1 #include <linux/ceph/ceph_debug.h>
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
16 #include <linux/ceph/libceph.h>
17 #include <linux/ceph/messenger.h>
18 #include <linux/ceph/decode.h>
19 #include <linux/ceph/pagelist.h>
22 * Ceph uses the messenger to exchange ceph_msg messages with other
23 * hosts in the system. The messenger provides ordered and reliable
24 * delivery. We tolerate TCP disconnects by reconnecting (with
25 * exponential backoff) in the case of a fault (disconnection, bad
26 * crc, protocol error). Acks allow sent messages to be discarded by
30 /* static tag bytes (protocol control messages) */
31 static char tag_msg
= CEPH_MSGR_TAG_MSG
;
32 static char tag_ack
= CEPH_MSGR_TAG_ACK
;
33 static char tag_keepalive
= CEPH_MSGR_TAG_KEEPALIVE
;
36 static struct lock_class_key socket_class
;
40 static void queue_con(struct ceph_connection
*con
);
41 static void con_work(struct work_struct
*);
42 static void ceph_fault(struct ceph_connection
*con
);
45 * nicely render a sockaddr as a string.
47 #define MAX_ADDR_STR 20
48 #define MAX_ADDR_STR_LEN 60
49 static char addr_str
[MAX_ADDR_STR
][MAX_ADDR_STR_LEN
];
50 static DEFINE_SPINLOCK(addr_str_lock
);
51 static int last_addr_str
;
53 const char *ceph_pr_addr(const struct sockaddr_storage
*ss
)
57 struct sockaddr_in
*in4
= (void *)ss
;
58 struct sockaddr_in6
*in6
= (void *)ss
;
60 spin_lock(&addr_str_lock
);
62 if (last_addr_str
== MAX_ADDR_STR
)
64 spin_unlock(&addr_str_lock
);
67 switch (ss
->ss_family
) {
69 snprintf(s
, MAX_ADDR_STR_LEN
, "%pI4:%u", &in4
->sin_addr
,
70 (unsigned int)ntohs(in4
->sin_port
));
74 snprintf(s
, MAX_ADDR_STR_LEN
, "[%pI6c]:%u", &in6
->sin6_addr
,
75 (unsigned int)ntohs(in6
->sin6_port
));
79 sprintf(s
, "(unknown sockaddr family %d)", (int)ss
->ss_family
);
84 EXPORT_SYMBOL(ceph_pr_addr
);
86 static void encode_my_addr(struct ceph_messenger
*msgr
)
88 memcpy(&msgr
->my_enc_addr
, &msgr
->inst
.addr
, sizeof(msgr
->my_enc_addr
));
89 ceph_encode_addr(&msgr
->my_enc_addr
);
93 * work queue for all reading and writing to/from the socket.
95 struct workqueue_struct
*ceph_msgr_wq
;
97 int ceph_msgr_init(void)
99 ceph_msgr_wq
= alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT
, 0);
101 pr_err("msgr_init failed to create workqueue\n");
106 EXPORT_SYMBOL(ceph_msgr_init
);
108 void ceph_msgr_exit(void)
110 destroy_workqueue(ceph_msgr_wq
);
112 EXPORT_SYMBOL(ceph_msgr_exit
);
114 void ceph_msgr_flush(void)
116 flush_workqueue(ceph_msgr_wq
);
118 EXPORT_SYMBOL(ceph_msgr_flush
);
122 * socket callback functions
125 /* data available on socket, or listen socket received a connect */
126 static void ceph_data_ready(struct sock
*sk
, int count_unused
)
128 struct ceph_connection
*con
=
129 (struct ceph_connection
*)sk
->sk_user_data
;
130 if (sk
->sk_state
!= TCP_CLOSE_WAIT
) {
131 dout("ceph_data_ready on %p state = %lu, queueing work\n",
137 /* socket has buffer space for writing */
138 static void ceph_write_space(struct sock
*sk
)
140 struct ceph_connection
*con
=
141 (struct ceph_connection
*)sk
->sk_user_data
;
143 /* only queue to workqueue if there is data we want to write. */
144 if (test_bit(WRITE_PENDING
, &con
->state
)) {
145 dout("ceph_write_space %p queueing write work\n", con
);
148 dout("ceph_write_space %p nothing to write\n", con
);
151 /* since we have our own write_space, clear the SOCK_NOSPACE flag */
152 clear_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
155 /* socket's state has changed */
156 static void ceph_state_change(struct sock
*sk
)
158 struct ceph_connection
*con
=
159 (struct ceph_connection
*)sk
->sk_user_data
;
161 dout("ceph_state_change %p state = %lu sk_state = %u\n",
162 con
, con
->state
, sk
->sk_state
);
164 if (test_bit(CLOSED
, &con
->state
))
167 switch (sk
->sk_state
) {
169 dout("ceph_state_change TCP_CLOSE\n");
171 dout("ceph_state_change TCP_CLOSE_WAIT\n");
172 if (test_and_set_bit(SOCK_CLOSED
, &con
->state
) == 0) {
173 if (test_bit(CONNECTING
, &con
->state
))
174 con
->error_msg
= "connection failed";
176 con
->error_msg
= "socket closed";
180 case TCP_ESTABLISHED
:
181 dout("ceph_state_change TCP_ESTABLISHED\n");
188 * set up socket callbacks
190 static void set_sock_callbacks(struct socket
*sock
,
191 struct ceph_connection
*con
)
193 struct sock
*sk
= sock
->sk
;
194 sk
->sk_user_data
= (void *)con
;
195 sk
->sk_data_ready
= ceph_data_ready
;
196 sk
->sk_write_space
= ceph_write_space
;
197 sk
->sk_state_change
= ceph_state_change
;
206 * initiate connection to a remote socket.
208 static struct socket
*ceph_tcp_connect(struct ceph_connection
*con
)
210 struct sockaddr_storage
*paddr
= &con
->peer_addr
.in_addr
;
215 ret
= sock_create_kern(con
->peer_addr
.in_addr
.ss_family
, SOCK_STREAM
,
220 sock
->sk
->sk_allocation
= GFP_NOFS
;
222 #ifdef CONFIG_LOCKDEP
223 lockdep_set_class(&sock
->sk
->sk_lock
, &socket_class
);
226 set_sock_callbacks(sock
, con
);
228 dout("connect %s\n", ceph_pr_addr(&con
->peer_addr
.in_addr
));
230 ret
= sock
->ops
->connect(sock
, (struct sockaddr
*)paddr
, sizeof(*paddr
),
232 if (ret
== -EINPROGRESS
) {
233 dout("connect %s EINPROGRESS sk_state = %u\n",
234 ceph_pr_addr(&con
->peer_addr
.in_addr
),
239 pr_err("connect %s error %d\n",
240 ceph_pr_addr(&con
->peer_addr
.in_addr
), ret
);
243 con
->error_msg
= "connect error";
251 static int ceph_tcp_recvmsg(struct socket
*sock
, void *buf
, size_t len
)
253 struct kvec iov
= {buf
, len
};
254 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
257 r
= kernel_recvmsg(sock
, &msg
, &iov
, 1, len
, msg
.msg_flags
);
264 * write something. @more is true if caller will be sending more data
267 static int ceph_tcp_sendmsg(struct socket
*sock
, struct kvec
*iov
,
268 size_t kvlen
, size_t len
, int more
)
270 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
274 msg
.msg_flags
|= MSG_MORE
;
276 msg
.msg_flags
|= MSG_EOR
; /* superfluous, but what the hell */
278 r
= kernel_sendmsg(sock
, &msg
, iov
, kvlen
, len
);
286 * Shutdown/close the socket for the given connection.
288 static int con_close_socket(struct ceph_connection
*con
)
292 dout("con_close_socket on %p sock %p\n", con
, con
->sock
);
295 set_bit(SOCK_CLOSED
, &con
->state
);
296 rc
= con
->sock
->ops
->shutdown(con
->sock
, SHUT_RDWR
);
297 sock_release(con
->sock
);
299 clear_bit(SOCK_CLOSED
, &con
->state
);
304 * Reset a connection. Discard all incoming and outgoing messages
305 * and clear *_seq state.
307 static void ceph_msg_remove(struct ceph_msg
*msg
)
309 list_del_init(&msg
->list_head
);
312 static void ceph_msg_remove_list(struct list_head
*head
)
314 while (!list_empty(head
)) {
315 struct ceph_msg
*msg
= list_first_entry(head
, struct ceph_msg
,
317 ceph_msg_remove(msg
);
321 static void reset_connection(struct ceph_connection
*con
)
323 /* reset connection, out_queue, msg_ and connect_seq */
324 /* discard existing out_queue and msg_seq */
325 ceph_msg_remove_list(&con
->out_queue
);
326 ceph_msg_remove_list(&con
->out_sent
);
329 ceph_msg_put(con
->in_msg
);
333 con
->connect_seq
= 0;
336 ceph_msg_put(con
->out_msg
);
340 con
->in_seq_acked
= 0;
344 * mark a peer down. drop any open connections.
