2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
22 /* max queue in one round of service */
23 static const int cfq_quantum
= 8;
24 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
25 /* maximum backwards seek, in KiB */
26 static const int cfq_back_max
= 16 * 1024;
27 /* penalty of a backwards seek */
28 static const int cfq_back_penalty
= 2;
29 static const int cfq_slice_sync
= HZ
/ 10;
30 static int cfq_slice_async
= HZ
/ 25;
31 static const int cfq_slice_async_rq
= 2;
32 static int cfq_slice_idle
= HZ
/ 125;
33 static int cfq_group_idle
= HZ
/ 125;
34 static const int cfq_target_latency
= HZ
* 3/10; /* 300 ms */
35 static const int cfq_hist_divisor
= 4;
38 * offset from end of service tree
40 #define CFQ_IDLE_DELAY (HZ / 5)
43 * below this threshold, we consider thinktime immediate
45 #define CFQ_MIN_TT (2)
47 #define CFQ_SLICE_SCALE (5)
48 #define CFQ_HW_QUEUE_MIN (5)
49 #define CFQ_SERVICE_SHIFT 12
51 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
52 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
53 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
54 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
57 ((struct cfq_io_context *) (rq)->elevator_private)
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private3)
61 static struct kmem_cache
*cfq_pool
;
62 static struct kmem_cache
*cfq_ioc_pool
;
64 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count
);
65 static struct completion
*ioc_gone
;
66 static DEFINE_SPINLOCK(ioc_gone_lock
);
68 static DEFINE_SPINLOCK(cic_index_lock
);
69 static DEFINE_IDA(cic_index_ida
);
71 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
72 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
73 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
75 #define sample_valid(samples) ((samples) > 80)
76 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
88 unsigned total_weight
;
90 struct rb_node
*active
;
92 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
93 .count = 0, .min_vdisktime = 0, }
96 * Per process-grouping structure
101 /* various state flags, see below */
103 /* parent cfq_data */
104 struct cfq_data
*cfqd
;
105 /* service_tree member */
106 struct rb_node rb_node
;
107 /* service_tree key */
108 unsigned long rb_key
;
109 /* prio tree member */
110 struct rb_node p_node
;
111 /* prio tree root we belong to, if any */
112 struct rb_root
*p_root
;
113 /* sorted list of pending requests */
114 struct rb_root sort_list
;
115 /* if fifo isn't expired, next request to serve */
116 struct request
*next_rq
;
117 /* requests queued in sort_list */
119 /* currently allocated requests */
121 /* fifo list of requests in sort_list */
122 struct list_head fifo
;
124 /* time when queue got scheduled in to dispatch first request. */
125 unsigned long dispatch_start
;
126 unsigned int allocated_slice
;
127 unsigned int slice_dispatch
;
128 /* time when first request from queue completed and slice started. */
129 unsigned long slice_start
;
130 unsigned long slice_end
;
133 /* pending metadata requests */
135 /* number of requests that are on the dispatch list or inside driver */
138 /* io prio of this group */
139 unsigned short ioprio
, org_ioprio
;
140 unsigned short ioprio_class
, org_ioprio_class
;
145 sector_t last_request_pos
;
147 struct cfq_rb_root
*service_tree
;
148 struct cfq_queue
*new_cfqq
;
149 struct cfq_group
*cfqg
;
150 struct cfq_group
*orig_cfqg
;
151 /* Number of sectors dispatched from queue in single dispatch round */
152 unsigned long nr_sectors
;
156 * First index in the service_trees.
157 * IDLE is handled separately, so it has negative index
167 * Second index in the service_trees.
171 SYNC_NOIDLE_WORKLOAD
= 1,
175 /* This is per cgroup per device grouping structure */
177 /* group service_tree member */
178 struct rb_node rb_node
;
180 /* group service_tree key */
185 /* number of cfqq currently on this group */
189 * Per group busy queus average. Useful for workload slice calc. We
190 * create the array for each prio class but at run time it is used
191 * only for RT and BE class and slot for IDLE class remains unused.
192 * This is primarily done to avoid confusion and a gcc warning.
194 unsigned int busy_queues_avg
[CFQ_PRIO_NR
];
196 * rr lists of queues with requests. We maintain service trees for
197 * RT and BE classes. These trees are subdivided in subclasses
198 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
199 * class there is no subclassification and all the cfq queues go on
200 * a single tree service_tree_idle.
201 * Counts are embedded in the cfq_rb_root
203 struct cfq_rb_root service_trees
[2][3];
204 struct cfq_rb_root service_tree_idle
;
206 unsigned long saved_workload_slice
;
207 enum wl_type_t saved_workload
;
208 enum wl_prio_t saved_serving_prio
;
209 struct blkio_group blkg
;
210 #ifdef CONFIG_CFQ_GROUP_IOSCHED
211 struct hlist_node cfqd_node
;
214 /* number of requests that are on the dispatch list or inside driver */
219 * Per block device queue structure
222 struct request_queue
*queue
;
223 /* Root service tree for cfq_groups */
224 struct cfq_rb_root grp_service_tree
;
225 struct cfq_group root_group
;
228 * The priority currently being served
230 enum wl_prio_t serving_prio
;
231 enum wl_type_t serving_type
;
232 unsigned long workload_expires
;
233 struct cfq_group
*serving_group
;
236 * Each priority tree is sorted by next_request position. These
237 * trees are used when determining if two or more queues are
238 * interleaving requests (see cfq_close_cooperator).
240 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
242 unsigned int busy_queues
;
248 * queue-depth detection
254 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
255 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
258 int hw_tag_est_depth
;
259 unsigned int hw_tag_samples
;
262 * idle window management
264 struct timer_list idle_slice_timer
;
265 struct work_struct unplug_work
;
267 struct cfq_queue
*active_queue
;
268 struct cfq_io_context
*active_cic
;
271 * async queue for each priority case
273 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
274 struct cfq_queue
*async_idle_cfqq
;
276 sector_t last_position
;
279 * tunables, see top of file
281 unsigned int cfq_quantum
;
282 unsigned int cfq_fifo_expire
[2];
283 unsigned int cfq_back_penalty
;
284 unsigned int cfq_back_max
;
285 unsigned int cfq_slice
[2];
286 unsigned int cfq_slice_async_rq
;
287 unsigned int cfq_slice_idle
;
288 unsigned int cfq_group_idle
;
289 unsigned int cfq_latency
;
290 unsigned int cfq_group_isolation
;
292 unsigned int cic_index
;
293 struct list_head cic_list
;
296 * Fallback dummy cfqq for extreme OOM conditions
298 struct cfq_queue oom_cfqq
;
300 unsigned long last_delayed_sync
;
302 /* List of cfq groups being managed on this device*/
303 struct hlist_head cfqg_list
;
307 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
);
309 static struct cfq_rb_root
*service_tree_for(struct cfq_group
*cfqg
,
316 if (prio
== IDLE_WORKLOAD
)
317 return &cfqg
->service_tree_idle
;
319 return &cfqg
->service_trees
[prio
][type
];
322 enum cfqq_state_flags
{
323 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
324 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
325 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
326 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
327 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
328 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
329 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
330 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
331 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
332 CFQ_CFQQ_FLAG_coop
, /* cfqq is shared */
333 CFQ_CFQQ_FLAG_split_coop
, /* shared cfqq will be splitted */
334 CFQ_CFQQ_FLAG_deep
, /* sync cfqq experienced large depth */
335 CFQ_CFQQ_FLAG_wait_busy
, /* Waiting for next request */
338 #define CFQ_CFQQ_FNS(name) \
339 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
341 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
343 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
345 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
347 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
349 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
353 CFQ_CFQQ_FNS(wait_request
);
354 CFQ_CFQQ_FNS(must_dispatch
);
355 CFQ_CFQQ_FNS(must_alloc_slice
);
356 CFQ_CFQQ_FNS(fifo_expire
);
357 CFQ_CFQQ_FNS(idle_window
);
358 CFQ_CFQQ_FNS(prio_changed
);
359 CFQ_CFQQ_FNS(slice_new
);
362 CFQ_CFQQ_FNS(split_coop
);
364 CFQ_CFQQ_FNS(wait_busy
);
367 #ifdef CONFIG_CFQ_GROUP_IOSCHED
368 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
369 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
370 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
371 blkg_path(&(cfqq)->cfqg->blkg), ##args);
373 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
374 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
375 blkg_path(&(cfqg)->blkg), ##args); \
378 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
379 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
380 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
382 #define cfq_log(cfqd, fmt, args...) \
383 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
385 /* Traverses through cfq group service trees */
386 #define for_each_cfqg_st(cfqg, i, j, st) \
387 for (i = 0; i <= IDLE_WORKLOAD; i++) \
388 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
389 : &cfqg->service_tree_idle; \
390 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
391 (i == IDLE_WORKLOAD && j == 0); \
392 j++, st = i < IDLE_WORKLOAD ? \
393 &cfqg->service_trees[i][j]: NULL) \
396 static inline bool iops_mode(struct cfq_data *cfqd)
399 * If we are not idling on queues and it is a NCQ drive, parallel
400 * execution of requests is on and measuring time is not possible
401 * in most of the cases until and unless we drive shallower queue
402 * depths and that becomes a performance bottleneck. In such cases
403 * switch to start providing fairness in terms of number of IOs.
405 if (!cfqd
->cfq_slice_idle
&& cfqd
->hw_tag
)
411 static inline enum wl_prio_t
cfqq_prio(struct cfq_queue
*cfqq
)
413 if (cfq_class_idle(cfqq
))
414 return IDLE_WORKLOAD
;
415 if (cfq_class_rt(cfqq
))
421 static enum wl_type_t
cfqq_type(struct cfq_queue
*cfqq
)
423 if (!cfq_cfqq_sync(cfqq
))
424 return ASYNC_WORKLOAD
;
425 if (!cfq_cfqq_idle_window(cfqq
))
426 return SYNC_NOIDLE_WORKLOAD
;
427 return SYNC_WORKLOAD
;
430 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl
,
431 struct cfq_data
*cfqd
,
432 struct cfq_group
*cfqg
)
434 if (wl
== IDLE_WORKLOAD
)
435 return cfqg
->service_tree_idle
.count
;
437 return cfqg
->service_trees
[wl
][ASYNC_WORKLOAD
].count
438 + cfqg
->service_trees
[wl
][SYNC_NOIDLE_WORKLOAD
].count
439 + cfqg
->service_trees
[wl
][SYNC_WORKLOAD
].count
;
442 static inline int cfqg_busy_async_queues(struct cfq_data
*cfqd
,
443 struct cfq_group
*cfqg
)
445 return cfqg
->service_trees
[RT_WORKLOAD
][ASYNC_WORKLOAD
].count
446 + cfqg
->service_trees
[BE_WORKLOAD
][ASYNC_WORKLOAD
].count
;
449 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
450 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*, bool,
451 struct io_context
*, gfp_t
);
452 static struct cfq_io_context
*cfq_cic_lookup(struct cfq_data
*,
453 struct io_context
*);
455 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_context
*cic
,
458 return cic
->cfqq
[is_sync
];
461 static inline void cic_set_cfqq(struct cfq_io_context
*cic
,
462 struct cfq_queue
*cfqq
, bool is_sync
)
464 cic
->cfqq
[is_sync
] = cfqq
;
467 #define CIC_DEAD_KEY 1ul
468 #define CIC_DEAD_INDEX_SHIFT 1
470 static inline void *cfqd_dead_key(struct cfq_data
*cfqd
)
472 return (void *)(cfqd
->cic_index
<< CIC_DEAD_INDEX_SHIFT
| CIC_DEAD_KEY
);
475 static inline struct cfq_data
*cic_to_cfqd(struct cfq_io_context
*cic
)
477 struct cfq_data
*cfqd
= cic
->key
;
479 if (unlikely((unsigned long) cfqd
& CIC_DEAD_KEY
))
486 * We regard a request as SYNC, if it's either a read or has the SYNC bit
487 * set (in which case it could also be direct WRITE).
489 static inline bool cfq_bio_sync(struct bio
*bio
)
491 return bio_data_dir(bio
) == READ
|| (bio
->bi_rw
& REQ_SYNC
);
495 * scheduler run of queue, if there are requests pending and no one in the
496 * driver that will restart queueing
498 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
500 if (cfqd
->busy_queues
) {
501 cfq_log(cfqd
, "schedule dispatch");
502 kblockd_schedule_work(cfqd
->queue
, &cfqd
->unplug_work
);
506 static int cfq_queue_empty(struct request_queue
*q
)
508 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
510 return !cfqd
->rq_queued
;
514 * Scale schedule slice based on io priority. Use the sync time slice only
515 * if a queue is marked sync and has sync io queued. A sync queue with async
516 * io only, should not get full sync slice length.
518 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, bool sync
,
521 const int base_slice
= cfqd
->cfq_slice
[sync
];
523 WARN_ON(prio
>= IOPRIO_BE_NR
);
525 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
529 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
531 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
534 static inline u64
cfq_scale_slice(unsigned long delta
, struct cfq_group
*cfqg
)
536 u64 d
= delta
<< CFQ_SERVICE_SHIFT
;
538 d
= d
* BLKIO_WEIGHT_DEFAULT
;
539 do_div(d
, cfqg
->weight
);
543 static inline u64
max_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
545 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
547 min_vdisktime
= vdisktime
;
549 return min_vdisktime
;
552 static inline u64
min_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
554 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
556 min_vdisktime
= vdisktime
;
558 return min_vdisktime
;
561 static void update_min_vdisktime(struct cfq_rb_root
*st
)
563 u64 vdisktime
= st
->min_vdisktime
;
564 struct cfq_group
*cfqg
;
567 cfqg
= rb_entry_cfqg(st
->active
);
568 vdisktime
= cfqg
->vdisktime
;
572 cfqg
= rb_entry_cfqg(st
->left
);
573 vdisktime
= min_vdisktime(vdisktime
, cfqg
->vdisktime
);
576 st
->min_vdisktime
= max_vdisktime(st
->min_vdisktime
, vdisktime
);
580 * get averaged number of queues of RT/BE priority.
