2 * drivers/spi/amba-pl022.c
4 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
6 * Copyright (C) 2008-2009 ST-Ericsson AB
7 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
9 * Author: Linus Walleij <linus.walleij@stericsson.com>
11 * Initial version inspired by:
12 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
13 * Initial adoption to PL022 by:
14 * Sachin Verma <sachin.verma@st.com>
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
21 * This program is distributed in the hope that it will be useful,
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 * GNU General Public License for more details.
29 * - add timeout on polled transfers
30 * - add generic DMA framework support
33 #include <linux/init.h>
34 #include <linux/module.h>
35 #include <linux/device.h>
36 #include <linux/ioport.h>
37 #include <linux/errno.h>
38 #include <linux/interrupt.h>
39 #include <linux/spi/spi.h>
40 #include <linux/workqueue.h>
41 #include <linux/delay.h>
42 #include <linux/clk.h>
43 #include <linux/err.h>
44 #include <linux/amba/bus.h>
45 #include <linux/amba/pl022.h>
49 * This macro is used to define some register default values.
50 * reg is masked with mask, the OR:ed with an (again masked)
51 * val shifted sb steps to the left.
53 #define SSP_WRITE_BITS(reg, val, mask, sb) \
54 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
57 * This macro is also used to define some default values.
58 * It will just shift val by sb steps to the left and mask
59 * the result with mask.
61 #define GEN_MASK_BITS(val, mask, sb) \
62 (((val)<<(sb)) & (mask))
65 #define DO_NOT_DRIVE_TX 1
67 #define DO_NOT_QUEUE_DMA 0
74 * Macros to access SSP Registers with their offsets
76 #define SSP_CR0(r) (r + 0x000)
77 #define SSP_CR1(r) (r + 0x004)
78 #define SSP_DR(r) (r + 0x008)
79 #define SSP_SR(r) (r + 0x00C)
80 #define SSP_CPSR(r) (r + 0x010)
81 #define SSP_IMSC(r) (r + 0x014)
82 #define SSP_RIS(r) (r + 0x018)
83 #define SSP_MIS(r) (r + 0x01C)
84 #define SSP_ICR(r) (r + 0x020)
85 #define SSP_DMACR(r) (r + 0x024)
86 #define SSP_ITCR(r) (r + 0x080)
87 #define SSP_ITIP(r) (r + 0x084)
88 #define SSP_ITOP(r) (r + 0x088)
89 #define SSP_TDR(r) (r + 0x08C)
91 #define SSP_PID0(r) (r + 0xFE0)
92 #define SSP_PID1(r) (r + 0xFE4)
93 #define SSP_PID2(r) (r + 0xFE8)
94 #define SSP_PID3(r) (r + 0xFEC)
96 #define SSP_CID0(r) (r + 0xFF0)
97 #define SSP_CID1(r) (r + 0xFF4)
98 #define SSP_CID2(r) (r + 0xFF8)
99 #define SSP_CID3(r) (r + 0xFFC)
102 * SSP Control Register 0 - SSP_CR0
104 #define SSP_CR0_MASK_DSS (0x1FUL << 0)
105 #define SSP_CR0_MASK_HALFDUP (0x1UL << 5)
106 #define SSP_CR0_MASK_SPO (0x1UL << 6)
107 #define SSP_CR0_MASK_SPH (0x1UL << 7)
108 #define SSP_CR0_MASK_SCR (0xFFUL << 8)
109 #define SSP_CR0_MASK_CSS (0x1FUL << 16)
110 #define SSP_CR0_MASK_FRF (0x3UL << 21)
113 * SSP Control Register 0 - SSP_CR1
115 #define SSP_CR1_MASK_LBM (0x1UL << 0)
116 #define SSP_CR1_MASK_SSE (0x1UL << 1)
117 #define SSP_CR1_MASK_MS (0x1UL << 2)
118 #define SSP_CR1_MASK_SOD (0x1UL << 3)
119 #define SSP_CR1_MASK_RENDN (0x1UL << 4)
120 #define SSP_CR1_MASK_TENDN (0x1UL << 5)
121 #define SSP_CR1_MASK_MWAIT (0x1UL << 6)
122 #define SSP_CR1_MASK_RXIFLSEL (0x7UL << 7)
123 #define SSP_CR1_MASK_TXIFLSEL (0x7UL << 10)
126 * SSP Data Register - SSP_DR
128 #define SSP_DR_MASK_DATA 0xFFFFFFFF
131 * SSP Status Register - SSP_SR
133 #define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
134 #define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
135 #define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
136 #define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
137 #define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
140 * SSP Clock Prescale Register - SSP_CPSR
142 #define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
145 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
147 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
148 #define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
149 #define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
150 #define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
153 * SSP Raw Interrupt Status Register - SSP_RIS
155 /* Receive Overrun Raw Interrupt status */
156 #define SSP_RIS_MASK_RORRIS (0x1UL << 0)
157 /* Receive Timeout Raw Interrupt status */
158 #define SSP_RIS_MASK_RTRIS (0x1UL << 1)
159 /* Receive FIFO Raw Interrupt status */
160 #define SSP_RIS_MASK_RXRIS (0x1UL << 2)
161 /* Transmit FIFO Raw Interrupt status */
162 #define SSP_RIS_MASK_TXRIS (0x1UL << 3)
165 * SSP Masked Interrupt Status Register - SSP_MIS
167 /* Receive Overrun Masked Interrupt status */
168 #define SSP_MIS_MASK_RORMIS (0x1UL << 0)
169 /* Receive Timeout Masked Interrupt status */
170 #define SSP_MIS_MASK_RTMIS (0x1UL << 1)
171 /* Receive FIFO Masked Interrupt status */
172 #define SSP_MIS_MASK_RXMIS (0x1UL << 2)
173 /* Transmit FIFO Masked Interrupt status */
174 #define SSP_MIS_MASK_TXMIS (0x1UL << 3)
177 * SSP Interrupt Clear Register - SSP_ICR
179 /* Receive Overrun Raw Clear Interrupt bit */
180 #define SSP_ICR_MASK_RORIC (0x1UL << 0)
181 /* Receive Timeout Clear Interrupt bit */
182 #define SSP_ICR_MASK_RTIC (0x1UL << 1)
185 * SSP DMA Control Register - SSP_DMACR
187 /* Receive DMA Enable bit */
188 #define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
189 /* Transmit DMA Enable bit */
190 #define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
193 * SSP Integration Test control Register - SSP_ITCR
195 #define SSP_ITCR_MASK_ITEN (0x1UL << 0)
196 #define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
199 * SSP Integration Test Input Register - SSP_ITIP
201 #define ITIP_MASK_SSPRXD (0x1UL << 0)
202 #define ITIP_MASK_SSPFSSIN (0x1UL << 1)
203 #define ITIP_MASK_SSPCLKIN (0x1UL << 2)
204 #define ITIP_MASK_RXDMAC (0x1UL << 3)
