event
->tstamp_enabled
;
769 if (event
->state
== PERF_EVENT_STATE_INACTIVE
)
770 run_end
= event
->tstamp_stopped
;
772 run_end
= perf_event_time(event
);
774 event
->total_time_running
= run_end
- event
->tstamp_running
;
779 * Update total_time_enabled and total_time_running for all events in a group.
781 static void update_group_times(struct perf_event
*leader
)
783 struct perf_event
*event
;
785 update_event_times(leader
);
786 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
787 update_event_times(event
);
790 static struct list_head
*
791 ctx_group_list(struct perf_event
*event
, struct perf_event_context
*ctx
)
793 if (event
->attr
.pinned
)
794 return &ctx
->pinned_groups
;
796 return &ctx
->flexible_groups
;
800 * Add a event from the lists for its context.
801 * Must be called with ctx->mutex and ctx->lock held.
804 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
806 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
807 event
->attach_state
|= PERF_ATTACH_CONTEXT
;
810 * If we're a stand alone event or group leader, we go to the context
811 * list, group events are kept attached to the group so that
812 * perf_group_detach can, at all times, locate all siblings.
814 if (event
->group_leader
== event
) {
815 struct list_head
*list
;
817 if (is_software_event(event
))
818 event
->group_flags
|= PERF_GROUP_SOFTWARE
;
820 list
= ctx_group_list(event
, ctx
);
821 list_add_tail(&event
->group_entry
, list
);
824 if (is_cgroup_event(event
))
827 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
829 perf_pmu_rotate_start(ctx
->pmu
);
831 if (event
->attr
.inherit_stat
)
836 * Called at perf_event creation and when events are attached/detached from a
839 static void perf_event__read_size(struct perf_event
*event
)
841 int entry
= sizeof(u64
); /* value */
845 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
848 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
851 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
852 entry
+= sizeof(u64
);
854 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
855 nr
+= event
->group_leader
->nr_siblings
;
860 event
->read_size
= size
;
863 static void perf_event__header_size(struct perf_event
*event
)
865 struct perf_sample_data
*data
;
866 u64 sample_type
= event
->attr
.sample_type
;
869 perf_event__read_size(event
);
871 if (sample_type
& PERF_SAMPLE_IP
)
872 size
+= sizeof(data
->ip
);
874 if (sample_type
& PERF_SAMPLE_ADDR
)
875 size
+= sizeof(data
->addr
);
877 if (sample_type
& PERF_SAMPLE_PERIOD
)
878 size
+= sizeof(data
->period
);
880 if (sample_type
& PERF_SAMPLE_READ
)
881 size
+= event
->read_size
;
883 event
->header_size
= size
;
886 static void perf_event__id_header_size(struct perf_event
*event
)
888 struct perf_sample_data
*data
;
889 u64 sample_type
= event
->attr
.sample_type
;
892 if (sample_type
& PERF_SAMPLE_TID
)
893 size
+= sizeof(data
->tid_entry
);
895 if (sample_type
& PERF_SAMPLE_TIME
)
896 size
+= sizeof(data
->time
);
898 if (sample_type
& PERF_SAMPLE_ID
)
899 size
+= sizeof(data
->id
);
901 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
902 size
+= sizeof(data
->stream_id
);
904 if (sample_type
& PERF_SAMPLE_CPU
)
905 size
+= sizeof(data
->cpu_entry
);
907 event
->id_header_size
= size
;
910 static void perf_group_attach(struct perf_event
*event
)
912 struct perf_event
*group_leader
= event
->group_leader
, *pos
;
915 * We can have double attach due to group movement in perf_event_open.
917 if (event
->attach_state
& PERF_ATTACH_GROUP
)
920 event
->attach_state
|= PERF_ATTACH_GROUP
;
922 if (group_leader
== event
)
925 if (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
&&
926 !is_software_event(event
))
927 group_leader
->group_flags
&= ~PERF_GROUP_SOFTWARE
;
929 list_add_tail(&event
->group_entry
, &group_leader
->sibling_list
);
930 group_leader
->nr_siblings
++;
932 perf_event__header_size(group_leader
);
934 list_for_each_entry(pos
, &group_leader
->sibling_list
, group_entry
)
935 perf_event__header_size(pos
);
939 * Remove a event from the lists for its context.
940 * Must be called with ctx->mutex and ctx->lock held.
943 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
945 struct perf_cpu_context
*cpuctx
;
947 * We can have double detach due to exit/hot-unplug + close.
949 if (!(event
->attach_state
& PERF_ATTACH_CONTEXT
))
952 event
->attach_state
&= ~PERF_ATTACH_CONTEXT
;
954 if (is_cgroup_event(event
)) {
956 cpuctx
= __get_cpu_context(ctx
);
958 * if there are no more cgroup events
959 * then cler cgrp to avoid stale pointer
960 * in update_cgrp_time_from_cpuctx()
962 if (!ctx
->nr_cgroups
)
967 if (event
->attr
.inherit_stat
)
970 list_del_rcu(&event
->event_entry
);
972 if (event
->group_leader
== event
)
973 list_del_init(&event
->group_entry
);
975 update_group_times(event
);
978 * If event was in error state, then keep it
979 * that way, otherwise bogus counts will be
980 * returned on read(). The only way to get out
981 * of error state is by explicit re-enabling
984 if (event
->state
> PERF_EVENT_STATE_OFF
)
985 event
->state
= PERF_EVENT_STATE_OFF
;
988 static void perf_group_detach(struct perf_event
*event
)
990 struct perf_event
*sibling
, *tmp
;
991 struct list_head
*list
= NULL
;
994 * We can have double detach due to exit/hot-unplug + close.
996 if (!(event
->attach_state
& PERF_ATTACH_GROUP
))
999 event
->attach_state
&= ~PERF_ATTACH_GROUP
;
1002 * If this is a sibling, remove it from its group.
1004 if (event
->group_leader
!= event
) {
1005 list_del_init(&event
->group_entry
);
1006 event
->group_leader
->nr_siblings
--;
1010 if (!list_empty(&event
->group_entry
))
1011 list
= &event
->group_entry
;
1014 * If this was a group event with sibling events then
1015 * upgrade the siblings to singleton events by adding them
1016 * to whatever list we are on.
1018 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, group_entry
) {
1020 list_move_tail(&sibling
->group_entry
, list
);
1021 sibling
->group_leader
= sibling
;
1023 /* Inherit group flags from the previous leader */
1024 sibling
->group_flags
= event
->group_flags
;
1028 perf_event__header_size(event
->group_leader
);
1030 list_for_each_entry(tmp
, &event
->group_leader
->sibling_list
, group_entry
)
1031 perf_event__header_size(tmp
);
1035 event_filter_match(struct perf_event
*event
)
1037 return (event
->cpu
== -1 || event
->cpu
== smp_processor_id())
1038 && perf_cgroup_match(event
);
1042 event_sched_out(struct perf_event
*event
,
1043 struct perf_cpu_context
*cpuctx
,
1044 struct perf_event_context
*ctx
)
1046 u64 tstamp
= perf_event_time(event
);
1049 * An event which could not be activated because of
1050 * filter mismatch still needs to have its timings
1051 * maintained, otherwise bogus information is return
1052 * via read() for time_enabled, time_running:
1054 if (event
->state
== PERF_EVENT_STATE_INACTIVE
1055 && !event_filter_match(event
)) {
1056 delta
= tstamp
- event
->tstamp_stopped
;
1057 event
->tstamp_running
+= delta
;
1058 event
->tstamp_stopped
= tstamp
;
1061 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
1064 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1065 if (event
->pending_disable
) {
1066 event
->pending_disable
= 0;
1067 event
->state
= PERF_EVENT_STATE_OFF
;
1069 event
->tstamp_stopped
= tstamp
;
1070 event
->pmu
->del(event
, 0);
1073 if (!is_software_event(event
))
1074 cpuctx
->active_oncpu
--;
1076 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
1077 cpuctx
->exclusive
= 0;
1081 group_sched_out(struct perf_event
*group_event
,
1082 struct perf_cpu_context
*cpuctx
,
1083 struct perf_event_context
*ctx
)
1085 struct perf_event
*event
;
1086 int state
= group_event
->state
;
1088 event_sched_out(group_event
, cpuctx
, ctx
);
1091 * Schedule out siblings (if any):
1093 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
)
1094 event_sched_out(event
, cpuctx
, ctx
);
1096 if (state
== PERF_EVENT_STATE_ACTIVE
&& group_event
->attr
.exclusive
)
1097 cpuctx
->exclusive
= 0;
1101 * Cross CPU call to remove a performance event
1103 * We disable the event on the hardware level first. After that we
1104 * remove it from the context list.
1106 static int __perf_remove_from_context(void *info
)
1108 struct perf_event
*event
= info
;
1109 struct perf_event_context
*ctx
= event
->ctx
;
1110 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1112 raw_spin_lock(&ctx
->lock
);
1113 event_sched_out(event
, cpuctx
, ctx
);
1114 list_del_event(event
, ctx
);
1115 raw_spin_unlock(&ctx
->lock
);
1122 * Remove the event from a task's (or a CPU's) list of events.
1124 * CPU events are removed with a smp call. For task events we only
1125 * call when the task is on a CPU.
1127 * If event->ctx is a cloned context, callers must make sure that
1128 * every task struct that event->ctx->task could possibly point to
1129 * remains valid. This is OK when called from perf_release since
1130 * that only calls us on the top-level context, which can't be a clone.
1131 * When called from perf_event_exit_task, it's OK because the
1132 * context has been detached from its task.
1134 static void perf_remove_from_context(struct perf_event
*event
)
1136 struct perf_event_context
*ctx
= event
->ctx
;
1137 struct task_struct
*task
= ctx
->task
;
1139 lockdep_assert_held(&ctx
->mutex
);
1143 * Per cpu events are removed via an smp call and
1144 * the removal is always successful.
1146 cpu_function_call(event
->cpu
, __perf_remove_from_context
, event
);
1151 if (!task_function_call(task
, __perf_remove_from_context
, event
))
1154 raw_spin_lock_irq(&ctx
->lock
);
1156 * If we failed to find a running task, but find the context active now
1157 * that we've acquired the ctx->lock, retry.
1159 if (ctx
->is_active
) {
1160 raw_spin_unlock_irq(&ctx
->lock
);
1165 * Since the task isn't running, its safe to remove the event, us
1166 * holding the ctx->lock ensures the task won't get scheduled in.
1168 list_del_event(event
, ctx
);
1169 raw_spin_unlock_irq(&ctx
->lock
);
1173 * Cross CPU call to disable a performance event
1175 static int __perf_event_disable(void *info
)
1177 struct perf_event
*event
= info
;
1178 struct perf_event_context
*ctx
= event
->ctx
;
1179 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1182 * If this is a per-task event, need to check whether this
1183 * event's task is the current task on this cpu.
1185 * Can trigger due to concurrent perf_event_context_sched_out()
1186 * flipping contexts around.
1188 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
1191 raw_spin_lock(&ctx
->lock
);
1194 * If the event is on, turn it off.
1195 * If it is in error state, leave it in error state.
1197 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
) {
1198 update_context_time(ctx
);
1199 update_cgrp_time_from_event(event
);
1200 update_group_times(event
);
1201 if (event
== event
->group_leader
)
1202 group_sched_out(event
, cpuctx
, ctx
);
1204 event_sched_out(event
, cpuctx
, ctx
);
1205 event
->state
= PERF_EVENT_STATE_OFF
;
1208 raw_spin_unlock(&ctx
->lock
);
1216 * If event->ctx is a cloned context, callers must make sure that
1217 * every task struct that event->ctx->task could possibly point to
1218 * remains valid. This condition is satisifed when called through
1219 * perf_event_for_each_child or perf_event_for_each because they
1220 * hold the top-level event's child_mutex, so any descendant that
1221 * goes to exit will block in sync_child_event.
1222 * When called from perf_pending_event it's OK because event->ctx
1223 * is the current context on this CPU and preemption is disabled,
1224 * hence we can't get into perf_event_task_sched_out for this context.
1226 void perf_event_disable(struct perf_event
*event
)
1228 struct perf_event_context
*ctx
= event
->ctx
;
1229 struct task_struct
*task
= ctx
->task
;
1233 * Disable the event on the cpu that it's on
1235 cpu_function_call(event
->cpu
, __perf_event_disable
, event
);
1240 if (!task_function_call(task
, __perf_event_disable
, event
))
1243 raw_spin_lock_irq(&ctx
->lock
);
1245 * If the event is still active, we need to retry the cross-call.
1247 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
1248 raw_spin_unlock_irq(&ctx
->lock
);
1250 * Reload the task pointer, it might have been changed by
1251 * a concurrent perf_event_context_sched_out().
1258 * Since we have the lock this context can't be scheduled
1259 * in, so we can change the state safely.
1261 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1262 update_group_times(event
);
1263 event
->state
= PERF_EVENT_STATE_OFF
;
1265 raw_spin_unlock_irq(&ctx
->lock
);
1268 static void perf_set_shadow_time(struct perf_event
*event
,
1269 struct perf_event_context
*ctx
,
1273 * use the correct time source for the time snapshot
1275 * We could get by without this by leveraging the
1276 * fact that to get to this function, the caller
1277 * has most likely already called update_context_time()
1278 * and update_cgrp_time_xx() and thus both timestamp
1279 * are identical (or very close). Given that tstamp is,
1280 * already adjusted for cgroup, we could say that:
1281 * tstamp - ctx->timestamp
1283 * tstamp - cgrp->timestamp.
1285 * Then, in perf_output_read(), the calculation would
1286 * work with no changes because:
1287 * - event is guaranteed scheduled in
1288 * - no scheduled out in between
1289 * - thus the timestamp would be the same
1291 * But this is a bit hairy.
1293 * So instead, we have an explicit cgroup call to remain
1294 * within the time time source all along. We believe it
1295 * is cleaner and simpler to understand.
1297 if (is_cgroup_event(event
))
1298 perf_cgroup_set_shadow_time(event
, tstamp
);
1300 event
->shadow_ctx_time
= tstamp
- ctx
->timestamp
;
1303 #define MAX_INTERRUPTS (~0ULL)
1305 static void perf_log_throttle(struct perf_event
*event
, int enable
);
1308 event_sched_in(struct perf_event
*event
,
1309 struct perf_cpu_context
*cpuctx
,
1310 struct perf_event_context
*ctx
)
1312 u64 tstamp
= perf_event_time(event
);
1314 if (event
->state
<= PERF_EVENT_STATE_OFF
)
1317 event
->state
= PERF_EVENT_STATE_ACTIVE
;
1318 event
->oncpu
= smp_processor_id();
1321 * Unthrottle events, since we scheduled we might have missed several
1322 * ticks already, also for a heavily scheduling task there is little
1323 * guarantee it'll get a tick in a timely manner.
1325 if (unlikely(event
->hw
.interrupts
== MAX_INTERRUPTS
)) {
1326 perf_log_throttle(event
, 1);
1327 event
->hw
.interrupts
= 0;
1331 * The new state must be visible before we turn it on in the hardware:
1335 if (event
->pmu
->add(event
, PERF_EF_START
)) {
1336 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1341 event
->tstamp_running
+= tstamp
- event
->tstamp_stopped
;
1343 perf_set_shadow_time(event
, ctx
, tstamp
);
1345 if (!is_software_event(event
))
1346 cpuctx
->active_oncpu
++;
1349 if (event
->attr
.exclusive
)
1350 cpuctx
->exclusive
= 1;
1356 group_sched_in(struct perf_event
*group_event
,
1357 struct perf_cpu_context
*cpuctx
,
1358 struct perf_event_context
*ctx
)
1360 struct perf_event
*event
, *partial_group
= NULL
;
1361 struct pmu
*pmu
= group_event
->pmu
;
1362 u64 now
= ctx
->time
;
1363 bool simulate
= false;
1365 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
1368 pmu
->start_txn(pmu
);
1370 if (event_sched_in(group_event
, cpuctx
, ctx
)) {
1371 pmu
->cancel_txn(pmu
);
1376 * Schedule in siblings as one group (if any):
1378 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
1379 if (event_sched_in(event
, cpuctx
, ctx
)) {
1380 partial_group
= event
;
1385 if (!pmu
->commit_txn(pmu
))
1390 * Groups can be scheduled in as one unit only, so undo any
1391 * partial group before returning:
1392 * The events up to the failed event are scheduled out normally,
1393 * tstamp_stopped will be updated.
1395 * The failed events and the remaining siblings need to have
1396 * their timings updated as if they had gone thru event_sched_in()
1397 * and event_sched_out(). This is required to get consistent timings
1398 * across the group. This also takes care of the case where the group
1399 * could never be scheduled by ensuring tstamp_stopped is set to mark
1400 * the time the event was actually stopped, such that time delta
1401 * calculation in update_event_times() is correct.
1403 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
1404 if (event
== partial_group
)
1408 event
->tstamp_running
+= now
- event
->tstamp_stopped
;
1409 event
->tstamp_stopped
= now
;
1411 event_sched_out(event
, cpuctx
, ctx
);
1414 event_sched_out(group_event
, cpuctx
, ctx
);
1416 pmu
->cancel_txn(pmu
);
1422 * Work out whether we can put this event group on the CPU now.
1424 static int group_can_go_on(struct perf_event
*event
,
1425 struct perf_cpu_context
*cpuctx
,
1429 * Groups consisting entirely of software events can always go on.
1431 if (event
->group_flags
& PERF_GROUP_SOFTWARE
)
1434 * If an exclusive group is already on, no other hardware
1437 if (cpuctx
->exclusive
)
1440 * If this group is exclusive and there are already
1441 * events on the CPU, it can't go on.
1443 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
1446 * Otherwise, try to add it if all previous groups were able
1452 static void add_event_to_ctx(struct perf_event
*event
,
1453 struct perf_event_context
*ctx
)
1455 u64 tstamp
= perf_event_time(event
);
1457 list_add_event(event
, ctx
);
1458 perf_group_attach(event
);
1459 event
->tstamp_enabled
= tstamp
;
1460 event
->tstamp_running
= tstamp
;
1461 event
->tstamp_stopped
= tstamp
;
1464 static void perf_event_context_sched_in(struct perf_event_context
*ctx
,
1465 struct task_struct
*tsk
);
1468 * Cross CPU call to install and enable a performance event
1470 * Must be called with ctx->mutex held
1472 static int __perf_install_in_context(void *info
)
1474 struct perf_event
*event
= info
;
1475 struct perf_event_context
*ctx
= event
->ctx
;
1476 struct perf_event
*leader
= event
->group_leader
;
1477 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1481 * In case we're installing a new context to an already running task,
1482 * could also happen before perf_event_task_sched_in() on architectures
1483 * which do context switches with IRQs enabled.
1485 if (ctx
->task
&& !cpuctx
->task_ctx
)
1486 perf_event_context_sched_in(ctx
, ctx
->task
);
1488 raw_spin_lock(&ctx
->lock
);
1490 update_context_time(ctx
);
1492 * update cgrp time only if current cgrp
1493 * matches event->cgrp. Must be done before
1494 * calling add_event_to_ctx()
1496 update_cgrp_time_from_event(event
);
1498 add_event_to_ctx(event
, ctx
);
1500 if (!event_filter_match(event
))
1504 * Don't put the event on if it is disabled or if
1505 * it is in a group and the group isn't on.
1507 if (event
->state
!= PERF_EVENT_STATE_INACTIVE
||
1508 (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
))
1512 * An exclusive event can't go on if there are already active
1513 * hardware events, and no hardware event can go on if there
1514 * is already an exclusive event on.
1516 if (!group_can_go_on(event
, cpuctx
, 1))
1519 err
= event_sched_in(event
, cpuctx
, ctx
);
1523 * This event couldn't go on. If it is in a group
1524 * then we have to pull the whole group off.
1525 * If the event group is pinned then put it in error state.
1527 if (leader
!= event
)
1528 group_sched_out(leader
, cpuctx
, ctx
);
1529 if (leader
->attr
.pinned
) {
1530 update_group_times(leader
);
1531 leader
->state
= PERF_EVENT_STATE_ERROR
;
1536 raw_spin_unlock(&ctx
->lock
);
1542 * Attach a performance event to a context
1544 * First we add the event to the list with the hardware enable bit
1545 * in event->hw_config cleared.
1547 * If the event is attached to a task which is on a CPU we use a smp
1548 * call to enable it in the task context. The task might have been
1549 * scheduled away, but we check this in the smp call again.
1552 perf_install_in_context(struct perf_event_context
*ctx
,
1553 struct perf_event
*event
,
1556 struct task_struct
*task
= ctx
->task
;
1558 lockdep_assert_held(&ctx
->mutex
);
1564 * Per cpu events are installed via an smp call and
1565 * the install is always successful.
