RDS: Use page_remainder_alloc() for recv bufs
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / rds / ib_recv.c
blobf6dbf16e07410e2aa11420d36da2e23f86e9b353
1 /*
2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <rdma/rdma_cm.h>
39 #include "rds.h"
40 #include "ib.h"
42 static struct kmem_cache *rds_ib_incoming_slab;
43 static struct kmem_cache *rds_ib_frag_slab;
44 static atomic_t rds_ib_allocation = ATOMIC_INIT(0);
46 /* Free frag and attached recv buffer f_sg */
47 static void rds_ib_frag_free(struct rds_page_frag *frag)
49 rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
50 __free_page(sg_page(&frag->f_sg));
51 kmem_cache_free(rds_ib_frag_slab, frag);
55 * We map a page at a time. Its fragments are posted in order. This
56 * is called in fragment order as the fragments get send completion events.
57 * Only the last frag in the page performs the unmapping.
59 * It's OK for ring cleanup to call this in whatever order it likes because
60 * DMA is not in flight and so we can unmap while other ring entries still
61 * hold page references in their frags.
63 static void rds_ib_recv_unmap_page(struct rds_ib_connection *ic,
64 struct rds_ib_recv_work *recv)
66 struct rds_page_frag *frag = recv->r_frag;
68 rdsdebug("recv %p frag %p page %p\n", recv, frag, sg_page(&frag->f_sg));
69 ib_dma_unmap_sg(ic->i_cm_id->device, &frag->f_sg, 1, DMA_FROM_DEVICE);
72 void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
74 struct rds_ib_recv_work *recv;
75 u32 i;
77 for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
78 struct ib_sge *sge;
80 recv->r_ibinc = NULL;
81 recv->r_frag = NULL;
83 recv->r_wr.next = NULL;
84 recv->r_wr.wr_id = i;
85 recv->r_wr.sg_list = recv->r_sge;
86 recv->r_wr.num_sge = RDS_IB_RECV_SGE;
88 sge = &recv->r_sge[0];
89 sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
90 sge->length = sizeof(struct rds_header);
91 sge->lkey = ic->i_mr->lkey;
93 sge = &recv->r_sge[1];
94 sge->addr = 0;
95 sge->length = RDS_FRAG_SIZE;
96 sge->lkey = ic->i_mr->lkey;
100 static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
101 struct rds_ib_recv_work *recv)
103 if (recv->r_ibinc) {
104 rds_inc_put(&recv->r_ibinc->ii_inc);
105 recv->r_ibinc = NULL;
107 if (recv->r_frag) {
108 rds_ib_recv_unmap_page(ic, recv);
109 rds_ib_frag_free(recv->r_frag);
110 recv->r_frag = NULL;
114 void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
116 u32 i;
118 for (i = 0; i < ic->i_recv_ring.w_nr; i++)
119 rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
122 static int rds_ib_recv_refill_one(struct rds_connection *conn,
123 struct rds_ib_recv_work *recv)
125 struct rds_ib_connection *ic = conn->c_transport_data;
126 struct ib_sge *sge;
127 int ret = -ENOMEM;
129 if (!recv->r_ibinc) {
130 if (!atomic_add_unless(&rds_ib_allocation, 1, rds_ib_sysctl_max_recv_allocation)) {
131 rds_ib_stats_inc(s_ib_rx_alloc_limit);
132 goto out;
134 recv->r_ibinc = kmem_cache_alloc(rds_ib_incoming_slab, GFP_NOWAIT);
135 if (!recv->r_ibinc) {
136 atomic_dec(&rds_ib_allocation);
137 goto out;
139 INIT_LIST_HEAD(&recv->r_ibinc->ii_frags);
140 rds_inc_init(&recv->r_ibinc->ii_inc, conn, conn->c_faddr);
143 if (!recv->r_frag) {
144 recv->r_frag = kmem_cache_alloc(rds_ib_frag_slab, GFP_NOWAIT);
145 if (!recv->r_frag)
146 goto out;
147 INIT_LIST_HEAD(&recv->r_frag->f_item);
148 sg_init_table(&recv->r_frag->f_sg, 1);
149 ret = rds_page_remainder_alloc(&recv->r_frag->f_sg,
150 RDS_FRAG_SIZE, GFP_NOWAIT);
151 if (ret) {
152 kmem_cache_free(rds_ib_frag_slab, recv->r_frag);
153 recv->r_frag = NULL;
154 goto out;
158 ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
159 1, DMA_FROM_DEVICE);
160 WARN_ON(ret != 1);
162 sge = &recv->r_sge[0];
163 sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
164 sge->length = sizeof(struct rds_header);
166 sge = &recv->r_sge[1];
167 sge->addr = sg_dma_address(&recv->r_frag->f_sg);
168 sge->length = sg_dma_len(&recv->r_frag->f_sg);
170 ret = 0;
171 out:
172 return ret;
176 * This tries to allocate and post unused work requests after making sure that
177 * they have all the allocations they need to queue received fragments into
178 * sockets. The i_recv_mutex is held here so that ring_alloc and _unalloc
179 * pairs don't go unmatched.