581 * average is updated, with a formula that gives more weight to higher numbers,
582 * to quickly follows sudden increases and decrease slowly
585 static inline unsigned cfq_group_get_avg_queues(struct cfq_data
*cfqd
,
586 struct cfq_group
*cfqg
, bool rt
)
588 unsigned min_q
, max_q
;
589 unsigned mult
= cfq_hist_divisor
- 1;
590 unsigned round
= cfq_hist_divisor
/ 2;
591 unsigned busy
= cfq_group_busy_queues_wl(rt
, cfqd
, cfqg
);
593 min_q
= min(cfqg
->busy_queues_avg
[rt
], busy
);
594 max_q
= max(cfqg
->busy_queues_avg
[rt
], busy
);
595 cfqg
->busy_queues_avg
[rt
] = (mult
* max_q
+ min_q
+ round
) /
597 return cfqg
->busy_queues_avg
[rt
];
600 static inline unsigned
601 cfq_group_slice(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
603 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
605 return cfq_target_latency
* cfqg
->weight
/ st
->total_weight
;
609 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
611 unsigned slice
= cfq_prio_to_slice(cfqd
, cfqq
);
612 if (cfqd
->cfq_latency
) {
614 * interested queues (we consider only the ones with the same
615 * priority class in the cfq group)
617 unsigned iq
= cfq_group_get_avg_queues(cfqd
, cfqq
->cfqg
,
619 unsigned sync_slice
= cfqd
->cfq_slice
[1];
620 unsigned expect_latency
= sync_slice
* iq
;
621 unsigned group_slice
= cfq_group_slice(cfqd
, cfqq
->cfqg
);
623 if (expect_latency
> group_slice
) {
624 unsigned base_low_slice
= 2 * cfqd
->cfq_slice_idle
;
625 /* scale low_slice according to IO priority
626 * and sync vs async */
628 min(slice
, base_low_slice
* slice
/ sync_slice
);
629 /* the adapted slice value is scaled to fit all iqs
630 * into the target latency */
631 slice
= max(slice
* group_slice
/ expect_latency
,
635 cfqq
->slice_start
= jiffies
;
636 cfqq
->slice_end
= jiffies
+ slice
;
637 cfqq
->allocated_slice
= slice
;
638 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%lu", cfqq
->slice_end
- jiffies
);
642 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
643 * isn't valid until the first request from the dispatch is activated
644 * and the slice time set.
646 static inline bool cfq_slice_used(struct cfq_queue
*cfqq
)
648 if (cfq_cfqq_slice_new(cfqq
))
650 if (time_before(jiffies
, cfqq
->slice_end
))
657 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
658 * We choose the request that is closest to the head right now. Distance
659 * behind the head is penalized and only allowed to a certain extent.
661 static struct request
*
662 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
, sector_t last
)
664 sector_t s1
, s2
, d1
= 0, d2
= 0;
665 unsigned long back_max
;
666 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
667 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
668 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
670 if (rq1
== NULL
|| rq1
== rq2
)
675 if (rq_is_sync(rq1
) && !rq_is_sync(rq2
))
677 else if (rq_is_sync(rq2
) && !rq_is_sync(rq1
))
679 if ((rq1
->cmd_flags
& REQ_META
) && !(rq2
->cmd_flags
& REQ_META
))
681 else if ((rq2
->cmd_flags
& REQ_META
) &&
682 !(rq1
->cmd_flags
& REQ_META
))
685 s1
= blk_rq_pos(rq1
);
686 s2
= blk_rq_pos(rq2
);
689 * by definition, 1KiB is 2 sectors
691 back_max
= cfqd
->cfq_back_max
* 2;
694 * Strict one way elevator _except_ in the case where we allow
695 * short backward seeks which are biased as twice the cost of a
696 * similar forward seek.
700 else if (s1
+ back_max
>= last
)
701 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
703 wrap
|= CFQ_RQ1_WRAP
;
707 else if (s2
+ back_max
>= last
)
708 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
710 wrap
|= CFQ_RQ2_WRAP
;
712 /* Found required data */
715 * By doing switch() on the bit mask "wrap" we avoid having to
716 * check two variables for all permutations: --> faster!
719 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
735 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
738 * Since both rqs are wrapped,
739 * start with the one that's further behind head
740 * (--> only *one* back seek required),
741 * since back seek takes more time than forward.
751 * The below is leftmost cache rbtree addon
753 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
755 /* Service tree is empty */
760 root
->left
= rb_first(&root
->rb
);
763 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
768 static struct cfq_group
*cfq_rb_first_group(struct cfq_rb_root
*root
)
771 root
->left
= rb_first(&root
->rb
);
774 return rb_entry_cfqg(root
->left
);
779 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
785 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
789 rb_erase_init(n
, &root
->rb
);
794 * would be nice to take fifo expire time into account as well
796 static struct request
*
797 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
798 struct request
*last
)
800 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
801 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
802 struct request
*next
= NULL
, *prev
= NULL
;
804 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
807 prev
= rb_entry_rq(rbprev
);
810 next
= rb_entry_rq(rbnext
);
812 rbnext
= rb_first(&cfqq
->sort_list
);
813 if (rbnext
&& rbnext
!= &last
->rb_node
)
814 next
= rb_entry_rq(rbnext
);
817 return cfq_choose_req(cfqd
, next
, prev
, blk_rq_pos(last
));
820 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
821 struct cfq_queue
*cfqq
)
824 * just an approximation, should be ok.
826 return (cfqq
->cfqg
->nr_cfqq
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
827 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
831 cfqg_key(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
833 return cfqg
->vdisktime
- st
->min_vdisktime
;
837 __cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
839 struct rb_node
**node
= &st
->rb
.rb_node
;
840 struct rb_node
*parent
= NULL
;
841 struct cfq_group
*__cfqg
;
842 s64 key
= cfqg_key(st
, cfqg
);
845 while (*node
!= NULL
) {
847 __cfqg
= rb_entry_cfqg(parent
);
849 if (key
< cfqg_key(st
, __cfqg
))
850 node
= &parent
->rb_left
;
852 node
= &parent
->rb_right
;
858 st
->left
= &cfqg
->rb_node
;
860 rb_link_node(&cfqg
->rb_node
, parent
, node
);
861 rb_insert_color(&cfqg
->rb_node
, &st
->rb
);
865 cfq_group_service_tree_add(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
867 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
868 struct cfq_group
*__cfqg
;
876 * Currently put the group at the end. Later implement something
877 * so that groups get lesser vtime based on their weights, so that
878 * if group does not loose all if it was not continously backlogged.
880 n
= rb_last(&st
->rb
);
882 __cfqg
= rb_entry_cfqg(n
);
883 cfqg
->vdisktime
= __cfqg
->vdisktime
+ CFQ_IDLE_DELAY
;
885 cfqg
->vdisktime
= st
->min_vdisktime
;
887 __cfq_group_service_tree_add(st
, cfqg
);
889 st
->total_weight
+= cfqg
->weight
;
893 cfq_group_service_tree_del(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
895 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
897 if (st
->active
== &cfqg
->rb_node
)
900 BUG_ON(cfqg
->nr_cfqq
< 1);
903 /* If there are other cfq queues under this group, don't delete it */
907 cfq_log_cfqg(cfqd
, cfqg
, "del_from_rr group");
909 st
->total_weight
-= cfqg
->weight
;
910 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
911 cfq_rb_erase(&cfqg
->rb_node
, st
);
912 cfqg
->saved_workload_slice
= 0;
913 cfq_blkiocg_update_dequeue_stats(&cfqg
->blkg
, 1);
916 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue
*cfqq
)
918 unsigned int slice_used
;
921 * Queue got expired before even a single request completed or
922 * got expired immediately after first request completion.
924 if (!cfqq
->slice_start
|| cfqq
->slice_start
== jiffies
) {
926 * Also charge the seek time incurred to the group, otherwise
927 * if there are mutiple queues in the group, each can dispatch
928 * a single request on seeky media and cause lots of seek time
929 * and group will never know it.
931 slice_used
= max_t(unsigned, (jiffies
- cfqq
->dispatch_start
),
934 slice_used
= jiffies
- cfqq
->slice_start
;
935 if (slice_used
> cfqq
->allocated_slice
)
936 slice_used
= cfqq
->allocated_slice
;
942 static void cfq_group_served(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
,
943 struct cfq_queue
*cfqq
)
945 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
946 unsigned int used_sl
, charge
;
947 int nr_sync
= cfqg
->nr_cfqq
- cfqg_busy_async_queues(cfqd
, cfqg
)
948 - cfqg
->service_tree_idle
.count
;
951 used_sl
= charge
= cfq_cfqq_slice_usage(cfqq
);
954 charge
= cfqq
->slice_dispatch
;
955 else if (!cfq_cfqq_sync(cfqq
) && !nr_sync
)
956 charge
= cfqq
->allocated_slice
;
958 /* Can't update vdisktime while group is on service tree */
959 cfq_rb_erase(&cfqg
->rb_node
, st
);
960 cfqg
->vdisktime
+= cfq_scale_slice(charge
, cfqg
);
961 __cfq_group_service_tree_add(st
, cfqg
);
963 /* This group is being expired. Save the context */
964 if (time_after(cfqd
->workload_expires
, jiffies
)) {
965 cfqg
->saved_workload_slice
= cfqd
->workload_expires
967 cfqg
->saved_workload
= cfqd
->serving_type
;
968 cfqg
->saved_serving_prio
= cfqd
->serving_prio
;
970 cfqg
->saved_workload_slice
= 0;
972 cfq_log_cfqg(cfqd
, cfqg
, "served: vt=%llu min_vt=%llu", cfqg
->vdisktime
,
974 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "sl_used=%u disp=%u charge=%u iops=%u"
975 " sect=%u", used_sl
, cfqq
->slice_dispatch
, charge
,
976 iops_mode(cfqd
), cfqq
->nr_sectors
);
977 cfq_blkiocg_update_timeslice_used(&cfqg
->blkg
, used_sl
);
978 cfq_blkiocg_set_start_empty_time(&cfqg
->blkg
);
981 #ifdef CONFIG_CFQ_GROUP_IOSCHED
982 static inline struct cfq_group
*cfqg_of_blkg(struct blkio_group
*blkg
)
985 return container_of(blkg
, struct cfq_group
, blkg
);
989 void cfq_update_blkio_group_weight(void *key
, struct blkio_group
*blkg
,
992 cfqg_of_blkg(blkg
)->weight
= weight
;
995 static struct cfq_group
*
996 cfq_find_alloc_cfqg(struct cfq_data
*cfqd
, struct cgroup
*cgroup
, int create
)
998 struct blkio_cgroup
*blkcg
= cgroup_to_blkio_cgroup(cgroup
);
999 struct cfq_group
*cfqg
= NULL
;
1002 struct cfq_rb_root
*st
;
1003 struct backing_dev_info
*bdi
= &cfqd
->queue
->backing_dev_info
;
1004 unsigned int major
, minor
;
1006 cfqg
= cfqg_of_blkg(blkiocg_lookup_group(blkcg
, key
));
1007 if (cfqg
&& !cfqg
->blkg
.dev
&& bdi
->dev
&& dev_name(bdi
->dev
)) {
1008 sscanf(dev_name(bdi
->dev
), "%u:%u", &major
, &minor
);
1009 cfqg
->blkg
.dev
= MKDEV(major
, minor
);
1012 if (cfqg
|| !create
)
1015 cfqg
= kzalloc_node(sizeof(*cfqg
), GFP_ATOMIC
, cfqd
->queue
->node
);
1019 for_each_cfqg_st(cfqg
, i
, j
, st
)
1021 RB_CLEAR_NODE(&cfqg
->rb_node
);
1024 * Take the initial reference that will be released on destroy
1025 * This can be thought of a joint reference by cgroup and
1026 * elevator which will be dropped by either elevator exit
1027 * or cgroup deletion path depending on who is exiting first.
1029 atomic_set(&cfqg
->ref
, 1);
1032 * Add group onto cgroup list. It might happen that bdi->dev is
1033 * not initiliazed yet. Initialize this new group without major
1034 * and minor info and this info will be filled in once a new thread
1035 * comes for IO. See code above.
1038 sscanf(dev_name(bdi
->dev
), "%u:%u", &major
, &minor
);
1039 cfq_blkiocg_add_blkio_group(blkcg
, &cfqg
->blkg
, (void *)cfqd
,
1040 MKDEV(major
, minor
));
1042 cfq_blkiocg_add_blkio_group(blkcg
, &cfqg
->blkg
, (void *)cfqd
,
1045 cfqg
->weight
= blkcg_get_weight(blkcg
, cfqg
->blkg
.dev
);
1047 /* Add group on cfqd list */
1048 hlist_add_head(&cfqg
->cfqd_node
, &cfqd
->cfqg_list
);
1055 * Search for the cfq group current task belongs to. If create = 1, then also
1056 * create the cfq group if it does not exist. request_queue lock must be held.