205 #define ITIP_MASK_TXDMAC (0x1UL << 4)
206 #define ITIP_MASK_SSPTXDIN (0x1UL << 5)
209 * SSP Integration Test output Register - SSP_ITOP
211 #define ITOP_MASK_SSPTXD (0x1UL << 0)
212 #define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
213 #define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
214 #define ITOP_MASK_SSPOEn (0x1UL << 3)
215 #define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
216 #define ITOP_MASK_RORINTR (0x1UL << 5)
217 #define ITOP_MASK_RTINTR (0x1UL << 6)
218 #define ITOP_MASK_RXINTR (0x1UL << 7)
219 #define ITOP_MASK_TXINTR (0x1UL << 8)
220 #define ITOP_MASK_INTR (0x1UL << 9)
221 #define ITOP_MASK_RXDMABREQ (0x1UL << 10)
222 #define ITOP_MASK_RXDMASREQ (0x1UL << 11)
223 #define ITOP_MASK_TXDMABREQ (0x1UL << 12)
224 #define ITOP_MASK_TXDMASREQ (0x1UL << 13)
227 * SSP Test Data Register - SSP_TDR
229 #define TDR_MASK_TESTDATA (0xFFFFFFFF)
233 * we use the spi_message.state (void *) pointer to
234 * hold a single state value, that's why all this
235 * (void *) casting is done here.
237 #define STATE_START ((void *) 0)
238 #define STATE_RUNNING ((void *) 1)
239 #define STATE_DONE ((void *) 2)
240 #define STATE_ERROR ((void *) -1)
245 #define QUEUE_RUNNING (0)
246 #define QUEUE_STOPPED (1)
248 * SSP State - Whether Enabled or Disabled
250 #define SSP_DISABLED (0)
251 #define SSP_ENABLED (1)
254 * SSP DMA State - Whether DMA Enabled or Disabled
256 #define SSP_DMA_DISABLED (0)
257 #define SSP_DMA_ENABLED (1)
262 #define NMDK_SSP_DEFAULT_CLKRATE 0x2
263 #define NMDK_SSP_DEFAULT_PRESCALE 0x40
266 * SSP Clock Parameter ranges
268 #define CPSDVR_MIN 0x02
269 #define CPSDVR_MAX 0xFE
274 * SSP Interrupt related Macros
276 #define DEFAULT_SSP_REG_IMSC 0x0UL
277 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
278 #define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
280 #define CLEAR_ALL_INTERRUPTS 0x3
284 * The type of reading going on on this chip
294 * The type of writing going on on this chip
304 * struct vendor_data - vendor-specific config parameters
305 * for PL022 derivates
306 * @fifodepth: depth of FIFOs (both)
307 * @max_bpw: maximum number of bits per word
308 * @unidir: supports unidirection transfers
317 * struct pl022 - This is the private SSP driver data structure
318 * @adev: AMBA device model hookup
319 * @phybase: The physical memory where the SSP device resides
320 * @virtbase: The virtual memory where the SSP is mapped
321 * @master: SPI framework hookup
322 * @master_info: controller-specific data from machine setup
323 * @regs: SSP controller register's virtual address
324 * @pump_messages: Work struct for scheduling work to the workqueue
325 * @lock: spinlock to syncronise access to driver data
326 * @workqueue: a workqueue on which any spi_message request is queued
327 * @busy: workqueue is busy
328 * @run: workqueue is running
329 * @pump_transfers: Tasklet used in Interrupt Transfer mode
330 * @cur_msg: Pointer to current spi_message being processed
331 * @cur_transfer: Pointer to current spi_transfer
332 * @cur_chip: pointer to current clients chip(assigned from controller_state)
333 * @tx: current position in TX buffer to be read
334 * @tx_end: end position in TX buffer to be read
335 * @rx: current position in RX buffer to be written
336 * @rx_end: end position in RX buffer to be written
337 * @readingtype: the type of read currently going on
338 * @writingtype: the type or write currently going on
341 struct amba_device
*adev
;
342 struct vendor_data
*vendor
;
343 resource_size_t phybase
;
344 void __iomem
*virtbase
;
346 struct spi_master
*master
;
347 struct pl022_ssp_controller
*master_info
;
348 /* Driver message queue */
349 struct workqueue_struct
*workqueue
;
350 struct work_struct pump_messages
;
351 spinlock_t queue_lock
;
352 struct list_head queue
;
355 /* Message transfer pump */
356 struct tasklet_struct pump_transfers
;
357 struct spi_message
*cur_msg
;
358 struct spi_transfer
*cur_transfer
;
359 struct chip_data
*cur_chip
;
364 enum ssp_reading read
;
365 enum ssp_writing write
;
370 * struct chip_data - To maintain runtime state of SSP for each client chip
371 * @cr0: Value of control register CR0 of SSP
372 * @cr1: Value of control register CR1 of SSP
373 * @dmacr: Value of DMA control Register of SSP
374 * @cpsr: Value of Clock prescale register
375 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
376 * @enable_dma: Whether to enable DMA or not
377 * @write: function ptr to be used to write when doing xfer for this chip
378 * @read: function ptr to be used to read when doing xfer for this chip
379 * @cs_control: chip select callback provided by chip
380 * @xfer_type: polling/interrupt/DMA
382 * Runtime state of the SSP controller, maintained per chip,
383 * This would be set according to the current message that would be served
392 enum ssp_reading read
;
393 enum ssp_writing write
;
394 void (*cs_control
) (u32 command
);
399 * null_cs_control - Dummy chip select function
400 * @command: select/delect the chip
402 * If no chip select function is provided by client this is used as dummy
405 static void null_cs_control(u32 command
)
407 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command
);
411 * giveback - current spi_message is over, schedule next message and call
412 * callback of this message. Assumes that caller already
413 * set message->status; dma and pio irqs are blocked
414 * @pl022: SSP driver private data structure
416 static void giveback(struct pl022
*pl022
)
418 struct spi_transfer
*last_transfer
;
420 struct spi_message
*msg
;
421 void (*curr_cs_control
) (u32 command
);
424 * This local reference to the chip select function
425 * is needed because we set curr_chip to NULL
426 * as a step toward termininating the message.