181 * -1 is returned if posting fails due to temporary resource exhaustion.
183 int rds_ib_recv_refill(struct rds_connection *conn, int prefill)
185 struct rds_ib_connection *ic = conn->c_transport_data;
186 struct rds_ib_recv_work *recv;
187 struct ib_recv_wr *failed_wr;
188 unsigned int posted = 0;
189 int ret = 0;
190 u32 pos;
192 while ((prefill || rds_conn_up(conn)) &&
193 rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
194 if (pos >= ic->i_recv_ring.w_nr) {
195 printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
196 pos);
197 ret = -EINVAL;
198 break;
201 recv = &ic->i_recvs[pos];
202 ret = rds_ib_recv_refill_one(conn, recv);
203 if (ret) {
204 ret = -1;
205 break;
208 /* XXX when can this fail? */
209 ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
210 rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv,
211 recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
212 (long) sg_dma_address(&recv->r_frag->f_sg), ret);
213 if (ret) {
214 rds_ib_conn_error(conn, "recv post on "
215 "%pI4 returned %d, disconnecting and "
216 "reconnecting\n", &conn->c_faddr,
217 ret);
218 ret = -1;
219 break;
222 posted++;
225 /* We're doing flow control - update the window. */
226 if (ic->i_flowctl && posted)
227 rds_ib_advertise_credits(conn, posted);
229 if (ret)
230 rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
231 return ret;
234 static void rds_ib_inc_purge(struct rds_incoming *inc)
236 struct rds_ib_incoming *ibinc;
237 struct rds_page_frag *frag;
238 struct rds_page_frag *pos;
240 ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
241 rdsdebug("purging ibinc %p inc %p\n", ibinc, inc);
243 list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
244 list_del_init(&frag->f_item);
245 rds_ib_frag_free(frag);
249 void rds_ib_inc_free(struct rds_incoming *inc)
251 struct rds_ib_incoming *ibinc;
253 ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
255 rds_ib_inc_purge(inc);
256 rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
257 BUG_ON(!list_empty(&ibinc->ii_frags));
258 kmem_cache_free(rds_ib_incoming_slab, ibinc);
259 atomic_dec(&rds_ib_allocation);
260 BUG_ON(atomic_read(&rds_ib_allocation) < 0);
263 int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iovec *first_iov,
264 size_t size)
266 struct rds_ib_incoming *ibinc;
267 struct rds_page_frag *frag;
268 struct iovec *iov = first_iov;
269 unsigned long to_copy;
270 unsigned long frag_off = 0;
271 unsigned long iov_off = 0;
272 int copied = 0;
273 int ret;
274 u32 len;
276 ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
277 frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
278 len = be32_to_cpu(inc->i_hdr.h_len);
280 while (copied < size && copied < len) {
281 if (frag_off == RDS_FRAG_SIZE) {
282 frag = list_entry(frag->f_item.next,
283 struct rds_page_frag, f_item);
284 frag_off = 0;
286 while (iov_off == iov->iov_len) {
287 iov_off = 0;
288 iov++;
291 to_copy = min(iov->iov_len - iov_off, RDS_FRAG_SIZE - frag_off);
292 to_copy = min_t(size_t, to_copy, size - copied);
293 to_copy = min_t(unsigned long, to_copy, len - copied);
295 rdsdebug("%lu bytes to user [%p, %zu] + %lu from frag "
296 "[%p, %u] + %lu\n",
297 to_copy, iov->iov_base, iov->iov_len, iov_off,
298 sg_page(&frag->f_sg), frag->f_sg.offset, frag_off);
300 /* XXX needs + offset for multiple recvs per page */
301 ret = rds_page_copy_to_user(sg_page(&frag->f_sg),
302 frag->f_sg.offset + frag_off,
303 iov->iov_base + iov_off,
304 to_copy);
305 if (ret) {
306 copied = ret;
307 break;
310 iov_off += to_copy;
311 frag_off += to_copy;
312 copied += to_copy;
315 return copied;
318 /* ic starts out kzalloc()ed */
319 void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
321 struct ib_send_wr *wr = &ic->i_ack_wr;
322 struct ib_sge *sge = &ic->i_ack_sge;
324 sge->addr = ic->i_ack_dma;
325 sge->length = sizeof(struct rds_header);
326 sge->lkey = ic->i_mr->lkey;
328 wr->sg_list = sge;
329 wr->num_sge = 1;
330 wr->opcode = IB_WR_SEND;