1058 static struct cfq_group
*cfq_get_cfqg(struct cfq_data
*cfqd
, int create
)
1060 struct cgroup
*cgroup
;
1061 struct cfq_group
*cfqg
= NULL
;
1064 cgroup
= task_cgroup(current
, blkio_subsys_id
);
1065 cfqg
= cfq_find_alloc_cfqg(cfqd
, cgroup
, create
);
1066 if (!cfqg
&& create
)
1067 cfqg
= &cfqd
->root_group
;
1072 static inline struct cfq_group
*cfq_ref_get_cfqg(struct cfq_group
*cfqg
)
1074 atomic_inc(&cfqg
->ref
);
1078 static void cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
)
1080 /* Currently, all async queues are mapped to root group */
1081 if (!cfq_cfqq_sync(cfqq
))
1082 cfqg
= &cfqq
->cfqd
->root_group
;
1085 /* cfqq reference on cfqg */
1086 atomic_inc(&cfqq
->cfqg
->ref
);
1089 static void cfq_put_cfqg(struct cfq_group
*cfqg
)
1091 struct cfq_rb_root
*st
;
1094 BUG_ON(atomic_read(&cfqg
->ref
) <= 0);
1095 if (!atomic_dec_and_test(&cfqg
->ref
))
1097 for_each_cfqg_st(cfqg
, i
, j
, st
)
1098 BUG_ON(!RB_EMPTY_ROOT(&st
->rb
) || st
->active
!= NULL
);
1102 static void cfq_destroy_cfqg(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1104 /* Something wrong if we are trying to remove same group twice */
1105 BUG_ON(hlist_unhashed(&cfqg
->cfqd_node
));
1107 hlist_del_init(&cfqg
->cfqd_node
);
1110 * Put the reference taken at the time of creation so that when all
1111 * queues are gone, group can be destroyed.
1116 static void cfq_release_cfq_groups(struct cfq_data
*cfqd
)
1118 struct hlist_node
*pos
, *n
;
1119 struct cfq_group
*cfqg
;
1121 hlist_for_each_entry_safe(cfqg
, pos
, n
, &cfqd
->cfqg_list
, cfqd_node
) {
1123 * If cgroup removal path got to blk_group first and removed
1124 * it from cgroup list, then it will take care of destroying
1127 if (!cfq_blkiocg_del_blkio_group(&cfqg
->blkg
))
1128 cfq_destroy_cfqg(cfqd
, cfqg
);
1133 * Blk cgroup controller notification saying that blkio_group object is being
1134 * delinked as associated cgroup object is going away. That also means that
1135 * no new IO will come in this group. So get rid of this group as soon as
1136 * any pending IO in the group is finished.
1138 * This function is called under rcu_read_lock(). key is the rcu protected
1139 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1142 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1143 * it should not be NULL as even if elevator was exiting, cgroup deltion
1144 * path got to it first.
1146 void cfq_unlink_blkio_group(void *key
, struct blkio_group
*blkg
)
1148 unsigned long flags
;
1149 struct cfq_data
*cfqd
= key
;
1151 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1152 cfq_destroy_cfqg(cfqd
, cfqg_of_blkg(blkg
));
1153 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1156 #else /* GROUP_IOSCHED */
1157 static struct cfq_group
*cfq_get_cfqg(struct cfq_data
*cfqd
, int create
)
1159 return &cfqd
->root_group
;
1162 static inline struct cfq_group
*cfq_ref_get_cfqg(struct cfq_group
*cfqg
)
1168 cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
) {
1172 static void cfq_release_cfq_groups(struct cfq_data
*cfqd
) {}
1173 static inline void cfq_put_cfqg(struct cfq_group
*cfqg
) {}
1175 #endif /* GROUP_IOSCHED */
1178 * The cfqd->service_trees holds all pending cfq_queue's that have
1179 * requests waiting to be processed. It is sorted in the order that
1180 * we will service the queues.
1182 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1185 struct rb_node
**p
, *parent
;
1186 struct cfq_queue
*__cfqq
;
1187 unsigned long rb_key
;
1188 struct cfq_rb_root
*service_tree
;
1191 int group_changed
= 0;
1193 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1194 if (!cfqd
->cfq_group_isolation
1195 && cfqq_type(cfqq
) == SYNC_NOIDLE_WORKLOAD
1196 && cfqq
->cfqg
&& cfqq
->cfqg
!= &cfqd
->root_group
) {
1197 /* Move this cfq to root group */
1198 cfq_log_cfqq(cfqd
, cfqq
, "moving to root group");
1199 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
1200 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1201 cfqq
->orig_cfqg
= cfqq
->cfqg
;
1202 cfqq
->cfqg
= &cfqd
->root_group
;
1203 atomic_inc(&cfqd
->root_group
.ref
);
1205 } else if (!cfqd
->cfq_group_isolation
1206 && cfqq_type(cfqq
) == SYNC_WORKLOAD
&& cfqq
->orig_cfqg
) {
1207 /* cfqq is sequential now needs to go to its original group */
1208 BUG_ON(cfqq
->cfqg
!= &cfqd
->root_group
);
1209 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
1210 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1211 cfq_put_cfqg(cfqq
->cfqg
);
1212 cfqq
->cfqg
= cfqq
->orig_cfqg
;
1213 cfqq
->orig_cfqg
= NULL
;
1215 cfq_log_cfqq(cfqd
, cfqq
, "moved to origin group");
1219 service_tree
= service_tree_for(cfqq
->cfqg
, cfqq_prio(cfqq
),
1221 if (cfq_class_idle(cfqq
)) {
1222 rb_key
= CFQ_IDLE_DELAY
;
1223 parent
= rb_last(&service_tree
->rb
);
1224 if (parent
&& parent
!= &cfqq
->rb_node
) {
1225 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1226 rb_key
+= __cfqq
->rb_key
;
1229 } else if (!add_front
) {
1231 * Get our rb key offset. Subtract any residual slice
1232 * value carried from last service. A negative resid
1233 * count indicates slice overrun, and this should position
1234 * the next service time further away in the tree.
1236 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
1237 rb_key
-= cfqq
->slice_resid
;
1238 cfqq
->slice_resid
= 0;
1241 __cfqq
= cfq_rb_first(service_tree
);
1242 rb_key
+= __cfqq
? __cfqq
->rb_key
: jiffies
;
1245 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1248 * same position, nothing more to do
1250 if (rb_key
== cfqq
->rb_key
&&
1251 cfqq
->service_tree
== service_tree
)
1254 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1255 cfqq
->service_tree
= NULL
;
1260 cfqq
->service_tree
= service_tree
;
1261 p
= &service_tree
->rb
.rb_node
;
1266 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1269 * sort by key, that represents service time.
1271 if (time_before(rb_key
, __cfqq
->rb_key
))
1274 n
= &(*p
)->rb_right
;
1282 service_tree
->left
= &cfqq
->rb_node
;
1284 cfqq
->rb_key
= rb_key
;
1285 rb_link_node(&cfqq
->rb_node
, parent
, p
);
1286 rb_insert_color(&cfqq
->rb_node
, &service_tree
->rb
);
1287 service_tree
->count
++;
1288 if ((add_front
|| !new_cfqq
) && !group_changed
)
1290 cfq_group_service_tree_add(cfqd
, cfqq
->cfqg
);
1293 static struct cfq_queue
*
1294 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, struct rb_root
*root
,
1295 sector_t sector
, struct rb_node
**ret_parent
,
1296 struct rb_node
***rb_link
)
1298 struct rb_node
**p
, *parent
;
1299 struct cfq_queue
*cfqq
= NULL
;
1307 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1310 * Sort strictly based on sector. Smallest to the left,
1311 * largest to the right.
1313 if (sector
> blk_rq_pos(cfqq
->next_rq
))
1314 n
= &(*p
)->rb_right
;
1315 else if (sector
< blk_rq_pos(cfqq
->next_rq
))
1323 *ret_parent
= parent
;
1329 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1331 struct rb_node
**p
, *parent
;
1332 struct cfq_queue
*__cfqq
;
1335 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1336 cfqq
->p_root
= NULL
;
1339 if (cfq_class_idle(cfqq
))
1344 cfqq
->p_root
= &cfqd
->prio_trees
[cfqq
->org_ioprio
];
1345 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->p_root
,
1346 blk_rq_pos(cfqq
->next_rq
), &parent
, &p
);
1348 rb_link_node(&cfqq
->p_node
, parent
, p
);
1349 rb_insert_color(&cfqq
->p_node
, cfqq
->p_root
);
1351 cfqq
->p_root
= NULL
;
1355 * Update cfqq's position in the service tree.
1357 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1360 * Resorting requires the cfqq to be on the RR list already.
1362 if (cfq_cfqq_on_rr(cfqq
)) {
1363 cfq_service_tree_add(cfqd
, cfqq
, 0);
1364 cfq_prio_tree_add(cfqd
, cfqq
);
1369 * add to busy list of queues for service, trying to be fair in ordering
1370 * the pending list according to last request service
1372 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1374 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
1375 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1376 cfq_mark_cfqq_on_rr(cfqq
);
1377 cfqd
->busy_queues
++;
1379 cfq_resort_rr_list(cfqd
, cfqq
);
1383 * Called when the cfqq no longer has requests pending, remove it from
1386 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1388 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
1389 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
1390 cfq_clear_cfqq_on_rr(cfqq
);
1392 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1393 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1394 cfqq
->service_tree
= NULL
;
1397 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1398 cfqq
->p_root
= NULL
;
1401 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1402 BUG_ON(!cfqd
->busy_queues
);
1403 cfqd
->busy_queues
--;
1407 * rb tree support functions
1409 static void cfq_del_rq_rb(struct request
*rq
)
1411 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1412 const int sync
= rq_is_sync(rq
);
1414 BUG_ON(!cfqq
->queued
[sync
]);
1415 cfqq
->queued
[sync
]--;
1417 elv_rb_del(&cfqq
->sort_list
, rq
);
1419 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
1421 * Queue will be deleted from service tree when we actually
1422 * expire it later. Right now just remove it from prio tree
1426 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1427 cfqq
->p_root
= NULL
;
1432 static void cfq_add_rq_rb(struct request
*rq
)
1434 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1435 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1436 struct request
*__alias
, *prev
;
1438 cfqq
->queued
[rq_is_sync(rq
)]++;
1441 * looks a little odd, but the first insert might return an alias.
1442 * if that happens, put the alias on the dispatch list
1444 while ((__alias
= elv_rb_add(&cfqq
->sort_list
, rq
)) != NULL
)
1445 cfq_dispatch_insert(cfqd
->queue
, __alias
);
1447 if (!cfq_cfqq_on_rr(cfqq
))
1448 cfq_add_cfqq_rr(cfqd
, cfqq
);
1451 * check if this request is a better next-serve candidate
1453 prev
= cfqq
->next_rq
;
1454 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
, cfqd
->last_position
);
1457 * adjust priority tree position, if ->next_rq changes
1459 if (prev
!= cfqq
->next_rq
)
1460 cfq_prio_tree_add(cfqd
, cfqq
);
1462 BUG_ON(!cfqq
->next_rq
);
1465 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
1467 elv_rb_del(&cfqq
->sort_list
, rq
);
1468 cfqq
->queued
[rq_is_sync(rq
)]--;
1469 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq
))->blkg
,
1470 rq_data_dir(rq
), rq_is_sync(rq
));
1472 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq
))->blkg
,
1473 &cfqq
->cfqd
->serving_group
->blkg
, rq_data_dir(rq
),
1477 static struct request
*
1478 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
1480 struct task_struct
*tsk
= current
;
1481 struct cfq_io_context
*cic
;
1482 struct cfq_queue
*cfqq
;
1484 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
1488 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
1490 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
1492 return elv_rb_find(&cfqq
->sort_list
, sector
);
1498 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
1500 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1502 cfqd
->rq_in_driver
++;
1503 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
1504 cfqd
->rq_in_driver
);
1506 cfqd
->last_position
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
1509 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
1511 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1513 WARN_ON(!cfqd
->rq_in_driver
);
1514 cfqd
->rq_in_driver
--;
1515 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
1516 cfqd
->rq_in_driver
);
1519 static void cfq_remove_request(struct request
*rq
)
1521 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1523 if (cfqq
->next_rq
== rq
)
1524 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
1526 list_del_init(&rq
->queuelist
);
1529 cfqq
->cfqd
->rq_queued
--;
1530 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq
))->blkg
,
1531 rq_data_dir(rq
), rq_is_sync(rq
));
1532 if (rq
->cmd_flags
& REQ_META
) {
1533 WARN_ON(!cfqq
->meta_pending
);
1534 cfqq
->meta_pending
--;
1538 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
1541 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1542 struct request
*__rq
;
1544 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
1545 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
1547 return ELEVATOR_FRONT_MERGE
;
1550 return ELEVATOR_NO_MERGE
;
1553 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
1556 if (type
== ELEVATOR_FRONT_MERGE
) {
1557 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
1559 cfq_reposition_rq_rb(cfqq
, req
);
1563 static void cfq_bio_merged(struct request_queue
*q
, struct request
*req
,
1566 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req
))->blkg
,
1567 bio_data_dir(bio
), cfq_bio_sync(bio
));
1571 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
1572 struct request
*next
)
1574 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1576 * reposition in fifo if next is older than rq
1578 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
1579 time_before(rq_fifo_time(next
), rq_fifo_time(rq
))) {
1580 list_move(&rq
->queuelist
, &next
->queuelist
);
1581 rq_set_fifo_time(rq
, rq_fifo_time(next
));
1584 if (cfqq
->next_rq
== next
)
1586 cfq_remove_request(next
);
1587 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq
))->blkg
,
1588 rq_data_dir(next
), rq_is_sync(next
));
1591 static int cfq_allow_merge(struct request_queue
*q
, struct request
*rq
,
1594 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1595 struct cfq_io_context
*cic
;
1596 struct cfq_queue
*cfqq
;
1599 * Disallow merge of a sync bio into an async request.
1601 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
1605 * Lookup the cfqq that this bio will be queued with. Allow
1606 * merge only if rq is queued there.