428 curr_cs_control
= pl022
->cur_chip
->cs_control
;
429 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
430 msg
= pl022
->cur_msg
;
431 pl022
->cur_msg
= NULL
;
432 pl022
->cur_transfer
= NULL
;
433 pl022
->cur_chip
= NULL
;
434 queue_work(pl022
->workqueue
, &pl022
->pump_messages
);
435 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
437 last_transfer
= list_entry(msg
->transfers
.prev
,
441 /* Delay if requested before any change in chip select */
442 if (last_transfer
->delay_usecs
)
444 * FIXME: This runs in interrupt context.
445 * Is this really smart?
447 udelay(last_transfer
->delay_usecs
);
450 * Drop chip select UNLESS cs_change is true or we are returning
451 * a message with an error, or next message is for another chip
453 if (!last_transfer
->cs_change
)
454 curr_cs_control(SSP_CHIP_DESELECT
);
456 struct spi_message
*next_msg
;
458 /* Holding of cs was hinted, but we need to make sure
459 * the next message is for the same chip. Don't waste
460 * time with the following tests unless this was hinted.
462 * We cannot postpone this until pump_messages, because
463 * after calling msg->complete (below) the driver that
464 * sent the current message could be unloaded, which
465 * could invalidate the cs_control() callback...
468 /* get a pointer to the next message, if any */
469 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
470 if (list_empty(&pl022
->queue
))
473 next_msg
= list_entry(pl022
->queue
.next
,
474 struct spi_message
, queue
);
475 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
477 /* see if the next and current messages point
480 if (next_msg
&& next_msg
->spi
!= msg
->spi
)
482 if (!next_msg
|| msg
->state
== STATE_ERROR
)
483 curr_cs_control(SSP_CHIP_DESELECT
);
487 msg
->complete(msg
->context
);
488 /* This message is completed, so let's turn off the clock! */
489 clk_disable(pl022
->clk
);
493 * flush - flush the FIFO to reach a clean state
494 * @pl022: SSP driver private data structure
496 static int flush(struct pl022
*pl022
)
498 unsigned long limit
= loops_per_jiffy
<< 1;
500 dev_dbg(&pl022
->adev
->dev
, "flush\n");
502 while (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
503 readw(SSP_DR(pl022
->virtbase
));
504 } while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_BSY
) && limit
--);
506 pl022
->exp_fifo_level
= 0;
512 * restore_state - Load configuration of current chip
513 * @pl022: SSP driver private data structure
515 static void restore_state(struct pl022
*pl022
)
517 struct chip_data
*chip
= pl022
->cur_chip
;
519 writew(chip
->cr0
, SSP_CR0(pl022
->virtbase
));
520 writew(chip
->cr1
, SSP_CR1(pl022
->virtbase
));
521 writew(chip
->dmacr
, SSP_DMACR(pl022
->virtbase
));
522 writew(chip
->cpsr
, SSP_CPSR(pl022
->virtbase
));
523 writew(DISABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
524 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
528 * load_ssp_default_config - Load default configuration for SSP
529 * @pl022: SSP driver private data structure
533 * Default SSP Register Values
535 #define DEFAULT_SSP_REG_CR0 ( \
536 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
537 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP, 5) | \
538 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
539 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
540 GEN_MASK_BITS(NMDK_SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
541 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS, 16) | \
542 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 21) \
545 #define DEFAULT_SSP_REG_CR1 ( \
546 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
547 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
548 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
549 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
550 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN, 4) | \
551 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN, 5) | \
552 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT, 6) |\
553 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL, 7) | \
554 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL, 10) \
557 #define DEFAULT_SSP_REG_CPSR ( \
558 GEN_MASK_BITS(NMDK_SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
561 #define DEFAULT_SSP_REG_DMACR (\
562 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
563 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
567 static void load_ssp_default_config(struct pl022
*pl022
)
569 writew(DEFAULT_SSP_REG_CR0
, SSP_CR0(pl022
->virtbase
));
570 writew(DEFAULT_SSP_REG_CR1
, SSP_CR1(pl022
->virtbase
));
571 writew(DEFAULT_SSP_REG_DMACR
, SSP_DMACR(pl022
->virtbase
));
572 writew(DEFAULT_SSP_REG_CPSR
, SSP_CPSR(pl022
->virtbase
));
573 writew(DISABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
574 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
578 * This will write to TX and read from RX according to the parameters
581 static void readwriter(struct pl022
*pl022
)
585 * The FIFO depth is different inbetween primecell variants.
586 * I believe filling in too much in the FIFO might cause
587 * errons in 8bit wide transfers on ARM variants (just 8 words
588 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
590 * To prevent this issue, the TX FIFO is only filled to the
591 * unused RX FIFO fill length, regardless of what the TX
592 * FIFO status flag indicates.