346 void ceph_con_close(struct ceph_connection
*con
)
348 dout("con_close %p peer %s\n", con
,
349 ceph_pr_addr(&con
->peer_addr
.in_addr
));
350 set_bit(CLOSED
, &con
->state
); /* in case there's queued work */
351 clear_bit(STANDBY
, &con
->state
); /* avoid connect_seq bump */
352 clear_bit(LOSSYTX
, &con
->state
); /* so we retry next connect */
353 clear_bit(KEEPALIVE_PENDING
, &con
->state
);
354 clear_bit(WRITE_PENDING
, &con
->state
);
355 mutex_lock(&con
->mutex
);
356 reset_connection(con
);
357 con
->peer_global_seq
= 0;
358 cancel_delayed_work(&con
->work
);
359 mutex_unlock(&con
->mutex
);
362 EXPORT_SYMBOL(ceph_con_close
);
365 * Reopen a closed connection, with a new peer address.
367 void ceph_con_open(struct ceph_connection
*con
, struct ceph_entity_addr
*addr
)
369 dout("con_open %p %s\n", con
, ceph_pr_addr(&addr
->in_addr
));
370 set_bit(OPENING
, &con
->state
);
371 clear_bit(CLOSED
, &con
->state
);
372 memcpy(&con
->peer_addr
, addr
, sizeof(*addr
));
373 con
->delay
= 0; /* reset backoff memory */
376 EXPORT_SYMBOL(ceph_con_open
);
379 * return true if this connection ever successfully opened
381 bool ceph_con_opened(struct ceph_connection
*con
)
383 return con
->connect_seq
> 0;
389 struct ceph_connection
*ceph_con_get(struct ceph_connection
*con
)
391 dout("con_get %p nref = %d -> %d\n", con
,
392 atomic_read(&con
->nref
), atomic_read(&con
->nref
) + 1);
393 if (atomic_inc_not_zero(&con
->nref
))
398 void ceph_con_put(struct ceph_connection
*con
)
400 dout("con_put %p nref = %d -> %d\n", con
,
401 atomic_read(&con
->nref
), atomic_read(&con
->nref
) - 1);
402 BUG_ON(atomic_read(&con
->nref
) == 0);
403 if (atomic_dec_and_test(&con
->nref
)) {
410 * initialize a new connection.
412 void ceph_con_init(struct ceph_messenger
*msgr
, struct ceph_connection
*con
)
414 dout("con_init %p\n", con
);
415 memset(con
, 0, sizeof(*con
));
416 atomic_set(&con
->nref
, 1);
418 mutex_init(&con
->mutex
);
419 INIT_LIST_HEAD(&con
->out_queue
);
420 INIT_LIST_HEAD(&con
->out_sent
);
421 INIT_DELAYED_WORK(&con
->work
, con_work
);
423 EXPORT_SYMBOL(ceph_con_init
);
427 * We maintain a global counter to order connection attempts. Get
428 * a unique seq greater than @gt.
430 static u32
get_global_seq(struct ceph_messenger
*msgr
, u32 gt
)
434 spin_lock(&msgr
->global_seq_lock
);
435 if (msgr
->global_seq
< gt
)
436 msgr
->global_seq
= gt
;
437 ret
= ++msgr
->global_seq
;
438 spin_unlock(&msgr
->global_seq_lock
);
444 * Prepare footer for currently outgoing message, and finish things
445 * off. Assumes out_kvec* are already valid.. we just add on to the end.
447 static void prepare_write_message_footer(struct ceph_connection
*con
, int v
)
449 struct ceph_msg
*m
= con
->out_msg
;
451 dout("prepare_write_message_footer %p\n", con
);
452 con
->out_kvec_is_msg
= true;
453 con
->out_kvec
[v
].iov_base
= &m
->footer
;
454 con
->out_kvec
[v
].iov_len
= sizeof(m
->footer
);
455 con
->out_kvec_bytes
+= sizeof(m
->footer
);
456 con
->out_kvec_left
++;
457 con
->out_more
= m
->more_to_follow
;
458 con
->out_msg_done
= true;
462 * Prepare headers for the next outgoing message.
464 static void prepare_write_message(struct ceph_connection
*con
)
469 con
->out_kvec_bytes
= 0;
470 con
->out_kvec_is_msg
= true;
471 con
->out_msg_done
= false;
473 /* Sneak an ack in there first? If we can get it into the same
474 * TCP packet that's a good thing. */
475 if (con
->in_seq
> con
->in_seq_acked
) {
476 con
->in_seq_acked
= con
->in_seq
;
477 con
->out_kvec
[v
].iov_base
= &tag_ack
;
478 con
->out_kvec
[v
++].iov_len
= 1;
479 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
480 con
->out_kvec
[v
].iov_base
= &con
->out_temp_ack
;
481 con
->out_kvec
[v
++].iov_len
= sizeof(con
->out_temp_ack
);
482 con
->out_kvec_bytes
= 1 + sizeof(con
->out_temp_ack
);
485 m
= list_first_entry(&con
->out_queue
,
486 struct ceph_msg
, list_head
);
488 if (test_bit(LOSSYTX
, &con
->state
)) {
489 list_del_init(&m
->list_head
);
491 /* put message on sent list */
493 list_move_tail(&m
->list_head
, &con
->out_sent
);
497 * only assign outgoing seq # if we haven't sent this message
498 * yet. if it is requeued, resend with it's original seq.
500 if (m
->needs_out_seq
) {
501 m
->hdr
.seq
= cpu_to_le64(++con
->out_seq
);
502 m
->needs_out_seq
= false;
505 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
506 m
, con
->out_seq
, le16_to_cpu(m
->hdr
.type
),
507 le32_to_cpu(m
->hdr
.front_len
), le32_to_cpu(m
->hdr
.middle_len
),
508 le32_to_cpu(m
->hdr
.data_len
),
510 BUG_ON(le32_to_cpu(m
->hdr
.front_len
) != m
->front
.iov_len
);
512 /* tag + hdr + front + middle */
513 con
->out_kvec
[v
].iov_base
= &tag_msg
;
514 con
->out_kvec
[v
++].iov_len
= 1;
515 con
->out_kvec
[v
].iov_base
= &m
->hdr
;
516 con
->out_kvec
[v
++].iov_len
= sizeof(m
->hdr
);
517 con
->out_kvec
[v
++] = m
->front
;
519 con
->out_kvec
[v
++] = m
->middle
->vec
;
520 con
->out_kvec_left
= v
;
521 con
->out_kvec_bytes
+= 1 + sizeof(m
->hdr
) + m
->front
.iov_len
+
522 (m
->middle
? m
->middle
->vec
.iov_len
: 0);
523 con
->out_kvec_cur
= con
->out_kvec
;
525 /* fill in crc (except data pages), footer */
526 con
->out_msg
->hdr
.crc
=
527 cpu_to_le32(crc32c(0, (void *)&m
->hdr
,
528 sizeof(m
->hdr
) - sizeof(m
->hdr
.crc
)));
529 con
->out_msg
->footer
.flags
= CEPH_MSG_FOOTER_COMPLETE
;
530 con
->out_msg
->footer
.front_crc
=
531 cpu_to_le32(crc32c(0, m
->front
.iov_base
, m
->front
.iov_len
));
533 con
->out_msg
->footer
.middle_crc
=
534 cpu_to_le32(crc32c(0, m
->middle
->vec
.iov_base
,
535 m
->middle
->vec
.iov_len
));
537 con
->out_msg
->footer
.middle_crc
= 0;
538 con
->out_msg
->footer
.data_crc
= 0;
539 dout("prepare_write_message front_crc %u data_crc %u\n",
540 le32_to_cpu(con
->out_msg
->footer
.front_crc
),
541 le32_to_cpu(con
->out_msg
->footer
.middle_crc
));
543 /* is there a data payload? */
544 if (le32_to_cpu(m
->hdr
.data_len
) > 0) {
545 /* initialize page iterator */
546 con
->out_msg_pos
.page
= 0;
548 con
->out_msg_pos
.page_pos
= m
->page_alignment
;
550 con
->out_msg_pos
.page_pos
= 0;
551 con
->out_msg_pos
.data_pos
= 0;
552 con
->out_msg_pos
.did_page_crc
= 0;
553 con
->out_more
= 1; /* data + footer will follow */
555 /* no, queue up footer too and be done */
556 prepare_write_message_footer(con
, v
);
559 set_bit(WRITE_PENDING
, &con
->state
);
565 static void prepare_write_ack(struct ceph_connection
*con
)
567 dout("prepare_write_ack %p %llu -> %llu\n", con
,
568 con
->in_seq_acked
, con
->in_seq
);
569 con
->in_seq_acked
= con
->in_seq
;
571 con
->out_kvec
[0].iov_base
= &tag_ack
;
572 con
->out_kvec
[0].iov_len
= 1;
573 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
574 con
->out_kvec
[1].iov_base
= &con
->out_temp_ack
;
575 con
->out_kvec
[1].iov_len
= sizeof(con
->out_temp_ack
);
576 con
->out_kvec_left
= 2;
577 con
->out_kvec_bytes
= 1 + sizeof(con
->out_temp_ack
);
578 con
->out_kvec_cur
= con
->out_kvec
;
579 con
->out_more
= 1; /* more will follow.. eventually.. */
580 set_bit(WRITE_PENDING
, &con
->state
);
584 * Prepare to write keepalive byte.