1608 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
1612 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
1613 return cfqq
== RQ_CFQQ(rq
);
1616 static inline void cfq_del_timer(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1618 del_timer(&cfqd
->idle_slice_timer
);
1619 cfq_blkiocg_update_idle_time_stats(&cfqq
->cfqg
->blkg
);
1622 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
1623 struct cfq_queue
*cfqq
)
1626 cfq_log_cfqq(cfqd
, cfqq
, "set_active wl_prio:%d wl_type:%d",
1627 cfqd
->serving_prio
, cfqd
->serving_type
);
1628 cfq_blkiocg_update_avg_queue_size_stats(&cfqq
->cfqg
->blkg
);
1629 cfqq
->slice_start
= 0;
1630 cfqq
->dispatch_start
= jiffies
;
1631 cfqq
->allocated_slice
= 0;
1632 cfqq
->slice_end
= 0;
1633 cfqq
->slice_dispatch
= 0;
1634 cfqq
->nr_sectors
= 0;
1636 cfq_clear_cfqq_wait_request(cfqq
);
1637 cfq_clear_cfqq_must_dispatch(cfqq
);
1638 cfq_clear_cfqq_must_alloc_slice(cfqq
);
1639 cfq_clear_cfqq_fifo_expire(cfqq
);
1640 cfq_mark_cfqq_slice_new(cfqq
);
1642 cfq_del_timer(cfqd
, cfqq
);
1645 cfqd
->active_queue
= cfqq
;
1649 * current cfqq expired its slice (or was too idle), select new one
1652 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1655 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
1657 if (cfq_cfqq_wait_request(cfqq
))
1658 cfq_del_timer(cfqd
, cfqq
);
1660 cfq_clear_cfqq_wait_request(cfqq
);
1661 cfq_clear_cfqq_wait_busy(cfqq
);
1664 * If this cfqq is shared between multiple processes, check to
1665 * make sure that those processes are still issuing I/Os within
1666 * the mean seek distance. If not, it may be time to break the
1667 * queues apart again.
1669 if (cfq_cfqq_coop(cfqq
) && CFQQ_SEEKY(cfqq
))
1670 cfq_mark_cfqq_split_coop(cfqq
);
1673 * store what was left of this slice, if the queue idled/timed out
1675 if (timed_out
&& !cfq_cfqq_slice_new(cfqq
)) {
1676 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
1677 cfq_log_cfqq(cfqd
, cfqq
, "resid=%ld", cfqq
->slice_resid
);
1680 cfq_group_served(cfqd
, cfqq
->cfqg
, cfqq
);
1682 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
1683 cfq_del_cfqq_rr(cfqd
, cfqq
);
1685 cfq_resort_rr_list(cfqd
, cfqq
);
1687 if (cfqq
== cfqd
->active_queue
)
1688 cfqd
->active_queue
= NULL
;
1690 if (&cfqq
->cfqg
->rb_node
== cfqd
->grp_service_tree
.active
)
1691 cfqd
->grp_service_tree
.active
= NULL
;
1693 if (cfqd
->active_cic
) {
1694 put_io_context(cfqd
->active_cic
->ioc
);
1695 cfqd
->active_cic
= NULL
;
1699 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, bool timed_out
)
1701 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1704 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
1708 * Get next queue for service. Unless we have a queue preemption,
1709 * we'll simply select the first cfqq in the service tree.
1711 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
1713 struct cfq_rb_root
*service_tree
=
1714 service_tree_for(cfqd
->serving_group
, cfqd
->serving_prio
,
1715 cfqd
->serving_type
);
1717 if (!cfqd
->rq_queued
)
1720 /* There is nothing to dispatch */
1723 if (RB_EMPTY_ROOT(&service_tree
->rb
))
1725 return cfq_rb_first(service_tree
);
1728 static struct cfq_queue
*cfq_get_next_queue_forced(struct cfq_data
*cfqd
)
1730 struct cfq_group
*cfqg
;
1731 struct cfq_queue
*cfqq
;
1733 struct cfq_rb_root
*st
;
1735 if (!cfqd
->rq_queued
)
1738 cfqg
= cfq_get_next_cfqg(cfqd
);
1742 for_each_cfqg_st(cfqg
, i
, j
, st
)
1743 if ((cfqq
= cfq_rb_first(st
)) != NULL
)
1749 * Get and set a new active queue for service.
1751 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
1752 struct cfq_queue
*cfqq
)
1755 cfqq
= cfq_get_next_queue(cfqd
);
1757 __cfq_set_active_queue(cfqd
, cfqq
);
1761 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
1764 if (blk_rq_pos(rq
) >= cfqd
->last_position
)
1765 return blk_rq_pos(rq
) - cfqd
->last_position
;
1767 return cfqd
->last_position
- blk_rq_pos(rq
);
1770 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1773 return cfq_dist_from_last(cfqd
, rq
) <= CFQQ_CLOSE_THR
;
1776 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
1777 struct cfq_queue
*cur_cfqq
)
1779 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->org_ioprio
];
1780 struct rb_node
*parent
, *node
;
1781 struct cfq_queue
*__cfqq
;
1782 sector_t sector
= cfqd
->last_position
;
1784 if (RB_EMPTY_ROOT(root
))
1788 * First, if we find a request starting at the end of the last
1789 * request, choose it.
1791 __cfqq
= cfq_prio_tree_lookup(cfqd
, root
, sector
, &parent
, NULL
);
1796 * If the exact sector wasn't found, the parent of the NULL leaf
1797 * will contain the closest sector.
1799 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1800 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
1803 if (blk_rq_pos(__cfqq
->next_rq
) < sector
)
1804 node
= rb_next(&__cfqq
->p_node
);
1806 node
= rb_prev(&__cfqq
->p_node
);
1810 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
1811 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
1819 * cur_cfqq - passed in so that we don't decide that the current queue is
1820 * closely cooperating with itself.
1822 * So, basically we're assuming that that cur_cfqq has dispatched at least
1823 * one request, and that cfqd->last_position reflects a position on the disk
1824 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1827 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
1828 struct cfq_queue
*cur_cfqq
)
1830 struct cfq_queue
*cfqq
;
1832 if (cfq_class_idle(cur_cfqq
))
1834 if (!cfq_cfqq_sync(cur_cfqq
))
1836 if (CFQQ_SEEKY(cur_cfqq
))
1840 * Don't search priority tree if it's the only queue in the group.
1842 if (cur_cfqq
->cfqg
->nr_cfqq
== 1)
1846 * We should notice if some of the queues are cooperating, eg
1847 * working closely on the same area of the disk. In that case,
1848 * we can group them together and don't waste time idling.
1850 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
1854 /* If new queue belongs to different cfq_group, don't choose it */
1855 if (cur_cfqq
->cfqg
!= cfqq
->cfqg
)
1859 * It only makes sense to merge sync queues.
1861 if (!cfq_cfqq_sync(cfqq
))
1863 if (CFQQ_SEEKY(cfqq
))
1867 * Do not merge queues of different priority classes
1869 if (cfq_class_rt(cfqq
) != cfq_class_rt(cur_cfqq
))
1876 * Determine whether we should enforce idle window for this queue.
1879 static bool cfq_should_idle(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1881 enum wl_prio_t prio
= cfqq_prio(cfqq
);
1882 struct cfq_rb_root
*service_tree
= cfqq
->service_tree
;
1884 BUG_ON(!service_tree
);
1885 BUG_ON(!service_tree
->count
);
1887 if (!cfqd
->cfq_slice_idle
)
1890 /* We never do for idle class queues. */
1891 if (prio
== IDLE_WORKLOAD
)
1894 /* We do for queues that were marked with idle window flag. */
1895 if (cfq_cfqq_idle_window(cfqq
) &&
1896 !(blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
))
1900 * Otherwise, we do only if they are the last ones
1901 * in their service tree.
1903 if (service_tree
->count
== 1 && cfq_cfqq_sync(cfqq
))
1905 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. st->count:%d",
1906 service_tree
->count
);
1910 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
1912 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1913 struct cfq_io_context
*cic
;
1914 unsigned long sl
, group_idle
= 0;
1917 * SSD device without seek penalty, disable idling. But only do so
1918 * for devices that support queuing, otherwise we still have a problem
1919 * with sync vs async workloads.
1921 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
1924 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
1925 WARN_ON(cfq_cfqq_slice_new(cfqq
));
1928 * idle is disabled, either manually or by past process history
1930 if (!cfq_should_idle(cfqd
, cfqq
)) {
1931 /* no queue idling. Check for group idling */
1932 if (cfqd
->cfq_group_idle
)
1933 group_idle
= cfqd
->cfq_group_idle
;
1939 * still active requests from this queue, don't idle
1941 if (cfqq
->dispatched
)
1945 * task has exited, don't wait
1947 cic
= cfqd
->active_cic
;
1948 if (!cic
|| !atomic_read(&cic
->ioc
->nr_tasks
))
1952 * If our average think time is larger than the remaining time
1953 * slice, then don't idle. This avoids overrunning the allotted
1956 if (sample_valid(cic
->ttime_samples
) &&
1957 (cfqq
->slice_end
- jiffies
< cic
->ttime_mean
)) {
1958 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. think_time:%d",
1963 /* There are other queues in the group, don't do group idle */
1964 if (group_idle
&& cfqq
->cfqg
->nr_cfqq
> 1)
1967 cfq_mark_cfqq_wait_request(cfqq
);
1970 sl
= cfqd
->cfq_group_idle
;
1972 sl
= cfqd
->cfq_slice_idle
;
1974 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
1975 cfq_blkiocg_update_set_idle_time_stats(&cfqq
->cfqg
->blkg
);
1976 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %lu group_idle: %d", sl
,
1977 group_idle
? 1 : 0);
1981 * Move request from internal lists to the request queue dispatch list.
1983 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
1985 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1986 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1988 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
1990 cfqq
->next_rq
= cfq_find_next_rq(cfqd
, cfqq
, rq
);
1991 cfq_remove_request(rq
);
1993 (RQ_CFQG(rq
))->dispatched
++;
1994 elv_dispatch_sort(q
, rq
);
1996 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]++;
1997 cfqq
->nr_sectors
+= blk_rq_sectors(rq
);
1998 cfq_blkiocg_update_dispatch_stats(&cfqq
->cfqg
->blkg
, blk_rq_bytes(rq
),
1999 rq_data_dir(rq
), rq_is_sync(rq
));
2003 * return expired entry, or NULL to just start from scratch in rbtree
2005 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
2007 struct request
*rq
= NULL
;
2009 if (cfq_cfqq_fifo_expire(cfqq
))
2012 cfq_mark_cfqq_fifo_expire(cfqq
);
2014 if (list_empty(&cfqq
->fifo
))
2017 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
2018 if (time_before(jiffies
, rq_fifo_time(rq
)))
2021 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "fifo=%p", rq
);
2026 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2028 const int base_rq
= cfqd
->cfq_slice_async_rq
;
2030 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
2032 return 2 * (base_rq
+ base_rq
* (CFQ_PRIO_LISTS
- 1 - cfqq
->ioprio
));
2036 * Must be called with the queue_lock held.
2038 static int cfqq_process_refs(struct cfq_queue
*cfqq
)
2040 int process_refs
, io_refs
;
2042 io_refs
= cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
];
2043 process_refs
= atomic_read(&cfqq
->ref
) - io_refs
;
2044 BUG_ON(process_refs
< 0);
2045 return process_refs
;
2048 static void cfq_setup_merge(struct cfq_queue
*cfqq
, struct cfq_queue
*new_cfqq
)
2050 int process_refs
, new_process_refs
;
2051 struct cfq_queue
*__cfqq
;
2054 * If there are no process references on the new_cfqq, then it is
2055 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2056 * chain may have dropped their last reference (not just their
2057 * last process reference).
2059 if (!cfqq_process_refs(new_cfqq
))
2062 /* Avoid a circular list and skip interim queue merges */
2063 while ((__cfqq
= new_cfqq
->new_cfqq
)) {
2069 process_refs
= cfqq_process_refs(cfqq
);
2070 new_process_refs
= cfqq_process_refs(new_cfqq
);
2072 * If the process for the cfqq has gone away, there is no
2073 * sense in merging the queues.
2075 if (process_refs
== 0 || new_process_refs
== 0)
2079 * Merge in the direction of the lesser amount of work.
2081 if (new_process_refs
>= process_refs
) {
2082 cfqq
->new_cfqq
= new_cfqq
;
2083 atomic_add(process_refs
, &new_cfqq
->ref
);
2085 new_cfqq
->new_cfqq
= cfqq
;
2086 atomic_add(new_process_refs
, &cfqq
->ref
);
2090 static enum wl_type_t
cfq_choose_wl(struct cfq_data
*cfqd
,
2091 struct cfq_group
*cfqg
, enum wl_prio_t prio
)
2093 struct cfq_queue
*queue
;
2095 bool key_valid
= false;
2096 unsigned long lowest_key
= 0;
2097 enum wl_type_t cur_best
= SYNC_NOIDLE_WORKLOAD
;
2099 for (i
= 0; i
<= SYNC_WORKLOAD
; ++i
) {
2100 /* select the one with lowest rb_key */
2101 queue
= cfq_rb_first(service_tree_for(cfqg
, prio
, i
));
2103 (!key_valid
|| time_before(queue
->rb_key
, lowest_key
))) {
2104 lowest_key
= queue
->rb_key
;
2113 static void choose_service_tree(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
2117 struct cfq_rb_root
*st
;
2118 unsigned group_slice
;
2121 cfqd
->serving_prio
= IDLE_WORKLOAD
;
2122 cfqd
->workload_expires
= jiffies
+ 1;
2126 /* Choose next priority. RT > BE > IDLE */
2127 if (cfq_group_busy_queues_wl(RT_WORKLOAD
, cfqd
, cfqg
))
2128 cfqd
->serving_prio
= RT_WORKLOAD
;
2129 else if (cfq_group_busy_queues_wl(BE_WORKLOAD
, cfqd
, cfqg
))
2130 cfqd
->serving_prio
= BE_WORKLOAD
;
2132 cfqd
->serving_prio
= IDLE_WORKLOAD
;
2133 cfqd
->workload_expires
= jiffies
+ 1;
2138 * For RT and BE, we have to choose also the type
2139 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2142 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
);
2146 * check workload expiration, and that we still have other queues ready
2148 if (count
&& !time_after(jiffies
, cfqd
->workload_expires
))
2151 /* otherwise select new workload type */
2152 cfqd
->serving_type
=
2153 cfq_choose_wl(cfqd
, cfqg
, cfqd
->serving_prio
);
2154 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
);
2158 * the workload slice is computed as a fraction of target latency
2159 * proportional to the number of queues in that workload, over
2160 * all the queues in the same priority class
2162 group_slice
= cfq_group_slice(cfqd
, cfqg
);
2164 slice
= group_slice
* count
/
2165 max_t(unsigned, cfqg
->busy_queues_avg
[cfqd
->serving_prio
],
2166 cfq_group_busy_queues_wl(cfqd
->serving_prio
, cfqd
, cfqg
));
2168 if (cfqd
->serving_type
== ASYNC_WORKLOAD
) {
2172 * Async queues are currently system wide. Just taking
2173 * proportion of queues with-in same group will lead to higher
2174 * async ratio system wide as generally root group is going
2175 * to have higher weight. A more accurate thing would be to
2176 * calculate system wide asnc/sync ratio.