331 wr->wr_id = RDS_IB_ACK_WR_ID;
332 wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
336 * You'd think that with reliable IB connections you wouldn't need to ack
337 * messages that have been received. The problem is that IB hardware generates
338 * an ack message before it has DMAed the message into memory. This creates a
339 * potential message loss if the HCA is disabled for any reason between when it
340 * sends the ack and before the message is DMAed and processed. This is only a
341 * potential issue if another HCA is available for fail-over.
343 * When the remote host receives our ack they'll free the sent message from
344 * their send queue. To decrease the latency of this we always send an ack
345 * immediately after we've received messages.
347 * For simplicity, we only have one ack in flight at a time. This puts
348 * pressure on senders to have deep enough send queues to absorb the latency of
349 * a single ack frame being in flight. This might not be good enough.
351 * This is implemented by have a long-lived send_wr and sge which point to a
352 * statically allocated ack frame. This ack wr does not fall under the ring
353 * accounting that the tx and rx wrs do. The QP attribute specifically makes
354 * room for it beyond the ring size. Send completion notices its special
355 * wr_id and avoids working with the ring in that case.
357 #ifndef KERNEL_HAS_ATOMIC64
358 static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
359 int ack_required)
361 unsigned long flags;
363 spin_lock_irqsave(&ic->i_ack_lock, flags);
364 ic->i_ack_next = seq;
365 if (ack_required)
366 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
367 spin_unlock_irqrestore(&ic->i_ack_lock, flags);
370 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
372 unsigned long flags;
373 u64 seq;
375 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
377 spin_lock_irqsave(&ic->i_ack_lock, flags);
378 seq = ic->i_ack_next;
379 spin_unlock_irqrestore(&ic->i_ack_lock, flags);
381 return seq;
383 #else
384 static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
385 int ack_required)
387 atomic64_set(&ic->i_ack_next, seq);
388 if (ack_required) {
389 smp_mb__before_clear_bit();
390 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
394 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
396 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
397 smp_mb__after_clear_bit();
399 return atomic64_read(&ic->i_ack_next);
401 #endif
404 static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
406 struct rds_header *hdr = ic->i_ack;
407 struct ib_send_wr *failed_wr;
408 u64 seq;
409 int ret;
411 seq = rds_ib_get_ack(ic);
413 rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
414 rds_message_populate_header(hdr, 0, 0, 0);
415 hdr->h_ack = cpu_to_be64(seq);
416 hdr->h_credit = adv_credits;
417 rds_message_make_checksum(hdr);
418 ic->i_ack_queued = jiffies;
420 ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr);
421 if (unlikely(ret)) {
422 /* Failed to send. Release the WR, and
423 * force another ACK.
425 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
426 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
428 rds_ib_stats_inc(s_ib_ack_send_failure);
430 rds_ib_conn_error(ic->conn, "sending ack failed\n");
431 } else
432 rds_ib_stats_inc(s_ib_ack_sent);
436 * There are 3 ways of getting acknowledgements to the peer:
437 * 1. We call rds_ib_attempt_ack from the recv completion handler
438 * to send an ACK-only frame.
439 * However, there can be only one such frame in the send queue
440 * at any time, so we may have to postpone it.
441 * 2. When another (data) packet is transmitted while there's
442 * an ACK in the queue, we piggyback the ACK sequence number
443 * on the data packet.
444 * 3. If the ACK WR is done sending, we get called from the
445 * send queue completion handler, and check whether there's
446 * another ACK pending (postponed because the WR was on the
447 * queue). If so, we transmit it.