586 static void prepare_write_keepalive(struct ceph_connection
*con
)
588 dout("prepare_write_keepalive %p\n", con
);
589 con
->out_kvec
[0].iov_base
= &tag_keepalive
;
590 con
->out_kvec
[0].iov_len
= 1;
591 con
->out_kvec_left
= 1;
592 con
->out_kvec_bytes
= 1;
593 con
->out_kvec_cur
= con
->out_kvec
;
594 set_bit(WRITE_PENDING
, &con
->state
);
598 * Connection negotiation.
601 static void prepare_connect_authorizer(struct ceph_connection
*con
)
605 int auth_protocol
= 0;
607 mutex_unlock(&con
->mutex
);
608 if (con
->ops
->get_authorizer
)
609 con
->ops
->get_authorizer(con
, &auth_buf
, &auth_len
,
610 &auth_protocol
, &con
->auth_reply_buf
,
611 &con
->auth_reply_buf_len
,
613 mutex_lock(&con
->mutex
);
615 con
->out_connect
.authorizer_protocol
= cpu_to_le32(auth_protocol
);
616 con
->out_connect
.authorizer_len
= cpu_to_le32(auth_len
);
618 con
->out_kvec
[con
->out_kvec_left
].iov_base
= auth_buf
;
619 con
->out_kvec
[con
->out_kvec_left
].iov_len
= auth_len
;
620 con
->out_kvec_left
++;
621 con
->out_kvec_bytes
+= auth_len
;
625 * We connected to a peer and are saying hello.
627 static void prepare_write_banner(struct ceph_messenger
*msgr
,
628 struct ceph_connection
*con
)
630 int len
= strlen(CEPH_BANNER
);
632 con
->out_kvec
[0].iov_base
= CEPH_BANNER
;
633 con
->out_kvec
[0].iov_len
= len
;
634 con
->out_kvec
[1].iov_base
= &msgr
->my_enc_addr
;
635 con
->out_kvec
[1].iov_len
= sizeof(msgr
->my_enc_addr
);
636 con
->out_kvec_left
= 2;
637 con
->out_kvec_bytes
= len
+ sizeof(msgr
->my_enc_addr
);
638 con
->out_kvec_cur
= con
->out_kvec
;
640 set_bit(WRITE_PENDING
, &con
->state
);
643 static void prepare_write_connect(struct ceph_messenger
*msgr
,
644 struct ceph_connection
*con
,
647 unsigned global_seq
= get_global_seq(con
->msgr
, 0);
650 switch (con
->peer_name
.type
) {
651 case CEPH_ENTITY_TYPE_MON
:
652 proto
= CEPH_MONC_PROTOCOL
;
654 case CEPH_ENTITY_TYPE_OSD
:
655 proto
= CEPH_OSDC_PROTOCOL
;
657 case CEPH_ENTITY_TYPE_MDS
:
658 proto
= CEPH_MDSC_PROTOCOL
;
664 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con
,
665 con
->connect_seq
, global_seq
, proto
);
667 con
->out_connect
.features
= cpu_to_le64(msgr
->supported_features
);
668 con
->out_connect
.host_type
= cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT
);
669 con
->out_connect
.connect_seq
= cpu_to_le32(con
->connect_seq
);
670 con
->out_connect
.global_seq
= cpu_to_le32(global_seq
);
671 con
->out_connect
.protocol_version
= cpu_to_le32(proto
);
672 con
->out_connect
.flags
= 0;
675 con
->out_kvec_left
= 0;
676 con
->out_kvec_bytes
= 0;
678 con
->out_kvec
[con
->out_kvec_left
].iov_base
= &con
->out_connect
;
679 con
->out_kvec
[con
->out_kvec_left
].iov_len
= sizeof(con
->out_connect
);
680 con
->out_kvec_left
++;
681 con
->out_kvec_bytes
+= sizeof(con
->out_connect
);
682 con
->out_kvec_cur
= con
->out_kvec
;
684 set_bit(WRITE_PENDING
, &con
->state
);
686 prepare_connect_authorizer(con
);
691 * write as much of pending kvecs to the socket as we can.
693 * 0 -> socket full, but more to do
696 static int write_partial_kvec(struct ceph_connection
*con
)
700 dout("write_partial_kvec %p %d left\n", con
, con
->out_kvec_bytes
);
701 while (con
->out_kvec_bytes
> 0) {
702 ret
= ceph_tcp_sendmsg(con
->sock
, con
->out_kvec_cur
,
703 con
->out_kvec_left
, con
->out_kvec_bytes
,
707 con
->out_kvec_bytes
-= ret
;
708 if (con
->out_kvec_bytes
== 0)
711 if (ret
>= con
->out_kvec_cur
->iov_len
) {
712 ret
-= con
->out_kvec_cur
->iov_len
;
714 con
->out_kvec_left
--;
716 con
->out_kvec_cur
->iov_len
-= ret
;
717 con
->out_kvec_cur
->iov_base
+= ret
;
723 con
->out_kvec_left
= 0;
724 con
->out_kvec_is_msg
= false;
727 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con
,
728 con
->out_kvec_bytes
, con
->out_kvec_left
, ret
);
729 return ret
; /* done! */
733 static void init_bio_iter(struct bio
*bio
, struct bio
**iter
, int *seg
)
744 static void iter_bio_next(struct bio
**bio_iter
, int *seg
)
746 if (*bio_iter
== NULL
)
749 BUG_ON(*seg
>= (*bio_iter
)->bi_vcnt
);
752 if (*seg
== (*bio_iter
)->bi_vcnt
)
753 init_bio_iter((*bio_iter
)->bi_next
, bio_iter
, seg
);
758 * Write as much message data payload as we can. If we finish, queue
760 * 1 -> done, footer is now queued in out_kvec[].
761 * 0 -> socket full, but more to do
764 static int write_partial_msg_pages(struct ceph_connection
*con
)
766 struct ceph_msg
*msg
= con
->out_msg
;
767 unsigned data_len
= le32_to_cpu(msg
->hdr
.data_len
);
769 int crc
= con
->msgr
->nocrc
;
773 size_t trail_len
= (msg
->trail
? msg
->trail
->length
: 0);
775 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
776 con
, con
->out_msg
, con
->out_msg_pos
.page
, con
->out_msg
->nr_pages
,
777 con
->out_msg_pos
.page_pos
);
780 if (msg
->bio
&& !msg
->bio_iter
)
781 init_bio_iter(msg
->bio
, &msg
->bio_iter
, &msg
->bio_seg
);
784 while (data_len
> con
->out_msg_pos
.data_pos
) {
785 struct page
*page
= NULL
;
787 int max_write
= PAGE_SIZE
;
790 total_max_write
= data_len
- trail_len
-
791 con
->out_msg_pos
.data_pos
;
794 * if we are calculating the data crc (the default), we need
795 * to map the page. if our pages[] has been revoked, use the
799 /* have we reached the trail part of the data? */
800 if (con
->out_msg_pos
.data_pos
>= data_len
- trail_len
) {
803 total_max_write
= data_len
- con
->out_msg_pos
.data_pos
;
805 page
= list_first_entry(&msg
->trail
->head
,
809 max_write
= PAGE_SIZE
;
810 } else if (msg
->pages
) {
811 page
= msg
->pages
[con
->out_msg_pos
.page
];
814 } else if (msg
->pagelist
) {
815 page
= list_first_entry(&msg
->pagelist
->head
,
820 } else if (msg
->bio
) {
823 bv
= bio_iovec_idx(msg
->bio_iter
, msg
->bio_seg
);
825 page_shift
= bv
->bv_offset
;
827 kaddr
= kmap(page
) + page_shift
;
828 max_write
= bv
->bv_len
;
831 page
= con
->msgr
->zero_page
;
833 kaddr
= page_address(con
->msgr
->zero_page
);
835 len
= min_t(int, max_write
- con
->out_msg_pos
.page_pos
,
838 if (crc
&& !con
->out_msg_pos
.did_page_crc
) {
839 void *base
= kaddr
+ con
->out_msg_pos
.page_pos
;
840 u32 tmpcrc
= le32_to_cpu(con
->out_msg
->footer
.data_crc
);
842 BUG_ON(kaddr
== NULL
);
843 con
->out_msg
->footer
.data_crc
=
844 cpu_to_le32(crc32c(tmpcrc
, base
, len
));
845 con
->out_msg_pos
.did_page_crc
= 1;
847 ret
= kernel_sendpage(con
->sock
, page
,
848 con
->out_msg_pos
.page_pos
+ page_shift
,
850 MSG_DONTWAIT
| MSG_NOSIGNAL
|
854 (msg
->pages
|| msg
->pagelist
|| msg
->bio
|| in_trail
))
862 con
->out_msg_pos
.data_pos
+= ret
;
863 con
->out_msg_pos
.page_pos
+= ret
;
865 con
->out_msg_pos
.page_pos
= 0;
866 con
->out_msg_pos
.page
++;
867 con
->out_msg_pos
.did_page_crc
= 0;
869 list_move_tail(&page
->lru
,
871 else if (msg
->pagelist
)
872 list_move_tail(&page
->lru
,
873 &msg
->pagelist
->head
);
876 iter_bio_next(&msg
->bio_iter
, &msg
->bio_seg
);
881 dout("write_partial_msg_pages %p msg %p done\n", con
, msg
);
883 /* prepare and queue up footer, too */
885 con
->out_msg
->footer
.flags
|= CEPH_MSG_FOOTER_NOCRC
;
886 con
->out_kvec_bytes
= 0;
887 con
->out_kvec_left
= 0;
888 con
->out_kvec_cur
= con
->out_kvec
;
889 prepare_write_message_footer(con
, 0);
898 static int write_partial_skip(struct ceph_connection
*con
)
902 while (con
->out_skip
> 0) {
904 .iov_base
= page_address(con
->msgr
->zero_page
),
905 .iov_len
= min(con
->out_skip
, (int)PAGE_CACHE_SIZE
)
908 ret
= ceph_tcp_sendmsg(con
->sock
, &iov
, 1, iov
.iov_len
, 1);
911 con
->out_skip
-= ret
;
919 * Prepare to read connection handshake, or an ack.