594 dev_dbg(&pl022
->adev
->dev
,
595 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
596 __func__
, pl022
->rx
, pl022
->rx_end
, pl022
->tx
, pl022
->tx_end
);
598 /* Read as much as you can */
599 while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
600 && (pl022
->rx
< pl022
->rx_end
)) {
601 switch (pl022
->read
) {
603 readw(SSP_DR(pl022
->virtbase
));
606 *(u8
*) (pl022
->rx
) =
607 readw(SSP_DR(pl022
->virtbase
)) & 0xFFU
;
610 *(u16
*) (pl022
->rx
) =
611 (u16
) readw(SSP_DR(pl022
->virtbase
));
614 *(u32
*) (pl022
->rx
) =
615 readl(SSP_DR(pl022
->virtbase
));
618 pl022
->rx
+= (pl022
->cur_chip
->n_bytes
);
619 pl022
->exp_fifo_level
--;
622 * Write as much as possible up to the RX FIFO size
624 while ((pl022
->exp_fifo_level
< pl022
->vendor
->fifodepth
)
625 && (pl022
->tx
< pl022
->tx_end
)) {
626 switch (pl022
->write
) {
628 writew(0x0, SSP_DR(pl022
->virtbase
));
631 writew(*(u8
*) (pl022
->tx
), SSP_DR(pl022
->virtbase
));
634 writew((*(u16
*) (pl022
->tx
)), SSP_DR(pl022
->virtbase
));
637 writel(*(u32
*) (pl022
->tx
), SSP_DR(pl022
->virtbase
));
640 pl022
->tx
+= (pl022
->cur_chip
->n_bytes
);
641 pl022
->exp_fifo_level
++;
643 * This inner reader takes care of things appearing in the RX
644 * FIFO as we're transmitting. This will happen a lot since the
645 * clock starts running when you put things into the TX FIFO,
646 * and then things are continously clocked into the RX FIFO.
648 while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
649 && (pl022
->rx
< pl022
->rx_end
)) {
650 switch (pl022
->read
) {
652 readw(SSP_DR(pl022
->virtbase
));
655 *(u8
*) (pl022
->rx
) =
656 readw(SSP_DR(pl022
->virtbase
)) & 0xFFU
;
659 *(u16
*) (pl022
->rx
) =
660 (u16
) readw(SSP_DR(pl022
->virtbase
));
663 *(u32
*) (pl022
->rx
) =
664 readl(SSP_DR(pl022
->virtbase
));
667 pl022
->rx
+= (pl022
->cur_chip
->n_bytes
);
668 pl022
->exp_fifo_level
--;
672 * When we exit here the TX FIFO should be full and the RX FIFO
679 * next_transfer - Move to the Next transfer in the current spi message
680 * @pl022: SSP driver private data structure
682 * This function moves though the linked list of spi transfers in the
683 * current spi message and returns with the state of current spi
684 * message i.e whether its last transfer is done(STATE_DONE) or
685 * Next transfer is ready(STATE_RUNNING)
687 static void *next_transfer(struct pl022
*pl022
)
689 struct spi_message
*msg
= pl022
->cur_msg
;
690 struct spi_transfer
*trans
= pl022
->cur_transfer
;
692 /* Move to next transfer */
693 if (trans
->transfer_list
.next
!= &msg
->transfers
) {
694 pl022
->cur_transfer
=
695 list_entry(trans
->transfer_list
.next
,
696 struct spi_transfer
, transfer_list
);
697 return STATE_RUNNING
;
702 * pl022_interrupt_handler - Interrupt handler for SSP controller
704 * This function handles interrupts generated for an interrupt based transfer.
705 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
706 * current message's state as STATE_ERROR and schedule the tasklet
707 * pump_transfers which will do the postprocessing of the current message by
708 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
709 * more data, and writes data in TX FIFO till it is not full. If we complete
710 * the transfer we move to the next transfer and schedule the tasklet.
712 static irqreturn_t
pl022_interrupt_handler(int irq
, void *dev_id
)
714 struct pl022
*pl022
= dev_id
;
715 struct spi_message
*msg
= pl022
->cur_msg
;
719 if (unlikely(!msg
)) {
720 dev_err(&pl022
->adev
->dev
,
721 "bad message state in interrupt handler");
726 /* Read the Interrupt Status Register */
727 irq_status
= readw(SSP_MIS(pl022
->virtbase
));
729 if (unlikely(!irq_status
))
732 /* This handles the error code interrupts */
733 if (unlikely(irq_status
& SSP_MIS_MASK_RORMIS
)) {
735 * Overrun interrupt - bail out since our Data has been
738 dev_err(&pl022
->adev
->dev
,
740 if (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RFF
)
741 dev_err(&pl022
->adev
->dev
,
743 if (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_TNF
)
744 dev_err(&pl022
->adev
->dev
,
748 * Disable and clear interrupts, disable SSP,
749 * mark message with bad status so it can be
752 writew(DISABLE_ALL_INTERRUPTS
,
753 SSP_IMSC(pl022
->virtbase
));
754 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
755 writew((readw(SSP_CR1(pl022
->virtbase
)) &
756 (~SSP_CR1_MASK_SSE
)), SSP_CR1(pl022
->virtbase
));
757 msg
->state
= STATE_ERROR
;
759 /* Schedule message queue handler */
760 tasklet_schedule(&pl022
->pump_transfers
);
766 if ((pl022
->tx
== pl022
->tx_end
) && (flag
== 0)) {
768 /* Disable Transmit interrupt */
769 writew(readw(SSP_IMSC(pl022
->virtbase
)) &
770 (~SSP_IMSC_MASK_TXIM
),
771 SSP_IMSC(pl022
->virtbase
));
775 * Since all transactions must write as much as shall be read,
776 * we can conclude the entire transaction once RX is complete.
777 * At this point, all TX will always be finished.
779 if (pl022
->rx
>= pl022
->rx_end
) {
780 writew(DISABLE_ALL_INTERRUPTS
,
781 SSP_IMSC(pl022
->virtbase
));
782 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
783 if (unlikely(pl022
->rx
> pl022
->rx_end
)) {
784 dev_warn(&pl022
->adev
->dev
, "read %u surplus "
785 "bytes (did you request an odd "
786 "number of bytes on a 16bit bus?)\n",
787 (u32
) (pl022
->rx
- pl022
->rx_end
));
789 /* Update total bytes transfered */
790 msg
->actual_length
+= pl022
->cur_transfer
->len
;
791 if (pl022
->cur_transfer
->cs_change
)
793 cs_control(SSP_CHIP_DESELECT
);
794 /* Move to next transfer */
795 msg
->state
= next_transfer(pl022
);
796 tasklet_schedule(&pl022
->pump_transfers
);
804 * This sets up the pointers to memory for the next message to
805 * send out on the SPI bus.