449 * We maintain 2 variables:
450 * - i_ack_flags, which keeps track of whether the ACK WR
451 * is currently in the send queue or not (IB_ACK_IN_FLIGHT)
452 * - i_ack_next, which is the last sequence number we received
454 * Potentially, send queue and receive queue handlers can run concurrently.
455 * It would be nice to not have to use a spinlock to synchronize things,
456 * but the one problem that rules this out is that 64bit updates are
457 * not atomic on all platforms. Things would be a lot simpler if
458 * we had atomic64 or maybe cmpxchg64 everywhere.
460 * Reconnecting complicates this picture just slightly. When we
461 * reconnect, we may be seeing duplicate packets. The peer
462 * is retransmitting them, because it hasn't seen an ACK for
463 * them. It is important that we ACK these.
465 * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
466 * this flag set *MUST* be acknowledged immediately.
470 * When we get here, we're called from the recv queue handler.
471 * Check whether we ought to transmit an ACK.
473 void rds_ib_attempt_ack(struct rds_ib_connection *ic)
475 unsigned int adv_credits;
477 if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
478 return;
480 if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
481 rds_ib_stats_inc(s_ib_ack_send_delayed);
482 return;
485 /* Can we get a send credit? */
486 if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
487 rds_ib_stats_inc(s_ib_tx_throttle);
488 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
489 return;
492 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
493 rds_ib_send_ack(ic, adv_credits);
497 * We get here from the send completion handler, when the
498 * adapter tells us the ACK frame was sent.
500 void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
502 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
503 rds_ib_attempt_ack(ic);
507 * This is called by the regular xmit code when it wants to piggyback
508 * an ACK on an outgoing frame.
510 u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
512 if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
513 rds_ib_stats_inc(s_ib_ack_send_piggybacked);
514 return rds_ib_get_ack(ic);
518 * It's kind of lame that we're copying from the posted receive pages into
519 * long-lived bitmaps. We could have posted the bitmaps and rdma written into
520 * them. But receiving new congestion bitmaps should be a *rare* event, so
521 * hopefully we won't need to invest that complexity in making it more
522 * efficient. By copying we can share a simpler core with TCP which has to
523 * copy.
525 static void rds_ib_cong_recv(struct rds_connection *conn,
526 struct rds_ib_incoming *ibinc)
528 struct rds_cong_map *map;
529 unsigned int map_off;
530 unsigned int map_page;
531 struct rds_page_frag *frag;
532 unsigned long frag_off;
533 unsigned long to_copy;
534 unsigned long copied;
535 uint64_t uncongested = 0;
536 void *addr;
538 /* catch completely corrupt packets */
539 if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
540 return;
542 map = conn->c_fcong;
543 map_page = 0;
544 map_off = 0;
546 frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
547 frag_off = 0;
549 copied = 0;
551 while (copied < RDS_CONG_MAP_BYTES) {
552 uint64_t *src, *dst;
553 unsigned int k;
555 to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
556 BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
558 addr = kmap_atomic(sg_page(&frag->f_sg), KM_SOFTIRQ0);
560 src = addr + frag_off;
561 dst = (void *)map->m_page_addrs[map_page] + map_off;
562 for (k = 0; k < to_copy; k += 8) {
563 /* Record ports that became uncongested, ie
564 * bits that changed from 0 to 1. */
565 uncongested |= ~(*src) & *dst;
566 *dst++ = *src++;
568 kunmap_atomic(addr, KM_SOFTIRQ0);
570 copied += to_copy;
572 map_off += to_copy;
573 if (map_off == PAGE_SIZE) {
574 map_off = 0;
575 map_page++;
578 frag_off += to_copy;
579 if (frag_off == RDS_FRAG_SIZE) {
580 frag = list_entry(frag->f_item.next,
581 struct rds_page_frag, f_item);
582 frag_off = 0;
586 /* the congestion map is in little endian order */
587 uncongested = le64_to_cpu(uncongested);
589 rds_cong_map_updated(map, uncongested);
593 * Rings are posted with all the allocations they'll need to queue the
594 * incoming message to the receiving socket so this can't fail.
595 * All fragments start with a header, so we can make sure we're not receiving
596 * garbage, and we can tell a small 8 byte fragment from an ACK frame.