1567 cpu_function_call(cpu
, __perf_install_in_context
, event
);
1572 if (!task_function_call(task
, __perf_install_in_context
, event
))
1575 raw_spin_lock_irq(&ctx
->lock
);
1577 * If we failed to find a running task, but find the context active now
1578 * that we've acquired the ctx->lock, retry.
1580 if (ctx
->is_active
) {
1581 raw_spin_unlock_irq(&ctx
->lock
);
1586 * Since the task isn't running, its safe to add the event, us holding
1587 * the ctx->lock ensures the task won't get scheduled in.
1589 add_event_to_ctx(event
, ctx
);
1590 raw_spin_unlock_irq(&ctx
->lock
);
1594 * Put a event into inactive state and update time fields.
1595 * Enabling the leader of a group effectively enables all
1596 * the group members that aren't explicitly disabled, so we
1597 * have to update their ->tstamp_enabled also.
1598 * Note: this works for group members as well as group leaders
1599 * since the non-leader members' sibling_lists will be empty.
1601 static void __perf_event_mark_enabled(struct perf_event
*event
,
1602 struct perf_event_context
*ctx
)
1604 struct perf_event
*sub
;
1605 u64 tstamp
= perf_event_time(event
);
1607 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1608 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
1609 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
1610 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
)
1611 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
1616 * Cross CPU call to enable a performance event
1618 static int __perf_event_enable(void *info
)
1620 struct perf_event
*event
= info
;
1621 struct perf_event_context
*ctx
= event
->ctx
;
1622 struct perf_event
*leader
= event
->group_leader
;
1623 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1626 if (WARN_ON_ONCE(!ctx
->is_active
))
1629 raw_spin_lock(&ctx
->lock
);
1630 update_context_time(ctx
);
1632 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
1636 * set current task's cgroup time reference point
1638 perf_cgroup_set_timestamp(current
, ctx
);
1640 __perf_event_mark_enabled(event
, ctx
);
1642 if (!event_filter_match(event
)) {
1643 if (is_cgroup_event(event
))
1644 perf_cgroup_defer_enabled(event
);
1649 * If the event is in a group and isn't the group leader,
1650 * then don't put it on unless the group is on.
1652 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
)
1655 if (!group_can_go_on(event
, cpuctx
, 1)) {
1658 if (event
== leader
)
1659 err
= group_sched_in(event
, cpuctx
, ctx
);
1661 err
= event_sched_in(event
, cpuctx
, ctx
);
1666 * If this event can't go on and it's part of a
1667 * group, then the whole group has to come off.
1669 if (leader
!= event
)
1670 group_sched_out(leader
, cpuctx
, ctx
);
1671 if (leader
->attr
.pinned
) {
1672 update_group_times(leader
);
1673 leader
->state
= PERF_EVENT_STATE_ERROR
;
1678 raw_spin_unlock(&ctx
->lock
);
1686 * If event->ctx is a cloned context, callers must make sure that
1687 * every task struct that event->ctx->task could possibly point to
1688 * remains valid. This condition is satisfied when called through
1689 * perf_event_for_each_child or perf_event_for_each as described
1690 * for perf_event_disable.
1692 void perf_event_enable(struct perf_event
*event
)
1694 struct perf_event_context
*ctx
= event
->ctx
;
1695 struct task_struct
*task
= ctx
->task
;
1699 * Enable the event on the cpu that it's on
1701 cpu_function_call(event
->cpu
, __perf_event_enable
, event
);
1705 raw_spin_lock_irq(&ctx
->lock
);
1706 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
1710 * If the event is in error state, clear that first.
1711 * That way, if we see the event in error state below, we
1712 * know that it has gone back into error state, as distinct
1713 * from the task having been scheduled away before the
1714 * cross-call arrived.
1716 if (event
->state
== PERF_EVENT_STATE_ERROR
)
1717 event
->state
= PERF_EVENT_STATE_OFF
;
1720 if (!ctx
->is_active
) {
1721 __perf_event_mark_enabled(event
, ctx
);
1725 raw_spin_unlock_irq(&ctx
->lock
);
1727 if (!task_function_call(task
, __perf_event_enable
, event
))
1730 raw_spin_lock_irq(&ctx
->lock
);
1733 * If the context is active and the event is still off,
1734 * we need to retry the cross-call.
1736 if (ctx
->is_active
&& event
->state
== PERF_EVENT_STATE_OFF
) {
1738 * task could have been flipped by a concurrent
1739 * perf_event_context_sched_out()
1746 raw_spin_unlock_irq(&ctx
->lock
);
1749 static int perf_event_refresh(struct perf_event
*event
, int refresh
)
1752 * not supported on inherited events
1754 if (event
->attr
.inherit
|| !is_sampling_event(event
))
1757 atomic_add(refresh
, &event
->event_limit
);
1758 perf_event_enable(event
);
1763 static void ctx_sched_out(struct perf_event_context
*ctx
,
1764 struct perf_cpu_context
*cpuctx
,
1765 enum event_type_t event_type
)
1767 struct perf_event
*event
;
1769 raw_spin_lock(&ctx
->lock
);
1770 perf_pmu_disable(ctx
->pmu
);
1772 if (likely(!ctx
->nr_events
))
1774 update_context_time(ctx
);
1775 update_cgrp_time_from_cpuctx(cpuctx
);
1777 if (!ctx
->nr_active
)
1780 if (event_type
& EVENT_PINNED
) {
1781 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
)
1782 group_sched_out(event
, cpuctx
, ctx
);
1785 if (event_type
& EVENT_FLEXIBLE
) {
1786 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
)
1787 group_sched_out(event
, cpuctx
, ctx
);
1790 perf_pmu_enable(ctx
->pmu
);
1791 raw_spin_unlock(&ctx
->lock
);
1795 * Test whether two contexts are equivalent, i.e. whether they
1796 * have both been cloned from the same version of the same context
1797 * and they both have the same number of enabled events.
1798 * If the number of enabled events is the same, then the set
1799 * of enabled events should be the same, because these are both
1800 * inherited contexts, therefore we can't access individual events
1801 * in them directly with an fd; we can only enable/disable all
1802 * events via prctl, or enable/disable all events in a family
1803 * via ioctl, which will have the same effect on both contexts.
1805 static int context_equiv(struct perf_event_context
*ctx1
,
1806 struct perf_event_context
*ctx2
)
1808 return ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
1809 && ctx1
->parent_gen
== ctx2
->parent_gen
1810 && !ctx1
->pin_count
&& !ctx2
->pin_count
;
1813 static void __perf_event_sync_stat(struct perf_event
*event
,
1814 struct perf_event
*next_event
)
1818 if (!event
->attr
.inherit_stat
)
1822 * Update the event value, we cannot use perf_event_read()
1823 * because we're in the middle of a context switch and have IRQs
1824 * disabled, which upsets smp_call_function_single(), however
1825 * we know the event must be on the current CPU, therefore we
1826 * don't need to use it.
1828 switch (event
->state
) {
1829 case PERF_EVENT_STATE_ACTIVE
:
1830 event
->pmu
->read(event
);
1833 case PERF_EVENT_STATE_INACTIVE
:
1834 update_event_times(event
);
1842 * In order to keep per-task stats reliable we need to flip the event
1843 * values when we flip the contexts.
1845 value
= local64_read(&next_event
->count
);
1846 value
= local64_xchg(&event
->count
, value
);
1847 local64_set(&next_event
->count
, value
);
1849 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
1850 swap(event
->total_time_running
, next_event
->total_time_running
);
1853 * Since we swizzled the values, update the user visible data too.
1855 perf_event_update_userpage(event
);
1856 perf_event_update_userpage(next_event
);
1859 #define list_next_entry(pos, member) \
1860 list_entry(pos->member.next, typeof(*pos), member)
1862 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
1863 struct perf_event_context
*next_ctx
)
1865 struct perf_event
*event
, *next_event
;
1870 update_context_time(ctx
);
1872 event
= list_first_entry(&ctx
->event_list
,
1873 struct perf_event
, event_entry
);
1875 next_event
= list_first_entry(&next_ctx
->event_list
,
1876 struct perf_event
, event_entry
);
1878 while (&event
->event_entry
!= &ctx
->event_list
&&
1879 &next_event
->event_entry
!= &next_ctx
->event_list
) {
1881 __perf_event_sync_stat(event
, next_event
);
1883 event
= list_next_entry(event
, event_entry
);
1884 next_event
= list_next_entry(next_event
, event_entry
);
1888 static void perf_event_context_sched_out(struct task_struct
*task
, int ctxn
,
1889 struct task_struct
*next
)
1891 struct perf_event_context
*ctx
= task
->perf_event_ctxp
[ctxn
];
1892 struct perf_event_context
*next_ctx
;
1893 struct perf_event_context
*parent
;
1894 struct perf_cpu_context
*cpuctx
;
1900 cpuctx
= __get_cpu_context(ctx
);
1901 if (!cpuctx
->task_ctx
)
1905 parent
= rcu_dereference(ctx
->parent_ctx
);
1906 next_ctx
= next
->perf_event_ctxp
[ctxn
];
1907 if (parent
&& next_ctx
&&
1908 rcu_dereference(next_ctx
->parent_ctx
) == parent
) {
1910 * Looks like the two contexts are clones, so we might be
1911 * able to optimize the context switch. We lock both
1912 * contexts and check that they are clones under the
1913 * lock (including re-checking that neither has been
1914 * uncloned in the meantime). It doesn't matter which
1915 * order we take the locks because no other cpu could
1916 * be trying to lock both of these tasks.
1918 raw_spin_lock(&ctx
->lock
);
1919 raw_spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
1920 if (context_equiv(ctx
, next_ctx
)) {
1922 * XXX do we need a memory barrier of sorts
1923 * wrt to rcu_dereference() of perf_event_ctxp
1925 task
->perf_event_ctxp
[ctxn
] = next_ctx
;
1926 next
->perf_event_ctxp
[ctxn
] = ctx
;
1928 next_ctx
->task
= task
;
1931 perf_event_sync_stat(ctx
, next_ctx
);
1933 raw_spin_unlock(&next_ctx
->lock
);
1934 raw_spin_unlock(&ctx
->lock
);
1939 ctx_sched_out(ctx
, cpuctx
, EVENT_ALL
);
1940 cpuctx
->task_ctx
= NULL
;
1944 #define for_each_task_context_nr(ctxn) \
1945 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1948 * Called from scheduler to remove the events of the current task,
1949 * with interrupts disabled.
1951 * We stop each event and update the event value in event->count.
1953 * This does not protect us against NMI, but disable()
1954 * sets the disabled bit in the control field of event _before_
1955 * accessing the event control register. If a NMI hits, then it will
1956 * not restart the event.
1958 void __perf_event_task_sched_out(struct task_struct
*task
,
1959 struct task_struct
*next
)
1963 for_each_task_context_nr(ctxn
)
1964 perf_event_context_sched_out(task
, ctxn
, next
);
1967 * if cgroup events exist on this CPU, then we need
1968 * to check if we have to switch out PMU state.
1969 * cgroup event are system-wide mode only
1971 if (atomic_read(&__get_cpu_var(perf_cgroup_events
)))
1972 perf_cgroup_sched_out(task
);
1975 static void task_ctx_sched_out(struct perf_event_context
*ctx
,
1976 enum event_type_t event_type
)
1978 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1980 if (!cpuctx
->task_ctx
)
1983 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
1986 ctx_sched_out(ctx
, cpuctx
, event_type
);
1987 cpuctx
->task_ctx
= NULL
;
1991 * Called with IRQs disabled
1993 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
1994 enum event_type_t event_type
)
1996 ctx_sched_out(&cpuctx
->ctx
, cpuctx
, event_type
);
2000 ctx_pinned_sched_in(struct perf_event_context
*ctx
,
2001 struct perf_cpu_context
*cpuctx
)
2003 struct perf_event
*event
;
2005 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
2006 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2008 if (!event_filter_match(event
))
2011 /* may need to reset tstamp_enabled */
2012 if (is_cgroup_event(event
))
2013 perf_cgroup_mark_enabled(event
, ctx
);
2015 if (group_can_go_on(event
, cpuctx
, 1))
2016 group_sched_in(event
, cpuctx
, ctx
);
2019 * If this pinned group hasn't been scheduled,
2020 * put it in error state.
2022 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
2023 update_group_times(event
);
2024 event
->state
= PERF_EVENT_STATE_ERROR
;
2030 ctx_flexible_sched_in(struct perf_event_context
*ctx
,
2031 struct perf_cpu_context
*cpuctx
)
2033 struct perf_event
*event
;
2036 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
2037 /* Ignore events in OFF or ERROR state */
2038 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2041 * Listen to the 'cpu' scheduling filter constraint
2044 if (!event_filter_match(event
))
2047 /* may need to reset tstamp_enabled */
2048 if (is_cgroup_event(event
))
2049 perf_cgroup_mark_enabled(event
, ctx
);
2051 if (group_can_go_on(event
, cpuctx
, can_add_hw
)) {
2052 if (group_sched_in(event
, cpuctx
, ctx
))
2059 ctx_sched_in(struct perf_event_context
*ctx
,
2060 struct perf_cpu_context
*cpuctx
,
2061 enum event_type_t event_type
,
2062 struct task_struct
*task
)
2066 raw_spin_lock(&ctx
->lock
);
2068 if (likely(!ctx
->nr_events
))
2072 ctx
->timestamp
= now
;
2073 perf_cgroup_set_timestamp(task
, ctx
);
2075 * First go through the list and put on any pinned groups
2076 * in order to give them the best chance of going on.
2078 if (event_type
& EVENT_PINNED
)
2079 ctx_pinned_sched_in(ctx
, cpuctx
);
2081 /* Then walk through the lower prio flexible groups */
2082 if (event_type
& EVENT_FLEXIBLE
)
2083 ctx_flexible_sched_in(ctx
, cpuctx
);
2086 raw_spin_unlock(&ctx
->lock
);
2089 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
2090 enum event_type_t event_type
,
2091 struct task_struct
*task
)
2093 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
2095 ctx_sched_in(ctx
, cpuctx
, event_type
, task
);
2098 static void task_ctx_sched_in(struct perf_event_context
*ctx
,
2099 enum event_type_t event_type
)
2101 struct perf_cpu_context
*cpuctx
;
2103 cpuctx
= __get_cpu_context(ctx
);
2104 if (cpuctx
->task_ctx
== ctx
)
2107 ctx_sched_in(ctx
, cpuctx
, event_type
, NULL
);
2108 cpuctx
->task_ctx
= ctx
;
2111 static void perf_event_context_sched_in(struct perf_event_context
*ctx
,
2112 struct task_struct
*task
)
2114 struct perf_cpu_context
*cpuctx
;
2116 cpuctx
= __get_cpu_context(ctx
);
2117 if (cpuctx
->task_ctx
== ctx
)
2120 perf_pmu_disable(ctx
->pmu
);
2122 * We want to keep the following priority order:
2123 * cpu pinned (that don't need to move), task pinned,
2124 * cpu flexible, task flexible.
2126 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
2128 ctx_sched_in(ctx
, cpuctx
, EVENT_PINNED
, task
);
2129 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
, task
);
2130 ctx_sched_in(ctx
, cpuctx
, EVENT_FLEXIBLE
, task
);
2132 cpuctx
->task_ctx
= ctx
;
2135 * Since these rotations are per-cpu, we need to ensure the
2136 * cpu-context we got scheduled on is actually rotating.
2138 perf_pmu_rotate_start(ctx
->pmu
);
2139 perf_pmu_enable(ctx
->pmu
);
2143 * Called from scheduler to add the events of the current task
2144 * with interrupts disabled.
2146 * We restore the event value and then enable it.
2148 * This does not protect us against NMI, but enable()
2149 * sets the enabled bit in the control field of event _before_
2150 * accessing the event control register. If a NMI hits, then it will
2151 * keep the event running.
2153 void __perf_event_task_sched_in(struct task_struct
*task
)
2155 struct perf_event_context
*ctx
;
2158 for_each_task_context_nr(ctxn
) {
2159 ctx
= task
->perf_event_ctxp
[ctxn
];
2163 perf_event_context_sched_in(ctx
, task
);
2166 * if cgroup events exist on this CPU, then we need
2167 * to check if we have to switch in PMU state.
2168 * cgroup event are system-wide mode only
2170 if (atomic_read(&__get_cpu_var(perf_cgroup_events
)))
2171 perf_cgroup_sched_in(task
);
2174 static u64
perf_calculate_period(struct perf_event
*event
, u64 nsec
, u64 count
)
2176 u64 frequency
= event
->attr
.sample_freq
;
2177 u64 sec
= NSEC_PER_SEC
;
2178 u64 divisor
, dividend
;
2180 int count_fls
, nsec_fls
, frequency_fls
, sec_fls
;
2182 count_fls
= fls64(count
);
2183 nsec_fls
= fls64(nsec
);
2184 frequency_fls
= fls64(frequency
);
2188 * We got @count in @nsec, with a target of sample_freq HZ
2189 * the target period becomes:
2192 * period = -------------------
2193 * @nsec * sample_freq
2198 * Reduce accuracy by one bit such that @a and @b converge
2199 * to a similar magnitude.
2201 #define REDUCE_FLS(a, b) \
2203 if (a##_fls > b##_fls) { \
2213 * Reduce accuracy until either term fits in a u64, then proceed with
2214 * the other, so that finally we can do a u64/u64 division.
2216 while (count_fls
+ sec_fls
> 64 && nsec_fls
+ frequency_fls
> 64) {
2217 REDUCE_FLS(nsec
, frequency
);
2218 REDUCE_FLS(sec
, count
);
2221 if (count_fls
+ sec_fls
> 64) {
2222 divisor
= nsec
* frequency
;
2224 while (count_fls
+ sec_fls
> 64) {
2225 REDUCE_FLS(count
, sec
);
2229 dividend
= count
* sec
;
2231 dividend
= count
* sec
;
2233 while (nsec_fls
+ frequency_fls
> 64) {
2234 REDUCE_FLS(nsec
, frequency
);
2238 divisor
= nsec
* frequency
;
2244 return div64_u64(dividend
, divisor
);
2247 static void perf_adjust_period(struct perf_event
*event
, u64 nsec
, u64 count
)
2249 struct hw_perf_event
*hwc
= &event
->hw
;
2250 s64 period
, sample_period
;
2253 period
= perf_calculate_period(event
, nsec
, count
);
2255 delta
= (s64
)(period
- hwc
->sample_period
);
2256 delta
= (delta
+ 7) / 8; /* low pass filter */
2258 sample_period
= hwc
->sample_period
+ delta
;
2263 hwc
->sample_period
= sample_period
;
2265 if (local64_read(&hwc
->period_left
) > 8*sample_period
) {
2266 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
2267 local64_set(&hwc
->period_left
, 0);
2268 event
->pmu
->start(event
, PERF_EF_RELOAD
);
2272 static void perf_ctx_adjust_freq(struct perf_event_context
*ctx
, u64 period
)
2274 struct perf_event
*event
;
2275 struct hw_perf_event
*hwc
;
2276 u64 interrupts
, now
;
2279 raw_spin_lock(&ctx
->lock
);
2280 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
2281 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2284 if (!event_filter_match(event
))
2289 interrupts
= hwc
->interrupts
;
2290 hwc
->interrupts
= 0;
2293 * unthrottle events on the tick
2295 if (interrupts
== MAX_INTERRUPTS
) {
2296 perf_log_throttle(event
, 1);
2297 event
->pmu
->start(event
, 0);
2300 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
2303 event
->pmu
->read(event
);
2304 now
= local64_read(&event
->count
);
2305 delta
= now
- hwc
->freq_count_stamp
;
2306 hwc
->freq_count_stamp
= now
;
2309 perf_adjust_period(event
, period
, delta
);
2311 raw_spin_unlock(&ctx
->lock
);
2315 * Round-robin a context's events:
2317 static void rotate_ctx(struct perf_event_context
*ctx
)
2319 raw_spin_lock(&ctx
->lock
);
2322 * Rotate the first entry last of non-pinned groups. Rotation might be
2323 * disabled by the inheritance code.
2325 if (!ctx
->rotate_disable
)
2326 list_rotate_left(&ctx
->flexible_groups
);
2328 raw_spin_unlock(&ctx
->lock
);
2332 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2333 * because they're strictly cpu affine and rotate_start is called with IRQs
2334 * disabled, while rotate_context is called from IRQ context.