807 static int set_up_next_transfer(struct pl022
*pl022
,
808 struct spi_transfer
*transfer
)
812 /* Sanity check the message for this bus width */
813 residue
= pl022
->cur_transfer
->len
% pl022
->cur_chip
->n_bytes
;
814 if (unlikely(residue
!= 0)) {
815 dev_err(&pl022
->adev
->dev
,
816 "message of %u bytes to transmit but the current "
817 "chip bus has a data width of %u bytes!\n",
818 pl022
->cur_transfer
->len
,
819 pl022
->cur_chip
->n_bytes
);
820 dev_err(&pl022
->adev
->dev
, "skipping this message\n");
823 pl022
->tx
= (void *)transfer
->tx_buf
;
824 pl022
->tx_end
= pl022
->tx
+ pl022
->cur_transfer
->len
;
825 pl022
->rx
= (void *)transfer
->rx_buf
;
826 pl022
->rx_end
= pl022
->rx
+ pl022
->cur_transfer
->len
;
828 pl022
->tx
? pl022
->cur_chip
->write
: WRITING_NULL
;
829 pl022
->read
= pl022
->rx
? pl022
->cur_chip
->read
: READING_NULL
;
834 * pump_transfers - Tasklet function which schedules next interrupt transfer
835 * when running in interrupt transfer mode.
836 * @data: SSP driver private data structure
839 static void pump_transfers(unsigned long data
)
841 struct pl022
*pl022
= (struct pl022
*) data
;
842 struct spi_message
*message
= NULL
;
843 struct spi_transfer
*transfer
= NULL
;
844 struct spi_transfer
*previous
= NULL
;
846 /* Get current state information */
847 message
= pl022
->cur_msg
;
848 transfer
= pl022
->cur_transfer
;
850 /* Handle for abort */
851 if (message
->state
== STATE_ERROR
) {
852 message
->status
= -EIO
;
857 /* Handle end of message */
858 if (message
->state
== STATE_DONE
) {
864 /* Delay if requested at end of transfer before CS change */
865 if (message
->state
== STATE_RUNNING
) {
866 previous
= list_entry(transfer
->transfer_list
.prev
,
869 if (previous
->delay_usecs
)
871 * FIXME: This runs in interrupt context.
872 * Is this really smart?
874 udelay(previous
->delay_usecs
);
876 /* Drop chip select only if cs_change is requested */
877 if (previous
->cs_change
)
878 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
881 message
->state
= STATE_RUNNING
;
884 if (set_up_next_transfer(pl022
, transfer
)) {
885 message
->state
= STATE_ERROR
;
886 message
->status
= -EIO
;
890 /* Flush the FIFOs and let's go! */
892 writew(ENABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
897 * configure_dma - It configures the DMA pipes for DMA transfers
898 * @data: SSP driver's private data structure
901 static int configure_dma(void *data
)
903 struct pl022
*pl022
= data
;
904 dev_dbg(&pl022
->adev
->dev
, "configure DMA\n");
909 * do_dma_transfer - It handles transfers of the current message
911 * NOT FULLY IMPLEMENTED
912 * @data: SSP driver's private data structure
914 static void do_dma_transfer(void *data
)
916 struct pl022
*pl022
= data
;
918 if (configure_dma(data
)) {
919 dev_dbg(&pl022
->adev
->dev
, "configuration of DMA Failed!\n");
923 /* TODO: Implememt DMA setup of pipes here */
925 /* Enable target chip, set up transfer */
926 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
927 if (set_up_next_transfer(pl022
, pl022
->cur_transfer
)) {
929 pl022
->cur_msg
->state
= STATE_ERROR
;
930 pl022
->cur_msg
->status
= -EIO
;
935 writew((readw(SSP_CR1(pl022
->virtbase
)) | SSP_CR1_MASK_SSE
),
936 SSP_CR1(pl022
->virtbase
));
938 /* TODO: Enable the DMA transfer here */
942 pl022
->cur_msg
->state
= STATE_ERROR
;
943 pl022
->cur_msg
->status
= -EIO
;
948 static void do_interrupt_transfer(void *data
)
950 struct pl022
*pl022
= data
;
952 /* Enable target chip */
953 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
954 if (set_up_next_transfer(pl022
, pl022
->cur_transfer
)) {
956 pl022
->cur_msg
->state
= STATE_ERROR
;
957 pl022
->cur_msg
->status
= -EIO
;
961 /* Enable SSP, turn on interrupts */
962 writew((readw(SSP_CR1(pl022
->virtbase
)) | SSP_CR1_MASK_SSE
),
963 SSP_CR1(pl022
->virtbase
));
964 writew(ENABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
967 static void do_polling_transfer(void *data
)
969 struct pl022
*pl022
= data
;
970 struct spi_message
*message
= NULL
;
971 struct spi_transfer
*transfer
= NULL
;
972 struct spi_transfer
*previous
= NULL
;
973 struct chip_data
*chip
;
975 chip
= pl022
->cur_chip
;
976 message
= pl022
->cur_msg
;
978 while (message
->state
!= STATE_DONE
) {
979 /* Handle for abort */
980 if (message
->state
== STATE_ERROR
)
982 transfer
= pl022
->cur_transfer
;
984 /* Delay if requested at end of transfer */
985 if (message
->state
== STATE_RUNNING
) {
987 list_entry(transfer
->transfer_list
.prev
,
988 struct spi_transfer
, transfer_list
);
989 if (previous
->delay_usecs
)
990 udelay(previous
->delay_usecs
);
991 if (previous
->cs_change
)
992 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
995 message
->state
= STATE_RUNNING
;