598 struct rds_ib_ack_state {
599 u64 ack_next;
600 u64 ack_recv;
601 unsigned int ack_required:1;
602 unsigned int ack_next_valid:1;
603 unsigned int ack_recv_valid:1;
606 static void rds_ib_process_recv(struct rds_connection *conn,
607 struct rds_ib_recv_work *recv, u32 data_len,
608 struct rds_ib_ack_state *state)
610 struct rds_ib_connection *ic = conn->c_transport_data;
611 struct rds_ib_incoming *ibinc = ic->i_ibinc;
612 struct rds_header *ihdr, *hdr;
614 /* XXX shut down the connection if port 0,0 are seen? */
616 rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
617 data_len);
619 if (data_len < sizeof(struct rds_header)) {
620 rds_ib_conn_error(conn, "incoming message "
621 "from %pI4 didn't inclue a "
622 "header, disconnecting and "
623 "reconnecting\n",
624 &conn->c_faddr);
625 return;
627 data_len -= sizeof(struct rds_header);
629 ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs];
631 /* Validate the checksum. */
632 if (!rds_message_verify_checksum(ihdr)) {
633 rds_ib_conn_error(conn, "incoming message "
634 "from %pI4 has corrupted header - "
635 "forcing a reconnect\n",
636 &conn->c_faddr);
637 rds_stats_inc(s_recv_drop_bad_checksum);
638 return;
641 /* Process the ACK sequence which comes with every packet */
642 state->ack_recv = be64_to_cpu(ihdr->h_ack);
643 state->ack_recv_valid = 1;
645 /* Process the credits update if there was one */
646 if (ihdr->h_credit)
647 rds_ib_send_add_credits(conn, ihdr->h_credit);
649 if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
650 /* This is an ACK-only packet. The fact that it gets
651 * special treatment here is that historically, ACKs
652 * were rather special beasts.
654 rds_ib_stats_inc(s_ib_ack_received);
657 * Usually the frags make their way on to incs and are then freed as
658 * the inc is freed. We don't go that route, so we have to drop the
659 * page ref ourselves. We can't just leave the page on the recv
660 * because that confuses the dma mapping of pages and each recv's use
661 * of a partial page.
663 * FIXME: Fold this into the code path below.
665 rds_ib_frag_free(recv->r_frag);
666 recv->r_frag = NULL;
667 return;
671 * If we don't already have an inc on the connection then this
672 * fragment has a header and starts a message.. copy its header
673 * into the inc and save the inc so we can hang upcoming fragments
674 * off its list.
676 if (!ibinc) {
677 ibinc = recv->r_ibinc;
678 recv->r_ibinc = NULL;
679 ic->i_ibinc = ibinc;
681 hdr = &ibinc->ii_inc.i_hdr;
682 memcpy(hdr, ihdr, sizeof(*hdr));
683 ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
685 rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
686 ic->i_recv_data_rem, hdr->h_flags);
687 } else {
688 hdr = &ibinc->ii_inc.i_hdr;
689 /* We can't just use memcmp here; fragments of a
690 * single message may carry different ACKs */
691 if (hdr->h_sequence != ihdr->h_sequence ||
692 hdr->h_len != ihdr->h_len ||
693 hdr->h_sport != ihdr->h_sport ||
694 hdr->h_dport != ihdr->h_dport) {
695 rds_ib_conn_error(conn,
696 "fragment header mismatch; forcing reconnect\n");
697 return;
701 list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
702 recv->r_frag = NULL;
704 if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
705 ic->i_recv_data_rem -= RDS_FRAG_SIZE;
706 else {
707 ic->i_recv_data_rem = 0;
708 ic->i_ibinc = NULL;
710 if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP)
711 rds_ib_cong_recv(conn, ibinc);
712 else {
713 rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr,
714 &ibinc->ii_inc, GFP_ATOMIC,
715 KM_SOFTIRQ0);
716 state->ack_next = be64_to_cpu(hdr->h_sequence);
717 state->ack_next_valid = 1;
720 /* Evaluate the ACK_REQUIRED flag *after* we received
721 * the complete frame, and after bumping the next_rx
722 * sequence. */
723 if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
724 rds_stats_inc(s_recv_ack_required);
725 state->ack_required = 1;
728 rds_inc_put(&ibinc->ii_inc);
733 * Plucking the oldest entry from the ring can be done concurrently with
734 * the thread refilling the ring. Each ring operation is protected by
735 * spinlocks and the transient state of refilling doesn't change the
736 * recording of which entry is oldest.