2178 tmp
= cfq_target_latency
* cfqg_busy_async_queues(cfqd
, cfqg
);
2179 tmp
= tmp
/cfqd
->busy_queues
;
2180 slice
= min_t(unsigned, slice
, tmp
);
2182 /* async workload slice is scaled down according to
2183 * the sync/async slice ratio. */
2184 slice
= slice
* cfqd
->cfq_slice
[0] / cfqd
->cfq_slice
[1];
2186 /* sync workload slice is at least 2 * cfq_slice_idle */
2187 slice
= max(slice
, 2 * cfqd
->cfq_slice_idle
);
2189 slice
= max_t(unsigned, slice
, CFQ_MIN_TT
);
2190 cfq_log(cfqd
, "workload slice:%d", slice
);
2191 cfqd
->workload_expires
= jiffies
+ slice
;
2194 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
)
2196 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
2197 struct cfq_group
*cfqg
;
2199 if (RB_EMPTY_ROOT(&st
->rb
))
2201 cfqg
= cfq_rb_first_group(st
);
2202 st
->active
= &cfqg
->rb_node
;
2203 update_min_vdisktime(st
);
2207 static void cfq_choose_cfqg(struct cfq_data
*cfqd
)
2209 struct cfq_group
*cfqg
= cfq_get_next_cfqg(cfqd
);
2211 cfqd
->serving_group
= cfqg
;
2213 /* Restore the workload type data */
2214 if (cfqg
->saved_workload_slice
) {
2215 cfqd
->workload_expires
= jiffies
+ cfqg
->saved_workload_slice
;
2216 cfqd
->serving_type
= cfqg
->saved_workload
;
2217 cfqd
->serving_prio
= cfqg
->saved_serving_prio
;
2219 cfqd
->workload_expires
= jiffies
- 1;
2221 choose_service_tree(cfqd
, cfqg
);
2225 * Select a queue for service. If we have a current active queue,
2226 * check whether to continue servicing it, or retrieve and set a new one.
2228 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
2230 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
2232 cfqq
= cfqd
->active_queue
;
2236 if (!cfqd
->rq_queued
)
2240 * We were waiting for group to get backlogged. Expire the queue
2242 if (cfq_cfqq_wait_busy(cfqq
) && !RB_EMPTY_ROOT(&cfqq
->sort_list
))
2246 * The active queue has run out of time, expire it and select new.
2248 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
)) {
2250 * If slice had not expired at the completion of last request
2251 * we might not have turned on wait_busy flag. Don't expire
2252 * the queue yet. Allow the group to get backlogged.
2254 * The very fact that we have used the slice, that means we
2255 * have been idling all along on this queue and it should be
2256 * ok to wait for this request to complete.
2258 if (cfqq
->cfqg
->nr_cfqq
== 1 && RB_EMPTY_ROOT(&cfqq
->sort_list
)
2259 && cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
2263 goto check_group_idle
;
2267 * The active queue has requests and isn't expired, allow it to
2270 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
2274 * If another queue has a request waiting within our mean seek
2275 * distance, let it run. The expire code will check for close
2276 * cooperators and put the close queue at the front of the service
2277 * tree. If possible, merge the expiring queue with the new cfqq.
2279 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
);
2281 if (!cfqq
->new_cfqq
)
2282 cfq_setup_merge(cfqq
, new_cfqq
);
2287 * No requests pending. If the active queue still has requests in
2288 * flight or is idling for a new request, allow either of these
2289 * conditions to happen (or time out) before selecting a new queue.
2291 if (timer_pending(&cfqd
->idle_slice_timer
)) {
2296 if (cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
2302 * If group idle is enabled and there are requests dispatched from
2303 * this group, wait for requests to complete.
2306 if (cfqd
->cfq_group_idle
&& cfqq
->cfqg
->nr_cfqq
== 1
2307 && cfqq
->cfqg
->dispatched
) {
2313 cfq_slice_expired(cfqd
, 0);
2316 * Current queue expired. Check if we have to switch to a new
2320 cfq_choose_cfqg(cfqd
);
2322 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
2327 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
2331 while (cfqq
->next_rq
) {
2332 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
2336 BUG_ON(!list_empty(&cfqq
->fifo
));
2338 /* By default cfqq is not expired if it is empty. Do it explicitly */
2339 __cfq_slice_expired(cfqq
->cfqd
, cfqq
, 0);
2344 * Drain our current requests. Used for barriers and when switching
2345 * io schedulers on-the-fly.
2347 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
2349 struct cfq_queue
*cfqq
;
2352 /* Expire the timeslice of the current active queue first */
2353 cfq_slice_expired(cfqd
, 0);
2354 while ((cfqq
= cfq_get_next_queue_forced(cfqd
)) != NULL
) {
2355 __cfq_set_active_queue(cfqd
, cfqq
);
2356 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
2359 BUG_ON(cfqd
->busy_queues
);
2361 cfq_log(cfqd
, "forced_dispatch=%d", dispatched
);
2365 static inline bool cfq_slice_used_soon(struct cfq_data
*cfqd
,
2366 struct cfq_queue
*cfqq
)
2368 /* the queue hasn't finished any request, can't estimate */
2369 if (cfq_cfqq_slice_new(cfqq
))
2371 if (time_after(jiffies
+ cfqd
->cfq_slice_idle
* cfqq
->dispatched
,
2378 static bool cfq_may_dispatch(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2380 unsigned int max_dispatch
;
2383 * Drain async requests before we start sync IO
2385 if (cfq_should_idle(cfqd
, cfqq
) && cfqd
->rq_in_flight
[BLK_RW_ASYNC
])
2389 * If this is an async queue and we have sync IO in flight, let it wait
2391 if (cfqd
->rq_in_flight
[BLK_RW_SYNC
] && !cfq_cfqq_sync(cfqq
))
2394 max_dispatch
= max_t(unsigned int, cfqd
->cfq_quantum
/ 2, 1);
2395 if (cfq_class_idle(cfqq
))
2399 * Does this cfqq already have too much IO in flight?
2401 if (cfqq
->dispatched
>= max_dispatch
) {
2403 * idle queue must always only have a single IO in flight
2405 if (cfq_class_idle(cfqq
))
2409 * We have other queues, don't allow more IO from this one
2411 if (cfqd
->busy_queues
> 1 && cfq_slice_used_soon(cfqd
, cfqq
))
2415 * Sole queue user, no limit
2417 if (cfqd
->busy_queues
== 1)
2421 * Normally we start throttling cfqq when cfq_quantum/2
2422 * requests have been dispatched. But we can drive
2423 * deeper queue depths at the beginning of slice
2424 * subjected to upper limit of cfq_quantum.
2426 max_dispatch
= cfqd
->cfq_quantum
;
2430 * Async queues must wait a bit before being allowed dispatch.
2431 * We also ramp up the dispatch depth gradually for async IO,
2432 * based on the last sync IO we serviced
2434 if (!cfq_cfqq_sync(cfqq
) && cfqd
->cfq_latency
) {
2435 unsigned long last_sync
= jiffies
- cfqd
->last_delayed_sync
;
2438 depth
= last_sync
/ cfqd
->cfq_slice
[1];
2439 if (!depth
&& !cfqq
->dispatched
)
2441 if (depth
< max_dispatch
)
2442 max_dispatch
= depth
;
2446 * If we're below the current max, allow a dispatch
2448 return cfqq
->dispatched
< max_dispatch
;
2452 * Dispatch a request from cfqq, moving them to the request queue
2455 static bool cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2459 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
2461 if (!cfq_may_dispatch(cfqd
, cfqq
))
2465 * follow expired path, else get first next available
2467 rq
= cfq_check_fifo(cfqq
);
2472 * insert request into driver dispatch list
2474 cfq_dispatch_insert(cfqd
->queue
, rq
);
2476 if (!cfqd
->active_cic
) {
2477 struct cfq_io_context
*cic
= RQ_CIC(rq
);
2479 atomic_long_inc(&cic
->ioc
->refcount
);
2480 cfqd
->active_cic
= cic
;
2487 * Find the cfqq that we need to service and move a request from that to the
2490 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
2492 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2493 struct cfq_queue
*cfqq
;
2495 if (!cfqd
->busy_queues
)
2498 if (unlikely(force
))
2499 return cfq_forced_dispatch(cfqd
);
2501 cfqq
= cfq_select_queue(cfqd
);
2506 * Dispatch a request from this cfqq, if it is allowed
2508 if (!cfq_dispatch_request(cfqd
, cfqq
))
2511 cfqq
->slice_dispatch
++;
2512 cfq_clear_cfqq_must_dispatch(cfqq
);
2515 * expire an async queue immediately if it has used up its slice. idle
2516 * queue always expire after 1 dispatch round.
2518 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
2519 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
2520 cfq_class_idle(cfqq
))) {
2521 cfqq
->slice_end
= jiffies
+ 1;
2522 cfq_slice_expired(cfqd
, 0);
2525 cfq_log_cfqq(cfqd
, cfqq
, "dispatched a request");
2530 * task holds one reference to the queue, dropped when task exits. each rq
2531 * in-flight on this queue also holds a reference, dropped when rq is freed.
2533 * Each cfq queue took a reference on the parent group. Drop it now.
2534 * queue lock must be held here.
2536 static void cfq_put_queue(struct cfq_queue
*cfqq
)
2538 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2539 struct cfq_group
*cfqg
, *orig_cfqg
;
2541 BUG_ON(atomic_read(&cfqq
->ref
) <= 0);
2543 if (!atomic_dec_and_test(&cfqq
->ref
))
2546 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
2547 BUG_ON(rb_first(&cfqq
->sort_list
));
2548 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
2550 orig_cfqg
= cfqq
->orig_cfqg
;
2552 if (unlikely(cfqd
->active_queue
== cfqq
)) {
2553 __cfq_slice_expired(cfqd
, cfqq
, 0);
2554 cfq_schedule_dispatch(cfqd
);
2557 BUG_ON(cfq_cfqq_on_rr(cfqq
));
2558 kmem_cache_free(cfq_pool
, cfqq
);
2561 cfq_put_cfqg(orig_cfqg
);
2565 * Must always be called with the rcu_read_lock() held
2568 __call_for_each_cic(struct io_context
*ioc
,
2569 void (*func
)(struct io_context
*, struct cfq_io_context
*))
2571 struct cfq_io_context
*cic
;
2572 struct hlist_node
*n
;
2574 hlist_for_each_entry_rcu(cic
, n
, &ioc
->cic_list
, cic_list
)
2579 * Call func for each cic attached to this ioc.
2582 call_for_each_cic(struct io_context
*ioc
,
2583 void (*func
)(struct io_context
*, struct cfq_io_context
*))
2586 __call_for_each_cic(ioc
, func
);
2590 static void cfq_cic_free_rcu(struct rcu_head
*head
)
2592 struct cfq_io_context
*cic
;
2594 cic
= container_of(head
, struct cfq_io_context
, rcu_head
);
2596 kmem_cache_free(cfq_ioc_pool
, cic
);
2597 elv_ioc_count_dec(cfq_ioc_count
);
2601 * CFQ scheduler is exiting, grab exit lock and check
2602 * the pending io context count. If it hits zero,
2603 * complete ioc_gone and set it back to NULL
2605 spin_lock(&ioc_gone_lock
);
2606 if (ioc_gone
&& !elv_ioc_count_read(cfq_ioc_count
)) {
2610 spin_unlock(&ioc_gone_lock
);
2614 static void cfq_cic_free(struct cfq_io_context
*cic
)
2616 call_rcu(&cic
->rcu_head
, cfq_cic_free_rcu
);
2619 static void cic_free_func(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2621 unsigned long flags
;
2622 unsigned long dead_key
= (unsigned long) cic
->key
;
2624 BUG_ON(!(dead_key
& CIC_DEAD_KEY
));
2626 spin_lock_irqsave(&ioc
->lock
, flags
);
2627 radix_tree_delete(&ioc
->radix_root
, dead_key
>> CIC_DEAD_INDEX_SHIFT
);
2628 hlist_del_rcu(&cic
->cic_list
);
2629 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2635 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2636 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2637 * and ->trim() which is called with the task lock held
2639 static void cfq_free_io_context(struct io_context
*ioc
)
2642 * ioc->refcount is zero here, or we are called from elv_unregister(),
2643 * so no more cic's are allowed to be linked into this ioc. So it
2644 * should be ok to iterate over the known list, we will see all cic's
2645 * since no new ones are added.