996 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
999 /* Configuration Changing Per Transfer */
1000 if (set_up_next_transfer(pl022
, transfer
)) {
1002 message
->state
= STATE_ERROR
;
1005 /* Flush FIFOs and enable SSP */
1007 writew((readw(SSP_CR1(pl022
->virtbase
)) | SSP_CR1_MASK_SSE
),
1008 SSP_CR1(pl022
->virtbase
));
1010 dev_dbg(&pl022
->adev
->dev
, "POLLING TRANSFER ONGOING ... \n");
1011 /* FIXME: insert a timeout so we don't hang here indefinately */
1012 while (pl022
->tx
< pl022
->tx_end
|| pl022
->rx
< pl022
->rx_end
)
1015 /* Update total byte transfered */
1016 message
->actual_length
+= pl022
->cur_transfer
->len
;
1017 if (pl022
->cur_transfer
->cs_change
)
1018 pl022
->cur_chip
->cs_control(SSP_CHIP_DESELECT
);
1019 /* Move to next transfer */
1020 message
->state
= next_transfer(pl022
);
1023 /* Handle end of message */
1024 if (message
->state
== STATE_DONE
)
1025 message
->status
= 0;
1027 message
->status
= -EIO
;
1034 * pump_messages - Workqueue function which processes spi message queue
1035 * @data: pointer to private data of SSP driver
1037 * This function checks if there is any spi message in the queue that
1038 * needs processing and delegate control to appropriate function
1039 * do_polling_transfer()/do_interrupt_transfer()/do_dma_transfer()
1040 * based on the kind of the transfer
1043 static void pump_messages(struct work_struct
*work
)
1045 struct pl022
*pl022
=
1046 container_of(work
, struct pl022
, pump_messages
);
1047 unsigned long flags
;
1049 /* Lock queue and check for queue work */
1050 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1051 if (list_empty(&pl022
->queue
) || pl022
->run
== QUEUE_STOPPED
) {
1053 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1056 /* Make sure we are not already running a message */
1057 if (pl022
->cur_msg
) {
1058 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1061 /* Extract head of queue */
1063 list_entry(pl022
->queue
.next
, struct spi_message
, queue
);
1065 list_del_init(&pl022
->cur_msg
->queue
);
1067 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1069 /* Initial message state */
1070 pl022
->cur_msg
->state
= STATE_START
;
1071 pl022
->cur_transfer
= list_entry(pl022
->cur_msg
->transfers
.next
,
1072 struct spi_transfer
,
1075 /* Setup the SPI using the per chip configuration */
1076 pl022
->cur_chip
= spi_get_ctldata(pl022
->cur_msg
->spi
);
1078 * We enable the clock here, then the clock will be disabled when
1079 * giveback() is called in each method (poll/interrupt/DMA)
1081 clk_enable(pl022
->clk
);
1082 restore_state(pl022
);
1085 if (pl022
->cur_chip
->xfer_type
== POLLING_TRANSFER
)
1086 do_polling_transfer(pl022
);
1087 else if (pl022
->cur_chip
->xfer_type
== INTERRUPT_TRANSFER
)
1088 do_interrupt_transfer(pl022
);
1090 do_dma_transfer(pl022
);
1094 static int __init
init_queue(struct pl022
*pl022
)
1096 INIT_LIST_HEAD(&pl022
->queue
);
1097 spin_lock_init(&pl022
->queue_lock
);
1099 pl022
->run
= QUEUE_STOPPED
;
1102 tasklet_init(&pl022
->pump_transfers
,
1103 pump_transfers
, (unsigned long)pl022
);
1105 INIT_WORK(&pl022
->pump_messages
, pump_messages
);
1106 pl022
->workqueue
= create_singlethread_workqueue(
1107 dev_name(pl022
->master
->dev
.parent
));
1108 if (pl022
->workqueue
== NULL
)
1115 static int start_queue(struct pl022
*pl022
)
1117 unsigned long flags
;
1119 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1121 if (pl022
->run
== QUEUE_RUNNING
|| pl022
->busy
) {
1122 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1126 pl022
->run
= QUEUE_RUNNING
;
1127 pl022
->cur_msg
= NULL
;
1128 pl022
->cur_transfer
= NULL
;
1129 pl022
->cur_chip
= NULL
;
1130 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1132 queue_work(pl022
->workqueue
, &pl022
->pump_messages
);
1138 static int stop_queue(struct pl022
*pl022
)
1140 unsigned long flags
;
1141 unsigned limit
= 500;
1144 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1146 /* This is a bit lame, but is optimized for the common execution path.
1147 * A wait_queue on the pl022->busy could be used, but then the common
1148 * execution path (pump_messages) would be required to call wake_up or
1149 * friends on every SPI message. Do this instead */
1150 pl022
->run
= QUEUE_STOPPED
;
1151 while (!list_empty(&pl022
->queue
) && pl022
->busy
&& limit
--) {
1152 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1154 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1157 if (!list_empty(&pl022
->queue
) || pl022
->busy
)
1160 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1165 static int destroy_queue(struct pl022
*pl022
)
1169 status
= stop_queue(pl022
);
1170 /* we are unloading the module or failing to load (only two calls
1171 * to this routine), and neither call can handle a return value.