921 static void prepare_read_banner(struct ceph_connection
*con
)
923 dout("prepare_read_banner %p\n", con
);
924 con
->in_base_pos
= 0;
927 static void prepare_read_connect(struct ceph_connection
*con
)
929 dout("prepare_read_connect %p\n", con
);
930 con
->in_base_pos
= 0;
933 static void prepare_read_ack(struct ceph_connection
*con
)
935 dout("prepare_read_ack %p\n", con
);
936 con
->in_base_pos
= 0;
939 static void prepare_read_tag(struct ceph_connection
*con
)
941 dout("prepare_read_tag %p\n", con
);
942 con
->in_base_pos
= 0;
943 con
->in_tag
= CEPH_MSGR_TAG_READY
;
947 * Prepare to read a message.
949 static int prepare_read_message(struct ceph_connection
*con
)
951 dout("prepare_read_message %p\n", con
);
952 BUG_ON(con
->in_msg
!= NULL
);
953 con
->in_base_pos
= 0;
954 con
->in_front_crc
= con
->in_middle_crc
= con
->in_data_crc
= 0;
959 static int read_partial(struct ceph_connection
*con
,
960 int *to
, int size
, void *object
)
963 while (con
->in_base_pos
< *to
) {
964 int left
= *to
- con
->in_base_pos
;
965 int have
= size
- left
;
966 int ret
= ceph_tcp_recvmsg(con
->sock
, object
+ have
, left
);
969 con
->in_base_pos
+= ret
;
976 * Read all or part of the connect-side handshake on a new connection
978 static int read_partial_banner(struct ceph_connection
*con
)
982 dout("read_partial_banner %p at %d\n", con
, con
->in_base_pos
);
985 ret
= read_partial(con
, &to
, strlen(CEPH_BANNER
), con
->in_banner
);
988 ret
= read_partial(con
, &to
, sizeof(con
->actual_peer_addr
),
989 &con
->actual_peer_addr
);
992 ret
= read_partial(con
, &to
, sizeof(con
->peer_addr_for_me
),
993 &con
->peer_addr_for_me
);
1000 static int read_partial_connect(struct ceph_connection
*con
)
1004 dout("read_partial_connect %p at %d\n", con
, con
->in_base_pos
);
1006 ret
= read_partial(con
, &to
, sizeof(con
->in_reply
), &con
->in_reply
);
1009 ret
= read_partial(con
, &to
, le32_to_cpu(con
->in_reply
.authorizer_len
),
1010 con
->auth_reply_buf
);
1014 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1015 con
, (int)con
->in_reply
.tag
,
1016 le32_to_cpu(con
->in_reply
.connect_seq
),
1017 le32_to_cpu(con
->in_reply
.global_seq
));
1024 * Verify the hello banner looks okay.
1026 static int verify_hello(struct ceph_connection
*con
)
1028 if (memcmp(con
->in_banner
, CEPH_BANNER
, strlen(CEPH_BANNER
))) {
1029 pr_err("connect to %s got bad banner\n",
1030 ceph_pr_addr(&con
->peer_addr
.in_addr
));
1031 con
->error_msg
= "protocol error, bad banner";
1037 static bool addr_is_blank(struct sockaddr_storage
*ss
)
1039 switch (ss
->ss_family
) {
1041 return ((struct sockaddr_in
*)ss
)->sin_addr
.s_addr
== 0;
1044 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[0] == 0 &&
1045 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[1] == 0 &&
1046 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[2] == 0 &&
1047 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[3] == 0;
1052 static int addr_port(struct sockaddr_storage
*ss
)
1054 switch (ss
->ss_family
) {
1056 return ntohs(((struct sockaddr_in
*)ss
)->sin_port
);
1058 return ntohs(((struct sockaddr_in6
*)ss
)->sin6_port
);
1063 static void addr_set_port(struct sockaddr_storage
*ss
, int p
)
1065 switch (ss
->ss_family
) {
1067 ((struct sockaddr_in
*)ss
)->sin_port
= htons(p
);
1069 ((struct sockaddr_in6
*)ss
)->sin6_port
= htons(p
);
1074 * Parse an ip[:port] list into an addr array. Use the default
1075 * monitor port if a port isn't specified.
1077 int ceph_parse_ips(const char *c
, const char *end
,
1078 struct ceph_entity_addr
*addr
,
1079 int max_count
, int *count
)
1084 dout("parse_ips on '%.*s'\n", (int)(end
-c
), c
);
1085 for (i
= 0; i
< max_count
; i
++) {
1087 struct sockaddr_storage
*ss
= &addr
[i
].in_addr
;
1088 struct sockaddr_in
*in4
= (void *)ss
;
1089 struct sockaddr_in6
*in6
= (void *)ss
;
1098 memset(ss
, 0, sizeof(*ss
));
1099 if (in4_pton(p
, end
- p
, (u8
*)&in4
->sin_addr
.s_addr
,
1101 ss
->ss_family
= AF_INET
;
1102 else if (in6_pton(p
, end
- p
, (u8
*)&in6
->sin6_addr
.s6_addr
,
1104 ss
->ss_family
= AF_INET6
;
1111 dout("missing matching ']'\n");
1118 if (p
< end
&& *p
== ':') {
1121 while (p
< end
&& *p
>= '0' && *p
<= '9') {
1122 port
= (port
* 10) + (*p
- '0');
1125 if (port
> 65535 || port
== 0)
1128 port
= CEPH_MON_PORT
;
1131 addr_set_port(ss
, port
);
1133 dout("parse_ips got %s\n", ceph_pr_addr(ss
));
1150 pr_err("parse_ips bad ip '%.*s'\n", (int)(end
- c
), c
);
1153 EXPORT_SYMBOL(ceph_parse_ips
);
1155 static int process_banner(struct ceph_connection
*con
)
1157 dout("process_banner on %p\n", con
);
1159 if (verify_hello(con
) < 0)
1162 ceph_decode_addr(&con
->actual_peer_addr
);
1163 ceph_decode_addr(&con
->peer_addr_for_me
);
1166 * Make sure the other end is who we wanted. note that the other
1167 * end may not yet know their ip address, so if it's 0.0.0.0, give
1168 * them the benefit of the doubt.
1170 if (memcmp(&con
->peer_addr
, &con
->actual_peer_addr
,
1171 sizeof(con
->peer_addr
)) != 0 &&
1172 !(addr_is_blank(&con
->actual_peer_addr
.in_addr
) &&
1173 con
->actual_peer_addr
.nonce
== con
->peer_addr
.nonce
)) {
1174 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1175 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1176 (int)le32_to_cpu(con
->peer_addr
.nonce
),
1177 ceph_pr_addr(&con
->actual_peer_addr
.in_addr
),
1178 (int)le32_to_cpu(con
->actual_peer_addr
.nonce
));
1179 con
->error_msg
= "wrong peer at address";
1184 * did we learn our address?