2336 static void perf_rotate_context(struct perf_cpu_context
*cpuctx
)
2338 u64 interval
= (u64
)cpuctx
->jiffies_interval
* TICK_NSEC
;
2339 struct perf_event_context
*ctx
= NULL
;
2340 int rotate
= 0, remove
= 1;
2342 if (cpuctx
->ctx
.nr_events
) {
2344 if (cpuctx
->ctx
.nr_events
!= cpuctx
->ctx
.nr_active
)
2348 ctx
= cpuctx
->task_ctx
;
2349 if (ctx
&& ctx
->nr_events
) {
2351 if (ctx
->nr_events
!= ctx
->nr_active
)
2355 perf_pmu_disable(cpuctx
->ctx
.pmu
);
2356 perf_ctx_adjust_freq(&cpuctx
->ctx
, interval
);
2358 perf_ctx_adjust_freq(ctx
, interval
);
2363 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
2365 task_ctx_sched_out(ctx
, EVENT_FLEXIBLE
);
2367 rotate_ctx(&cpuctx
->ctx
);
2371 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
, current
);
2373 task_ctx_sched_in(ctx
, EVENT_FLEXIBLE
);
2377 list_del_init(&cpuctx
->rotation_list
);
2379 perf_pmu_enable(cpuctx
->ctx
.pmu
);
2382 void perf_event_task_tick(void)
2384 struct list_head
*head
= &__get_cpu_var(rotation_list
);
2385 struct perf_cpu_context
*cpuctx
, *tmp
;
2387 WARN_ON(!irqs_disabled());
2389 list_for_each_entry_safe(cpuctx
, tmp
, head
, rotation_list
) {
2390 if (cpuctx
->jiffies_interval
== 1 ||
2391 !(jiffies
% cpuctx
->jiffies_interval
))
2392 perf_rotate_context(cpuctx
);
2396 static int event_enable_on_exec(struct perf_event
*event
,
2397 struct perf_event_context
*ctx
)
2399 if (!event
->attr
.enable_on_exec
)
2402 event
->attr
.enable_on_exec
= 0;
2403 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
2406 __perf_event_mark_enabled(event
, ctx
);
2412 * Enable all of a task's events that have been marked enable-on-exec.
2413 * This expects task == current.
2415 static void perf_event_enable_on_exec(struct perf_event_context
*ctx
)
2417 struct perf_event
*event
;
2418 unsigned long flags
;
2422 local_irq_save(flags
);
2423 if (!ctx
|| !ctx
->nr_events
)
2426 task_ctx_sched_out(ctx
, EVENT_ALL
);
2428 raw_spin_lock(&ctx
->lock
);
2430 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
2431 ret
= event_enable_on_exec(event
, ctx
);
2436 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
2437 ret
= event_enable_on_exec(event
, ctx
);
2443 * Unclone this context if we enabled any event.
2448 raw_spin_unlock(&ctx
->lock
);
2450 perf_event_context_sched_in(ctx
, ctx
->task
);
2452 local_irq_restore(flags
);
2456 * Cross CPU call to read the hardware event
2458 static void __perf_event_read(void *info
)
2460 struct perf_event
*event
= info
;
2461 struct perf_event_context
*ctx
= event
->ctx
;
2462 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2465 * If this is a task context, we need to check whether it is
2466 * the current task context of this cpu. If not it has been
2467 * scheduled out before the smp call arrived. In that case
2468 * event->count would have been updated to a recent sample
2469 * when the event was scheduled out.
2471 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
2474 raw_spin_lock(&ctx
->lock
);
2475 if (ctx
->is_active
) {
2476 update_context_time(ctx
);
2477 update_cgrp_time_from_event(event
);
2479 update_event_times(event
);
2480 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
2481 event
->pmu
->read(event
);
2482 raw_spin_unlock(&ctx
->lock
);
2485 static inline u64
perf_event_count(struct perf_event
*event
)
2487 return local64_read(&event
->count
) + atomic64_read(&event
->child_count
);
2490 static u64
perf_event_read(struct perf_event
*event
)
2493 * If event is enabled and currently active on a CPU, update the
2494 * value in the event structure:
2496 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
2497 smp_call_function_single(event
->oncpu
,
2498 __perf_event_read
, event
, 1);
2499 } else if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
2500 struct perf_event_context
*ctx
= event
->ctx
;
2501 unsigned long flags
;
2503 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
2505 * may read while context is not active
2506 * (e.g., thread is blocked), in that case
2507 * we cannot update context time
2509 if (ctx
->is_active
) {
2510 update_context_time(ctx
);
2511 update_cgrp_time_from_event(event
);
2513 update_event_times(event
);
2514 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
2517 return perf_event_count(event
);
2524 struct callchain_cpus_entries
{
2525 struct rcu_head rcu_head
;
2526 struct perf_callchain_entry
*cpu_entries
[0];
2529 static DEFINE_PER_CPU(int, callchain_recursion
[PERF_NR_CONTEXTS
]);
2530 static atomic_t nr_callchain_events
;
2531 static DEFINE_MUTEX(callchain_mutex
);
2532 struct callchain_cpus_entries
*callchain_cpus_entries
;
2535 __weak
void perf_callchain_kernel(struct perf_callchain_entry
*entry
,
2536 struct pt_regs
*regs
)
2540 __weak
void perf_callchain_user(struct perf_callchain_entry
*entry
,
2541 struct pt_regs
*regs
)
2545 static void release_callchain_buffers_rcu(struct rcu_head
*head
)
2547 struct callchain_cpus_entries
*entries
;
2550 entries
= container_of(head
, struct callchain_cpus_entries
, rcu_head
);
2552 for_each_possible_cpu(cpu
)
2553 kfree(entries
->cpu_entries
[cpu
]);
2558 static void release_callchain_buffers(void)
2560 struct callchain_cpus_entries
*entries
;
2562 entries
= callchain_cpus_entries
;
2563 rcu_assign_pointer(callchain_cpus_entries
, NULL
);
2564 call_rcu(&entries
->rcu_head
, release_callchain_buffers_rcu
);
2567 static int alloc_callchain_buffers(void)
2571 struct callchain_cpus_entries
*entries
;
2574 * We can't use the percpu allocation API for data that can be
2575 * accessed from NMI. Use a temporary manual per cpu allocation
2576 * until that gets sorted out.
2578 size
= offsetof(struct callchain_cpus_entries
, cpu_entries
[nr_cpu_ids
]);
2580 entries
= kzalloc(size
, GFP_KERNEL
);
2584 size
= sizeof(struct perf_callchain_entry
) * PERF_NR_CONTEXTS
;
2586 for_each_possible_cpu(cpu
) {
2587 entries
->cpu_entries
[cpu
] = kmalloc_node(size
, GFP_KERNEL
,
2589 if (!entries
->cpu_entries
[cpu
])
2593 rcu_assign_pointer(callchain_cpus_entries
, entries
);
2598 for_each_possible_cpu(cpu
)
2599 kfree(entries
->cpu_entries
[cpu
]);
2605 static int get_callchain_buffers(void)
2610 mutex_lock(&callchain_mutex
);
2612 count
= atomic_inc_return(&nr_callchain_events
);
2613 if (WARN_ON_ONCE(count
< 1)) {
2619 /* If the allocation failed, give up */
2620 if (!callchain_cpus_entries
)
2625 err
= alloc_callchain_buffers();
2627 release_callchain_buffers();
2629 mutex_unlock(&callchain_mutex
);
2634 static void put_callchain_buffers(void)
2636 if (atomic_dec_and_mutex_lock(&nr_callchain_events
, &callchain_mutex
)) {
2637 release_callchain_buffers();
2638 mutex_unlock(&callchain_mutex
);
2642 static int get_recursion_context(int *recursion
)
2650 else if (in_softirq())
2655 if (recursion
[rctx
])
2664 static inline void put_recursion_context(int *recursion
, int rctx
)
2670 static struct perf_callchain_entry
*get_callchain_entry(int *rctx
)
2673 struct callchain_cpus_entries
*entries
;
2675 *rctx
= get_recursion_context(__get_cpu_var(callchain_recursion
));
2679 entries
= rcu_dereference(callchain_cpus_entries
);
2683 cpu
= smp_processor_id();
2685 return &entries
->cpu_entries
[cpu
][*rctx
];
2689 put_callchain_entry(int rctx
)
2691 put_recursion_context(__get_cpu_var(callchain_recursion
), rctx
);
2694 static struct perf_callchain_entry
*perf_callchain(struct pt_regs
*regs
)
2697 struct perf_callchain_entry
*entry
;
2700 entry
= get_callchain_entry(&rctx
);
2709 if (!user_mode(regs
)) {
2710 perf_callchain_store(entry
, PERF_CONTEXT_KERNEL
);
2711 perf_callchain_kernel(entry
, regs
);
2713 regs
= task_pt_regs(current
);
2719 perf_callchain_store(entry
, PERF_CONTEXT_USER
);
2720 perf_callchain_user(entry
, regs
);
2724 put_callchain_entry(rctx
);
2730 * Initialize the perf_event context in a task_struct:
2732 static void __perf_event_init_context(struct perf_event_context
*ctx
)
2734 raw_spin_lock_init(&ctx
->lock
);
2735 mutex_init(&ctx
->mutex
);
2736 INIT_LIST_HEAD(&ctx
->pinned_groups
);
2737 INIT_LIST_HEAD(&ctx
->flexible_groups
);
2738 INIT_LIST_HEAD(&ctx
->event_list
);
2739 atomic_set(&ctx
->refcount
, 1);
2742 static struct perf_event_context
*
2743 alloc_perf_context(struct pmu
*pmu
, struct task_struct
*task
)
2745 struct perf_event_context
*ctx
;
2747 ctx
= kzalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
2751 __perf_event_init_context(ctx
);
2754 get_task_struct(task
);
2761 static struct task_struct
*
2762 find_lively_task_by_vpid(pid_t vpid
)
2764 struct task_struct
*task
;
2771 task
= find_task_by_vpid(vpid
);
2773 get_task_struct(task
);
2777 return ERR_PTR(-ESRCH
);
2779 /* Reuse ptrace permission checks for now. */
2781 if (!ptrace_may_access(task
, PTRACE_MODE_READ
))
2786 put_task_struct(task
);
2787 return ERR_PTR(err
);
2792 * Returns a matching context with refcount and pincount.
2794 static struct perf_event_context
*
2795 find_get_context(struct pmu
*pmu
, struct task_struct
*task
, int cpu
)
2797 struct perf_event_context
*ctx
;
2798 struct perf_cpu_context
*cpuctx
;
2799 unsigned long flags
;
2803 /* Must be root to operate on a CPU event: */
2804 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
2805 return ERR_PTR(-EACCES
);
2808 * We could be clever and allow to attach a event to an
2809 * offline CPU and activate it when the CPU comes up, but
2812 if (!cpu_online(cpu
))
2813 return ERR_PTR(-ENODEV
);
2815 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
2824 ctxn
= pmu
->task_ctx_nr
;
2829 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
2833 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
2837 ctx
= alloc_perf_context(pmu
, task
);
2845 mutex_lock(&task
->perf_event_mutex
);
2847 * If it has already passed perf_event_exit_task().
2848 * we must see PF_EXITING, it takes this mutex too.
2850 if (task
->flags
& PF_EXITING
)
2852 else if (task
->perf_event_ctxp
[ctxn
])
2856 rcu_assign_pointer(task
->perf_event_ctxp
[ctxn
], ctx
);
2858 mutex_unlock(&task
->perf_event_mutex
);
2860 if (unlikely(err
)) {
2861 put_task_struct(task
);
2873 return ERR_PTR(err
);
2876 static void perf_event_free_filter(struct perf_event
*event
);
2878 static void free_event_rcu(struct rcu_head
*head
)
2880 struct perf_event
*event
;
2882 event
= container_of(head
, struct perf_event
, rcu_head
);
2884 put_pid_ns(event
->ns
);
2885 perf_event_free_filter(event
);
2889 static void perf_buffer_put(struct perf_buffer
*buffer
);
2891 static void free_event(struct perf_event
*event
)
2893 irq_work_sync(&event
->pending
);
2895 if (!event
->parent
) {
2896 if (event
->attach_state
& PERF_ATTACH_TASK
)
2897 jump_label_dec(&perf_sched_events
);
2898 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
2899 atomic_dec(&nr_mmap_events
);
2900 if (event
->attr
.comm
)
2901 atomic_dec(&nr_comm_events
);
2902 if (event
->attr
.task
)
2903 atomic_dec(&nr_task_events
);
2904 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
)
2905 put_callchain_buffers();
2906 if (is_cgroup_event(event
)) {
2907 atomic_dec(&per_cpu(perf_cgroup_events
, event
->cpu
));
2908 jump_label_dec(&perf_sched_events
);
2912 if (event
->buffer
) {
2913 perf_buffer_put(event
->buffer
);
2914 event
->buffer
= NULL
;
2917 if (is_cgroup_event(event
))
2918 perf_detach_cgroup(event
);
2921 event
->destroy(event
);
2924 put_ctx(event
->ctx
);
2926 call_rcu(&event
->rcu_head
, free_event_rcu
);
2929 int perf_event_release_kernel(struct perf_event
*event
)
2931 struct perf_event_context
*ctx
= event
->ctx
;
2934 * Remove from the PMU, can't get re-enabled since we got
2935 * here because the last ref went.
2937 perf_event_disable(event
);
2939 WARN_ON_ONCE(ctx
->parent_ctx
);
2941 * There are two ways this annotation is useful:
2943 * 1) there is a lock recursion from perf_event_exit_task
2944 * see the comment there.
2946 * 2) there is a lock-inversion with mmap_sem through
2947 * perf_event_read_group(), which takes faults while
2948 * holding ctx->mutex, however this is called after
2949 * the last filedesc died, so there is no possibility
2950 * to trigger the AB-BA case.
2952 mutex_lock_nested(&ctx
->mutex
, SINGLE_DEPTH_NESTING
);
2953 raw_spin_lock_irq(&ctx
->lock
);
2954 perf_group_detach(event
);
2955 list_del_event(event
, ctx
);
2956 raw_spin_unlock_irq(&ctx
->lock
);
2957 mutex_unlock(&ctx
->mutex
);
2963 EXPORT_SYMBOL_GPL(perf_event_release_kernel
);
2966 * Called when the last reference to the file is gone.
2968 static int perf_release(struct inode
*inode
, struct file
*file
)
2970 struct perf_event
*event
= file
->private_data
;
2971 struct task_struct
*owner
;
2973 file
->private_data
= NULL
;
2976 owner
= ACCESS_ONCE(event
->owner
);
2978 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2979 * !owner it means the list deletion is complete and we can indeed
2980 * free this event, otherwise we need to serialize on
2981 * owner->perf_event_mutex.
2983 smp_read_barrier_depends();
2986 * Since delayed_put_task_struct() also drops the last
2987 * task reference we can safely take a new reference
2988 * while holding the rcu_read_lock().
2990 get_task_struct(owner
);
2995 mutex_lock(&owner
->perf_event_mutex
);
2997 * We have to re-check the event->owner field, if it is cleared
2998 * we raced with perf_event_exit_task(), acquiring the mutex
2999 * ensured they're done, and we can proceed with freeing the
3003 list_del_init(&event
->owner_entry
);
3004 mutex_unlock(&owner
->perf_event_mutex
);
3005 put_task_struct(owner
);
3008 return perf_event_release_kernel(event
);
3011 u64
perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
3013 struct perf_event
*child
;
3019 mutex_lock(&event
->child_mutex
);
3020 total
+= perf_event_read(event
);
3021 *enabled
+= event
->total_time_enabled
+
3022 atomic64_read(&event
->child_total_time_enabled
);
3023 *running
+= event
->total_time_running
+
3024 atomic64_read(&event
->child_total_time_running
);
3026 list_for_each_entry(child
, &event
->child_list
, child_list
) {
3027 total
+= perf_event_read(child
);
3028 *enabled
+= child
->total_time_enabled
;
3029 *running
+= child
->total_time_running
;
3031 mutex_unlock(&event
->child_mutex
);
3035 EXPORT_SYMBOL_GPL(perf_event_read_value
);
3037 static int perf_event_read_group(struct perf_event
*event
,
3038 u64 read_format
, char __user
*buf
)
3040 struct perf_event
*leader
= event
->group_leader
, *sub
;
3041 int n
= 0, size
= 0, ret
= -EFAULT
;
3042 struct perf_event_context
*ctx
= leader
->ctx
;
3044 u64 count
, enabled
, running
;
3046 mutex_lock(&ctx
->mutex
);
3047 count
= perf_event_read_value(leader
, &enabled
, &running
);
3049 values
[n
++] = 1 + leader
->nr_siblings
;
3050 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
3051 values
[n
++] = enabled
;
3052 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
3053 values
[n
++] = running
;
3054 values
[n
++] = count
;
3055 if (read_format
& PERF_FORMAT_ID
)
3056 values
[n
++] = primary_event_id(leader
);
3058 size
= n
* sizeof(u64
);
3060 if (copy_to_user(buf
, values
, size
))
3065 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
3068 values
[n
++] = perf_event_read_value(sub
, &enabled
, &running
);
3069 if (read_format
& PERF_FORMAT_ID
)
3070 values
[n
++] = primary_event_id(sub
);
3072 size
= n
* sizeof(u64
);
3074 if (copy_to_user(buf
+ ret
, values
, size
)) {
3082 mutex_unlock(&ctx
->mutex
);
3087 static int perf_event_read_one(struct perf_event
*event
,
3088 u64 read_format
, char __user
*buf
)
3090 u64 enabled
, running
;
3094 values
[n
++] = perf_event_read_value(event
, &enabled
, &running
);
3095 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
3096 values
[n
++] = enabled
;
3097 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
3098 values
[n
++] = running
;
3099 if (read_format
& PERF_FORMAT_ID
)
3100 values
[n
++] = primary_event_id(event
);
3102 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
3105 return n
* sizeof(u64
);
3109 * Read the performance event - simple non blocking version for now
3112 perf_read_hw(struct perf_event
*event
, char __user
*buf
, size_t count
)
3114 u64 read_format
= event
->attr
.read_format
;
3118 * Return end-of-file for a read on a event that is in
3119 * error state (i.e. because it was pinned but it couldn't be
3120 * scheduled on to the CPU at some point).
3122 if (event
->state
== PERF_EVENT_STATE_ERROR
)
3125 if (count
< event
->read_size
)
3128 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
3129 if (read_format
& PERF_FORMAT_GROUP
)
3130 ret
= perf_event_read_group(event
, read_format
, buf
);
3132 ret
= perf_event_read_one(event
, read_format
, buf
);
3138 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
3140 struct perf_event
*event
= file
->private_data
;
3142 return perf_read_hw(event
, buf
, count
);
3145 static unsigned int perf_poll(struct file
*file
, poll_table
*wait
)
3147 struct perf_event
*event
= file
->private_data
;
3148 struct perf_buffer
*buffer
;
3149 unsigned int events
= POLL_HUP
;
3152 buffer
= rcu_dereference(event
->buffer
);
3154 events
= atomic_xchg(&buffer
->poll
, 0);
3157 poll_wait(file
, &event
->waitq
, wait
);
3162 static void perf_event_reset(struct perf_event
*event
)
3164 (void)perf_event_read(event
);
3165 local64_set(&event
->count
, 0);
3166 perf_event_update_userpage(event
);
3170 * Holding the top-level event's child_mutex means that any
3171 * descendant process that has inherited this event will block
3172 * in sync_child_event if it goes to exit, thus satisfying the
3173 * task existence requirements of perf_event_enable/disable.