2647 __call_for_each_cic(ioc
, cic_free_func
);
2650 static void cfq_put_cooperator(struct cfq_queue
*cfqq
)
2652 struct cfq_queue
*__cfqq
, *next
;
2655 * If this queue was scheduled to merge with another queue, be
2656 * sure to drop the reference taken on that queue (and others in
2657 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2659 __cfqq
= cfqq
->new_cfqq
;
2661 if (__cfqq
== cfqq
) {
2662 WARN(1, "cfqq->new_cfqq loop detected\n");
2665 next
= __cfqq
->new_cfqq
;
2666 cfq_put_queue(__cfqq
);
2671 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2673 if (unlikely(cfqq
== cfqd
->active_queue
)) {
2674 __cfq_slice_expired(cfqd
, cfqq
, 0);
2675 cfq_schedule_dispatch(cfqd
);
2678 cfq_put_cooperator(cfqq
);
2680 cfq_put_queue(cfqq
);
2683 static void __cfq_exit_single_io_context(struct cfq_data
*cfqd
,
2684 struct cfq_io_context
*cic
)
2686 struct io_context
*ioc
= cic
->ioc
;
2688 list_del_init(&cic
->queue_list
);
2691 * Make sure dead mark is seen for dead queues
2694 cic
->key
= cfqd_dead_key(cfqd
);
2696 if (ioc
->ioc_data
== cic
)
2697 rcu_assign_pointer(ioc
->ioc_data
, NULL
);
2699 if (cic
->cfqq
[BLK_RW_ASYNC
]) {
2700 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_ASYNC
]);
2701 cic
->cfqq
[BLK_RW_ASYNC
] = NULL
;
2704 if (cic
->cfqq
[BLK_RW_SYNC
]) {
2705 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_SYNC
]);
2706 cic
->cfqq
[BLK_RW_SYNC
] = NULL
;
2710 static void cfq_exit_single_io_context(struct io_context
*ioc
,
2711 struct cfq_io_context
*cic
)
2713 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
2716 struct request_queue
*q
= cfqd
->queue
;
2717 unsigned long flags
;
2719 spin_lock_irqsave(q
->queue_lock
, flags
);
2722 * Ensure we get a fresh copy of the ->key to prevent
2723 * race between exiting task and queue
2725 smp_read_barrier_depends();
2726 if (cic
->key
== cfqd
)
2727 __cfq_exit_single_io_context(cfqd
, cic
);
2729 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2734 * The process that ioc belongs to has exited, we need to clean up
2735 * and put the internal structures we have that belongs to that process.
2737 static void cfq_exit_io_context(struct io_context
*ioc
)
2739 call_for_each_cic(ioc
, cfq_exit_single_io_context
);
2742 static struct cfq_io_context
*
2743 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
2745 struct cfq_io_context
*cic
;
2747 cic
= kmem_cache_alloc_node(cfq_ioc_pool
, gfp_mask
| __GFP_ZERO
,
2750 cic
->last_end_request
= jiffies
;
2751 INIT_LIST_HEAD(&cic
->queue_list
);
2752 INIT_HLIST_NODE(&cic
->cic_list
);
2753 cic
->dtor
= cfq_free_io_context
;
2754 cic
->exit
= cfq_exit_io_context
;
2755 elv_ioc_count_inc(cfq_ioc_count
);
2761 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct io_context
*ioc
)
2763 struct task_struct
*tsk
= current
;
2766 if (!cfq_cfqq_prio_changed(cfqq
))
2769 ioprio_class
= IOPRIO_PRIO_CLASS(ioc
->ioprio
);
2770 switch (ioprio_class
) {
2772 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
2773 case IOPRIO_CLASS_NONE
:
2775 * no prio set, inherit CPU scheduling settings
2777 cfqq
->ioprio
= task_nice_ioprio(tsk
);
2778 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
2780 case IOPRIO_CLASS_RT
:
2781 cfqq
->ioprio
= task_ioprio(ioc
);
2782 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
2784 case IOPRIO_CLASS_BE
:
2785 cfqq
->ioprio
= task_ioprio(ioc
);
2786 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
2788 case IOPRIO_CLASS_IDLE
:
2789 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
2791 cfq_clear_cfqq_idle_window(cfqq
);
2796 * keep track of original prio settings in case we have to temporarily
2797 * elevate the priority of this queue
2799 cfqq
->org_ioprio
= cfqq
->ioprio
;
2800 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
2801 cfq_clear_cfqq_prio_changed(cfqq
);
2804 static void changed_ioprio(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2806 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
2807 struct cfq_queue
*cfqq
;
2808 unsigned long flags
;
2810 if (unlikely(!cfqd
))
2813 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2815 cfqq
= cic
->cfqq
[BLK_RW_ASYNC
];
2817 struct cfq_queue
*new_cfqq
;
2818 new_cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
->ioc
,
2821 cic
->cfqq
[BLK_RW_ASYNC
] = new_cfqq
;
2822 cfq_put_queue(cfqq
);
2826 cfqq
= cic
->cfqq
[BLK_RW_SYNC
];
2828 cfq_mark_cfqq_prio_changed(cfqq
);
2830 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2833 static void cfq_ioc_set_ioprio(struct io_context
*ioc
)
2835 call_for_each_cic(ioc
, changed_ioprio
);
2836 ioc
->ioprio_changed
= 0;
2839 static void cfq_init_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2840 pid_t pid
, bool is_sync
)
2842 RB_CLEAR_NODE(&cfqq
->rb_node
);
2843 RB_CLEAR_NODE(&cfqq
->p_node
);
2844 INIT_LIST_HEAD(&cfqq
->fifo
);
2846 atomic_set(&cfqq
->ref
, 0);
2849 cfq_mark_cfqq_prio_changed(cfqq
);
2852 if (!cfq_class_idle(cfqq
))
2853 cfq_mark_cfqq_idle_window(cfqq
);
2854 cfq_mark_cfqq_sync(cfqq
);
2859 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2860 static void changed_cgroup(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2862 struct cfq_queue
*sync_cfqq
= cic_to_cfqq(cic
, 1);
2863 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
2864 unsigned long flags
;
2865 struct request_queue
*q
;
2867 if (unlikely(!cfqd
))
2872 spin_lock_irqsave(q
->queue_lock
, flags
);
2876 * Drop reference to sync queue. A new sync queue will be
2877 * assigned in new group upon arrival of a fresh request.
2879 cfq_log_cfqq(cfqd
, sync_cfqq
, "changed cgroup");
2880 cic_set_cfqq(cic
, NULL
, 1);
2881 cfq_put_queue(sync_cfqq
);
2884 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2887 static void cfq_ioc_set_cgroup(struct io_context
*ioc
)
2889 call_for_each_cic(ioc
, changed_cgroup
);
2890 ioc
->cgroup_changed
= 0;
2892 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2894 static struct cfq_queue
*
2895 cfq_find_alloc_queue(struct cfq_data
*cfqd
, bool is_sync
,
2896 struct io_context
*ioc
, gfp_t gfp_mask
)
2898 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
2899 struct cfq_io_context
*cic
;
2900 struct cfq_group
*cfqg
;
2903 cfqg
= cfq_get_cfqg(cfqd
, 1);
2904 cic
= cfq_cic_lookup(cfqd
, ioc
);
2905 /* cic always exists here */
2906 cfqq
= cic_to_cfqq(cic
, is_sync
);
2909 * Always try a new alloc if we fell back to the OOM cfqq
2910 * originally, since it should just be a temporary situation.
2912 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
2917 } else if (gfp_mask
& __GFP_WAIT
) {
2918 spin_unlock_irq(cfqd
->queue
->queue_lock
);
2919 new_cfqq
= kmem_cache_alloc_node(cfq_pool
,
2920 gfp_mask
| __GFP_ZERO
,
2922 spin_lock_irq(cfqd
->queue
->queue_lock
);
2926 cfqq
= kmem_cache_alloc_node(cfq_pool
,
2927 gfp_mask
| __GFP_ZERO
,
2932 cfq_init_cfqq(cfqd
, cfqq
, current
->pid
, is_sync
);
2933 cfq_init_prio_data(cfqq
, ioc
);
2934 cfq_link_cfqq_cfqg(cfqq
, cfqg
);
2935 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
2937 cfqq
= &cfqd
->oom_cfqq
;
2941 kmem_cache_free(cfq_pool
, new_cfqq
);
2946 static struct cfq_queue
**
2947 cfq_async_queue_prio(struct cfq_data
*cfqd
, int ioprio_class
, int ioprio
)
2949 switch (ioprio_class
) {
2950 case IOPRIO_CLASS_RT
:
2951 return &cfqd
->async_cfqq
[0][ioprio
];
2952 case IOPRIO_CLASS_BE
:
2953 return &cfqd
->async_cfqq
[1][ioprio
];
2954 case IOPRIO_CLASS_IDLE
:
2955 return &cfqd
->async_idle_cfqq
;
2961 static struct cfq_queue
*
2962 cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
, struct io_context
*ioc
,
2965 const int ioprio
= task_ioprio(ioc
);
2966 const int ioprio_class
= task_ioprio_class(ioc
);
2967 struct cfq_queue
**async_cfqq
= NULL
;
2968 struct cfq_queue
*cfqq
= NULL
;
2971 async_cfqq
= cfq_async_queue_prio(cfqd
, ioprio_class
, ioprio
);
2976 cfqq
= cfq_find_alloc_queue(cfqd
, is_sync
, ioc
, gfp_mask
);
2979 * pin the queue now that it's allocated, scheduler exit will prune it
2981 if (!is_sync
&& !(*async_cfqq
)) {
2982 atomic_inc(&cfqq
->ref
);
2986 atomic_inc(&cfqq
->ref
);
2991 * We drop cfq io contexts lazily, so we may find a dead one.
2994 cfq_drop_dead_cic(struct cfq_data
*cfqd
, struct io_context
*ioc
,
2995 struct cfq_io_context
*cic
)
2997 unsigned long flags
;
2999 WARN_ON(!list_empty(&cic
->queue_list
));
3000 BUG_ON(cic
->key
!= cfqd_dead_key(cfqd
));
3002 spin_lock_irqsave(&ioc
->lock
, flags
);
3004 BUG_ON(ioc
->ioc_data
== cic
);
3006 radix_tree_delete(&ioc
->radix_root
, cfqd
->cic_index
);
3007 hlist_del_rcu(&cic
->cic_list
);
3008 spin_unlock_irqrestore(&ioc
->lock
, flags
);
3013 static struct cfq_io_context
*
3014 cfq_cic_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
3016 struct cfq_io_context
*cic
;
3017 unsigned long flags
;
3025 * we maintain a last-hit cache, to avoid browsing over the tree
3027 cic
= rcu_dereference(ioc
->ioc_data
);
3028 if (cic
&& cic
->key
== cfqd
) {
3034 cic
= radix_tree_lookup(&ioc
->radix_root
, cfqd
->cic_index
);
3038 if (unlikely(cic
->key
!= cfqd
)) {
3039 cfq_drop_dead_cic(cfqd
, ioc
, cic
);
3044 spin_lock_irqsave(&ioc
->lock
, flags
);
3045 rcu_assign_pointer(ioc
->ioc_data
, cic
);
3046 spin_unlock_irqrestore(&ioc
->lock
, flags
);
3054 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3055 * the process specific cfq io context when entered from the block layer.
3056 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3058 static int cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
3059 struct cfq_io_context
*cic
, gfp_t gfp_mask
)
3061 unsigned long flags
;
3064 ret
= radix_tree_preload(gfp_mask
);
3069 spin_lock_irqsave(&ioc
->lock
, flags
);
3070 ret
= radix_tree_insert(&ioc
->radix_root
,
3071 cfqd
->cic_index
, cic
);
3073 hlist_add_head_rcu(&cic
->cic_list
, &ioc
->cic_list
);
3074 spin_unlock_irqrestore(&ioc
->lock
, flags
);
3076 radix_tree_preload_end();
3079 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
3080 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
3081 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
3086 printk(KERN_ERR
"cfq: cic link failed!\n");
3092 * Setup general io context and cfq io context. There can be several cfq
3093 * io contexts per general io context, if this process is doing io to more
3094 * than one device managed by cfq.
3096 static struct cfq_io_context
*
3097 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
3099 struct io_context
*ioc
= NULL
;
3100 struct cfq_io_context
*cic
;
3102 might_sleep_if(gfp_mask
& __GFP_WAIT
);
3104 ioc
= get_io_context(gfp_mask
, cfqd
->queue
->node
);
3108 cic
= cfq_cic_lookup(cfqd
, ioc
);
3112 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
3116 if (cfq_cic_link(cfqd
, ioc
, cic
, gfp_mask
))
3120 smp_read_barrier_depends();
3121 if (unlikely(ioc
->ioprio_changed
))
3122 cfq_ioc_set_ioprio(ioc
);
3124 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3125 if (unlikely(ioc
->cgroup_changed
))
3126 cfq_ioc_set_cgroup(ioc
);
3132 put_io_context(ioc
);
3137 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
3139 unsigned long elapsed
= jiffies
- cic
->last_end_request
;
3140 unsigned long ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
3142 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
3143 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
3144 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
3148 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3152 sector_t n_sec
= blk_rq_sectors(rq
);
3153 if (cfqq
->last_request_pos
) {
3154 if (cfqq
->last_request_pos
< blk_rq_pos(rq
))
3155 sdist
= blk_rq_pos(rq
) - cfqq
->last_request_pos
;
3157 sdist
= cfqq
->last_request_pos
- blk_rq_pos(rq
);
3160 cfqq
->seek_history
<<= 1;
3161 if (blk_queue_nonrot(cfqd
->queue
))
3162 cfqq
->seek_history
|= (n_sec
< CFQQ_SECT_THR_NONROT
);
3164 cfqq
->seek_history
|= (sdist
> CFQQ_SEEK_THR
);
3168 * Disable idle window if the process thinks too long or seeks so much that
3172 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3173 struct cfq_io_context
*cic
)
3175 int old_idle
, enable_idle
;
3178 * Don't idle for async or idle io prio class
3180 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
3183 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
3185 if (cfqq
->queued
[0] + cfqq
->queued
[1] >= 4)
3186 cfq_mark_cfqq_deep(cfqq
);
3188 if (cfqq
->next_rq
&& (cfqq
->next_rq
->cmd_flags
& REQ_NOIDLE
))
3190 else if (!atomic_read(&cic
->ioc
->nr_tasks
) || !cfqd
->cfq_slice_idle
||
3191 (!cfq_cfqq_deep(cfqq
) && CFQQ_SEEKY(cfqq
)))
3193 else if (sample_valid(cic
->ttime_samples
)) {
3194 if (cic
->ttime_mean
> cfqd
->cfq_slice_idle
)
3200 if (old_idle
!= enable_idle
) {
3201 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
3203 cfq_mark_cfqq_idle_window(cfqq
);
3205 cfq_clear_cfqq_idle_window(cfqq
);
3210 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3211 * no or if we aren't sure, a 1 will cause a preempt.