1186 if (addr_is_blank(&con
->msgr
->inst
.addr
.in_addr
)) {
1187 int port
= addr_port(&con
->msgr
->inst
.addr
.in_addr
);
1189 memcpy(&con
->msgr
->inst
.addr
.in_addr
,
1190 &con
->peer_addr_for_me
.in_addr
,
1191 sizeof(con
->peer_addr_for_me
.in_addr
));
1192 addr_set_port(&con
->msgr
->inst
.addr
.in_addr
, port
);
1193 encode_my_addr(con
->msgr
);
1194 dout("process_banner learned my addr is %s\n",
1195 ceph_pr_addr(&con
->msgr
->inst
.addr
.in_addr
));
1198 set_bit(NEGOTIATING
, &con
->state
);
1199 prepare_read_connect(con
);
1203 static void fail_protocol(struct ceph_connection
*con
)
1205 reset_connection(con
);
1206 set_bit(CLOSED
, &con
->state
); /* in case there's queued work */
1208 mutex_unlock(&con
->mutex
);
1209 if (con
->ops
->bad_proto
)
1210 con
->ops
->bad_proto(con
);
1211 mutex_lock(&con
->mutex
);
1214 static int process_connect(struct ceph_connection
*con
)
1216 u64 sup_feat
= con
->msgr
->supported_features
;
1217 u64 req_feat
= con
->msgr
->required_features
;
1218 u64 server_feat
= le64_to_cpu(con
->in_reply
.features
);
1220 dout("process_connect on %p tag %d\n", con
, (int)con
->in_tag
);
1222 switch (con
->in_reply
.tag
) {
1223 case CEPH_MSGR_TAG_FEATURES
:
1224 pr_err("%s%lld %s feature set mismatch,"
1225 " my %llx < server's %llx, missing %llx\n",
1226 ENTITY_NAME(con
->peer_name
),
1227 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1228 sup_feat
, server_feat
, server_feat
& ~sup_feat
);
1229 con
->error_msg
= "missing required protocol features";
1233 case CEPH_MSGR_TAG_BADPROTOVER
:
1234 pr_err("%s%lld %s protocol version mismatch,"
1235 " my %d != server's %d\n",
1236 ENTITY_NAME(con
->peer_name
),
1237 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1238 le32_to_cpu(con
->out_connect
.protocol_version
),
1239 le32_to_cpu(con
->in_reply
.protocol_version
));
1240 con
->error_msg
= "protocol version mismatch";
1244 case CEPH_MSGR_TAG_BADAUTHORIZER
:
1246 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con
,
1248 if (con
->auth_retry
== 2) {
1249 con
->error_msg
= "connect authorization failure";
1252 con
->auth_retry
= 1;
1253 prepare_write_connect(con
->msgr
, con
, 0);
1254 prepare_read_connect(con
);
1257 case CEPH_MSGR_TAG_RESETSESSION
:
1259 * If we connected with a large connect_seq but the peer
1260 * has no record of a session with us (no connection, or
1261 * connect_seq == 0), they will send RESETSESION to indicate
1262 * that they must have reset their session, and may have
1265 dout("process_connect got RESET peer seq %u\n",
1266 le32_to_cpu(con
->in_connect
.connect_seq
));
1267 pr_err("%s%lld %s connection reset\n",
1268 ENTITY_NAME(con
->peer_name
),
1269 ceph_pr_addr(&con
->peer_addr
.in_addr
));
1270 reset_connection(con
);
1271 prepare_write_connect(con
->msgr
, con
, 0);
1272 prepare_read_connect(con
);
1274 /* Tell ceph about it. */
1275 mutex_unlock(&con
->mutex
);
1276 pr_info("reset on %s%lld\n", ENTITY_NAME(con
->peer_name
));
1277 if (con
->ops
->peer_reset
)
1278 con
->ops
->peer_reset(con
);
1279 mutex_lock(&con
->mutex
);
1282 case CEPH_MSGR_TAG_RETRY_SESSION
:
1284 * If we sent a smaller connect_seq than the peer has, try
1285 * again with a larger value.
1287 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1288 le32_to_cpu(con
->out_connect
.connect_seq
),
1289 le32_to_cpu(con
->in_connect
.connect_seq
));
1290 con
->connect_seq
= le32_to_cpu(con
->in_connect
.connect_seq
);
1291 prepare_write_connect(con
->msgr
, con
, 0);
1292 prepare_read_connect(con
);
1295 case CEPH_MSGR_TAG_RETRY_GLOBAL
:
1297 * If we sent a smaller global_seq than the peer has, try
1298 * again with a larger value.
1300 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1301 con
->peer_global_seq
,
1302 le32_to_cpu(con
->in_connect
.global_seq
));
1303 get_global_seq(con
->msgr
,
1304 le32_to_cpu(con
->in_connect
.global_seq
));
1305 prepare_write_connect(con
->msgr
, con
, 0);
1306 prepare_read_connect(con
);
1309 case CEPH_MSGR_TAG_READY
:
1310 if (req_feat
& ~server_feat
) {
1311 pr_err("%s%lld %s protocol feature mismatch,"
1312 " my required %llx > server's %llx, need %llx\n",
1313 ENTITY_NAME(con
->peer_name
),
1314 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1315 req_feat
, server_feat
, req_feat
& ~server_feat
);
1316 con
->error_msg
= "missing required protocol features";
1320 clear_bit(CONNECTING
, &con
->state
);
1321 con
->peer_global_seq
= le32_to_cpu(con
->in_reply
.global_seq
);
1323 con
->peer_features
= server_feat
;
1324 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1325 con
->peer_global_seq
,
1326 le32_to_cpu(con
->in_reply
.connect_seq
),
1328 WARN_ON(con
->connect_seq
!=
1329 le32_to_cpu(con
->in_reply
.connect_seq
));
1331 if (con
->in_reply
.flags
& CEPH_MSG_CONNECT_LOSSY
)
1332 set_bit(LOSSYTX
, &con
->state
);
1334 prepare_read_tag(con
);
1337 case CEPH_MSGR_TAG_WAIT
:
1339 * If there is a connection race (we are opening
1340 * connections to each other), one of us may just have
1341 * to WAIT. This shouldn't happen if we are the
1344 pr_err("process_connect peer connecting WAIT\n");
1347 pr_err("connect protocol error, will retry\n");
1348 con
->error_msg
= "protocol error, garbage tag during connect";
1356 * read (part of) an ack
1358 static int read_partial_ack(struct ceph_connection
*con
)
1362 return read_partial(con
, &to
, sizeof(con
->in_temp_ack
),
1368 * We can finally discard anything that's been acked.
1370 static void process_ack(struct ceph_connection
*con
)
1373 u64 ack
= le64_to_cpu(con
->in_temp_ack
);
1376 while (!list_empty(&con
->out_sent
)) {
1377 m
= list_first_entry(&con
->out_sent
, struct ceph_msg
,
1379 seq
= le64_to_cpu(m
->hdr
.seq
);
1382 dout("got ack for seq %llu type %d at %p\n", seq
,
1383 le16_to_cpu(m
->hdr
.type
), m
);
1386 prepare_read_tag(con
);
1392 static int read_partial_message_section(struct ceph_connection
*con
,
1393 struct kvec
*section
,
1394 unsigned int sec_len
, u32
*crc
)
1400 while (section
->iov_len
< sec_len
) {
1401 BUG_ON(section
->iov_base
== NULL
);
1402 left
= sec_len
- section
->iov_len
;
1403 ret
= ceph_tcp_recvmsg(con
->sock
, (char *)section
->iov_base
+
1404 section
->iov_len
, left
);
1407 section
->iov_len
+= ret
;
1408 if (section
->iov_len
== sec_len
)
1409 *crc
= crc32c(0, section
->iov_base
,
1416 static struct ceph_msg
*ceph_alloc_msg(struct ceph_connection
*con
,
1417 struct ceph_msg_header
*hdr
,
1421 static int read_partial_message_pages(struct ceph_connection
*con
,
1422 struct page
**pages
,
1423 unsigned data_len
, int datacrc
)
1429 left
= min((int)(data_len
- con
->in_msg_pos
.data_pos
),
1430 (int)(PAGE_SIZE
- con
->in_msg_pos
.page_pos
));
1432 BUG_ON(pages
== NULL
);
1433 p
= kmap(pages
[con
->in_msg_pos
.page
]);
1434 ret
= ceph_tcp_recvmsg(con
->sock
, p
+ con
->in_msg_pos
.page_pos
,
1436 if (ret
> 0 && datacrc
)
1438 crc32c(con
->in_data_crc
,
1439 p
+ con
->in_msg_pos
.page_pos
, ret
);
1440 kunmap(pages
[con
->in_msg_pos
.page
]);
1443 con
->in_msg_pos
.data_pos
+= ret
;
1444 con
->in_msg_pos
.page_pos
+= ret
;
1445 if (con
->in_msg_pos
.page_pos
== PAGE_SIZE
) {
1446 con
->in_msg_pos
.page_pos
= 0;
1447 con
->in_msg_pos
.page
++;
1454 static int read_partial_message_bio(struct ceph_connection
*con
,
1455 struct bio
**bio_iter
, int *bio_seg
,
1456 unsigned data_len
, int datacrc
)
1458 struct bio_vec
*bv
= bio_iovec_idx(*bio_iter
, *bio_seg
);
1465 left
= min((int)(data_len
- con
->in_msg_pos
.data_pos
),
1466 (int)(bv
->bv_len
- con
->in_msg_pos
.page_pos
));
1468 p
= kmap(bv
->bv_page
) + bv
->bv_offset
;
1470 ret
= ceph_tcp_recvmsg(con
->sock
, p
+ con
->in_msg_pos
.page_pos
,
1472 if (ret
> 0 && datacrc
)
1474 crc32c(con
->in_data_crc
,
1475 p
+ con
->in_msg_pos
.page_pos
, ret
);
1476 kunmap(bv
->bv_page
);
1479 con
->in_msg_pos
.data_pos
+= ret
;
1480 con
->in_msg_pos
.page_pos
+= ret
;
1481 if (con
->in_msg_pos
.page_pos
== bv
->bv_len
) {
1482 con
->in_msg_pos
.page_pos
= 0;
1483 iter_bio_next(bio_iter
, bio_seg
);
1491 * read (part of) a message.