3175 static void perf_event_for_each_child(struct perf_event
*event
,
3176 void (*func
)(struct perf_event
*))
3178 struct perf_event
*child
;
3180 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
3181 mutex_lock(&event
->child_mutex
);
3183 list_for_each_entry(child
, &event
->child_list
, child_list
)
3185 mutex_unlock(&event
->child_mutex
);
3188 static void perf_event_for_each(struct perf_event
*event
,
3189 void (*func
)(struct perf_event
*))
3191 struct perf_event_context
*ctx
= event
->ctx
;
3192 struct perf_event
*sibling
;
3194 WARN_ON_ONCE(ctx
->parent_ctx
);
3195 mutex_lock(&ctx
->mutex
);
3196 event
= event
->group_leader
;
3198 perf_event_for_each_child(event
, func
);
3200 list_for_each_entry(sibling
, &event
->sibling_list
, group_entry
)
3201 perf_event_for_each_child(event
, func
);
3202 mutex_unlock(&ctx
->mutex
);
3205 static int perf_event_period(struct perf_event
*event
, u64 __user
*arg
)
3207 struct perf_event_context
*ctx
= event
->ctx
;
3211 if (!is_sampling_event(event
))
3214 if (copy_from_user(&value
, arg
, sizeof(value
)))
3220 raw_spin_lock_irq(&ctx
->lock
);
3221 if (event
->attr
.freq
) {
3222 if (value
> sysctl_perf_event_sample_rate
) {
3227 event
->attr
.sample_freq
= value
;
3229 event
->attr
.sample_period
= value
;
3230 event
->hw
.sample_period
= value
;
3233 raw_spin_unlock_irq(&ctx
->lock
);
3238 static const struct file_operations perf_fops
;
3240 static struct perf_event
*perf_fget_light(int fd
, int *fput_needed
)
3244 file
= fget_light(fd
, fput_needed
);
3246 return ERR_PTR(-EBADF
);
3248 if (file
->f_op
!= &perf_fops
) {
3249 fput_light(file
, *fput_needed
);
3251 return ERR_PTR(-EBADF
);
3254 return file
->private_data
;
3257 static int perf_event_set_output(struct perf_event
*event
,
3258 struct perf_event
*output_event
);
3259 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
);
3261 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
3263 struct perf_event
*event
= file
->private_data
;
3264 void (*func
)(struct perf_event
*);
3268 case PERF_EVENT_IOC_ENABLE
:
3269 func
= perf_event_enable
;
3271 case PERF_EVENT_IOC_DISABLE
:
3272 func
= perf_event_disable
;
3274 case PERF_EVENT_IOC_RESET
:
3275 func
= perf_event_reset
;
3278 case PERF_EVENT_IOC_REFRESH
:
3279 return perf_event_refresh(event
, arg
);
3281 case PERF_EVENT_IOC_PERIOD
:
3282 return perf_event_period(event
, (u64 __user
*)arg
);
3284 case PERF_EVENT_IOC_SET_OUTPUT
:
3286 struct perf_event
*output_event
= NULL
;
3287 int fput_needed
= 0;
3291 output_event
= perf_fget_light(arg
, &fput_needed
);
3292 if (IS_ERR(output_event
))
3293 return PTR_ERR(output_event
);
3296 ret
= perf_event_set_output(event
, output_event
);
3298 fput_light(output_event
->filp
, fput_needed
);
3303 case PERF_EVENT_IOC_SET_FILTER
:
3304 return perf_event_set_filter(event
, (void __user
*)arg
);
3310 if (flags
& PERF_IOC_FLAG_GROUP
)
3311 perf_event_for_each(event
, func
);
3313 perf_event_for_each_child(event
, func
);
3318 int perf_event_task_enable(void)
3320 struct perf_event
*event
;
3322 mutex_lock(¤t
->perf_event_mutex
);
3323 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
3324 perf_event_for_each_child(event
, perf_event_enable
);
3325 mutex_unlock(¤t
->perf_event_mutex
);
3330 int perf_event_task_disable(void)
3332 struct perf_event
*event
;
3334 mutex_lock(¤t
->perf_event_mutex
);
3335 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
3336 perf_event_for_each_child(event
, perf_event_disable
);
3337 mutex_unlock(¤t
->perf_event_mutex
);
3342 #ifndef PERF_EVENT_INDEX_OFFSET
3343 # define PERF_EVENT_INDEX_OFFSET 0
3346 static int perf_event_index(struct perf_event
*event
)
3348 if (event
->hw
.state
& PERF_HES_STOPPED
)
3351 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3354 return event
->hw
.idx
+ 1 - PERF_EVENT_INDEX_OFFSET
;
3358 * Callers need to ensure there can be no nesting of this function, otherwise
3359 * the seqlock logic goes bad. We can not serialize this because the arch
3360 * code calls this from NMI context.
3362 void perf_event_update_userpage(struct perf_event
*event
)
3364 struct perf_event_mmap_page
*userpg
;
3365 struct perf_buffer
*buffer
;
3368 buffer
= rcu_dereference(event
->buffer
);
3372 userpg
= buffer
->user_page
;
3375 * Disable preemption so as to not let the corresponding user-space
3376 * spin too long if we get preempted.
3381 userpg
->index
= perf_event_index(event
);
3382 userpg
->offset
= perf_event_count(event
);
3383 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
3384 userpg
->offset
-= local64_read(&event
->hw
.prev_count
);
3386 userpg
->time_enabled
= event
->total_time_enabled
+
3387 atomic64_read(&event
->child_total_time_enabled
);
3389 userpg
->time_running
= event
->total_time_running
+
3390 atomic64_read(&event
->child_total_time_running
);
3399 static unsigned long perf_data_size(struct perf_buffer
*buffer
);
3402 perf_buffer_init(struct perf_buffer
*buffer
, long watermark
, int flags
)
3404 long max_size
= perf_data_size(buffer
);
3407 buffer
->watermark
= min(max_size
, watermark
);
3409 if (!buffer
->watermark
)
3410 buffer
->watermark
= max_size
/ 2;
3412 if (flags
& PERF_BUFFER_WRITABLE
)
3413 buffer
->writable
= 1;
3415 atomic_set(&buffer
->refcount
, 1);
3418 #ifndef CONFIG_PERF_USE_VMALLOC
3421 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
3424 static struct page
*
3425 perf_mmap_to_page(struct perf_buffer
*buffer
, unsigned long pgoff
)
3427 if (pgoff
> buffer
->nr_pages
)
3431 return virt_to_page(buffer
->user_page
);
3433 return virt_to_page(buffer
->data_pages
[pgoff
- 1]);
3436 static void *perf_mmap_alloc_page(int cpu
)
3441 node
= (cpu
== -1) ? cpu
: cpu_to_node(cpu
);
3442 page
= alloc_pages_node(node
, GFP_KERNEL
| __GFP_ZERO
, 0);
3446 return page_address(page
);
3449 static struct perf_buffer
*
3450 perf_buffer_alloc(int nr_pages
, long watermark
, int cpu
, int flags
)
3452 struct perf_buffer
*buffer
;
3456 size
= sizeof(struct perf_buffer
);
3457 size
+= nr_pages
* sizeof(void *);
3459 buffer
= kzalloc(size
, GFP_KERNEL
);
3463 buffer
->user_page
= perf_mmap_alloc_page(cpu
);
3464 if (!buffer
->user_page
)
3465 goto fail_user_page
;
3467 for (i
= 0; i
< nr_pages
; i
++) {
3468 buffer
->data_pages
[i
] = perf_mmap_alloc_page(cpu
);
3469 if (!buffer
->data_pages
[i
])
3470 goto fail_data_pages
;
3473 buffer
->nr_pages
= nr_pages
;
3475 perf_buffer_init(buffer
, watermark
, flags
);
3480 for (i
--; i
>= 0; i
--)
3481 free_page((unsigned long)buffer
->data_pages
[i
]);
3483 free_page((unsigned long)buffer
->user_page
);
3492 static void perf_mmap_free_page(unsigned long addr
)
3494 struct page
*page
= virt_to_page((void *)addr
);
3496 page
->mapping
= NULL
;
3500 static void perf_buffer_free(struct perf_buffer
*buffer
)
3504 perf_mmap_free_page((unsigned long)buffer
->user_page
);
3505 for (i
= 0; i
< buffer
->nr_pages
; i
++)
3506 perf_mmap_free_page((unsigned long)buffer
->data_pages
[i
]);
3510 static inline int page_order(struct perf_buffer
*buffer
)
3518 * Back perf_mmap() with vmalloc memory.
3520 * Required for architectures that have d-cache aliasing issues.
3523 static inline int page_order(struct perf_buffer
*buffer
)
3525 return buffer
->page_order
;
3528 static struct page
*
3529 perf_mmap_to_page(struct perf_buffer
*buffer
, unsigned long pgoff
)
3531 if (pgoff
> (1UL << page_order(buffer
)))
3534 return vmalloc_to_page((void *)buffer
->user_page
+ pgoff
* PAGE_SIZE
);
3537 static void perf_mmap_unmark_page(void *addr
)
3539 struct page
*page
= vmalloc_to_page(addr
);
3541 page
->mapping
= NULL
;
3544 static void perf_buffer_free_work(struct work_struct
*work
)
3546 struct perf_buffer
*buffer
;
3550 buffer
= container_of(work
, struct perf_buffer
, work
);
3551 nr
= 1 << page_order(buffer
);
3553 base
= buffer
->user_page
;
3554 for (i
= 0; i
< nr
+ 1; i
++)
3555 perf_mmap_unmark_page(base
+ (i
* PAGE_SIZE
));
3561 static void perf_buffer_free(struct perf_buffer
*buffer
)
3563 schedule_work(&buffer
->work
);
3566 static struct perf_buffer
*
3567 perf_buffer_alloc(int nr_pages
, long watermark
, int cpu
, int flags
)
3569 struct perf_buffer
*buffer
;
3573 size
= sizeof(struct perf_buffer
);
3574 size
+= sizeof(void *);
3576 buffer
= kzalloc(size
, GFP_KERNEL
);
3580 INIT_WORK(&buffer
->work
, perf_buffer_free_work
);
3582 all_buf
= vmalloc_user((nr_pages
+ 1) * PAGE_SIZE
);
3586 buffer
->user_page
= all_buf
;
3587 buffer
->data_pages
[0] = all_buf
+ PAGE_SIZE
;
3588 buffer
->page_order
= ilog2(nr_pages
);
3589 buffer
->nr_pages
= 1;
3591 perf_buffer_init(buffer
, watermark
, flags
);
3604 static unsigned long perf_data_size(struct perf_buffer
*buffer
)
3606 return buffer
->nr_pages
<< (PAGE_SHIFT
+ page_order(buffer
));
3609 static int perf_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
3611 struct perf_event
*event
= vma
->vm_file
->private_data
;
3612 struct perf_buffer
*buffer
;
3613 int ret
= VM_FAULT_SIGBUS
;
3615 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
3616 if (vmf
->pgoff
== 0)
3622 buffer
= rcu_dereference(event
->buffer
);
3626 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
3629 vmf
->page
= perf_mmap_to_page(buffer
, vmf
->pgoff
);
3633 get_page(vmf
->page
);
3634 vmf
->page
->mapping
= vma
->vm_file
->f_mapping
;
3635 vmf
->page
->index
= vmf
->pgoff
;
3644 static void perf_buffer_free_rcu(struct rcu_head
*rcu_head
)
3646 struct perf_buffer
*buffer
;
3648 buffer
= container_of(rcu_head
, struct perf_buffer
, rcu_head
);
3649 perf_buffer_free(buffer
);
3652 static struct perf_buffer
*perf_buffer_get(struct perf_event
*event
)
3654 struct perf_buffer
*buffer
;
3657 buffer
= rcu_dereference(event
->buffer
);
3659 if (!atomic_inc_not_zero(&buffer
->refcount
))
3667 static void perf_buffer_put(struct perf_buffer
*buffer
)
3669 if (!atomic_dec_and_test(&buffer
->refcount
))
3672 call_rcu(&buffer
->rcu_head
, perf_buffer_free_rcu
);
3675 static void perf_mmap_open(struct vm_area_struct
*vma
)
3677 struct perf_event
*event
= vma
->vm_file
->private_data
;
3679 atomic_inc(&event
->mmap_count
);
3682 static void perf_mmap_close(struct vm_area_struct
*vma
)
3684 struct perf_event
*event
= vma
->vm_file
->private_data
;
3686 if (atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
)) {
3687 unsigned long size
= perf_data_size(event
->buffer
);
3688 struct user_struct
*user
= event
->mmap_user
;
3689 struct perf_buffer
*buffer
= event
->buffer
;
3691 atomic_long_sub((size
>> PAGE_SHIFT
) + 1, &user
->locked_vm
);
3692 vma
->vm_mm
->locked_vm
-= event
->mmap_locked
;
3693 rcu_assign_pointer(event
->buffer
, NULL
);
3694 mutex_unlock(&event
->mmap_mutex
);
3696 perf_buffer_put(buffer
);
3701 static const struct vm_operations_struct perf_mmap_vmops
= {
3702 .open
= perf_mmap_open
,
3703 .close
= perf_mmap_close
,
3704 .fault
= perf_mmap_fault
,
3705 .page_mkwrite
= perf_mmap_fault
,
3708 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
3710 struct perf_event
*event
= file
->private_data
;
3711 unsigned long user_locked
, user_lock_limit
;
3712 struct user_struct
*user
= current_user();
3713 unsigned long locked
, lock_limit
;
3714 struct perf_buffer
*buffer
;
3715 unsigned long vma_size
;
3716 unsigned long nr_pages
;
3717 long user_extra
, extra
;
3718 int ret
= 0, flags
= 0;
3721 * Don't allow mmap() of inherited per-task counters. This would
3722 * create a performance issue due to all children writing to the
3725 if (event
->cpu
== -1 && event
->attr
.inherit
)
3728 if (!(vma
->vm_flags
& VM_SHARED
))
3731 vma_size
= vma
->vm_end
- vma
->vm_start
;
3732 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
3735 * If we have buffer pages ensure they're a power-of-two number, so we
3736 * can do bitmasks instead of modulo.
3738 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
3741 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
3744 if (vma
->vm_pgoff
!= 0)
3747 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
3748 mutex_lock(&event
->mmap_mutex
);
3749 if (event
->buffer
) {
3750 if (event
->buffer
->nr_pages
== nr_pages
)
3751 atomic_inc(&event
->buffer
->refcount
);
3757 user_extra
= nr_pages
+ 1;
3758 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
3761 * Increase the limit linearly with more CPUs:
3763 user_lock_limit
*= num_online_cpus();
3765 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
3768 if (user_locked
> user_lock_limit
)
3769 extra
= user_locked
- user_lock_limit
;
3771 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
3772 lock_limit
>>= PAGE_SHIFT
;
3773 locked
= vma
->vm_mm
->locked_vm
+ extra
;
3775 if ((locked
> lock_limit
) && perf_paranoid_tracepoint_raw() &&
3776 !capable(CAP_IPC_LOCK
)) {
3781 WARN_ON(event
->buffer
);
3783 if (vma
->vm_flags
& VM_WRITE
)
3784 flags
|= PERF_BUFFER_WRITABLE
;
3786 buffer
= perf_buffer_alloc(nr_pages
, event
->attr
.wakeup_watermark
,
3792 rcu_assign_pointer(event
->buffer
, buffer
);
3794 atomic_long_add(user_extra
, &user
->locked_vm
);
3795 event
->mmap_locked
= extra
;
3796 event
->mmap_user
= get_current_user();
3797 vma
->vm_mm
->locked_vm
+= event
->mmap_locked
;
3801 atomic_inc(&event
->mmap_count
);
3802 mutex_unlock(&event
->mmap_mutex
);
3804 vma
->vm_flags
|= VM_RESERVED
;
3805 vma
->vm_ops
= &perf_mmap_vmops
;
3810 static int perf_fasync(int fd
, struct file
*filp
, int on
)
3812 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
3813 struct perf_event
*event
= filp
->private_data
;
3816 mutex_lock(&inode
->i_mutex
);
3817 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
3818 mutex_unlock(&inode
->i_mutex
);
3826 static const struct file_operations perf_fops
= {
3827 .llseek
= no_llseek
,
3828 .release
= perf_release
,
3831 .unlocked_ioctl
= perf_ioctl
,
3832 .compat_ioctl
= perf_ioctl
,
3834 .fasync
= perf_fasync
,
3840 * If there's data, ensure we set the poll() state and publish everything
3841 * to user-space before waking everybody up.
3844 void perf_event_wakeup(struct perf_event
*event
)
3846 wake_up_all(&event
->waitq
);
3848 if (event
->pending_kill
) {
3849 kill_fasync(&event
->fasync
, SIGIO
, event
->pending_kill
);
3850 event
->pending_kill
= 0;
3854 static void perf_pending_event(struct irq_work
*entry
)
3856 struct perf_event
*event
= container_of(entry
,
3857 struct perf_event
, pending
);
3859 if (event
->pending_disable
) {
3860 event
->pending_disable
= 0;
3861 __perf_event_disable(event
);
3864 if (event
->pending_wakeup
) {
3865 event
->pending_wakeup
= 0;
3866 perf_event_wakeup(event
);
3871 * We assume there is only KVM supporting the callbacks.
3872 * Later on, we might change it to a list if there is
3873 * another virtualization implementation supporting the callbacks.
3875 struct perf_guest_info_callbacks
*perf_guest_cbs
;
3877 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
3879 perf_guest_cbs
= cbs
;
3882 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks
);
3884 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
3886 perf_guest_cbs
= NULL
;
3889 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks
);
3894 static bool perf_output_space(struct perf_buffer
*buffer
, unsigned long tail
,
3895 unsigned long offset
, unsigned long head
)
3899 if (!buffer
->writable
)
3902 mask
= perf_data_size(buffer
) - 1;
3904 offset
= (offset
- tail
) & mask
;
3905 head
= (head
- tail
) & mask
;
3907 if ((int)(head
- offset
) < 0)
3913 static void perf_output_wakeup(struct perf_output_handle
*handle
)
3915 atomic_set(&handle
->buffer
->poll
, POLL_IN
);
3918 handle
->event
->pending_wakeup
= 1;
3919 irq_work_queue(&handle
->event
->pending
);
3921 perf_event_wakeup(handle
->event
);
3925 * We need to ensure a later event_id doesn't publish a head when a former
3926 * event isn't done writing. However since we need to deal with NMIs we
3927 * cannot fully serialize things.
3929 * We only publish the head (and generate a wakeup) when the outer-most
3932 static void perf_output_get_handle(struct perf_output_handle
*handle
)
3934 struct perf_buffer
*buffer
= handle
->buffer
;
3937 local_inc(&buffer
->nest
);
3938 handle
->wakeup
= local_read(&buffer
->wakeup
);
3941 static void perf_output_put_handle(struct perf_output_handle
*handle
)
3943 struct perf_buffer
*buffer
= handle
->buffer
;
3947 head
= local_read(&buffer
->head
);
3950 * IRQ/NMI can happen here, which means we can miss a head update.
3953 if (!local_dec_and_test(&buffer
->nest
))
3957 * Publish the known good head. Rely on the full barrier implied
3958 * by atomic_dec_and_test() order the buffer->head read and this
3961 buffer
->user_page
->data_head
= head
;
3964 * Now check if we missed an update, rely on the (compiler)
3965 * barrier in atomic_dec_and_test() to re-read buffer->head.
3967 if (unlikely(head
!= local_read(&buffer
->head
))) {
3968 local_inc(&buffer
->nest
);
3972 if (handle
->wakeup
!= local_read(&buffer
->wakeup
))
3973 perf_output_wakeup(handle
);
3979 __always_inline
void perf_output_copy(struct perf_output_handle
*handle
,
3980 const void *buf
, unsigned int len
)
3983 unsigned long size
= min_t(unsigned long, handle
->size
, len
);
3985 memcpy(handle
->addr
, buf
, size
);
3988 handle
->addr
+= size
;
3990 handle
->size
-= size
;
3991 if (!handle
->size
) {
3992 struct perf_buffer
*buffer
= handle
->buffer
;
3995 handle
->page
&= buffer
->nr_pages
- 1;
3996 handle
->addr
= buffer
->data_pages
[handle
->page
];
3997 handle
->size
= PAGE_SIZE
<< page_order(buffer
);
4002 static void __perf_event_header__init_id(struct perf_event_header
*header
,
4003 struct perf_sample_data
*data
,
4004 struct perf_event
*event
)
4006 u64 sample_type
= event
->attr
.sample_type
;
4008 data
->type
= sample_type
;
4009 header
->size
+= event
->id_header_size
;
4011 if (sample_type
& PERF_SAMPLE_TID
) {
4012 /* namespace issues */
4013 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
4014 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
4017 if (sample_type
& PERF_SAMPLE_TIME
)
4018 data
->time
= perf_clock();
4020 if (sample_type
& PERF_SAMPLE_ID
)
4021 data
->id
= primary_event_id(event
);
4023 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
4024 data
->stream_id
= event
->id
;
4026 if (sample_type
& PERF_SAMPLE_CPU
) {
4027 data
->cpu_entry
.cpu
= raw_smp_processor_id();
4028 data
->cpu_entry
.reserved
= 0;
4032 static void perf_event_header__init_id(struct perf_event_header
*header
,
4033 struct perf_sample_data
*data
,
4034 struct perf_event
*event
)
4036 if (event
->attr
.sample_id_all
)
4037 __perf_event_header__init_id(header
, data
, event
);
4040 static void __perf_event__output_id_sample(struct perf_output_handle
*handle
,
4041 struct perf_sample_data
*data
)
4043 u64 sample_type
= data
->type
;
4045 if (sample_type
& PERF_SAMPLE_TID
)
4046 perf_output_put(handle
, data
->tid_entry
);
4048 if (sample_type
& PERF_SAMPLE_TIME
)
4049 perf_output_put(handle
, data
->time
);
4051 if (sample_type
& PERF_SAMPLE_ID
)
4052 perf_output_put(handle
, data
->id
);
4054 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
4055 perf_output_put(handle
, data
->stream_id
);
4057 if (sample_type
& PERF_SAMPLE_CPU
)
4058 perf_output_put(handle
, data
->cpu_entry
);
4061 static void perf_event__output_id_sample(struct perf_event
*event
,
4062 struct perf_output_handle
*handle
,
4063 struct perf_sample_data
*sample
)
4065 if (event
->attr
.sample_id_all
)
4066 __perf_event__output_id_sample(handle
, sample
);
4069 int perf_output_begin(struct perf_output_handle
*handle
,
4070 struct perf_event
*event
, unsigned int size
,
4071 int nmi
, int sample
)
4073 struct perf_buffer
*buffer
;
4074 unsigned long tail
, offset
, head
;
4076 struct perf_sample_data sample_data
;
4078 struct perf_event_header header
;
4085 * For inherited events we send all the output towards the parent.