3214 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
3217 struct cfq_queue
*cfqq
;
3219 cfqq
= cfqd
->active_queue
;
3223 if (cfq_class_idle(new_cfqq
))
3226 if (cfq_class_idle(cfqq
))
3230 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3232 if (cfq_class_rt(cfqq
) && !cfq_class_rt(new_cfqq
))
3236 * if the new request is sync, but the currently running queue is
3237 * not, let the sync request have priority.
3239 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
3242 if (new_cfqq
->cfqg
!= cfqq
->cfqg
)
3245 if (cfq_slice_used(cfqq
))
3248 /* Allow preemption only if we are idling on sync-noidle tree */
3249 if (cfqd
->serving_type
== SYNC_NOIDLE_WORKLOAD
&&
3250 cfqq_type(new_cfqq
) == SYNC_NOIDLE_WORKLOAD
&&
3251 new_cfqq
->service_tree
->count
== 2 &&
3252 RB_EMPTY_ROOT(&cfqq
->sort_list
))
3256 * So both queues are sync. Let the new request get disk time if
3257 * it's a metadata request and the current queue is doing regular IO.
3259 if ((rq
->cmd_flags
& REQ_META
) && !cfqq
->meta_pending
)
3263 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3265 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
3268 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
3272 * if this request is as-good as one we would expect from the
3273 * current cfqq, let it preempt
3275 if (cfq_rq_close(cfqd
, cfqq
, rq
))
3282 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3283 * let it have half of its nominal slice.
3285 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3287 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
3288 cfq_slice_expired(cfqd
, 1);
3291 * Put the new queue at the front of the of the current list,
3292 * so we know that it will be selected next.
3294 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
3296 cfq_service_tree_add(cfqd
, cfqq
, 1);
3298 cfqq
->slice_end
= 0;
3299 cfq_mark_cfqq_slice_new(cfqq
);
3303 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3304 * something we should do about it
3307 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3310 struct cfq_io_context
*cic
= RQ_CIC(rq
);
3313 if (rq
->cmd_flags
& REQ_META
)
3314 cfqq
->meta_pending
++;
3316 cfq_update_io_thinktime(cfqd
, cic
);
3317 cfq_update_io_seektime(cfqd
, cfqq
, rq
);
3318 cfq_update_idle_window(cfqd
, cfqq
, cic
);
3320 cfqq
->last_request_pos
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
3322 if (cfqq
== cfqd
->active_queue
) {
3324 * Remember that we saw a request from this process, but
3325 * don't start queuing just yet. Otherwise we risk seeing lots
3326 * of tiny requests, because we disrupt the normal plugging
3327 * and merging. If the request is already larger than a single
3328 * page, let it rip immediately. For that case we assume that
3329 * merging is already done. Ditto for a busy system that
3330 * has other work pending, don't risk delaying until the
3331 * idle timer unplug to continue working.
3333 if (cfq_cfqq_wait_request(cfqq
)) {
3334 if (blk_rq_bytes(rq
) > PAGE_CACHE_SIZE
||
3335 cfqd
->busy_queues
> 1) {
3336 cfq_del_timer(cfqd
, cfqq
);
3337 cfq_clear_cfqq_wait_request(cfqq
);
3338 __blk_run_queue(cfqd
->queue
);
3340 cfq_blkiocg_update_idle_time_stats(
3342 cfq_mark_cfqq_must_dispatch(cfqq
);
3345 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
3347 * not the active queue - expire current slice if it is
3348 * idle and has expired it's mean thinktime or this new queue
3349 * has some old slice time left and is of higher priority or
3350 * this new queue is RT and the current one is BE
3352 cfq_preempt_queue(cfqd
, cfqq
);
3353 __blk_run_queue(cfqd
->queue
);
3357 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
3359 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3360 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3362 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
3363 cfq_init_prio_data(cfqq
, RQ_CIC(rq
)->ioc
);
3365 rq_set_fifo_time(rq
, jiffies
+ cfqd
->cfq_fifo_expire
[rq_is_sync(rq
)]);
3366 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
3368 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq
))->blkg
,
3369 &cfqd
->serving_group
->blkg
, rq_data_dir(rq
),
3371 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
3375 * Update hw_tag based on peak queue depth over 50 samples under
3378 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
3380 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
3382 if (cfqd
->rq_in_driver
> cfqd
->hw_tag_est_depth
)
3383 cfqd
->hw_tag_est_depth
= cfqd
->rq_in_driver
;
3385 if (cfqd
->hw_tag
== 1)
3388 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
3389 cfqd
->rq_in_driver
<= CFQ_HW_QUEUE_MIN
)
3393 * If active queue hasn't enough requests and can idle, cfq might not
3394 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3397 if (cfqq
&& cfq_cfqq_idle_window(cfqq
) &&
3398 cfqq
->dispatched
+ cfqq
->queued
[0] + cfqq
->queued
[1] <
3399 CFQ_HW_QUEUE_MIN
&& cfqd
->rq_in_driver
< CFQ_HW_QUEUE_MIN
)
3402 if (cfqd
->hw_tag_samples
++ < 50)
3405 if (cfqd
->hw_tag_est_depth
>= CFQ_HW_QUEUE_MIN
)
3411 static bool cfq_should_wait_busy(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3413 struct cfq_io_context
*cic
= cfqd
->active_cic
;
3415 /* If there are other queues in the group, don't wait */
3416 if (cfqq
->cfqg
->nr_cfqq
> 1)
3419 if (cfq_slice_used(cfqq
))
3422 /* if slice left is less than think time, wait busy */
3423 if (cic
&& sample_valid(cic
->ttime_samples
)
3424 && (cfqq
->slice_end
- jiffies
< cic
->ttime_mean
))
3428 * If think times is less than a jiffy than ttime_mean=0 and above
3429 * will not be true. It might happen that slice has not expired yet
3430 * but will expire soon (4-5 ns) during select_queue(). To cover the
3431 * case where think time is less than a jiffy, mark the queue wait
3432 * busy if only 1 jiffy is left in the slice.
3434 if (cfqq
->slice_end
- jiffies
== 1)
3440 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
3442 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3443 struct cfq_data
*cfqd
= cfqq
->cfqd
;
3444 const int sync
= rq_is_sync(rq
);
3448 cfq_log_cfqq(cfqd
, cfqq
, "complete rqnoidle %d",
3449 !!(rq
->cmd_flags
& REQ_NOIDLE
));
3451 cfq_update_hw_tag(cfqd
);
3453 WARN_ON(!cfqd
->rq_in_driver
);
3454 WARN_ON(!cfqq
->dispatched
);
3455 cfqd
->rq_in_driver
--;
3457 (RQ_CFQG(rq
))->dispatched
--;
3458 cfq_blkiocg_update_completion_stats(&cfqq
->cfqg
->blkg
,
3459 rq_start_time_ns(rq
), rq_io_start_time_ns(rq
),
3460 rq_data_dir(rq
), rq_is_sync(rq
));
3462 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]--;
3465 RQ_CIC(rq
)->last_end_request
= now
;
3466 if (!time_after(rq
->start_time
+ cfqd
->cfq_fifo_expire
[1], now
))
3467 cfqd
->last_delayed_sync
= now
;
3471 * If this is the active queue, check if it needs to be expired,
3472 * or if we want to idle in case it has no pending requests.
3474 if (cfqd
->active_queue
== cfqq
) {
3475 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
3477 if (cfq_cfqq_slice_new(cfqq
)) {
3478 cfq_set_prio_slice(cfqd
, cfqq
);
3479 cfq_clear_cfqq_slice_new(cfqq
);
3483 * Should we wait for next request to come in before we expire
3486 if (cfq_should_wait_busy(cfqd
, cfqq
)) {
3487 unsigned long extend_sl
= cfqd
->cfq_slice_idle
;
3488 if (!cfqd
->cfq_slice_idle
)
3489 extend_sl
= cfqd
->cfq_group_idle
;
3490 cfqq
->slice_end
= jiffies
+ extend_sl
;
3491 cfq_mark_cfqq_wait_busy(cfqq
);
3492 cfq_log_cfqq(cfqd
, cfqq
, "will busy wait");
3496 * Idling is not enabled on:
3498 * - idle-priority queues
3500 * - queues with still some requests queued
3501 * - when there is a close cooperator
3503 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
3504 cfq_slice_expired(cfqd
, 1);
3505 else if (sync
&& cfqq_empty
&&
3506 !cfq_close_cooperator(cfqd
, cfqq
)) {
3507 cfq_arm_slice_timer(cfqd
);
3511 if (!cfqd
->rq_in_driver
)
3512 cfq_schedule_dispatch(cfqd
);
3516 * we temporarily boost lower priority queues if they are holding fs exclusive
3517 * resources. they are boosted to normal prio (CLASS_BE/4)
3519 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
3521 if (has_fs_excl()) {
3523 * boost idle prio on transactions that would lock out other
3524 * users of the filesystem
3526 if (cfq_class_idle(cfqq
))
3527 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
3528 if (cfqq
->ioprio
> IOPRIO_NORM
)
3529 cfqq
->ioprio
= IOPRIO_NORM
;
3532 * unboost the queue (if needed)
3534 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
3535 cfqq
->ioprio
= cfqq
->org_ioprio
;
3539 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
3541 if (cfq_cfqq_wait_request(cfqq
) && !cfq_cfqq_must_alloc_slice(cfqq
)) {
3542 cfq_mark_cfqq_must_alloc_slice(cfqq
);
3543 return ELV_MQUEUE_MUST
;
3546 return ELV_MQUEUE_MAY
;
3549 static int cfq_may_queue(struct request_queue
*q
, int rw
)
3551 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3552 struct task_struct
*tsk
= current
;
3553 struct cfq_io_context
*cic
;
3554 struct cfq_queue
*cfqq
;
3557 * don't force setup of a queue from here, as a call to may_queue
3558 * does not necessarily imply that a request actually will be queued.
3559 * so just lookup a possibly existing queue, or return 'may queue'
3562 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
3564 return ELV_MQUEUE_MAY
;
3566 cfqq
= cic_to_cfqq(cic
, rw_is_sync(rw
));
3568 cfq_init_prio_data(cfqq
, cic
->ioc
);
3569 cfq_prio_boost(cfqq
);
3571 return __cfq_may_queue(cfqq
);
3574 return ELV_MQUEUE_MAY
;
3578 * queue lock held here
3580 static void cfq_put_request(struct request
*rq
)
3582 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3585 const int rw
= rq_data_dir(rq
);
3587 BUG_ON(!cfqq
->allocated
[rw
]);
3588 cfqq
->allocated
[rw
]--;
3590 put_io_context(RQ_CIC(rq
)->ioc
);
3592 rq
->elevator_private
= NULL
;
3593 rq
->elevator_private2
= NULL
;
3595 /* Put down rq reference on cfqg */
3596 cfq_put_cfqg(RQ_CFQG(rq
));
3597 rq
->elevator_private3
= NULL
;
3599 cfq_put_queue(cfqq
);
3603 static struct cfq_queue
*
3604 cfq_merge_cfqqs(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
,
3605 struct cfq_queue
*cfqq
)
3607 cfq_log_cfqq(cfqd
, cfqq
, "merging with queue %p", cfqq
->new_cfqq
);
3608 cic_set_cfqq(cic
, cfqq
->new_cfqq
, 1);
3609 cfq_mark_cfqq_coop(cfqq
->new_cfqq
);
3610 cfq_put_queue(cfqq
);
3611 return cic_to_cfqq(cic
, 1);
3615 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3616 * was the last process referring to said cfqq.
3618 static struct cfq_queue
*
3619 split_cfqq(struct cfq_io_context
*cic
, struct cfq_queue
*cfqq
)
3621 if (cfqq_process_refs(cfqq
) == 1) {
3622 cfqq
->pid
= current
->pid
;
3623 cfq_clear_cfqq_coop(cfqq
);
3624 cfq_clear_cfqq_split_coop(cfqq
);
3628 cic_set_cfqq(cic
, NULL
, 1);
3630 cfq_put_cooperator(cfqq
);
3632 cfq_put_queue(cfqq
);
3636 * Allocate cfq data structures associated with this request.
3639 cfq_set_request(struct request_queue
*q
, struct request
*rq
, gfp_t gfp_mask
)
3641 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3642 struct cfq_io_context
*cic
;
3643 const int rw
= rq_data_dir(rq
);
3644 const bool is_sync
= rq_is_sync(rq
);
3645 struct cfq_queue
*cfqq
;
3646 unsigned long flags
;
3648 might_sleep_if(gfp_mask
& __GFP_WAIT
);
3650 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
3652 spin_lock_irqsave(q
->queue_lock
, flags
);
3658 cfqq
= cic_to_cfqq(cic
, is_sync
);
3659 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
3660 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
->ioc
, gfp_mask
);
3661 cic_set_cfqq(cic
, cfqq
, is_sync
);
3664 * If the queue was seeky for too long, break it apart.