1493 static int read_partial_message(struct ceph_connection
*con
)
1495 struct ceph_msg
*m
= con
->in_msg
;
1498 unsigned front_len
, middle_len
, data_len
;
1499 int datacrc
= con
->msgr
->nocrc
;
1503 dout("read_partial_message con %p msg %p\n", con
, m
);
1506 while (con
->in_base_pos
< sizeof(con
->in_hdr
)) {
1507 left
= sizeof(con
->in_hdr
) - con
->in_base_pos
;
1508 ret
= ceph_tcp_recvmsg(con
->sock
,
1509 (char *)&con
->in_hdr
+ con
->in_base_pos
,
1513 con
->in_base_pos
+= ret
;
1514 if (con
->in_base_pos
== sizeof(con
->in_hdr
)) {
1515 u32 crc
= crc32c(0, (void *)&con
->in_hdr
,
1516 sizeof(con
->in_hdr
) - sizeof(con
->in_hdr
.crc
));
1517 if (crc
!= le32_to_cpu(con
->in_hdr
.crc
)) {
1518 pr_err("read_partial_message bad hdr "
1519 " crc %u != expected %u\n",
1520 crc
, con
->in_hdr
.crc
);
1525 front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
1526 if (front_len
> CEPH_MSG_MAX_FRONT_LEN
)
1528 middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
1529 if (middle_len
> CEPH_MSG_MAX_DATA_LEN
)
1531 data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
1532 if (data_len
> CEPH_MSG_MAX_DATA_LEN
)
1536 seq
= le64_to_cpu(con
->in_hdr
.seq
);
1537 if ((s64
)seq
- (s64
)con
->in_seq
< 1) {
1538 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1539 ENTITY_NAME(con
->peer_name
),
1540 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1541 seq
, con
->in_seq
+ 1);
1542 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
1544 con
->in_tag
= CEPH_MSGR_TAG_READY
;
1546 } else if ((s64
)seq
- (s64
)con
->in_seq
> 1) {
1547 pr_err("read_partial_message bad seq %lld expected %lld\n",
1548 seq
, con
->in_seq
+ 1);
1549 con
->error_msg
= "bad message sequence # for incoming message";
1553 /* allocate message? */
1555 dout("got hdr type %d front %d data %d\n", con
->in_hdr
.type
,
1556 con
->in_hdr
.front_len
, con
->in_hdr
.data_len
);
1558 con
->in_msg
= ceph_alloc_msg(con
, &con
->in_hdr
, &skip
);
1560 /* skip this message */
1561 dout("alloc_msg said skip message\n");
1562 BUG_ON(con
->in_msg
);
1563 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
1565 con
->in_tag
= CEPH_MSGR_TAG_READY
;
1571 "error allocating memory for incoming message";
1575 m
->front
.iov_len
= 0; /* haven't read it yet */
1577 m
->middle
->vec
.iov_len
= 0;
1579 con
->in_msg_pos
.page
= 0;
1581 con
->in_msg_pos
.page_pos
= m
->page_alignment
;
1583 con
->in_msg_pos
.page_pos
= 0;
1584 con
->in_msg_pos
.data_pos
= 0;
1588 ret
= read_partial_message_section(con
, &m
->front
, front_len
,
1589 &con
->in_front_crc
);
1595 ret
= read_partial_message_section(con
, &m
->middle
->vec
,
1597 &con
->in_middle_crc
);
1602 if (m
->bio
&& !m
->bio_iter
)
1603 init_bio_iter(m
->bio
, &m
->bio_iter
, &m
->bio_seg
);
1607 while (con
->in_msg_pos
.data_pos
< data_len
) {
1609 ret
= read_partial_message_pages(con
, m
->pages
,
1614 } else if (m
->bio
) {
1616 ret
= read_partial_message_bio(con
,
1617 &m
->bio_iter
, &m
->bio_seg
,
1628 to
= sizeof(m
->hdr
) + sizeof(m
->footer
);
1629 while (con
->in_base_pos
< to
) {
1630 left
= to
- con
->in_base_pos
;
1631 ret
= ceph_tcp_recvmsg(con
->sock
, (char *)&m
->footer
+
1632 (con
->in_base_pos
- sizeof(m
->hdr
)),
1636 con
->in_base_pos
+= ret
;
1638 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1639 m
, front_len
, m
->footer
.front_crc
, middle_len
,
1640 m
->footer
.middle_crc
, data_len
, m
->footer
.data_crc
);
1643 if (con
->in_front_crc
!= le32_to_cpu(m
->footer
.front_crc
)) {
1644 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1645 m
, con
->in_front_crc
, m
->footer
.front_crc
);
1648 if (con
->in_middle_crc
!= le32_to_cpu(m
->footer
.middle_crc
)) {
1649 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1650 m
, con
->in_middle_crc
, m
->footer
.middle_crc
);
1654 (m
->footer
.flags
& CEPH_MSG_FOOTER_NOCRC
) == 0 &&
1655 con
->in_data_crc
!= le32_to_cpu(m
->footer
.data_crc
)) {
1656 pr_err("read_partial_message %p data crc %u != exp. %u\n", m
,
1657 con
->in_data_crc
, le32_to_cpu(m
->footer
.data_crc
));
1661 return 1; /* done! */
1665 * Process message. This happens in the worker thread. The callback should
1666 * be careful not to do anything that waits on other incoming messages or it
1669 static void process_message(struct ceph_connection
*con
)
1671 struct ceph_msg
*msg
;
1676 /* if first message, set peer_name */
1677 if (con
->peer_name
.type
== 0)
1678 con
->peer_name
= msg
->hdr
.src
;
1681 mutex_unlock(&con
->mutex
);
1683 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1684 msg
, le64_to_cpu(msg
->hdr
.seq
),
1685 ENTITY_NAME(msg
->hdr
.src
),
1686 le16_to_cpu(msg
->hdr
.type
),
1687 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
1688 le32_to_cpu(msg
->hdr
.front_len
),
1689 le32_to_cpu(msg
->hdr
.data_len
),
1690 con
->in_front_crc
, con
->in_middle_crc
, con
->in_data_crc
);
1691 con
->ops
->dispatch(con
, msg
);
1693 mutex_lock(&con
->mutex
);
1694 prepare_read_tag(con
);
1699 * Write something to the socket. Called in a worker thread when the
1700 * socket appears to be writeable and we have something ready to send.
1702 static int try_write(struct ceph_connection
*con
)
1704 struct ceph_messenger
*msgr
= con
->msgr
;
1707 dout("try_write start %p state %lu nref %d\n", con
, con
->state
,
1708 atomic_read(&con
->nref
));
1711 dout("try_write out_kvec_bytes %d\n", con
->out_kvec_bytes
);
1713 /* open the socket first? */
1714 if (con
->sock
== NULL
) {
1715 prepare_write_banner(msgr
, con
);
1716 prepare_write_connect(msgr
, con
, 1);
1717 prepare_read_banner(con
);
1718 set_bit(CONNECTING
, &con
->state
);
1719 clear_bit(NEGOTIATING
, &con
->state
);
1721 BUG_ON(con
->in_msg
);
1722 con
->in_tag
= CEPH_MSGR_TAG_READY
;
1723 dout("try_write initiating connect on %p new state %lu\n",
1725 con
->sock
= ceph_tcp_connect(con
);
1726 if (IS_ERR(con
->sock
)) {
1728 con
->error_msg
= "connect error";
1735 /* kvec data queued? */
1736 if (con
->out_skip
) {
1737 ret
= write_partial_skip(con
);
1741 if (con
->out_kvec_left
) {
1742 ret
= write_partial_kvec(con
);
1749 if (con
->out_msg_done
) {
1750 ceph_msg_put(con
->out_msg
);
1751 con
->out_msg
= NULL
; /* we're done with this one */
1755 ret
= write_partial_msg_pages(con
);
1757 goto more_kvec
; /* we need to send the footer, too! */
1761 dout("try_write write_partial_msg_pages err %d\n",
1768 if (!test_bit(CONNECTING
, &con
->state
)) {
1769 /* is anything else pending? */
1770 if (!list_empty(&con
->out_queue
)) {
1771 prepare_write_message(con
);
1774 if (con
->in_seq
> con
->in_seq_acked
) {
1775 prepare_write_ack(con
);
1778 if (test_and_clear_bit(KEEPALIVE_PENDING
, &con
->state
)) {
1779 prepare_write_keepalive(con
);
1784 /* Nothing to do! */
1785 clear_bit(WRITE_PENDING
, &con
->state
);
1786 dout("try_write nothing else to write.\n");
1789 dout("try_write done on %p ret %d\n", con
, ret
);
1796 * Read what we can from the socket.
1798 static int try_read(struct ceph_connection
*con
)
1805 if (test_bit(STANDBY
, &con
->state
))
1808 dout("try_read start on %p\n", con
);
1811 dout("try_read tag %d in_base_pos %d\n", (int)con
->in_tag
,
1813 if (test_bit(CONNECTING
, &con
->state
)) {
1814 if (!test_bit(NEGOTIATING
, &con
->state
)) {
1815 dout("try_read connecting\n");
1816 ret
= read_partial_banner(con
);
1819 ret
= process_banner(con
);
1823 ret
= read_partial_connect(con
);
1826 ret
= process_connect(con
);
1832 if (con
->in_base_pos
< 0) {
1834 * skipping + discarding content.