4088 event
= event
->parent
;
4090 buffer
= rcu_dereference(event
->buffer
);
4094 handle
->buffer
= buffer
;
4095 handle
->event
= event
;
4097 handle
->sample
= sample
;
4099 if (!buffer
->nr_pages
)
4102 have_lost
= local_read(&buffer
->lost
);
4104 lost_event
.header
.size
= sizeof(lost_event
);
4105 perf_event_header__init_id(&lost_event
.header
, &sample_data
,
4107 size
+= lost_event
.header
.size
;
4110 perf_output_get_handle(handle
);
4114 * Userspace could choose to issue a mb() before updating the
4115 * tail pointer. So that all reads will be completed before the
4118 tail
= ACCESS_ONCE(buffer
->user_page
->data_tail
);
4120 offset
= head
= local_read(&buffer
->head
);
4122 if (unlikely(!perf_output_space(buffer
, tail
, offset
, head
)))
4124 } while (local_cmpxchg(&buffer
->head
, offset
, head
) != offset
);
4126 if (head
- local_read(&buffer
->wakeup
) > buffer
->watermark
)
4127 local_add(buffer
->watermark
, &buffer
->wakeup
);
4129 handle
->page
= offset
>> (PAGE_SHIFT
+ page_order(buffer
));
4130 handle
->page
&= buffer
->nr_pages
- 1;
4131 handle
->size
= offset
& ((PAGE_SIZE
<< page_order(buffer
)) - 1);
4132 handle
->addr
= buffer
->data_pages
[handle
->page
];
4133 handle
->addr
+= handle
->size
;
4134 handle
->size
= (PAGE_SIZE
<< page_order(buffer
)) - handle
->size
;
4137 lost_event
.header
.type
= PERF_RECORD_LOST
;
4138 lost_event
.header
.misc
= 0;
4139 lost_event
.id
= event
->id
;
4140 lost_event
.lost
= local_xchg(&buffer
->lost
, 0);
4142 perf_output_put(handle
, lost_event
);
4143 perf_event__output_id_sample(event
, handle
, &sample_data
);
4149 local_inc(&buffer
->lost
);
4150 perf_output_put_handle(handle
);
4157 void perf_output_end(struct perf_output_handle
*handle
)
4159 struct perf_event
*event
= handle
->event
;
4160 struct perf_buffer
*buffer
= handle
->buffer
;
4162 int wakeup_events
= event
->attr
.wakeup_events
;
4164 if (handle
->sample
&& wakeup_events
) {
4165 int events
= local_inc_return(&buffer
->events
);
4166 if (events
>= wakeup_events
) {
4167 local_sub(wakeup_events
, &buffer
->events
);
4168 local_inc(&buffer
->wakeup
);
4172 perf_output_put_handle(handle
);
4176 static void perf_output_read_one(struct perf_output_handle
*handle
,
4177 struct perf_event
*event
,
4178 u64 enabled
, u64 running
)
4180 u64 read_format
= event
->attr
.read_format
;
4184 values
[n
++] = perf_event_count(event
);
4185 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
4186 values
[n
++] = enabled
+
4187 atomic64_read(&event
->child_total_time_enabled
);
4189 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
4190 values
[n
++] = running
+
4191 atomic64_read(&event
->child_total_time_running
);
4193 if (read_format
& PERF_FORMAT_ID
)
4194 values
[n
++] = primary_event_id(event
);
4196 perf_output_copy(handle
, values
, n
* sizeof(u64
));
4200 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4202 static void perf_output_read_group(struct perf_output_handle
*handle
,
4203 struct perf_event
*event
,
4204 u64 enabled
, u64 running
)
4206 struct perf_event
*leader
= event
->group_leader
, *sub
;
4207 u64 read_format
= event
->attr
.read_format
;
4211 values
[n
++] = 1 + leader
->nr_siblings
;
4213 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
4214 values
[n
++] = enabled
;
4216 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
4217 values
[n
++] = running
;
4219 if (leader
!= event
)
4220 leader
->pmu
->read(leader
);
4222 values
[n
++] = perf_event_count(leader
);
4223 if (read_format
& PERF_FORMAT_ID
)
4224 values
[n
++] = primary_event_id(leader
);
4226 perf_output_copy(handle
, values
, n
* sizeof(u64
));
4228 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
4232 sub
->pmu
->read(sub
);
4234 values
[n
++] = perf_event_count(sub
);
4235 if (read_format
& PERF_FORMAT_ID
)
4236 values
[n
++] = primary_event_id(sub
);
4238 perf_output_copy(handle
, values
, n
* sizeof(u64
));
4242 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4243 PERF_FORMAT_TOTAL_TIME_RUNNING)
4245 static void perf_output_read(struct perf_output_handle
*handle
,
4246 struct perf_event
*event
)
4248 u64 enabled
= 0, running
= 0, now
, ctx_time
;
4249 u64 read_format
= event
->attr
.read_format
;
4252 * compute total_time_enabled, total_time_running
4253 * based on snapshot values taken when the event
4254 * was last scheduled in.
4256 * we cannot simply called update_context_time()
4257 * because of locking issue as we are called in
4260 if (read_format
& PERF_FORMAT_TOTAL_TIMES
) {
4262 ctx_time
= event
->shadow_ctx_time
+ now
;
4263 enabled
= ctx_time
- event
->tstamp_enabled
;
4264 running
= ctx_time
- event
->tstamp_running
;
4267 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
4268 perf_output_read_group(handle
, event
, enabled
, running
);
4270 perf_output_read_one(handle
, event
, enabled
, running
);
4273 void perf_output_sample(struct perf_output_handle
*handle
,
4274 struct perf_event_header
*header
,
4275 struct perf_sample_data
*data
,
4276 struct perf_event
*event
)
4278 u64 sample_type
= data
->type
;
4280 perf_output_put(handle
, *header
);
4282 if (sample_type
& PERF_SAMPLE_IP
)
4283 perf_output_put(handle
, data
->ip
);
4285 if (sample_type
& PERF_SAMPLE_TID
)
4286 perf_output_put(handle
, data
->tid_entry
);
4288 if (sample_type
& PERF_SAMPLE_TIME
)
4289 perf_output_put(handle
, data
->time
);
4291 if (sample_type
& PERF_SAMPLE_ADDR
)
4292 perf_output_put(handle
, data
->addr
);
4294 if (sample_type
& PERF_SAMPLE_ID
)
4295 perf_output_put(handle
, data
->id
);
4297 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
4298 perf_output_put(handle
, data
->stream_id
);
4300 if (sample_type
& PERF_SAMPLE_CPU
)
4301 perf_output_put(handle
, data
->cpu_entry
);
4303 if (sample_type
& PERF_SAMPLE_PERIOD
)
4304 perf_output_put(handle
, data
->period
);
4306 if (sample_type
& PERF_SAMPLE_READ
)
4307 perf_output_read(handle
, event
);
4309 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
4310 if (data
->callchain
) {
4313 if (data
->callchain
)
4314 size
+= data
->callchain
->nr
;
4316 size
*= sizeof(u64
);
4318 perf_output_copy(handle
, data
->callchain
, size
);
4321 perf_output_put(handle
, nr
);
4325 if (sample_type
& PERF_SAMPLE_RAW
) {
4327 perf_output_put(handle
, data
->raw
->size
);
4328 perf_output_copy(handle
, data
->raw
->data
,
4335 .size
= sizeof(u32
),
4338 perf_output_put(handle
, raw
);
4343 void perf_prepare_sample(struct perf_event_header
*header
,
4344 struct perf_sample_data
*data
,
4345 struct perf_event
*event
,
4346 struct pt_regs
*regs
)
4348 u64 sample_type
= event
->attr
.sample_type
;
4350 header
->type
= PERF_RECORD_SAMPLE
;
4351 header
->size
= sizeof(*header
) + event
->header_size
;
4354 header
->misc
|= perf_misc_flags(regs
);
4356 __perf_event_header__init_id(header
, data
, event
);
4358 if (sample_type
& PERF_SAMPLE_IP
)
4359 data
->ip
= perf_instruction_pointer(regs
);
4361 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
4364 data
->callchain
= perf_callchain(regs
);
4366 if (data
->callchain
)
4367 size
+= data
->callchain
->nr
;
4369 header
->size
+= size
* sizeof(u64
);
4372 if (sample_type
& PERF_SAMPLE_RAW
) {
4373 int size
= sizeof(u32
);
4376 size
+= data
->raw
->size
;
4378 size
+= sizeof(u32
);
4380 WARN_ON_ONCE(size
& (sizeof(u64
)-1));
4381 header
->size
+= size
;
4385 static void perf_event_output(struct perf_event
*event
, int nmi
,
4386 struct perf_sample_data
*data
,
4387 struct pt_regs
*regs
)
4389 struct perf_output_handle handle
;
4390 struct perf_event_header header
;
4392 /* protect the callchain buffers */
4395 perf_prepare_sample(&header
, data
, event
, regs
);
4397 if (perf_output_begin(&handle
, event
, header
.size
, nmi
, 1))
4400 perf_output_sample(&handle
, &header
, data
, event
);
4402 perf_output_end(&handle
);
4412 struct perf_read_event
{
4413 struct perf_event_header header
;
4420 perf_event_read_event(struct perf_event
*event
,
4421 struct task_struct
*task
)
4423 struct perf_output_handle handle
;
4424 struct perf_sample_data sample
;
4425 struct perf_read_event read_event
= {
4427 .type
= PERF_RECORD_READ
,
4429 .size
= sizeof(read_event
) + event
->read_size
,
4431 .pid
= perf_event_pid(event
, task
),
4432 .tid
= perf_event_tid(event
, task
),
4436 perf_event_header__init_id(&read_event
.header
, &sample
, event
);
4437 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
, 0, 0);
4441 perf_output_put(&handle
, read_event
);
4442 perf_output_read(&handle
, event
);
4443 perf_event__output_id_sample(event
, &handle
, &sample
);
4445 perf_output_end(&handle
);
4449 * task tracking -- fork/exit
4451 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4454 struct perf_task_event
{
4455 struct task_struct
*task
;
4456 struct perf_event_context
*task_ctx
;
4459 struct perf_event_header header
;
4469 static void perf_event_task_output(struct perf_event
*event
,
4470 struct perf_task_event
*task_event
)
4472 struct perf_output_handle handle
;
4473 struct perf_sample_data sample
;
4474 struct task_struct
*task
= task_event
->task
;
4475 int ret
, size
= task_event
->event_id
.header
.size
;
4477 perf_event_header__init_id(&task_event
->event_id
.header
, &sample
, event
);
4479 ret
= perf_output_begin(&handle
, event
,
4480 task_event
->event_id
.header
.size
, 0, 0);
4484 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
4485 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
4487 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
4488 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
4490 perf_output_put(&handle
, task_event
->event_id
);
4492 perf_event__output_id_sample(event
, &handle
, &sample
);
4494 perf_output_end(&handle
);
4496 task_event
->event_id
.header
.size
= size
;
4499 static int perf_event_task_match(struct perf_event
*event
)
4501 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
4504 if (!event_filter_match(event
))
4507 if (event
->attr
.comm
|| event
->attr
.mmap
||
4508 event
->attr
.mmap_data
|| event
->attr
.task
)
4514 static void perf_event_task_ctx(struct perf_event_context
*ctx
,
4515 struct perf_task_event
*task_event
)
4517 struct perf_event
*event
;
4519 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
4520 if (perf_event_task_match(event
))
4521 perf_event_task_output(event
, task_event
);
4525 static void perf_event_task_event(struct perf_task_event
*task_event
)
4527 struct perf_cpu_context
*cpuctx
;
4528 struct perf_event_context
*ctx
;
4533 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
4534 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
4535 if (cpuctx
->active_pmu
!= pmu
)
4537 perf_event_task_ctx(&cpuctx
->ctx
, task_event
);
4539 ctx
= task_event
->task_ctx
;
4541 ctxn
= pmu
->task_ctx_nr
;
4544 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
4547 perf_event_task_ctx(ctx
, task_event
);
4549 put_cpu_ptr(pmu
->pmu_cpu_context
);
4554 static void perf_event_task(struct task_struct
*task
,
4555 struct perf_event_context
*task_ctx
,
4558 struct perf_task_event task_event
;
4560 if (!atomic_read(&nr_comm_events
) &&
4561 !atomic_read(&nr_mmap_events
) &&
4562 !atomic_read(&nr_task_events
))
4565 task_event
= (struct perf_task_event
){
4567 .task_ctx
= task_ctx
,
4570 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
4572 .size
= sizeof(task_event
.event_id
),
4578 .time
= perf_clock(),
4582 perf_event_task_event(&task_event
);
4585 void perf_event_fork(struct task_struct
*task
)
4587 perf_event_task(task
, NULL
, 1);
4594 struct perf_comm_event
{
4595 struct task_struct
*task
;
4600 struct perf_event_header header
;
4607 static void perf_event_comm_output(struct perf_event
*event
,
4608 struct perf_comm_event
*comm_event
)
4610 struct perf_output_handle handle
;
4611 struct perf_sample_data sample
;
4612 int size
= comm_event
->event_id
.header
.size
;
4615 perf_event_header__init_id(&comm_event
->event_id
.header
, &sample
, event
);
4616 ret
= perf_output_begin(&handle
, event
,
4617 comm_event
->event_id
.header
.size
, 0, 0);
4622 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
4623 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
4625 perf_output_put(&handle
, comm_event
->event_id
);
4626 perf_output_copy(&handle
, comm_event
->comm
,
4627 comm_event
->comm_size
);
4629 perf_event__output_id_sample(event
, &handle
, &sample
);
4631 perf_output_end(&handle
);
4633 comm_event
->event_id
.header
.size
= size
;
4636 static int perf_event_comm_match(struct perf_event
*event
)
4638 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
4641 if (!event_filter_match(event
))
4644 if (event
->attr
.comm
)
4650 static void perf_event_comm_ctx(struct perf_event_context
*ctx
,
4651 struct perf_comm_event
*comm_event
)
4653 struct perf_event
*event
;
4655 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
4656 if (perf_event_comm_match(event
))
4657 perf_event_comm_output(event
, comm_event
);
4661 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
4663 struct perf_cpu_context
*cpuctx
;
4664 struct perf_event_context
*ctx
;
4665 char comm
[TASK_COMM_LEN
];
4670 memset(comm
, 0, sizeof(comm
));
4671 strlcpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
4672 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
4674 comm_event
->comm
= comm
;
4675 comm_event
->comm_size
= size
;
4677 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
4679 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
4680 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
4681 if (cpuctx
->active_pmu
!= pmu
)
4683 perf_event_comm_ctx(&cpuctx
->ctx
, comm_event
);
4685 ctxn
= pmu
->task_ctx_nr
;
4689 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
4691 perf_event_comm_ctx(ctx
, comm_event
);
4693 put_cpu_ptr(pmu
->pmu_cpu_context
);
4698 void perf_event_comm(struct task_struct
*task
)
4700 struct perf_comm_event comm_event
;
4701 struct perf_event_context
*ctx
;
4704 for_each_task_context_nr(ctxn
) {
4705 ctx
= task
->perf_event_ctxp
[ctxn
];
4709 perf_event_enable_on_exec(ctx
);
4712 if (!atomic_read(&nr_comm_events
))
4715 comm_event
= (struct perf_comm_event
){
4721 .type
= PERF_RECORD_COMM
,
4730 perf_event_comm_event(&comm_event
);
4737 struct perf_mmap_event
{
4738 struct vm_area_struct
*vma
;
4740 const char *file_name
;
4744 struct perf_event_header header
;
4754 static void perf_event_mmap_output(struct perf_event
*event
,
4755 struct perf_mmap_event
*mmap_event
)
4757 struct perf_output_handle handle
;
4758 struct perf_sample_data sample
;
4759 int size
= mmap_event
->event_id
.header
.size
;
4762 perf_event_header__init_id(&mmap_event
->event_id
.header
, &sample
, event
);
4763 ret
= perf_output_begin(&handle
, event
,
4764 mmap_event
->event_id
.header
.size
, 0, 0);
4768 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
4769 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
4771 perf_output_put(&handle
, mmap_event
->event_id
);
4772 perf_output_copy(&handle
, mmap_event
->file_name
,
4773 mmap_event
->file_size
);
4775 perf_event__output_id_sample(event
, &handle
, &sample
);
4777 perf_output_end(&handle
);
4779 mmap_event
->event_id
.header
.size
= size
;
4782 static int perf_event_mmap_match(struct perf_event
*event
,
4783 struct perf_mmap_event
*mmap_event
,
4786 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
4789 if (!event_filter_match(event
))
4792 if ((!executable
&& event
->attr
.mmap_data
) ||
4793 (executable
&& event
->attr
.mmap
))
4799 static void perf_event_mmap_ctx(struct perf_event_context
*ctx
,
4800 struct perf_mmap_event
*mmap_event
,
4803 struct perf_event
*event
;
4805 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
4806 if (perf_event_mmap_match(event
, mmap_event
, executable
))
4807 perf_event_mmap_output(event
, mmap_event
);
4811 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
4813 struct perf_cpu_context
*cpuctx
;
4814 struct perf_event_context
*ctx
;
4815 struct vm_area_struct
*vma
= mmap_event
->vma
;
4816 struct file
*file
= vma
->vm_file
;
4824 memset(tmp
, 0, sizeof(tmp
));
4828 * d_path works from the end of the buffer backwards, so we
4829 * need to add enough zero bytes after the string to handle
4830 * the 64bit alignment we do later.
4832 buf
= kzalloc(PATH_MAX
+ sizeof(u64
), GFP_KERNEL
);
4834 name
= strncpy(tmp
, "//enomem", sizeof(tmp
));
4837 name
= d_path(&file
->f_path
, buf
, PATH_MAX
);
4839 name
= strncpy(tmp
, "//toolong", sizeof(tmp
));
4843 if (arch_vma_name(mmap_event
->vma
)) {
4844 name
= strncpy(tmp
, arch_vma_name(mmap_event
->vma
),
4850 name
= strncpy(tmp
, "[vdso]", sizeof(tmp
));
4852 } else if (vma
->vm_start
<= vma
->vm_mm
->start_brk
&&
4853 vma
->vm_end
>= vma
->vm_mm
->brk
) {
4854 name
= strncpy(tmp
, "[heap]", sizeof(tmp
));
4856 } else if (vma
->vm_start
<= vma
->vm_mm
->start_stack
&&
4857 vma
->vm_end
>= vma
->vm_mm
->start_stack
) {
4858 name
= strncpy(tmp
, "[stack]", sizeof(tmp
));
4862 name
= strncpy(tmp
, "//anon", sizeof(tmp
));
4867 size
= ALIGN(strlen(name
)+1, sizeof(u64
));
4869 mmap_event
->file_name
= name
;
4870 mmap_event
->file_size
= size
;
4872 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
4875 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
4876 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
4877 if (cpuctx
->active_pmu
!= pmu
)
4879 perf_event_mmap_ctx(&cpuctx
->ctx
, mmap_event
,
4880 vma
->vm_flags
& VM_EXEC
);
4882 ctxn
= pmu
->task_ctx_nr
;
4886 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
4888 perf_event_mmap_ctx(ctx
, mmap_event
,
4889 vma
->vm_flags
& VM_EXEC
);
4892 put_cpu_ptr(pmu
->pmu_cpu_context
);
4899 void perf_event_mmap(struct vm_area_struct
*vma
)
4901 struct perf_mmap_event mmap_event
;
4903 if (!atomic_read(&nr_mmap_events
))
4906 mmap_event
= (struct perf_mmap_event
){
4912 .type
= PERF_RECORD_MMAP
,
4913 .misc
= PERF_RECORD_MISC_USER
,
4918 .start
= vma
->vm_start
,
4919 .len
= vma
->vm_end
- vma
->vm_start
,
4920 .pgoff
= (u64
)vma
->vm_pgoff
<< PAGE_SHIFT
,
4924 perf_event_mmap_event(&mmap_event
);
4928 * IRQ throttle logging
4931 static void perf_log_throttle(struct perf_event
*event
, int enable
)
4933 struct perf_output_handle handle
;
4934 struct perf_sample_data sample
;
4938 struct perf_event_header header
;
4942 } throttle_event
= {
4944 .type
= PERF_RECORD_THROTTLE
,
4946 .size
= sizeof(throttle_event
),
4948 .time
= perf_clock(),
4949 .id
= primary_event_id(event
),
4950 .stream_id
= event
->id
,
4954 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
4956 perf_event_header__init_id(&throttle_event
.header
, &sample
, event
);
4958 ret
= perf_output_begin(&handle
, event
,
4959 throttle_event
.header
.size
, 1, 0);
4963 perf_output_put(&handle
, throttle_event
);
4964 perf_event__output_id_sample(event
, &handle
, &sample
);
4965 perf_output_end(&handle
);
4969 * Generic event overflow handling, sampling.