3666 if (cfq_cfqq_coop(cfqq
) && cfq_cfqq_split_coop(cfqq
)) {
3667 cfq_log_cfqq(cfqd
, cfqq
, "breaking apart cfqq");
3668 cfqq
= split_cfqq(cic
, cfqq
);
3674 * Check to see if this queue is scheduled to merge with
3675 * another, closely cooperating queue. The merging of
3676 * queues happens here as it must be done in process context.
3677 * The reference on new_cfqq was taken in merge_cfqqs.
3680 cfqq
= cfq_merge_cfqqs(cfqd
, cic
, cfqq
);
3683 cfqq
->allocated
[rw
]++;
3684 atomic_inc(&cfqq
->ref
);
3686 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3688 rq
->elevator_private
= cic
;
3689 rq
->elevator_private2
= cfqq
;
3690 rq
->elevator_private3
= cfq_ref_get_cfqg(cfqq
->cfqg
);
3695 put_io_context(cic
->ioc
);
3697 cfq_schedule_dispatch(cfqd
);
3698 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3699 cfq_log(cfqd
, "set_request fail");
3703 static void cfq_kick_queue(struct work_struct
*work
)
3705 struct cfq_data
*cfqd
=
3706 container_of(work
, struct cfq_data
, unplug_work
);
3707 struct request_queue
*q
= cfqd
->queue
;
3709 spin_lock_irq(q
->queue_lock
);
3710 __blk_run_queue(cfqd
->queue
);
3711 spin_unlock_irq(q
->queue_lock
);
3715 * Timer running if the active_queue is currently idling inside its time slice
3717 static void cfq_idle_slice_timer(unsigned long data
)
3719 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
3720 struct cfq_queue
*cfqq
;
3721 unsigned long flags
;
3724 cfq_log(cfqd
, "idle timer fired");
3726 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
3728 cfqq
= cfqd
->active_queue
;
3733 * We saw a request before the queue expired, let it through
3735 if (cfq_cfqq_must_dispatch(cfqq
))
3741 if (cfq_slice_used(cfqq
))
3745 * only expire and reinvoke request handler, if there are
3746 * other queues with pending requests
3748 if (!cfqd
->busy_queues
)
3752 * not expired and it has a request pending, let it dispatch
3754 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3758 * Queue depth flag is reset only when the idle didn't succeed
3760 cfq_clear_cfqq_deep(cfqq
);
3763 cfq_slice_expired(cfqd
, timed_out
);
3765 cfq_schedule_dispatch(cfqd
);
3767 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
3770 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
3772 del_timer_sync(&cfqd
->idle_slice_timer
);
3773 cancel_work_sync(&cfqd
->unplug_work
);
3776 static void cfq_put_async_queues(struct cfq_data
*cfqd
)
3780 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
3781 if (cfqd
->async_cfqq
[0][i
])
3782 cfq_put_queue(cfqd
->async_cfqq
[0][i
]);
3783 if (cfqd
->async_cfqq
[1][i
])
3784 cfq_put_queue(cfqd
->async_cfqq
[1][i
]);
3787 if (cfqd
->async_idle_cfqq
)
3788 cfq_put_queue(cfqd
->async_idle_cfqq
);
3791 static void cfq_cfqd_free(struct rcu_head
*head
)
3793 kfree(container_of(head
, struct cfq_data
, rcu
));
3796 static void cfq_exit_queue(struct elevator_queue
*e
)
3798 struct cfq_data
*cfqd
= e
->elevator_data
;
3799 struct request_queue
*q
= cfqd
->queue
;
3801 cfq_shutdown_timer_wq(cfqd
);
3803 spin_lock_irq(q
->queue_lock
);
3805 if (cfqd
->active_queue
)
3806 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
3808 while (!list_empty(&cfqd
->cic_list
)) {
3809 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
3810 struct cfq_io_context
,
3813 __cfq_exit_single_io_context(cfqd
, cic
);
3816 cfq_put_async_queues(cfqd
);
3817 cfq_release_cfq_groups(cfqd
);
3818 cfq_blkiocg_del_blkio_group(&cfqd
->root_group
.blkg
);
3820 spin_unlock_irq(q
->queue_lock
);
3822 cfq_shutdown_timer_wq(cfqd
);
3824 spin_lock(&cic_index_lock
);
3825 ida_remove(&cic_index_ida
, cfqd
->cic_index
);
3826 spin_unlock(&cic_index_lock
);
3828 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3829 call_rcu(&cfqd
->rcu
, cfq_cfqd_free
);
3832 static int cfq_alloc_cic_index(void)
3837 if (!ida_pre_get(&cic_index_ida
, GFP_KERNEL
))
3840 spin_lock(&cic_index_lock
);
3841 error
= ida_get_new(&cic_index_ida
, &index
);
3842 spin_unlock(&cic_index_lock
);
3843 if (error
&& error
!= -EAGAIN
)
3850 static void *cfq_init_queue(struct request_queue
*q
)
3852 struct cfq_data
*cfqd
;
3854 struct cfq_group
*cfqg
;
3855 struct cfq_rb_root
*st
;
3857 i
= cfq_alloc_cic_index();
3861 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
3865 cfqd
->cic_index
= i
;
3867 /* Init root service tree */
3868 cfqd
->grp_service_tree
= CFQ_RB_ROOT
;
3870 /* Init root group */
3871 cfqg
= &cfqd
->root_group
;
3872 for_each_cfqg_st(cfqg
, i
, j
, st
)
3874 RB_CLEAR_NODE(&cfqg
->rb_node
);
3876 /* Give preference to root group over other groups */
3877 cfqg
->weight
= 2*BLKIO_WEIGHT_DEFAULT
;
3879 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3881 * Take a reference to root group which we never drop. This is just
3882 * to make sure that cfq_put_cfqg() does not try to kfree root group
3884 atomic_set(&cfqg
->ref
, 1);
3886 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup
, &cfqg
->blkg
,
3891 * Not strictly needed (since RB_ROOT just clears the node and we
3892 * zeroed cfqd on alloc), but better be safe in case someone decides
3893 * to add magic to the rb code
3895 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
3896 cfqd
->prio_trees
[i
] = RB_ROOT
;
3899 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3900 * Grab a permanent reference to it, so that the normal code flow
3901 * will not attempt to free it.
3903 cfq_init_cfqq(cfqd
, &cfqd
->oom_cfqq
, 1, 0);
3904 atomic_inc(&cfqd
->oom_cfqq
.ref
);
3905 cfq_link_cfqq_cfqg(&cfqd
->oom_cfqq
, &cfqd
->root_group
);
3907 INIT_LIST_HEAD(&cfqd
->cic_list
);
3911 init_timer(&cfqd
->idle_slice_timer
);
3912 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
3913 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
3915 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
3917 cfqd
->cfq_quantum
= cfq_quantum
;
3918 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
3919 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
3920 cfqd
->cfq_back_max
= cfq_back_max
;
3921 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
3922 cfqd
->cfq_slice
[0] = cfq_slice_async
;
3923 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
3924 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
3925 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
3926 cfqd
->cfq_group_idle
= cfq_group_idle
;
3927 cfqd
->cfq_latency
= 1;
3928 cfqd
->cfq_group_isolation
= 0;
3931 * we optimistically start assuming sync ops weren't delayed in last
3932 * second, in order to have larger depth for async operations.
3934 cfqd
->last_delayed_sync
= jiffies
- HZ
;
3938 static void cfq_slab_kill(void)
3941 * Caller already ensured that pending RCU callbacks are completed,
3942 * so we should have no busy allocations at this point.
3945 kmem_cache_destroy(cfq_pool
);
3947 kmem_cache_destroy(cfq_ioc_pool
);
3950 static int __init
cfq_slab_setup(void)
3952 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
3956 cfq_ioc_pool
= KMEM_CACHE(cfq_io_context
, 0);
3967 * sysfs parts below -->
3970 cfq_var_show(unsigned int var
, char *page
)
3972 return sprintf(page
, "%d\n", var
);
3976 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
3978 char *p
= (char *) page
;
3980 *var
= simple_strtoul(p
, &p
, 10);
3984 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3985 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3987 struct cfq_data *cfqd = e->elevator_data; \
3988 unsigned int __data = __VAR; \
3990 __data = jiffies_to_msecs(__data); \
3991 return cfq_var_show(__data, (page)); \
3993 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
3994 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
3995 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
3996 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
3997 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
3998 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
3999 SHOW_FUNCTION(cfq_group_idle_show
, cfqd
->cfq_group_idle
, 1);
4000 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
4001 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
4002 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
4003 SHOW_FUNCTION(cfq_low_latency_show
, cfqd
->cfq_latency
, 0);
4004 SHOW_FUNCTION(cfq_group_isolation_show
, cfqd
->cfq_group_isolation
, 0);
4005 #undef SHOW_FUNCTION
4007 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4008 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4010 struct cfq_data *cfqd = e->elevator_data; \
4011 unsigned int __data; \
4012 int ret = cfq_var_store(&__data, (page), count); \
4013 if (__data < (MIN)) \
4015 else if (__data > (MAX)) \
4018 *(__PTR) = msecs_to_jiffies(__data); \
4020 *(__PTR) = __data; \
4023 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
4024 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
4026 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
4028 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
4029 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
4031 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
4032 STORE_FUNCTION(cfq_group_idle_store
, &cfqd
->cfq_group_idle
, 0, UINT_MAX
, 1);
4033 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
4034 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
4035 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
4037 STORE_FUNCTION(cfq_low_latency_store
, &cfqd
->cfq_latency
, 0, 1, 0);
4038 STORE_FUNCTION(cfq_group_isolation_store
, &cfqd
->cfq_group_isolation
, 0, 1, 0);
4039 #undef STORE_FUNCTION
4041 #define CFQ_ATTR(name) \
4042 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4044 static struct elv_fs_entry cfq_attrs
[] = {
4046 CFQ_ATTR(fifo_expire_sync
),
4047 CFQ_ATTR(fifo_expire_async
),
4048 CFQ_ATTR(back_seek_max
),
4049 CFQ_ATTR(back_seek_penalty
),
4050 CFQ_ATTR(slice_sync
),
4051 CFQ_ATTR(slice_async
),
4052 CFQ_ATTR(slice_async_rq
),
4053 CFQ_ATTR(slice_idle
),
4054 CFQ_ATTR(group_idle
),
4055 CFQ_ATTR(low_latency
),
4056 CFQ_ATTR(group_isolation
),
4060 static struct elevator_type iosched_cfq
= {
4062 .elevator_merge_fn
= cfq_merge
,
4063 .elevator_merged_fn
= cfq_merged_request
,
4064 .elevator_merge_req_fn
= cfq_merged_requests
,
4065 .elevator_allow_merge_fn
= cfq_allow_merge
,
4066 .elevator_bio_merged_fn
= cfq_bio_merged
,
4067 .elevator_dispatch_fn
= cfq_dispatch_requests
,
4068 .elevator_add_req_fn
= cfq_insert_request
,
4069 .elevator_activate_req_fn
= cfq_activate_request
,
4070 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
4071 .elevator_queue_empty_fn
= cfq_queue_empty
,
4072 .elevator_completed_req_fn
= cfq_completed_request
,
4073 .elevator_former_req_fn
= elv_rb_former_request
,
4074 .elevator_latter_req_fn
= elv_rb_latter_request
,
4075 .elevator_set_req_fn
= cfq_set_request
,
4076 .elevator_put_req_fn
= cfq_put_request
,
4077 .elevator_may_queue_fn
= cfq_may_queue
,
4078 .elevator_init_fn
= cfq_init_queue
,
4079 .elevator_exit_fn
= cfq_exit_queue
,
4080 .trim
= cfq_free_io_context
,
4082 .elevator_attrs
= cfq_attrs
,
4083 .elevator_name
= "cfq",
4084 .elevator_owner
= THIS_MODULE
,
4087 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4088 static struct blkio_policy_type blkio_policy_cfq
= {
4090 .blkio_unlink_group_fn
= cfq_unlink_blkio_group
,
4091 .blkio_update_group_weight_fn
= cfq_update_blkio_group_weight
,
4093 .plid
= BLKIO_POLICY_PROP
,
4096 static struct blkio_policy_type blkio_policy_cfq
;
4099 static int __init
cfq_init(void)
4102 * could be 0 on HZ < 1000 setups
4104 if (!cfq_slice_async
)
4105 cfq_slice_async
= 1;
4106 if (!cfq_slice_idle
)
4109 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4110 if (!cfq_group_idle
)
4115 if (cfq_slab_setup())
4118 elv_register(&iosched_cfq
);
4119 blkio_policy_register(&blkio_policy_cfq
);
4124 static void __exit
cfq_exit(void)
4126 DECLARE_COMPLETION_ONSTACK(all_gone
);
4127 blkio_policy_unregister(&blkio_policy_cfq
);
4128 elv_unregister(&iosched_cfq
);
4129 ioc_gone
= &all_gone
;
4130 /* ioc_gone's update must be visible before reading ioc_count */
4134 * this also protects us from entering cfq_slab_kill() with
4135 * pending RCU callbacks
4137 if (elv_ioc_count_read(cfq_ioc_count
))
4138 wait_for_completion(&all_gone
);
4139 ida_destroy(&cic_index_ida
);
4143 module_init(cfq_init
);
4144 module_exit(cfq_exit
);
4146 MODULE_AUTHOR("Jens Axboe");
4147 MODULE_LICENSE("GPL");
4148 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");