1836 * FIXME: there must be a better way to do this!
1838 static char buf
[1024];
1839 int skip
= min(1024, -con
->in_base_pos
);
1840 dout("skipping %d / %d bytes\n", skip
, -con
->in_base_pos
);
1841 ret
= ceph_tcp_recvmsg(con
->sock
, buf
, skip
);
1844 con
->in_base_pos
+= ret
;
1845 if (con
->in_base_pos
)
1848 if (con
->in_tag
== CEPH_MSGR_TAG_READY
) {
1852 ret
= ceph_tcp_recvmsg(con
->sock
, &con
->in_tag
, 1);
1855 dout("try_read got tag %d\n", (int)con
->in_tag
);
1856 switch (con
->in_tag
) {
1857 case CEPH_MSGR_TAG_MSG
:
1858 prepare_read_message(con
);
1860 case CEPH_MSGR_TAG_ACK
:
1861 prepare_read_ack(con
);
1863 case CEPH_MSGR_TAG_CLOSE
:
1864 set_bit(CLOSED
, &con
->state
); /* fixme */
1870 if (con
->in_tag
== CEPH_MSGR_TAG_MSG
) {
1871 ret
= read_partial_message(con
);
1875 con
->error_msg
= "bad crc";
1879 con
->error_msg
= "io error";
1884 if (con
->in_tag
== CEPH_MSGR_TAG_READY
)
1886 process_message(con
);
1889 if (con
->in_tag
== CEPH_MSGR_TAG_ACK
) {
1890 ret
= read_partial_ack(con
);
1898 dout("try_read done on %p ret %d\n", con
, ret
);
1902 pr_err("try_read bad con->in_tag = %d\n", (int)con
->in_tag
);
1903 con
->error_msg
= "protocol error, garbage tag";
1910 * Atomically queue work on a connection. Bump @con reference to
1911 * avoid races with connection teardown.
1913 static void queue_con(struct ceph_connection
*con
)
1915 if (test_bit(DEAD
, &con
->state
)) {
1916 dout("queue_con %p ignoring: DEAD\n",
1921 if (!con
->ops
->get(con
)) {
1922 dout("queue_con %p ref count 0\n", con
);
1926 if (!queue_delayed_work(ceph_msgr_wq
, &con
->work
, 0)) {
1927 dout("queue_con %p - already queued\n", con
);
1930 dout("queue_con %p\n", con
);
1935 * Do some work on a connection. Drop a connection ref when we're done.
1937 static void con_work(struct work_struct
*work
)
1939 struct ceph_connection
*con
= container_of(work
, struct ceph_connection
,
1942 mutex_lock(&con
->mutex
);
1943 if (test_and_clear_bit(BACKOFF
, &con
->state
)) {
1944 dout("con_work %p backing off\n", con
);
1945 if (queue_delayed_work(ceph_msgr_wq
, &con
->work
,
1946 round_jiffies_relative(con
->delay
))) {
1947 dout("con_work %p backoff %lu\n", con
, con
->delay
);
1948 mutex_unlock(&con
->mutex
);
1952 dout("con_work %p FAILED to back off %lu\n", con
,
1957 if (test_bit(STANDBY
, &con
->state
)) {
1958 dout("con_work %p STANDBY\n", con
);
1961 if (test_bit(CLOSED
, &con
->state
)) { /* e.g. if we are replaced */
1962 dout("con_work CLOSED\n");
1963 con_close_socket(con
);
1966 if (test_and_clear_bit(OPENING
, &con
->state
)) {
1967 /* reopen w/ new peer */
1968 dout("con_work OPENING\n");
1969 con_close_socket(con
);
1972 if (test_and_clear_bit(SOCK_CLOSED
, &con
->state
) ||
1973 try_read(con
) < 0 ||
1974 try_write(con
) < 0) {
1975 mutex_unlock(&con
->mutex
);
1976 ceph_fault(con
); /* error/fault path */
1981 mutex_unlock(&con
->mutex
);
1988 * Generic error/fault handler. A retry mechanism is used with
1989 * exponential backoff
1991 static void ceph_fault(struct ceph_connection
*con
)
1993 pr_err("%s%lld %s %s\n", ENTITY_NAME(con
->peer_name
),
1994 ceph_pr_addr(&con
->peer_addr
.in_addr
), con
->error_msg
);
1995 dout("fault %p state %lu to peer %s\n",
1996 con
, con
->state
, ceph_pr_addr(&con
->peer_addr
.in_addr
));
1998 if (test_bit(LOSSYTX
, &con
->state
)) {
1999 dout("fault on LOSSYTX channel\n");
2003 mutex_lock(&con
->mutex
);
2004 if (test_bit(CLOSED
, &con
->state
))
2007 con_close_socket(con
);
2010 ceph_msg_put(con
->in_msg
);
2014 /* Requeue anything that hasn't been acked */
2015 list_splice_init(&con
->out_sent
, &con
->out_queue
);
2017 /* If there are no messages queued or keepalive pending, place
2018 * the connection in a STANDBY state */
2019 if (list_empty(&con
->out_queue
) &&
2020 !test_bit(KEEPALIVE_PENDING
, &con
->state
)) {
2021 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con
);
2022 clear_bit(WRITE_PENDING
, &con
->state
);
2023 set_bit(STANDBY
, &con
->state
);
2025 /* retry after a delay. */
2026 if (con
->delay
== 0)
2027 con
->delay
= BASE_DELAY_INTERVAL
;
2028 else if (con
->delay
< MAX_DELAY_INTERVAL
)
2031 if (queue_delayed_work(ceph_msgr_wq
, &con
->work
,
2032 round_jiffies_relative(con
->delay
))) {
2033 dout("fault queued %p delay %lu\n", con
, con
->delay
);
2036 dout("fault failed to queue %p delay %lu, backoff\n",
2039 * In many cases we see a socket state change
2040 * while con_work is running and end up
2041 * queuing (non-delayed) work, such that we
2042 * can't backoff with a delay. Set a flag so
2043 * that when con_work restarts we schedule the
2046 set_bit(BACKOFF
, &con
->state
);
2051 mutex_unlock(&con
->mutex
);
2054 * in case we faulted due to authentication, invalidate our
2055 * current tickets so that we can get new ones.
2057 if (con
->auth_retry
&& con
->ops
->invalidate_authorizer
) {
2058 dout("calling invalidate_authorizer()\n");
2059 con
->ops
->invalidate_authorizer(con
);
2062 if (con
->ops
->fault
)
2063 con
->ops
->fault(con
);
2069 * create a new messenger instance
2071 struct ceph_messenger
*ceph_messenger_create(struct ceph_entity_addr
*myaddr
,
2072 u32 supported_features
,
2073 u32 required_features
)
2075 struct ceph_messenger
*msgr
;
2077 msgr
= kzalloc(sizeof(*msgr
), GFP_KERNEL
);
2079 return ERR_PTR(-ENOMEM
);
2081 msgr
->supported_features
= supported_features
;
2082 msgr
->required_features
= required_features
;
2084 spin_lock_init(&msgr
->global_seq_lock
);
2086 /* the zero page is needed if a request is "canceled" while the message
2087 * is being written over the socket */
2088 msgr
->zero_page
= __page_cache_alloc(GFP_KERNEL
| __GFP_ZERO
);
2089 if (!msgr
->zero_page
) {
2091 return ERR_PTR(-ENOMEM
);
2093 kmap(msgr
->zero_page
);
2096 msgr
->inst
.addr
= *myaddr
;
2098 /* select a random nonce */
2099 msgr
->inst
.addr
.type
= 0;
2100 get_random_bytes(&msgr
->inst
.addr
.nonce
, sizeof(msgr
->inst
.addr
.nonce
));
2101 encode_my_addr(msgr
);
2103 dout("messenger_create %p\n", msgr
);
2106 EXPORT_SYMBOL(ceph_messenger_create
);
2108 void ceph_messenger_destroy(struct ceph_messenger
*msgr
)
2110 dout("destroy %p\n", msgr
);
2111 kunmap(msgr
->zero_page
);
2112 __free_page(msgr
->zero_page
);
2114 dout("destroyed messenger %p\n", msgr
);
2116 EXPORT_SYMBOL(ceph_messenger_destroy
);
2118 static void clear_standby(struct ceph_connection
*con
)
2120 /* come back from STANDBY? */
2121 if (test_and_clear_bit(STANDBY
, &con
->state
)) {
2122 mutex_lock(&con
->mutex
);
2123 dout("clear_standby %p and ++connect_seq\n", con
);
2125 WARN_ON(test_bit(WRITE_PENDING
, &con
->state
));
2126 WARN_ON(test_bit(KEEPALIVE_PENDING
, &con
->state
));
2127 mutex_unlock(&con
->mutex
);
2132 * Queue up an outgoing message on the given connection.