4972 static int __perf_event_overflow(struct perf_event
*event
, int nmi
,
4973 int throttle
, struct perf_sample_data
*data
,
4974 struct pt_regs
*regs
)
4976 int events
= atomic_read(&event
->event_limit
);
4977 struct hw_perf_event
*hwc
= &event
->hw
;
4981 * Non-sampling counters might still use the PMI to fold short
4982 * hardware counters, ignore those.
4984 if (unlikely(!is_sampling_event(event
)))
4987 if (unlikely(hwc
->interrupts
>= max_samples_per_tick
)) {
4989 hwc
->interrupts
= MAX_INTERRUPTS
;
4990 perf_log_throttle(event
, 0);
4996 if (event
->attr
.freq
) {
4997 u64 now
= perf_clock();
4998 s64 delta
= now
- hwc
->freq_time_stamp
;
5000 hwc
->freq_time_stamp
= now
;
5002 if (delta
> 0 && delta
< 2*TICK_NSEC
)
5003 perf_adjust_period(event
, delta
, hwc
->last_period
);
5007 * XXX event_limit might not quite work as expected on inherited
5011 event
->pending_kill
= POLL_IN
;
5012 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
5014 event
->pending_kill
= POLL_HUP
;
5016 event
->pending_disable
= 1;
5017 irq_work_queue(&event
->pending
);
5019 perf_event_disable(event
);
5022 if (event
->overflow_handler
)
5023 event
->overflow_handler(event
, nmi
, data
, regs
);
5025 perf_event_output(event
, nmi
, data
, regs
);
5030 int perf_event_overflow(struct perf_event
*event
, int nmi
,
5031 struct perf_sample_data
*data
,
5032 struct pt_regs
*regs
)
5034 return __perf_event_overflow(event
, nmi
, 1, data
, regs
);
5038 * Generic software event infrastructure
5041 struct swevent_htable
{
5042 struct swevent_hlist
*swevent_hlist
;
5043 struct mutex hlist_mutex
;
5046 /* Recursion avoidance in each contexts */
5047 int recursion
[PERF_NR_CONTEXTS
];
5050 static DEFINE_PER_CPU(struct swevent_htable
, swevent_htable
);
5053 * We directly increment event->count and keep a second value in
5054 * event->hw.period_left to count intervals. This period event
5055 * is kept in the range [-sample_period, 0] so that we can use the
5059 static u64
perf_swevent_set_period(struct perf_event
*event
)
5061 struct hw_perf_event
*hwc
= &event
->hw
;
5062 u64 period
= hwc
->last_period
;
5066 hwc
->last_period
= hwc
->sample_period
;
5069 old
= val
= local64_read(&hwc
->period_left
);
5073 nr
= div64_u64(period
+ val
, period
);
5074 offset
= nr
* period
;
5076 if (local64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
5082 static void perf_swevent_overflow(struct perf_event
*event
, u64 overflow
,
5083 int nmi
, struct perf_sample_data
*data
,
5084 struct pt_regs
*regs
)
5086 struct hw_perf_event
*hwc
= &event
->hw
;
5089 data
->period
= event
->hw
.last_period
;
5091 overflow
= perf_swevent_set_period(event
);
5093 if (hwc
->interrupts
== MAX_INTERRUPTS
)
5096 for (; overflow
; overflow
--) {
5097 if (__perf_event_overflow(event
, nmi
, throttle
,
5100 * We inhibit the overflow from happening when
5101 * hwc->interrupts == MAX_INTERRUPTS.
5109 static void perf_swevent_event(struct perf_event
*event
, u64 nr
,
5110 int nmi
, struct perf_sample_data
*data
,
5111 struct pt_regs
*regs
)
5113 struct hw_perf_event
*hwc
= &event
->hw
;
5115 local64_add(nr
, &event
->count
);
5120 if (!is_sampling_event(event
))
5123 if (nr
== 1 && hwc
->sample_period
== 1 && !event
->attr
.freq
)
5124 return perf_swevent_overflow(event
, 1, nmi
, data
, regs
);
5126 if (local64_add_negative(nr
, &hwc
->period_left
))
5129 perf_swevent_overflow(event
, 0, nmi
, data
, regs
);
5132 static int perf_exclude_event(struct perf_event
*event
,
5133 struct pt_regs
*regs
)
5135 if (event
->hw
.state
& PERF_HES_STOPPED
)
5139 if (event
->attr
.exclude_user
&& user_mode(regs
))
5142 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
5149 static int perf_swevent_match(struct perf_event
*event
,
5150 enum perf_type_id type
,
5152 struct perf_sample_data
*data
,
5153 struct pt_regs
*regs
)
5155 if (event
->attr
.type
!= type
)
5158 if (event
->attr
.config
!= event_id
)
5161 if (perf_exclude_event(event
, regs
))
5167 static inline u64
swevent_hash(u64 type
, u32 event_id
)
5169 u64 val
= event_id
| (type
<< 32);
5171 return hash_64(val
, SWEVENT_HLIST_BITS
);
5174 static inline struct hlist_head
*
5175 __find_swevent_head(struct swevent_hlist
*hlist
, u64 type
, u32 event_id
)
5177 u64 hash
= swevent_hash(type
, event_id
);
5179 return &hlist
->heads
[hash
];
5182 /* For the read side: events when they trigger */
5183 static inline struct hlist_head
*
5184 find_swevent_head_rcu(struct swevent_htable
*swhash
, u64 type
, u32 event_id
)
5186 struct swevent_hlist
*hlist
;
5188 hlist
= rcu_dereference(swhash
->swevent_hlist
);
5192 return __find_swevent_head(hlist
, type
, event_id
);
5195 /* For the event head insertion and removal in the hlist */
5196 static inline struct hlist_head
*
5197 find_swevent_head(struct swevent_htable
*swhash
, struct perf_event
*event
)
5199 struct swevent_hlist
*hlist
;
5200 u32 event_id
= event
->attr
.config
;
5201 u64 type
= event
->attr
.type
;
5204 * Event scheduling is always serialized against hlist allocation
5205 * and release. Which makes the protected version suitable here.
5206 * The context lock guarantees that.
5208 hlist
= rcu_dereference_protected(swhash
->swevent_hlist
,
5209 lockdep_is_held(&event
->ctx
->lock
));
5213 return __find_swevent_head(hlist
, type
, event_id
);
5216 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
5218 struct perf_sample_data
*data
,
5219 struct pt_regs
*regs
)
5221 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
5222 struct perf_event
*event
;
5223 struct hlist_node
*node
;
5224 struct hlist_head
*head
;
5227 head
= find_swevent_head_rcu(swhash
, type
, event_id
);
5231 hlist_for_each_entry_rcu(event
, node
, head
, hlist_entry
) {
5232 if (perf_swevent_match(event
, type
, event_id
, data
, regs
))
5233 perf_swevent_event(event
, nr
, nmi
, data
, regs
);
5239 int perf_swevent_get_recursion_context(void)
5241 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
5243 return get_recursion_context(swhash
->recursion
);
5245 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context
);
5247 inline void perf_swevent_put_recursion_context(int rctx
)
5249 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
5251 put_recursion_context(swhash
->recursion
, rctx
);
5254 void __perf_sw_event(u32 event_id
, u64 nr
, int nmi
,
5255 struct pt_regs
*regs
, u64 addr
)
5257 struct perf_sample_data data
;
5260 preempt_disable_notrace();
5261 rctx
= perf_swevent_get_recursion_context();
5265 perf_sample_data_init(&data
, addr
);
5267 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, nmi
, &data
, regs
);
5269 perf_swevent_put_recursion_context(rctx
);
5270 preempt_enable_notrace();
5273 static void perf_swevent_read(struct perf_event
*event
)
5277 static int perf_swevent_add(struct perf_event
*event
, int flags
)
5279 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
5280 struct hw_perf_event
*hwc
= &event
->hw
;
5281 struct hlist_head
*head
;
5283 if (is_sampling_event(event
)) {
5284 hwc
->last_period
= hwc
->sample_period
;
5285 perf_swevent_set_period(event
);
5288 hwc
->state
= !(flags
& PERF_EF_START
);
5290 head
= find_swevent_head(swhash
, event
);
5291 if (WARN_ON_ONCE(!head
))
5294 hlist_add_head_rcu(&event
->hlist_entry
, head
);
5299 static void perf_swevent_del(struct perf_event
*event
, int flags
)
5301 hlist_del_rcu(&event
->hlist_entry
);
5304 static void perf_swevent_start(struct perf_event
*event
, int flags
)
5306 event
->hw
.state
= 0;
5309 static void perf_swevent_stop(struct perf_event
*event
, int flags
)
5311 event
->hw
.state
= PERF_HES_STOPPED
;
5314 /* Deref the hlist from the update side */
5315 static inline struct swevent_hlist
*
5316 swevent_hlist_deref(struct swevent_htable
*swhash
)
5318 return rcu_dereference_protected(swhash
->swevent_hlist
,
5319 lockdep_is_held(&swhash
->hlist_mutex
));
5322 static void swevent_hlist_release_rcu(struct rcu_head
*rcu_head
)
5324 struct swevent_hlist
*hlist
;
5326 hlist
= container_of(rcu_head
, struct swevent_hlist
, rcu_head
);
5330 static void swevent_hlist_release(struct swevent_htable
*swhash
)
5332 struct swevent_hlist
*hlist
= swevent_hlist_deref(swhash
);
5337 rcu_assign_pointer(swhash
->swevent_hlist
, NULL
);
5338 call_rcu(&hlist
->rcu_head
, swevent_hlist_release_rcu
);
5341 static void swevent_hlist_put_cpu(struct perf_event
*event
, int cpu
)
5343 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
5345 mutex_lock(&swhash
->hlist_mutex
);
5347 if (!--swhash
->hlist_refcount
)
5348 swevent_hlist_release(swhash
);
5350 mutex_unlock(&swhash
->hlist_mutex
);
5353 static void swevent_hlist_put(struct perf_event
*event
)
5357 if (event
->cpu
!= -1) {
5358 swevent_hlist_put_cpu(event
, event
->cpu
);
5362 for_each_possible_cpu(cpu
)
5363 swevent_hlist_put_cpu(event
, cpu
);
5366 static int swevent_hlist_get_cpu(struct perf_event
*event
, int cpu
)
5368 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
5371 mutex_lock(&swhash
->hlist_mutex
);
5373 if (!swevent_hlist_deref(swhash
) && cpu_online(cpu
)) {
5374 struct swevent_hlist
*hlist
;
5376 hlist
= kzalloc(sizeof(*hlist
), GFP_KERNEL
);
5381 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
5383 swhash
->hlist_refcount
++;
5385 mutex_unlock(&swhash
->hlist_mutex
);
5390 static int swevent_hlist_get(struct perf_event
*event
)
5393 int cpu
, failed_cpu
;
5395 if (event
->cpu
!= -1)
5396 return swevent_hlist_get_cpu(event
, event
->cpu
);
5399 for_each_possible_cpu(cpu
) {
5400 err
= swevent_hlist_get_cpu(event
, cpu
);
5410 for_each_possible_cpu(cpu
) {
5411 if (cpu
== failed_cpu
)
5413 swevent_hlist_put_cpu(event
, cpu
);
5420 atomic_t perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
5422 static void sw_perf_event_destroy(struct perf_event
*event
)
5424 u64 event_id
= event
->attr
.config
;
5426 WARN_ON(event
->parent
);
5428 jump_label_dec(&perf_swevent_enabled
[event_id
]);
5429 swevent_hlist_put(event
);
5432 static int perf_swevent_init(struct perf_event
*event
)
5434 int event_id
= event
->attr
.config
;
5436 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
5440 case PERF_COUNT_SW_CPU_CLOCK
:
5441 case PERF_COUNT_SW_TASK_CLOCK
:
5448 if (event_id
>= PERF_COUNT_SW_MAX
)
5451 if (!event
->parent
) {
5454 err
= swevent_hlist_get(event
);
5458 jump_label_inc(&perf_swevent_enabled
[event_id
]);
5459 event
->destroy
= sw_perf_event_destroy
;
5465 static struct pmu perf_swevent
= {
5466 .task_ctx_nr
= perf_sw_context
,
5468 .event_init
= perf_swevent_init
,
5469 .add
= perf_swevent_add
,
5470 .del
= perf_swevent_del
,
5471 .start
= perf_swevent_start
,
5472 .stop
= perf_swevent_stop
,
5473 .read
= perf_swevent_read
,
5476 #ifdef CONFIG_EVENT_TRACING
5478 static int perf_tp_filter_match(struct perf_event
*event
,
5479 struct perf_sample_data
*data
)
5481 void *record
= data
->raw
->data
;
5483 if (likely(!event
->filter
) || filter_match_preds(event
->filter
, record
))
5488 static int perf_tp_event_match(struct perf_event
*event
,
5489 struct perf_sample_data
*data
,
5490 struct pt_regs
*regs
)
5492 if (event
->hw
.state
& PERF_HES_STOPPED
)
5495 * All tracepoints are from kernel-space.
5497 if (event
->attr
.exclude_kernel
)
5500 if (!perf_tp_filter_match(event
, data
))
5506 void perf_tp_event(u64 addr
, u64 count
, void *record
, int entry_size
,
5507 struct pt_regs
*regs
, struct hlist_head
*head
, int rctx
)
5509 struct perf_sample_data data
;
5510 struct perf_event
*event
;
5511 struct hlist_node
*node
;
5513 struct perf_raw_record raw
= {
5518 perf_sample_data_init(&data
, addr
);
5521 hlist_for_each_entry_rcu(event
, node
, head
, hlist_entry
) {
5522 if (perf_tp_event_match(event
, &data
, regs
))
5523 perf_swevent_event(event
, count
, 1, &data
, regs
);
5526 perf_swevent_put_recursion_context(rctx
);
5528 EXPORT_SYMBOL_GPL(perf_tp_event
);
5530 static void tp_perf_event_destroy(struct perf_event
*event
)
5532 perf_trace_destroy(event
);
5535 static int perf_tp_event_init(struct perf_event
*event
)
5539 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
5542 err
= perf_trace_init(event
);
5546 event
->destroy
= tp_perf_event_destroy
;
5551 static struct pmu perf_tracepoint
= {
5552 .task_ctx_nr
= perf_sw_context
,
5554 .event_init
= perf_tp_event_init
,
5555 .add
= perf_trace_add
,
5556 .del
= perf_trace_del
,
5557 .start
= perf_swevent_start
,
5558 .stop
= perf_swevent_stop
,
5559 .read
= perf_swevent_read
,
5562 static inline void perf_tp_register(void)
5564 perf_pmu_register(&perf_tracepoint
, "tracepoint", PERF_TYPE_TRACEPOINT
);
5567 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
5572 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
5575 filter_str
= strndup_user(arg
, PAGE_SIZE
);
5576 if (IS_ERR(filter_str
))
5577 return PTR_ERR(filter_str
);
5579 ret
= ftrace_profile_set_filter(event
, event
->attr
.config
, filter_str
);
5585 static void perf_event_free_filter(struct perf_event
*event
)
5587 ftrace_profile_free_filter(event
);
5592 static inline void perf_tp_register(void)
5596 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
5601 static void perf_event_free_filter(struct perf_event
*event
)
5605 #endif /* CONFIG_EVENT_TRACING */
5607 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5608 void perf_bp_event(struct perf_event
*bp
, void *data
)
5610 struct perf_sample_data sample
;
5611 struct pt_regs
*regs
= data
;
5613 perf_sample_data_init(&sample
, bp
->attr
.bp_addr
);
5615 if (!bp
->hw
.state
&& !perf_exclude_event(bp
, regs
))
5616 perf_swevent_event(bp
, 1, 1, &sample
, regs
);
5621 * hrtimer based swevent callback
5624 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
5626 enum hrtimer_restart ret
= HRTIMER_RESTART
;
5627 struct perf_sample_data data
;
5628 struct pt_regs
*regs
;
5629 struct perf_event
*event
;
5632 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
5634 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
5635 return HRTIMER_NORESTART
;
5637 event
->pmu
->read(event
);
5639 perf_sample_data_init(&data
, 0);
5640 data
.period
= event
->hw
.last_period
;
5641 regs
= get_irq_regs();
5643 if (regs
&& !perf_exclude_event(event
, regs
)) {
5644 if (!(event
->attr
.exclude_idle
&& current
->pid
== 0))
5645 if (perf_event_overflow(event
, 0, &data
, regs
))
5646 ret
= HRTIMER_NORESTART
;
5649 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
5650 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
5655 static void perf_swevent_start_hrtimer(struct perf_event
*event
)
5657 struct hw_perf_event
*hwc
= &event
->hw
;
5660 if (!is_sampling_event(event
))
5663 period
= local64_read(&hwc
->period_left
);
5668 local64_set(&hwc
->period_left
, 0);
5670 period
= max_t(u64
, 10000, hwc
->sample_period
);
5672 __hrtimer_start_range_ns(&hwc
->hrtimer
,
5673 ns_to_ktime(period
), 0,
5674 HRTIMER_MODE_REL_PINNED
, 0);
5677 static void perf_swevent_cancel_hrtimer(struct perf_event
*event
)
5679 struct hw_perf_event
*hwc
= &event
->hw
;
5681 if (is_sampling_event(event
)) {
5682 ktime_t remaining
= hrtimer_get_remaining(&hwc
->hrtimer
);
5683 local64_set(&hwc
->period_left
, ktime_to_ns(remaining
));
5685 hrtimer_cancel(&hwc
->hrtimer
);
5689 static void perf_swevent_init_hrtimer(struct perf_event
*event
)
5691 struct hw_perf_event
*hwc
= &event
->hw
;
5693 if (!is_sampling_event(event
))
5696 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
5697 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
5700 * Since hrtimers have a fixed rate, we can do a static freq->period
5701 * mapping and avoid the whole period adjust feedback stuff.