738 * This relies on IB only calling one cq comp_handler for each cq so that
739 * there will only be one caller of rds_recv_incoming() per RDS connection.
741 void rds_ib_recv_cq_comp_handler(struct ib_cq *cq, void *context)
743 struct rds_connection *conn = context;
744 struct rds_ib_connection *ic = conn->c_transport_data;
746 rdsdebug("conn %p cq %p\n", conn, cq);
748 rds_ib_stats_inc(s_ib_rx_cq_call);
750 tasklet_schedule(&ic->i_recv_tasklet);
753 static inline void rds_poll_cq(struct rds_ib_connection *ic,
754 struct rds_ib_ack_state *state)
756 struct rds_connection *conn = ic->conn;
757 struct ib_wc wc;
758 struct rds_ib_recv_work *recv;
760 while (ib_poll_cq(ic->i_recv_cq, 1, &wc) > 0) {
761 rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
762 (unsigned long long)wc.wr_id, wc.status, wc.byte_len,
763 be32_to_cpu(wc.ex.imm_data));
764 rds_ib_stats_inc(s_ib_rx_cq_event);
766 recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
768 rds_ib_recv_unmap_page(ic, recv);
771 * Also process recvs in connecting state because it is possible
772 * to get a recv completion _before_ the rdmacm ESTABLISHED
773 * event is processed.
775 if (rds_conn_up(conn) || rds_conn_connecting(conn)) {
776 /* We expect errors as the qp is drained during shutdown */
777 if (wc.status == IB_WC_SUCCESS) {
778 rds_ib_process_recv(conn, recv, wc.byte_len, state);
779 } else {
780 rds_ib_conn_error(conn, "recv completion on "
781 "%pI4 had status %u, disconnecting and "
782 "reconnecting\n", &conn->c_faddr,
783 wc.status);
787 rds_ib_ring_free(&ic->i_recv_ring, 1);
791 void rds_ib_recv_tasklet_fn(unsigned long data)
793 struct rds_ib_connection *ic = (struct rds_ib_connection *) data;
794 struct rds_connection *conn = ic->conn;
795 struct rds_ib_ack_state state = { 0, };
797 rds_poll_cq(ic, &state);
798 ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED);
799 rds_poll_cq(ic, &state);
801 if (state.ack_next_valid)
802 rds_ib_set_ack(ic, state.ack_next, state.ack_required);
803 if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) {
804 rds_send_drop_acked(conn, state.ack_recv, NULL);
805 ic->i_ack_recv = state.ack_recv;
807 if (rds_conn_up(conn))
808 rds_ib_attempt_ack(ic);
810 /* If we ever end up with a really empty receive ring, we're
811 * in deep trouble, as the sender will definitely see RNR
812 * timeouts. */
813 if (rds_ib_ring_empty(&ic->i_recv_ring))
814 rds_ib_stats_inc(s_ib_rx_ring_empty);
816 if (rds_ib_ring_low(&ic->i_recv_ring))
817 rds_ib_recv_refill(conn, 0);
820 int rds_ib_recv(struct rds_connection *conn)
822 struct rds_ib_connection *ic = conn->c_transport_data;
823 int ret = 0;
825 rdsdebug("conn %p\n", conn);
826 if (rds_conn_up(conn))
827 rds_ib_attempt_ack(ic);
829 return ret;
832 int __init rds_ib_recv_init(void)
834 struct sysinfo si;
835 int ret = -ENOMEM;
837 /* Default to 30% of all available RAM for recv memory */
838 si_meminfo(&si);
839 rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
841 rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming",
842 sizeof(struct rds_ib_incoming),
843 0, 0, NULL);
844 if (!rds_ib_incoming_slab)
845 goto out;
847 rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
848 sizeof(struct rds_page_frag),
849 0, 0, NULL);
850 if (!rds_ib_frag_slab)
851 kmem_cache_destroy(rds_ib_incoming_slab);
852 else
853 ret = 0;
854 out:
855 return ret;
858 void rds_ib_recv_exit(void)
860 kmem_cache_destroy(rds_ib_incoming_slab);
861 kmem_cache_destroy(rds_ib_frag_slab);