2134 void ceph_con_send(struct ceph_connection
*con
, struct ceph_msg
*msg
)
2136 if (test_bit(CLOSED
, &con
->state
)) {
2137 dout("con_send %p closed, dropping %p\n", con
, msg
);
2143 msg
->hdr
.src
= con
->msgr
->inst
.name
;
2145 BUG_ON(msg
->front
.iov_len
!= le32_to_cpu(msg
->hdr
.front_len
));
2147 msg
->needs_out_seq
= true;
2150 mutex_lock(&con
->mutex
);
2151 BUG_ON(!list_empty(&msg
->list_head
));
2152 list_add_tail(&msg
->list_head
, &con
->out_queue
);
2153 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg
,
2154 ENTITY_NAME(con
->peer_name
), le16_to_cpu(msg
->hdr
.type
),
2155 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
2156 le32_to_cpu(msg
->hdr
.front_len
),
2157 le32_to_cpu(msg
->hdr
.middle_len
),
2158 le32_to_cpu(msg
->hdr
.data_len
));
2159 mutex_unlock(&con
->mutex
);
2161 /* if there wasn't anything waiting to send before, queue
2164 if (test_and_set_bit(WRITE_PENDING
, &con
->state
) == 0)
2167 EXPORT_SYMBOL(ceph_con_send
);
2170 * Revoke a message that was previously queued for send
2172 void ceph_con_revoke(struct ceph_connection
*con
, struct ceph_msg
*msg
)
2174 mutex_lock(&con
->mutex
);
2175 if (!list_empty(&msg
->list_head
)) {
2176 dout("con_revoke %p msg %p - was on queue\n", con
, msg
);
2177 list_del_init(&msg
->list_head
);
2181 if (con
->out_msg
== msg
) {
2182 dout("con_revoke %p msg %p - was sending\n", con
, msg
);
2183 con
->out_msg
= NULL
;
2184 if (con
->out_kvec_is_msg
) {
2185 con
->out_skip
= con
->out_kvec_bytes
;
2186 con
->out_kvec_is_msg
= false;
2191 mutex_unlock(&con
->mutex
);
2195 * Revoke a message that we may be reading data into
2197 void ceph_con_revoke_message(struct ceph_connection
*con
, struct ceph_msg
*msg
)
2199 mutex_lock(&con
->mutex
);
2200 if (con
->in_msg
&& con
->in_msg
== msg
) {
2201 unsigned front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
2202 unsigned middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
2203 unsigned data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
2205 /* skip rest of message */
2206 dout("con_revoke_pages %p msg %p revoked\n", con
, msg
);
2207 con
->in_base_pos
= con
->in_base_pos
-
2208 sizeof(struct ceph_msg_header
) -
2212 sizeof(struct ceph_msg_footer
);
2213 ceph_msg_put(con
->in_msg
);
2215 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2218 dout("con_revoke_pages %p msg %p pages %p no-op\n",
2219 con
, con
->in_msg
, msg
);
2221 mutex_unlock(&con
->mutex
);
2225 * Queue a keepalive byte to ensure the tcp connection is alive.
2227 void ceph_con_keepalive(struct ceph_connection
*con
)
2229 dout("con_keepalive %p\n", con
);
2231 if (test_and_set_bit(KEEPALIVE_PENDING
, &con
->state
) == 0 &&
2232 test_and_set_bit(WRITE_PENDING
, &con
->state
) == 0)
2235 EXPORT_SYMBOL(ceph_con_keepalive
);
2239 * construct a new message with given type, size
2240 * the new msg has a ref count of 1.
2242 struct ceph_msg
*ceph_msg_new(int type
, int front_len
, gfp_t flags
)
2246 m
= kmalloc(sizeof(*m
), flags
);
2249 kref_init(&m
->kref
);
2250 INIT_LIST_HEAD(&m
->list_head
);
2253 m
->hdr
.type
= cpu_to_le16(type
);
2254 m
->hdr
.priority
= cpu_to_le16(CEPH_MSG_PRIO_DEFAULT
);
2256 m
->hdr
.front_len
= cpu_to_le32(front_len
);
2257 m
->hdr
.middle_len
= 0;
2258 m
->hdr
.data_len
= 0;
2259 m
->hdr
.data_off
= 0;
2260 m
->hdr
.reserved
= 0;
2261 m
->footer
.front_crc
= 0;
2262 m
->footer
.middle_crc
= 0;
2263 m
->footer
.data_crc
= 0;
2264 m
->footer
.flags
= 0;
2265 m
->front_max
= front_len
;
2266 m
->front_is_vmalloc
= false;
2267 m
->more_to_follow
= false;
2272 if (front_len
> PAGE_CACHE_SIZE
) {
2273 m
->front
.iov_base
= __vmalloc(front_len
, flags
,
2275 m
->front_is_vmalloc
= true;
2277 m
->front
.iov_base
= kmalloc(front_len
, flags
);
2279 if (m
->front
.iov_base
== NULL
) {
2280 pr_err("msg_new can't allocate %d bytes\n",
2285 m
->front
.iov_base
= NULL
;
2287 m
->front
.iov_len
= front_len
;
2294 m
->page_alignment
= 0;
2302 dout("ceph_msg_new %p front %d\n", m
, front_len
);
2308 pr_err("msg_new can't create type %d front %d\n", type
, front_len
);
2311 EXPORT_SYMBOL(ceph_msg_new
);
2314 * Allocate "middle" portion of a message, if it is needed and wasn't
2315 * allocated by alloc_msg. This allows us to read a small fixed-size
2316 * per-type header in the front and then gracefully fail (i.e.,
2317 * propagate the error to the caller based on info in the front) when
2318 * the middle is too large.
2320 static int ceph_alloc_middle(struct ceph_connection
*con
, struct ceph_msg
*msg
)
2322 int type
= le16_to_cpu(msg
->hdr
.type
);
2323 int middle_len
= le32_to_cpu(msg
->hdr
.middle_len
);
2325 dout("alloc_middle %p type %d %s middle_len %d\n", msg
, type
,
2326 ceph_msg_type_name(type
), middle_len
);
2327 BUG_ON(!middle_len
);
2328 BUG_ON(msg
->middle
);
2330 msg
->middle
= ceph_buffer_new(middle_len
, GFP_NOFS
);
2337 * Generic message allocator, for incoming messages.
2339 static struct ceph_msg
*ceph_alloc_msg(struct ceph_connection
*con
,
2340 struct ceph_msg_header
*hdr
,
2343 int type
= le16_to_cpu(hdr
->type
);
2344 int front_len
= le32_to_cpu(hdr
->front_len
);
2345 int middle_len
= le32_to_cpu(hdr
->middle_len
);
2346 struct ceph_msg
*msg
= NULL
;
2349 if (con
->ops
->alloc_msg
) {
2350 mutex_unlock(&con
->mutex
);
2351 msg
= con
->ops
->alloc_msg(con
, hdr
, skip
);
2352 mutex_lock(&con
->mutex
);
2358 msg
= ceph_msg_new(type
, front_len
, GFP_NOFS
);
2360 pr_err("unable to allocate msg type %d len %d\n",
2364 msg
->page_alignment
= le16_to_cpu(hdr
->data_off
);
2366 memcpy(&msg
->hdr
, &con
->in_hdr
, sizeof(con
->in_hdr
));
2368 if (middle_len
&& !msg
->middle
) {
2369 ret
= ceph_alloc_middle(con
, msg
);
2381 * Free a generically kmalloc'd message.
2383 void ceph_msg_kfree(struct ceph_msg
*m
)
2385 dout("msg_kfree %p\n", m
);
2386 if (m
->front_is_vmalloc
)
2387 vfree(m
->front
.iov_base
);
2389 kfree(m
->front
.iov_base
);
2394 * Drop a msg ref. Destroy as needed.
2396 void ceph_msg_last_put(struct kref
*kref
)
2398 struct ceph_msg
*m
= container_of(kref
, struct ceph_msg
, kref
);
2400 dout("ceph_msg_put last one on %p\n", m
);
2401 WARN_ON(!list_empty(&m
->list_head
));
2403 /* drop middle, data, if any */
2405 ceph_buffer_put(m
->middle
);
2412 ceph_pagelist_release(m
->pagelist
);
2420 ceph_msgpool_put(m
->pool
, m
);
2424 EXPORT_SYMBOL(ceph_msg_last_put
);
2426 void ceph_msg_dump(struct ceph_msg
*msg
)
2428 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg
,
2429 msg
->front_max
, msg
->nr_pages
);
2430 print_hex_dump(KERN_DEBUG
, "header: ",
2431 DUMP_PREFIX_OFFSET
, 16, 1,
2432 &msg
->hdr
, sizeof(msg
->hdr
), true);
2433 print_hex_dump(KERN_DEBUG
, " front: ",
2434 DUMP_PREFIX_OFFSET
, 16, 1,
2435 msg
->front
.iov_base
, msg
->front
.iov_len
, true);
2437 print_hex_dump(KERN_DEBUG
, "middle: ",
2438 DUMP_PREFIX_OFFSET
, 16, 1,
2439 msg
->middle
->vec
.iov_base
,
2440 msg
->middle
->vec
.iov_len
, true);
2441 print_hex_dump(KERN_DEBUG
, "footer: ",
2442 DUMP_PREFIX_OFFSET
, 16, 1,
2443 &msg
->footer
, sizeof(msg
->footer
), true);
2445 EXPORT_SYMBOL(ceph_msg_dump
);