5703 if (event
->attr
.freq
) {
5704 long freq
= event
->attr
.sample_freq
;
5706 event
->attr
.sample_period
= NSEC_PER_SEC
/ freq
;
5707 hwc
->sample_period
= event
->attr
.sample_period
;
5708 local64_set(&hwc
->period_left
, hwc
->sample_period
);
5709 event
->attr
.freq
= 0;
5714 * Software event: cpu wall time clock
5717 static void cpu_clock_event_update(struct perf_event
*event
)
5722 now
= local_clock();
5723 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
5724 local64_add(now
- prev
, &event
->count
);
5727 static void cpu_clock_event_start(struct perf_event
*event
, int flags
)
5729 local64_set(&event
->hw
.prev_count
, local_clock());
5730 perf_swevent_start_hrtimer(event
);
5733 static void cpu_clock_event_stop(struct perf_event
*event
, int flags
)
5735 perf_swevent_cancel_hrtimer(event
);
5736 cpu_clock_event_update(event
);
5739 static int cpu_clock_event_add(struct perf_event
*event
, int flags
)
5741 if (flags
& PERF_EF_START
)
5742 cpu_clock_event_start(event
, flags
);
5747 static void cpu_clock_event_del(struct perf_event
*event
, int flags
)
5749 cpu_clock_event_stop(event
, flags
);
5752 static void cpu_clock_event_read(struct perf_event
*event
)
5754 cpu_clock_event_update(event
);
5757 static int cpu_clock_event_init(struct perf_event
*event
)
5759 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
5762 if (event
->attr
.config
!= PERF_COUNT_SW_CPU_CLOCK
)
5765 perf_swevent_init_hrtimer(event
);
5770 static struct pmu perf_cpu_clock
= {
5771 .task_ctx_nr
= perf_sw_context
,
5773 .event_init
= cpu_clock_event_init
,
5774 .add
= cpu_clock_event_add
,
5775 .del
= cpu_clock_event_del
,
5776 .start
= cpu_clock_event_start
,
5777 .stop
= cpu_clock_event_stop
,
5778 .read
= cpu_clock_event_read
,
5782 * Software event: task time clock
5785 static void task_clock_event_update(struct perf_event
*event
, u64 now
)
5790 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
5792 local64_add(delta
, &event
->count
);
5795 static void task_clock_event_start(struct perf_event
*event
, int flags
)
5797 local64_set(&event
->hw
.prev_count
, event
->ctx
->time
);
5798 perf_swevent_start_hrtimer(event
);
5801 static void task_clock_event_stop(struct perf_event
*event
, int flags
)
5803 perf_swevent_cancel_hrtimer(event
);
5804 task_clock_event_update(event
, event
->ctx
->time
);
5807 static int task_clock_event_add(struct perf_event
*event
, int flags
)
5809 if (flags
& PERF_EF_START
)
5810 task_clock_event_start(event
, flags
);
5815 static void task_clock_event_del(struct perf_event
*event
, int flags
)
5817 task_clock_event_stop(event
, PERF_EF_UPDATE
);
5820 static void task_clock_event_read(struct perf_event
*event
)
5822 u64 now
= perf_clock();
5823 u64 delta
= now
- event
->ctx
->timestamp
;
5824 u64 time
= event
->ctx
->time
+ delta
;
5826 task_clock_event_update(event
, time
);
5829 static int task_clock_event_init(struct perf_event
*event
)
5831 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
5834 if (event
->attr
.config
!= PERF_COUNT_SW_TASK_CLOCK
)
5837 perf_swevent_init_hrtimer(event
);
5842 static struct pmu perf_task_clock
= {
5843 .task_ctx_nr
= perf_sw_context
,
5845 .event_init
= task_clock_event_init
,
5846 .add
= task_clock_event_add
,
5847 .del
= task_clock_event_del
,
5848 .start
= task_clock_event_start
,
5849 .stop
= task_clock_event_stop
,
5850 .read
= task_clock_event_read
,
5853 static void perf_pmu_nop_void(struct pmu
*pmu
)
5857 static int perf_pmu_nop_int(struct pmu
*pmu
)
5862 static void perf_pmu_start_txn(struct pmu
*pmu
)
5864 perf_pmu_disable(pmu
);
5867 static int perf_pmu_commit_txn(struct pmu
*pmu
)
5869 perf_pmu_enable(pmu
);
5873 static void perf_pmu_cancel_txn(struct pmu
*pmu
)
5875 perf_pmu_enable(pmu
);
5879 * Ensures all contexts with the same task_ctx_nr have the same
5880 * pmu_cpu_context too.
5882 static void *find_pmu_context(int ctxn
)
5889 list_for_each_entry(pmu
, &pmus
, entry
) {
5890 if (pmu
->task_ctx_nr
== ctxn
)
5891 return pmu
->pmu_cpu_context
;
5897 static void update_pmu_context(struct pmu
*pmu
, struct pmu
*old_pmu
)
5901 for_each_possible_cpu(cpu
) {
5902 struct perf_cpu_context
*cpuctx
;
5904 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
5906 if (cpuctx
->active_pmu
== old_pmu
)
5907 cpuctx
->active_pmu
= pmu
;
5911 static void free_pmu_context(struct pmu
*pmu
)
5915 mutex_lock(&pmus_lock
);
5917 * Like a real lame refcount.
5919 list_for_each_entry(i
, &pmus
, entry
) {
5920 if (i
->pmu_cpu_context
== pmu
->pmu_cpu_context
) {
5921 update_pmu_context(i
, pmu
);
5926 free_percpu(pmu
->pmu_cpu_context
);
5928 mutex_unlock(&pmus_lock
);
5930 static struct idr pmu_idr
;
5933 type_show(struct device
*dev
, struct device_attribute
*attr
, char *page
)
5935 struct pmu
*pmu
= dev_get_drvdata(dev
);
5937 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->type
);
5940 static struct device_attribute pmu_dev_attrs
[] = {
5945 static int pmu_bus_running
;
5946 static struct bus_type pmu_bus
= {
5947 .name
= "event_source",
5948 .dev_attrs
= pmu_dev_attrs
,
5951 static void pmu_dev_release(struct device
*dev
)
5956 static int pmu_dev_alloc(struct pmu
*pmu
)
5960 pmu
->dev
= kzalloc(sizeof(struct device
), GFP_KERNEL
);
5964 device_initialize(pmu
->dev
);
5965 ret
= dev_set_name(pmu
->dev
, "%s", pmu
->name
);
5969 dev_set_drvdata(pmu
->dev
, pmu
);
5970 pmu
->dev
->bus
= &pmu_bus
;
5971 pmu
->dev
->release
= pmu_dev_release
;
5972 ret
= device_add(pmu
->dev
);
5980 put_device(pmu
->dev
);
5984 static struct lock_class_key cpuctx_mutex
;
5986 int perf_pmu_register(struct pmu
*pmu
, char *name
, int type
)
5990 mutex_lock(&pmus_lock
);
5992 pmu
->pmu_disable_count
= alloc_percpu(int);
5993 if (!pmu
->pmu_disable_count
)
6002 int err
= idr_pre_get(&pmu_idr
, GFP_KERNEL
);
6006 err
= idr_get_new_above(&pmu_idr
, pmu
, PERF_TYPE_MAX
, &type
);
6014 if (pmu_bus_running
) {
6015 ret
= pmu_dev_alloc(pmu
);
6021 pmu
->pmu_cpu_context
= find_pmu_context(pmu
->task_ctx_nr
);
6022 if (pmu
->pmu_cpu_context
)
6023 goto got_cpu_context
;
6025 pmu
->pmu_cpu_context
= alloc_percpu(struct perf_cpu_context
);
6026 if (!pmu
->pmu_cpu_context
)
6029 for_each_possible_cpu(cpu
) {
6030 struct perf_cpu_context
*cpuctx
;
6032 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
6033 __perf_event_init_context(&cpuctx
->ctx
);
6034 lockdep_set_class(&cpuctx
->ctx
.mutex
, &cpuctx_mutex
);
6035 cpuctx
->ctx
.type
= cpu_context
;
6036 cpuctx
->ctx
.pmu
= pmu
;
6037 cpuctx
->jiffies_interval
= 1;
6038 INIT_LIST_HEAD(&cpuctx
->rotation_list
);
6039 cpuctx
->active_pmu
= pmu
;
6043 if (!pmu
->start_txn
) {
6044 if (pmu
->pmu_enable
) {
6046 * If we have pmu_enable/pmu_disable calls, install
6047 * transaction stubs that use that to try and batch
6048 * hardware accesses.
6050 pmu
->start_txn
= perf_pmu_start_txn
;
6051 pmu
->commit_txn
= perf_pmu_commit_txn
;
6052 pmu
->cancel_txn
= perf_pmu_cancel_txn
;
6054 pmu
->start_txn
= perf_pmu_nop_void
;
6055 pmu
->commit_txn
= perf_pmu_nop_int
;
6056 pmu
->cancel_txn
= perf_pmu_nop_void
;
6060 if (!pmu
->pmu_enable
) {
6061 pmu
->pmu_enable
= perf_pmu_nop_void
;
6062 pmu
->pmu_disable
= perf_pmu_nop_void
;
6065 list_add_rcu(&pmu
->entry
, &pmus
);
6068 mutex_unlock(&pmus_lock
);
6073 device_del(pmu
->dev
);
6074 put_device(pmu
->dev
);
6077 if (pmu
->type
>= PERF_TYPE_MAX
)
6078 idr_remove(&pmu_idr
, pmu
->type
);
6081 free_percpu(pmu
->pmu_disable_count
);
6085 void perf_pmu_unregister(struct pmu
*pmu
)
6087 mutex_lock(&pmus_lock
);
6088 list_del_rcu(&pmu
->entry
);
6089 mutex_unlock(&pmus_lock
);
6092 * We dereference the pmu list under both SRCU and regular RCU, so
6093 * synchronize against both of those.
6095 synchronize_srcu(&pmus_srcu
);
6098 free_percpu(pmu
->pmu_disable_count
);
6099 if (pmu
->type
>= PERF_TYPE_MAX
)
6100 idr_remove(&pmu_idr
, pmu
->type
);
6101 device_del(pmu
->dev
);
6102 put_device(pmu
->dev
);
6103 free_pmu_context(pmu
);
6106 struct pmu
*perf_init_event(struct perf_event
*event
)
6108 struct pmu
*pmu
= NULL
;
6112 idx
= srcu_read_lock(&pmus_srcu
);
6115 pmu
= idr_find(&pmu_idr
, event
->attr
.type
);
6118 ret
= pmu
->event_init(event
);
6124 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
6125 ret
= pmu
->event_init(event
);
6129 if (ret
!= -ENOENT
) {
6134 pmu
= ERR_PTR(-ENOENT
);
6136 srcu_read_unlock(&pmus_srcu
, idx
);
6142 * Allocate and initialize a event structure
6144 static struct perf_event
*
6145 perf_event_alloc(struct perf_event_attr
*attr
, int cpu
,
6146 struct task_struct
*task
,
6147 struct perf_event
*group_leader
,
6148 struct perf_event
*parent_event
,
6149 perf_overflow_handler_t overflow_handler
)
6152 struct perf_event
*event
;
6153 struct hw_perf_event
*hwc
;
6156 if ((unsigned)cpu
>= nr_cpu_ids
) {
6157 if (!task
|| cpu
!= -1)
6158 return ERR_PTR(-EINVAL
);
6161 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
6163 return ERR_PTR(-ENOMEM
);
6166 * Single events are their own group leaders, with an
6167 * empty sibling list:
6170 group_leader
= event
;
6172 mutex_init(&event
->child_mutex
);
6173 INIT_LIST_HEAD(&event
->child_list
);
6175 INIT_LIST_HEAD(&event
->group_entry
);
6176 INIT_LIST_HEAD(&event
->event_entry
);
6177 INIT_LIST_HEAD(&event
->sibling_list
);
6178 init_waitqueue_head(&event
->waitq
);
6179 init_irq_work(&event
->pending
, perf_pending_event
);
6181 mutex_init(&event
->mmap_mutex
);
6184 event
->attr
= *attr
;
6185 event
->group_leader
= group_leader
;
6189 event
->parent
= parent_event
;
6191 event
->ns
= get_pid_ns(current
->nsproxy
->pid_ns
);
6192 event
->id
= atomic64_inc_return(&perf_event_id
);
6194 event
->state
= PERF_EVENT_STATE_INACTIVE
;
6197 event
->attach_state
= PERF_ATTACH_TASK
;
6198 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6200 * hw_breakpoint is a bit difficult here..
6202 if (attr
->type
== PERF_TYPE_BREAKPOINT
)
6203 event
->hw
.bp_target
= task
;
6207 if (!overflow_handler
&& parent_event
)
6208 overflow_handler
= parent_event
->overflow_handler
;
6210 event
->overflow_handler
= overflow_handler
;
6213 event
->state
= PERF_EVENT_STATE_OFF
;
6218 hwc
->sample_period
= attr
->sample_period
;
6219 if (attr
->freq
&& attr
->sample_freq
)
6220 hwc
->sample_period
= 1;
6221 hwc
->last_period
= hwc
->sample_period
;
6223 local64_set(&hwc
->period_left
, hwc
->sample_period
);
6226 * we currently do not support PERF_FORMAT_GROUP on inherited events
6228 if (attr
->inherit
&& (attr
->read_format
& PERF_FORMAT_GROUP
))
6231 pmu
= perf_init_event(event
);
6237 else if (IS_ERR(pmu
))
6242 put_pid_ns(event
->ns
);
6244 return ERR_PTR(err
);
6249 if (!event
->parent
) {
6250 if (event
->attach_state
& PERF_ATTACH_TASK
)
6251 jump_label_inc(&perf_sched_events
);
6252 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
6253 atomic_inc(&nr_mmap_events
);
6254 if (event
->attr
.comm
)
6255 atomic_inc(&nr_comm_events
);
6256 if (event
->attr
.task
)
6257 atomic_inc(&nr_task_events
);
6258 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
) {
6259 err
= get_callchain_buffers();
6262 return ERR_PTR(err
);
6270 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
6271 struct perf_event_attr
*attr
)
6276 if (!access_ok(VERIFY_WRITE
, uattr
, PERF_ATTR_SIZE_VER0
))
6280 * zero the full structure, so that a short copy will be nice.
6282 memset(attr
, 0, sizeof(*attr
));
6284 ret
= get_user(size
, &uattr
->size
);
6288 if (size
> PAGE_SIZE
) /* silly large */
6291 if (!size
) /* abi compat */
6292 size
= PERF_ATTR_SIZE_VER0
;
6294 if (size
< PERF_ATTR_SIZE_VER0
)
6298 * If we're handed a bigger struct than we know of,
6299 * ensure all the unknown bits are 0 - i.e. new
6300 * user-space does not rely on any kernel feature
6301 * extensions we dont know about yet.
6303 if (size
> sizeof(*attr
)) {
6304 unsigned char __user
*addr
;
6305 unsigned char __user
*end
;
6308 addr
= (void __user
*)uattr
+ sizeof(*attr
);
6309 end
= (void __user
*)uattr
+ size
;
6311 for (; addr
< end
; addr
++) {
6312 ret
= get_user(val
, addr
);
6318 size
= sizeof(*attr
);
6321 ret
= copy_from_user(attr
, uattr
, size
);
6326 * If the type exists, the corresponding creation will verify
6329 if (attr
->type
>= PERF_TYPE_MAX
)
6332 if (attr
->__reserved_1
)
6335 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
6338 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
6345 put_user(sizeof(*attr
), &uattr
->size
);
6351 perf_event_set_output(struct perf_event
*event
, struct perf_event
*output_event
)
6353 struct perf_buffer
*buffer
= NULL
, *old_buffer
= NULL
;
6359 /* don't allow circular references */
6360 if (event
== output_event
)
6364 * Don't allow cross-cpu buffers
6366 if (output_event
->cpu
!= event
->cpu
)
6370 * If its not a per-cpu buffer, it must be the same task.
6372 if (output_event
->cpu
== -1 && output_event
->ctx
!= event
->ctx
)
6376 mutex_lock(&event
->mmap_mutex
);
6377 /* Can't redirect output if we've got an active mmap() */
6378 if (atomic_read(&event
->mmap_count
))
6382 /* get the buffer we want to redirect to */
6383 buffer
= perf_buffer_get(output_event
);
6388 old_buffer
= event
->buffer
;
6389 rcu_assign_pointer(event
->buffer
, buffer
);
6392 mutex_unlock(&event
->mmap_mutex
);
6395 perf_buffer_put(old_buffer
);
6401 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6403 * @attr_uptr: event_id type attributes for monitoring/sampling
6406 * @group_fd: group leader event fd
6408 SYSCALL_DEFINE5(perf_event_open
,
6409 struct perf_event_attr __user
*, attr_uptr
,
6410 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
6412 struct perf_event
*group_leader
= NULL
, *output_event
= NULL
;
6413 struct perf_event
*event
, *sibling
;
6414 struct perf_event_attr attr
;
6415 struct perf_event_context
*ctx
;
6416 struct file
*event_file
= NULL
;
6417 struct file
*group_file
= NULL
;
6418 struct task_struct
*task
= NULL
;
6422 int fput_needed
= 0;
6425 /* for future expandability... */
6426 if (flags
& ~PERF_FLAG_ALL
)
6429 err
= perf_copy_attr(attr_uptr
, &attr
);
6433 if (!attr
.exclude_kernel
) {
6434 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
6439 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
6444 * In cgroup mode, the pid argument is used to pass the fd
6445 * opened to the cgroup directory in cgroupfs. The cpu argument
6446 * designates the cpu on which to monitor threads from that
6449 if ((flags
& PERF_FLAG_PID_CGROUP
) && (pid
== -1 || cpu
== -1))
6452 event_fd
= get_unused_fd_flags(O_RDWR
);
6456 if (group_fd
!= -1) {
6457 group_leader
= perf_fget_light(group_fd
, &fput_needed
);
6458 if (IS_ERR(group_leader
)) {
6459 err
= PTR_ERR(group_leader
);
6462 group_file
= group_leader
->filp
;
6463 if (flags
& PERF_FLAG_FD_OUTPUT
)
6464 output_event
= group_leader
;
6465 if (flags
& PERF_FLAG_FD_NO_GROUP
)
6466 group_leader
= NULL
;
6469 if (pid
!= -1 && !(flags
& PERF_FLAG_PID_CGROUP
)) {
6470 task
= find_lively_task_by_vpid(pid
);
6472 err
= PTR_ERR(task
);
6477 event
= perf_event_alloc(&attr
, cpu
, task
, group_leader
, NULL
, NULL
);
6478 if (IS_ERR(event
)) {
6479 err
= PTR_ERR(event
);
6483 if (flags
& PERF_FLAG_PID_CGROUP
) {
6484 err
= perf_cgroup_connect(pid
, event
, &attr
, group_leader
);
6489 * - that has cgroup constraint on event->cpu
6490 * - that may need work on context switch
6492 atomic_inc(&per_cpu(perf_cgroup_events
, event
->cpu
));
6493 jump_label_inc(&perf_sched_events
);
6497 * Special case software events and allow them to be part of
6498 * any hardware group.
6503 (is_software_event(event
) != is_software_event(group_leader
))) {
6504 if (is_software_event(event
)) {
6506 * If event and group_leader are not both a software
6507 * event, and event is, then group leader is not.
6509 * Allow the addition of software events to !software
6510 * groups, this is safe because software events never
6513 pmu
= group_leader
->pmu
;
6514 } else if (is_software_event(group_leader
) &&
6515 (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
)) {
6517 * In case the group is a pure software group, and we
6518 * try to add a hardware event, move the whole group to
6519 * the hardware context.
6526 * Get the target context (task or percpu):
6528 ctx
= find_get_context(pmu
, task
, cpu
);
6535 put_task_struct(task
);
6540 * Look up the group leader (we will attach this event to it):
6546 * Do not allow a recursive hierarchy (this new sibling
6547 * becoming part of another group-sibling):
6549 if (group_leader
->group_leader
!= group_leader
)
6552 * Do not allow to attach to a group in a different
6553 * task or CPU context:
6556 if (group_leader
->ctx
->type
!= ctx
->type
)
6559 if (group_leader
->ctx
!= ctx
)
6564 * Only a group leader can be exclusive or pinned
6566 if (attr
.exclusive
|| attr
.pinned
)
6571 err
= perf_event_set_output(event
, output_event
);
6576 event_file
= anon_inode_getfile("[perf_event]", &perf_fops
, event
, O_RDWR
);
6577 if (IS_ERR(event_file
)) {
6578 err
= PTR_ERR(event_file
);
6583 struct perf_event_context
*gctx
= group_leader
->ctx
;
6585 mutex_lock(&gctx
->mutex
);
6586 perf_remove_from_context(group_leader
);
6587 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
6589 perf_remove_from_context(sibling
);
6592 mutex_unlock(&gctx
->mutex
);
6596 event
->filp
= event_file
;
6597 WARN_ON_ONCE(ctx
->parent_ctx
);
6598 mutex_lock(&ctx
->mutex
);
6601 perf_install_in_context(ctx
, group_leader
, cpu
);
6603 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
6605 perf_install_in_context(ctx
, sibling
, cpu
);
6610 perf_install_in_context(ctx
, event
, cpu
);
6612 perf_unpin_context(ctx
);
6613 mutex_unlock(&ctx
->mutex
);
6615 event
->owner
= current
;
6617 mutex_lock(¤t
->perf_event_mutex
);
6618 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
6619 mutex_unlock(¤t
->perf_event_mutex
);
6622 * Precalculate sample_data sizes
6624 perf_event__header_size(event
);
6625 perf_event__id_header_size(event
);
6628 * Drop the reference on the group_event after placing the
6629 * new event on the sibling_list. This ensures destruction
6630 * of the group leader will find the pointer to itself in
6631 * perf_group_detach().