1172 * However, destroy_workqueue calls flush_workqueue, and that will
1173 * block until all work is done. If the reason that stop_queue
1174 * timed out is that the work will never finish, then it does no
1175 * good to call destroy_workqueue, so return anyway. */
1179 destroy_workqueue(pl022
->workqueue
);
1184 static int verify_controller_parameters(struct pl022
*pl022
,
1185 struct pl022_config_chip
*chip_info
)
1187 if ((chip_info
->lbm
!= LOOPBACK_ENABLED
)
1188 && (chip_info
->lbm
!= LOOPBACK_DISABLED
)) {
1189 dev_err(chip_info
->dev
,
1190 "loopback Mode is configured incorrectly\n");
1193 if ((chip_info
->iface
< SSP_INTERFACE_MOTOROLA_SPI
)
1194 || (chip_info
->iface
> SSP_INTERFACE_UNIDIRECTIONAL
)) {
1195 dev_err(chip_info
->dev
,
1196 "interface is configured incorrectly\n");
1199 if ((chip_info
->iface
== SSP_INTERFACE_UNIDIRECTIONAL
) &&
1200 (!pl022
->vendor
->unidir
)) {
1201 dev_err(chip_info
->dev
,
1202 "unidirectional mode not supported in this "
1203 "hardware version\n");
1206 if ((chip_info
->hierarchy
!= SSP_MASTER
)
1207 && (chip_info
->hierarchy
!= SSP_SLAVE
)) {
1208 dev_err(chip_info
->dev
,
1209 "hierarchy is configured incorrectly\n");
1212 if (((chip_info
->clk_freq
).cpsdvsr
< CPSDVR_MIN
)
1213 || ((chip_info
->clk_freq
).cpsdvsr
> CPSDVR_MAX
)) {
1214 dev_err(chip_info
->dev
,
1215 "cpsdvsr is configured incorrectly\n");
1218 if ((chip_info
->endian_rx
!= SSP_RX_MSB
)
1219 && (chip_info
->endian_rx
!= SSP_RX_LSB
)) {
1220 dev_err(chip_info
->dev
,
1221 "RX FIFO endianess is configured incorrectly\n");
1224 if ((chip_info
->endian_tx
!= SSP_TX_MSB
)
1225 && (chip_info
->endian_tx
!= SSP_TX_LSB
)) {
1226 dev_err(chip_info
->dev
,
1227 "TX FIFO endianess is configured incorrectly\n");
1230 if ((chip_info
->data_size
< SSP_DATA_BITS_4
)
1231 || (chip_info
->data_size
> SSP_DATA_BITS_32
)) {
1232 dev_err(chip_info
->dev
,
1233 "DATA Size is configured incorrectly\n");
1236 if ((chip_info
->com_mode
!= INTERRUPT_TRANSFER
)
1237 && (chip_info
->com_mode
!= DMA_TRANSFER
)
1238 && (chip_info
->com_mode
!= POLLING_TRANSFER
)) {
1239 dev_err(chip_info
->dev
,
1240 "Communication mode is configured incorrectly\n");
1243 if ((chip_info
->rx_lev_trig
< SSP_RX_1_OR_MORE_ELEM
)
1244 || (chip_info
->rx_lev_trig
> SSP_RX_32_OR_MORE_ELEM
)) {
1245 dev_err(chip_info
->dev
,
1246 "RX FIFO Trigger Level is configured incorrectly\n");
1249 if ((chip_info
->tx_lev_trig
< SSP_TX_1_OR_MORE_EMPTY_LOC
)
1250 || (chip_info
->tx_lev_trig
> SSP_TX_32_OR_MORE_EMPTY_LOC
)) {
1251 dev_err(chip_info
->dev
,
1252 "TX FIFO Trigger Level is configured incorrectly\n");
1255 if (chip_info
->iface
== SSP_INTERFACE_MOTOROLA_SPI
) {
1256 if ((chip_info
->clk_phase
!= SSP_CLK_FIRST_EDGE
)
1257 && (chip_info
->clk_phase
!= SSP_CLK_SECOND_EDGE
)) {
1258 dev_err(chip_info
->dev
,
1259 "Clock Phase is configured incorrectly\n");
1262 if ((chip_info
->clk_pol
!= SSP_CLK_POL_IDLE_LOW
)
1263 && (chip_info
->clk_pol
!= SSP_CLK_POL_IDLE_HIGH
)) {
1264 dev_err(chip_info
->dev
,
1265 "Clock Polarity is configured incorrectly\n");
1269 if (chip_info
->iface
== SSP_INTERFACE_NATIONAL_MICROWIRE
) {
1270 if ((chip_info
->ctrl_len
< SSP_BITS_4
)
1271 || (chip_info
->ctrl_len
> SSP_BITS_32
)) {
1272 dev_err(chip_info
->dev
,
1273 "CTRL LEN is configured incorrectly\n");
1276 if ((chip_info
->wait_state
!= SSP_MWIRE_WAIT_ZERO
)
1277 && (chip_info
->wait_state
!= SSP_MWIRE_WAIT_ONE
)) {
1278 dev_err(chip_info
->dev
,
1279 "Wait State is configured incorrectly\n");
1282 if ((chip_info
->duplex
!= SSP_MICROWIRE_CHANNEL_FULL_DUPLEX
)
1283 && (chip_info
->duplex
!=
1284 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX
)) {
1285 dev_err(chip_info
->dev
,
1286 "DUPLEX is configured incorrectly\n");
1290 if (chip_info
->cs_control
== NULL
) {
1291 dev_warn(chip_info
->dev
,
1292 "Chip Select Function is NULL for this chip\n");
1293 chip_info
->cs_control
= null_cs_control
;
1299 * pl022_transfer - transfer function registered to SPI master framework
1300 * @spi: spi device which is requesting transfer
1301 * @msg: spi message which is to handled is queued to driver queue
1303 * This function is registered to the SPI framework for this SPI master
1304 * controller. It will queue the spi_message in the queue of driver if
1305 * the queue is not stopped and return.