6633 fput_light(group_file
, fput_needed
);
6634 fd_install(event_fd
, event_file
);
6638 perf_unpin_context(ctx
);
6644 put_task_struct(task
);
6646 fput_light(group_file
, fput_needed
);
6648 put_unused_fd(event_fd
);
6653 * perf_event_create_kernel_counter
6655 * @attr: attributes of the counter to create
6656 * @cpu: cpu in which the counter is bound
6657 * @task: task to profile (NULL for percpu)
6660 perf_event_create_kernel_counter(struct perf_event_attr
*attr
, int cpu
,
6661 struct task_struct
*task
,
6662 perf_overflow_handler_t overflow_handler
)
6664 struct perf_event_context
*ctx
;
6665 struct perf_event
*event
;
6669 * Get the target context (task or percpu):
6672 event
= perf_event_alloc(attr
, cpu
, task
, NULL
, NULL
, overflow_handler
);
6673 if (IS_ERR(event
)) {
6674 err
= PTR_ERR(event
);
6678 ctx
= find_get_context(event
->pmu
, task
, cpu
);
6685 WARN_ON_ONCE(ctx
->parent_ctx
);
6686 mutex_lock(&ctx
->mutex
);
6687 perf_install_in_context(ctx
, event
, cpu
);
6689 perf_unpin_context(ctx
);
6690 mutex_unlock(&ctx
->mutex
);
6697 return ERR_PTR(err
);
6699 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter
);
6701 static void sync_child_event(struct perf_event
*child_event
,
6702 struct task_struct
*child
)
6704 struct perf_event
*parent_event
= child_event
->parent
;
6707 if (child_event
->attr
.inherit_stat
)
6708 perf_event_read_event(child_event
, child
);
6710 child_val
= perf_event_count(child_event
);
6713 * Add back the child's count to the parent's count:
6715 atomic64_add(child_val
, &parent_event
->child_count
);
6716 atomic64_add(child_event
->total_time_enabled
,
6717 &parent_event
->child_total_time_enabled
);
6718 atomic64_add(child_event
->total_time_running
,
6719 &parent_event
->child_total_time_running
);
6722 * Remove this event from the parent's list
6724 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
6725 mutex_lock(&parent_event
->child_mutex
);
6726 list_del_init(&child_event
->child_list
);
6727 mutex_unlock(&parent_event
->child_mutex
);
6730 * Release the parent event, if this was the last
6733 fput(parent_event
->filp
);
6737 __perf_event_exit_task(struct perf_event
*child_event
,
6738 struct perf_event_context
*child_ctx
,
6739 struct task_struct
*child
)
6741 if (child_event
->parent
) {
6742 raw_spin_lock_irq(&child_ctx
->lock
);
6743 perf_group_detach(child_event
);
6744 raw_spin_unlock_irq(&child_ctx
->lock
);
6747 perf_remove_from_context(child_event
);
6750 * It can happen that the parent exits first, and has events
6751 * that are still around due to the child reference. These
6752 * events need to be zapped.
6754 if (child_event
->parent
) {
6755 sync_child_event(child_event
, child
);
6756 free_event(child_event
);
6760 static void perf_event_exit_task_context(struct task_struct
*child
, int ctxn
)
6762 struct perf_event
*child_event
, *tmp
;
6763 struct perf_event_context
*child_ctx
;
6764 unsigned long flags
;
6766 if (likely(!child
->perf_event_ctxp
[ctxn
])) {
6767 perf_event_task(child
, NULL
, 0);
6771 local_irq_save(flags
);
6773 * We can't reschedule here because interrupts are disabled,
6774 * and either child is current or it is a task that can't be
6775 * scheduled, so we are now safe from rescheduling changing
6778 child_ctx
= rcu_dereference_raw(child
->perf_event_ctxp
[ctxn
]);
6779 task_ctx_sched_out(child_ctx
, EVENT_ALL
);
6782 * Take the context lock here so that if find_get_context is
6783 * reading child->perf_event_ctxp, we wait until it has
6784 * incremented the context's refcount before we do put_ctx below.
6786 raw_spin_lock(&child_ctx
->lock
);
6787 child
->perf_event_ctxp
[ctxn
] = NULL
;
6789 * If this context is a clone; unclone it so it can't get
6790 * swapped to another process while we're removing all
6791 * the events from it.
6793 unclone_ctx(child_ctx
);
6794 update_context_time(child_ctx
);
6795 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
6798 * Report the task dead after unscheduling the events so that we
6799 * won't get any samples after PERF_RECORD_EXIT. We can however still
6800 * get a few PERF_RECORD_READ events.
6802 perf_event_task(child
, child_ctx
, 0);
6805 * We can recurse on the same lock type through:
6807 * __perf_event_exit_task()
6808 * sync_child_event()
6809 * fput(parent_event->filp)
6811 * mutex_lock(&ctx->mutex)
6813 * But since its the parent context it won't be the same instance.
6815 mutex_lock(&child_ctx
->mutex
);
6818 list_for_each_entry_safe(child_event
, tmp
, &child_ctx
->pinned_groups
,
6820 __perf_event_exit_task(child_event
, child_ctx
, child
);
6822 list_for_each_entry_safe(child_event
, tmp
, &child_ctx
->flexible_groups
,
6824 __perf_event_exit_task(child_event
, child_ctx
, child
);
6827 * If the last event was a group event, it will have appended all
6828 * its siblings to the list, but we obtained 'tmp' before that which
6829 * will still point to the list head terminating the iteration.
6831 if (!list_empty(&child_ctx
->pinned_groups
) ||
6832 !list_empty(&child_ctx
->flexible_groups
))
6835 mutex_unlock(&child_ctx
->mutex
);
6841 * When a child task exits, feed back event values to parent events.
6843 void perf_event_exit_task(struct task_struct
*child
)
6845 struct perf_event
*event
, *tmp
;
6848 mutex_lock(&child
->perf_event_mutex
);
6849 list_for_each_entry_safe(event
, tmp
, &child
->perf_event_list
,
6851 list_del_init(&event
->owner_entry
);
6854 * Ensure the list deletion is visible before we clear
6855 * the owner, closes a race against perf_release() where
6856 * we need to serialize on the owner->perf_event_mutex.
6859 event
->owner
= NULL
;
6861 mutex_unlock(&child
->perf_event_mutex
);
6863 for_each_task_context_nr(ctxn
)
6864 perf_event_exit_task_context(child
, ctxn
);
6867 static void perf_free_event(struct perf_event
*event
,
6868 struct perf_event_context
*ctx
)
6870 struct perf_event
*parent
= event
->parent
;
6872 if (WARN_ON_ONCE(!parent
))
6875 mutex_lock(&parent
->child_mutex
);
6876 list_del_init(&event
->child_list
);
6877 mutex_unlock(&parent
->child_mutex
);
6881 perf_group_detach(event
);
6882 list_del_event(event
, ctx
);
6887 * free an unexposed, unused context as created by inheritance by
6888 * perf_event_init_task below, used by fork() in case of fail.
6890 void perf_event_free_task(struct task_struct
*task
)
6892 struct perf_event_context
*ctx
;
6893 struct perf_event
*event
, *tmp
;
6896 for_each_task_context_nr(ctxn
) {
6897 ctx
= task
->perf_event_ctxp
[ctxn
];
6901 mutex_lock(&ctx
->mutex
);
6903 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
,
6905 perf_free_event(event
, ctx
);
6907 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
,
6909 perf_free_event(event
, ctx
);
6911 if (!list_empty(&ctx
->pinned_groups
) ||
6912 !list_empty(&ctx
->flexible_groups
))
6915 mutex_unlock(&ctx
->mutex
);
6921 void perf_event_delayed_put(struct task_struct
*task
)
6925 for_each_task_context_nr(ctxn
)
6926 WARN_ON_ONCE(task
->perf_event_ctxp
[ctxn
]);
6930 * inherit a event from parent task to child task:
6932 static struct perf_event
*
6933 inherit_event(struct perf_event
*parent_event
,
6934 struct task_struct
*parent
,
6935 struct perf_event_context
*parent_ctx
,
6936 struct task_struct
*child
,
6937 struct perf_event
*group_leader
,
6938 struct perf_event_context
*child_ctx
)
6940 struct perf_event
*child_event
;
6941 unsigned long flags
;
6944 * Instead of creating recursive hierarchies of events,
6945 * we link inherited events back to the original parent,
6946 * which has a filp for sure, which we use as the reference
6949 if (parent_event
->parent
)
6950 parent_event
= parent_event
->parent
;
6952 child_event
= perf_event_alloc(&parent_event
->attr
,
6955 group_leader
, parent_event
,
6957 if (IS_ERR(child_event
))
6962 * Make the child state follow the state of the parent event,
6963 * not its attr.disabled bit. We hold the parent's mutex,
6964 * so we won't race with perf_event_{en, dis}able_family.
6966 if (parent_event
->state
>= PERF_EVENT_STATE_INACTIVE
)
6967 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
6969 child_event
->state
= PERF_EVENT_STATE_OFF
;
6971 if (parent_event
->attr
.freq
) {
6972 u64 sample_period
= parent_event
->hw
.sample_period
;
6973 struct hw_perf_event
*hwc
= &child_event
->hw
;
6975 hwc
->sample_period
= sample_period
;
6976 hwc
->last_period
= sample_period
;
6978 local64_set(&hwc
->period_left
, sample_period
);
6981 child_event
->ctx
= child_ctx
;
6982 child_event
->overflow_handler
= parent_event
->overflow_handler
;
6985 * Precalculate sample_data sizes
6987 perf_event__header_size(child_event
);
6988 perf_event__id_header_size(child_event
);
6991 * Link it up in the child's context:
6993 raw_spin_lock_irqsave(&child_ctx
->lock
, flags
);
6994 add_event_to_ctx(child_event
, child_ctx
);
6995 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
6998 * Get a reference to the parent filp - we will fput it
6999 * when the child event exits. This is safe to do because
7000 * we are in the parent and we know that the filp still
7001 * exists and has a nonzero count:
7003 atomic_long_inc(&parent_event
->filp
->f_count
);
7006 * Link this into the parent event's child list
7008 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
7009 mutex_lock(&parent_event
->child_mutex
);
7010 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
7011 mutex_unlock(&parent_event
->child_mutex
);
7016 static int inherit_group(struct perf_event
*parent_event
,
7017 struct task_struct
*parent
,
7018 struct perf_event_context
*parent_ctx
,
7019 struct task_struct
*child
,
7020 struct perf_event_context
*child_ctx
)
7022 struct perf_event
*leader
;
7023 struct perf_event
*sub
;
7024 struct perf_event
*child_ctr
;
7026 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
7027 child
, NULL
, child_ctx
);
7029 return PTR_ERR(leader
);
7030 list_for_each_entry(sub
, &parent_event
->sibling_list
, group_entry
) {
7031 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
7032 child
, leader
, child_ctx
);
7033 if (IS_ERR(child_ctr
))
7034 return PTR_ERR(child_ctr
);
7040 inherit_task_group(struct perf_event
*event
, struct task_struct
*parent
,
7041 struct perf_event_context
*parent_ctx
,
7042 struct task_struct
*child
, int ctxn
,
7046 struct perf_event_context
*child_ctx
;
7048 if (!event
->attr
.inherit
) {
7053 child_ctx
= child
->perf_event_ctxp
[ctxn
];
7056 * This is executed from the parent task context, so
7057 * inherit events that have been marked for cloning.
7058 * First allocate and initialize a context for the
7062 child_ctx
= alloc_perf_context(event
->pmu
, child
);
7066 child
->perf_event_ctxp
[ctxn
] = child_ctx
;
7069 ret
= inherit_group(event
, parent
, parent_ctx
,
7079 * Initialize the perf_event context in task_struct
7081 int perf_event_init_context(struct task_struct
*child
, int ctxn
)
7083 struct perf_event_context
*child_ctx
, *parent_ctx
;
7084 struct perf_event_context
*cloned_ctx
;
7085 struct perf_event
*event
;
7086 struct task_struct
*parent
= current
;
7087 int inherited_all
= 1;
7088 unsigned long flags
;
7091 if (likely(!parent
->perf_event_ctxp
[ctxn
]))
7095 * If the parent's context is a clone, pin it so it won't get
7098 parent_ctx
= perf_pin_task_context(parent
, ctxn
);
7101 * No need to check if parent_ctx != NULL here; since we saw
7102 * it non-NULL earlier, the only reason for it to become NULL
7103 * is if we exit, and since we're currently in the middle of
7104 * a fork we can't be exiting at the same time.
7108 * Lock the parent list. No need to lock the child - not PID
7109 * hashed yet and not running, so nobody can access it.
7111 mutex_lock(&parent_ctx
->mutex
);
7114 * We dont have to disable NMIs - we are only looking at
7115 * the list, not manipulating it:
7117 list_for_each_entry(event
, &parent_ctx
->pinned_groups
, group_entry
) {
7118 ret
= inherit_task_group(event
, parent
, parent_ctx
,
7119 child
, ctxn
, &inherited_all
);
7125 * We can't hold ctx->lock when iterating the ->flexible_group list due
7126 * to allocations, but we need to prevent rotation because
7127 * rotate_ctx() will change the list from interrupt context.
7129 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
7130 parent_ctx
->rotate_disable
= 1;
7131 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
7133 list_for_each_entry(event
, &parent_ctx
->flexible_groups
, group_entry
) {
7134 ret
= inherit_task_group(event
, parent
, parent_ctx
,
7135 child
, ctxn
, &inherited_all
);
7140 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
7141 parent_ctx
->rotate_disable
= 0;
7143 child_ctx
= child
->perf_event_ctxp
[ctxn
];
7145 if (child_ctx
&& inherited_all
) {
7147 * Mark the child context as a clone of the parent
7148 * context, or of whatever the parent is a clone of.
7150 * Note that if the parent is a clone, the holding of
7151 * parent_ctx->lock avoids it from being uncloned.
7153 cloned_ctx
= parent_ctx
->parent_ctx
;
7155 child_ctx
->parent_ctx
= cloned_ctx
;
7156 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
7158 child_ctx
->parent_ctx
= parent_ctx
;
7159 child_ctx
->parent_gen
= parent_ctx
->generation
;
7161 get_ctx(child_ctx
->parent_ctx
);
7164 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
7165 mutex_unlock(&parent_ctx
->mutex
);
7167 perf_unpin_context(parent_ctx
);
7168 put_ctx(parent_ctx
);
7174 * Initialize the perf_event context in task_struct
7176 int perf_event_init_task(struct task_struct
*child
)
7180 memset(child
->perf_event_ctxp
, 0, sizeof(child
->perf_event_ctxp
));
7181 mutex_init(&child
->perf_event_mutex
);
7182 INIT_LIST_HEAD(&child
->perf_event_list
);
7184 for_each_task_context_nr(ctxn
) {
7185 ret
= perf_event_init_context(child
, ctxn
);
7193 static void __init
perf_event_init_all_cpus(void)
7195 struct swevent_htable
*swhash
;
7198 for_each_possible_cpu(cpu
) {
7199 swhash
= &per_cpu(swevent_htable
, cpu
);
7200 mutex_init(&swhash
->hlist_mutex
);
7201 INIT_LIST_HEAD(&per_cpu(rotation_list
, cpu
));
7205 static void __cpuinit
perf_event_init_cpu(int cpu
)
7207 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
7209 mutex_lock(&swhash
->hlist_mutex
);
7210 if (swhash
->hlist_refcount
> 0) {
7211 struct swevent_hlist
*hlist
;
7213 hlist
= kzalloc_node(sizeof(*hlist
), GFP_KERNEL
, cpu_to_node(cpu
));
7215 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
7217 mutex_unlock(&swhash
->hlist_mutex
);
7220 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7221 static void perf_pmu_rotate_stop(struct pmu
*pmu
)
7223 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
7225 WARN_ON(!irqs_disabled());
7227 list_del_init(&cpuctx
->rotation_list
);
7230 static void __perf_event_exit_context(void *__info
)
7232 struct perf_event_context
*ctx
= __info
;
7233 struct perf_event
*event
, *tmp
;
7235 perf_pmu_rotate_stop(ctx
->pmu
);
7237 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
, group_entry
)
7238 __perf_remove_from_context(event
);
7239 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
, group_entry
)
7240 __perf_remove_from_context(event
);
7243 static void perf_event_exit_cpu_context(int cpu
)
7245 struct perf_event_context
*ctx
;
7249 idx
= srcu_read_lock(&pmus_srcu
);
7250 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
7251 ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
)->ctx
;
7253 mutex_lock(&ctx
->mutex
);
7254 smp_call_function_single(cpu
, __perf_event_exit_context
, ctx
, 1);
7255 mutex_unlock(&ctx
->mutex
);
7257 srcu_read_unlock(&pmus_srcu
, idx
);
7260 static void perf_event_exit_cpu(int cpu
)
7262 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
7264 mutex_lock(&swhash
->hlist_mutex
);
7265 swevent_hlist_release(swhash
);
7266 mutex_unlock(&swhash
->hlist_mutex
);
7268 perf_event_exit_cpu_context(cpu
);
7271 static inline void perf_event_exit_cpu(int cpu
) { }
7275 perf_reboot(struct notifier_block
*notifier
, unsigned long val
, void *v
)
7279 for_each_online_cpu(cpu
)
7280 perf_event_exit_cpu(cpu
);
7286 * Run the perf reboot notifier at the very last possible moment so that
7287 * the generic watchdog code runs as long as possible.
7289 static struct notifier_block perf_reboot_notifier
= {
7290 .notifier_call
= perf_reboot
,
7291 .priority
= INT_MIN
,
7294 static int __cpuinit
7295 perf_cpu_notify(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
7297 unsigned int cpu
= (long)hcpu
;
7299 switch (action
& ~CPU_TASKS_FROZEN
) {
7301 case CPU_UP_PREPARE
:
7302 case CPU_DOWN_FAILED
:
7303 perf_event_init_cpu(cpu
);
7306 case CPU_UP_CANCELED
:
7307 case CPU_DOWN_PREPARE
:
7308 perf_event_exit_cpu(cpu
);
7318 void __init
perf_event_init(void)
7324 perf_event_init_all_cpus();
7325 init_srcu_struct(&pmus_srcu
);
7326 perf_pmu_register(&perf_swevent
, "software", PERF_TYPE_SOFTWARE
);
7327 perf_pmu_register(&perf_cpu_clock
, NULL
, -1);
7328 perf_pmu_register(&perf_task_clock
, NULL
, -1);
7330 perf_cpu_notifier(perf_cpu_notify
);
7331 register_reboot_notifier(&perf_reboot_notifier
);
7333 ret
= init_hw_breakpoint();
7334 WARN(ret
, "hw_breakpoint initialization failed with: %d", ret
);
7337 static int __init
perf_event_sysfs_init(void)
7342 mutex_lock(&pmus_lock
);
7344 ret
= bus_register(&pmu_bus
);
7348 list_for_each_entry(pmu
, &pmus
, entry
) {
7349 if (!pmu
->name
|| pmu
->type
< 0)
7352 ret
= pmu_dev_alloc(pmu
);
7353 WARN(ret
, "Failed to register pmu: %s, reason %d\n", pmu
->name
, ret
);
7355 pmu_bus_running
= 1;
7359 mutex_unlock(&pmus_lock
);
7363 device_initcall(perf_event_sysfs_init
);
7365 #ifdef CONFIG_CGROUP_PERF
7366 static struct cgroup_subsys_state
*perf_cgroup_create(
7367 struct cgroup_subsys
*ss
, struct cgroup
*cont
)
7369 struct perf_cgroup
*jc
;
7371 jc
= kzalloc(sizeof(*jc
), GFP_KERNEL
);
7373 return ERR_PTR(-ENOMEM
);
7375 jc
->info
= alloc_percpu(struct perf_cgroup_info
);
7378 return ERR_PTR(-ENOMEM
);
7384 static void perf_cgroup_destroy(struct cgroup_subsys
*ss
,
7385 struct cgroup
*cont
)
7387 struct perf_cgroup
*jc
;
7388 jc
= container_of(cgroup_subsys_state(cont
, perf_subsys_id
),
7389 struct perf_cgroup
, css
);
7390 free_percpu(jc
->info
);
7394 static int __perf_cgroup_move(void *info
)
7396 struct task_struct
*task
= info
;
7397 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
| PERF_CGROUP_SWIN
);
7401 static void perf_cgroup_move(struct task_struct
*task
)
7403 task_function_call(task
, __perf_cgroup_move
, task
);
7406 static void perf_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
7407 struct cgroup
*old_cgrp
, struct task_struct
*task
,
7410 perf_cgroup_move(task
);
7412 struct task_struct
*c
;
7414 list_for_each_entry_rcu(c
, &task
->thread_group
, thread_group
) {
7415 perf_cgroup_move(c
);
7421 static void perf_cgroup_exit(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
7422 struct cgroup
*old_cgrp
, struct task_struct
*task
)
7425 * cgroup_exit() is called in the copy_process() failure path.
7426 * Ignore this case since the task hasn't ran yet, this avoids
7427 * trying to poke a half freed task state from generic code.
7429 if (!(task
->flags
& PF_EXITING
))
7432 perf_cgroup_move(task
);
7435 struct cgroup_subsys perf_subsys
= {
7436 .name
= "perf_event",
7437 .subsys_id
= perf_subsys_id
,
7438 .create
= perf_cgroup_create
,
7439 .destroy
= perf_cgroup_destroy
,
7440 .exit
= perf_cgroup_exit
,
7441 .attach
= perf_cgroup_attach
,
7443 #endif /* CONFIG_CGROUP_PERF */