1307 static int pl022_transfer(struct spi_device
*spi
, struct spi_message
*msg
)
1309 struct pl022
*pl022
= spi_master_get_devdata(spi
->master
);
1310 unsigned long flags
;
1312 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1314 if (pl022
->run
== QUEUE_STOPPED
) {
1315 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1318 msg
->actual_length
= 0;
1319 msg
->status
= -EINPROGRESS
;
1320 msg
->state
= STATE_START
;
1322 list_add_tail(&msg
->queue
, &pl022
->queue
);
1323 if (pl022
->run
== QUEUE_RUNNING
&& !pl022
->busy
)
1324 queue_work(pl022
->workqueue
, &pl022
->pump_messages
);
1326 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1330 static int calculate_effective_freq(struct pl022
*pl022
,
1332 struct ssp_clock_params
*clk_freq
)
1334 /* Lets calculate the frequency parameters */
1337 bool freq_found
= false;
1342 rate
= clk_get_rate(pl022
->clk
);
1343 /* cpsdvscr = 2 & scr 0 */
1344 max_tclk
= (rate
/ (CPSDVR_MIN
* (1 + SCR_MIN
)));
1345 /* cpsdvsr = 254 & scr = 255 */
1346 min_tclk
= (rate
/ (CPSDVR_MAX
* (1 + SCR_MAX
)));
1348 if ((freq
<= max_tclk
) && (freq
>= min_tclk
)) {
1349 while (cpsdvsr
<= CPSDVR_MAX
&& !freq_found
) {
1350 while (scr
<= SCR_MAX
&& !freq_found
) {
1352 (cpsdvsr
* (1 + scr
))) > freq
)
1356 * This bool is made true when
1357 * effective frequency >=
1358 * target frequency is found
1362 (cpsdvsr
* (1 + scr
))) != freq
) {
1363 if (scr
== SCR_MIN
) {
1377 dev_dbg(&pl022
->adev
->dev
,
1378 "SSP Effective Frequency is %u\n",
1379 (rate
/ (cpsdvsr
* (1 + scr
))));
1380 clk_freq
->cpsdvsr
= (u8
) (cpsdvsr
& 0xFF);
1381 clk_freq
->scr
= (u8
) (scr
& 0xFF);
1382 dev_dbg(&pl022
->adev
->dev
,
1383 "SSP cpsdvsr = %d, scr = %d\n",
1384 clk_freq
->cpsdvsr
, clk_freq
->scr
);
1387 dev_err(&pl022
->adev
->dev
,
1388 "controller data is incorrect: out of range frequency");
1396 * process_dma_info - Processes the DMA info provided by client drivers
1397 * @chip_info: chip info provided by client device
1398 * @chip: Runtime state maintained by the SSP controller for each spi device
1400 * This function processes and stores DMA config provided by client driver
1401 * into the runtime state maintained by the SSP controller driver
1403 static int process_dma_info(struct pl022_config_chip
*chip_info
,
1404 struct chip_data
*chip
)
1406 dev_err(chip_info
->dev
,
1407 "cannot process DMA info, DMA not implemented!\n");
1412 * pl022_setup - setup function registered to SPI master framework
1413 * @spi: spi device which is requesting setup
1415 * This function is registered to the SPI framework for this SPI master
1416 * controller. If it is the first time when setup is called by this device,
1417 * this function will initialize the runtime state for this chip and save
1418 * the same in the device structure. Else it will update the runtime info
1419 * with the updated chip info. Nothing is really being written to the
1420 * controller hardware here, that is not done until the actual transfer
1424 /* FIXME: JUST GUESSING the spi->mode bits understood by this driver */
1425 #define MODEBITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
1426 | SPI_LSB_FIRST | SPI_LOOP)
1428 static int pl022_setup(struct spi_device
*spi
)
1430 struct pl022_config_chip
*chip_info
;
1431 struct chip_data
*chip
;
1433 struct pl022
*pl022
= spi_master_get_devdata(spi
->master
);
1435 if (spi
->mode
& ~MODEBITS
) {
1436 dev_dbg(&spi
->dev
, "unsupported mode bits %x\n",
1437 spi
->mode
& ~MODEBITS
);
1441 if (!spi
->max_speed_hz
)
1444 /* Get controller_state if one is supplied */
1445 chip
= spi_get_ctldata(spi
);
1448 chip
= kzalloc(sizeof(struct chip_data
), GFP_KERNEL
);
1451 "cannot allocate controller state\n");
1455 "allocated memory for controller's runtime state\n");
1458 /* Get controller data if one is supplied */
1459 chip_info
= spi
->controller_data
;
1461 if (chip_info
== NULL
) {
1462 /* spi_board_info.controller_data not is supplied */
1464 "using default controller_data settings\n");
1467 kzalloc(sizeof(struct pl022_config_chip
), GFP_KERNEL
);
1471 "cannot allocate controller data\n");
1473 goto err_first_setup
;
1476 dev_dbg(&spi
->dev
, "allocated memory for controller data\n");
1478 /* Pointer back to the SPI device */
1479 chip_info
->dev
= &spi
->dev
;
1481 * Set controller data default values:
1482 * Polling is supported by default
1484 chip_info
->lbm
= LOOPBACK_DISABLED
;
1485 chip_info
->com_mode
= POLLING_TRANSFER
;
1486 chip_info
->iface
= SSP_INTERFACE_MOTOROLA_SPI
;
1487 chip_info
->hierarchy
= SSP_SLAVE
;
1488 chip_info
->slave_tx_disable
= DO_NOT_DRIVE_TX
;
1489 chip_info
->endian_tx
= SSP_TX_LSB
;
1490 chip_info
->endian_rx
= SSP_RX_LSB
;
1491 chip_info
->data_size
= SSP_DATA_BITS_12
;
1492 chip_info
->rx_lev_trig
= SSP_RX_1_OR_MORE_ELEM
;
1493 chip_info
->tx_lev_trig
= SSP_TX_1_OR_MORE_EMPTY_LOC
;
1494 chip_info
->clk_phase
= SSP_CLK_SECOND_EDGE
;
1495 chip_info
->clk_pol
= SSP_CLK_POL_IDLE_LOW
;
1496 chip_info
->ctrl_len
= SSP_BITS_8
;
1497 chip_info
->wait_state
= SSP_MWIRE_WAIT_ZERO
;
1498 chip_info
->duplex
= SSP_MICROWIRE_CHANNEL_FULL_DUPLEX
;
1499 chip_info
->cs_control
= null_cs_control
;
1502 "using user supplied controller_data settings\n");
1506 * We can override with custom divisors, else we use the board
1509 if ((0 == chip_info
->clk_freq
.cpsdvsr
)
1510 && (0 == chip_info
->clk_freq
.scr
)) {
1511 status
= calculate_effective_freq(pl022
,
1513 &chip_info
->clk_freq
);
1515 goto err_config_params
;
1517 if ((chip_info
->clk_freq
.cpsdvsr
% 2) != 0)
1518 chip_info
->clk_freq
.cpsdvsr
=
1519 chip_info
->clk_freq
.cpsdvsr
- 1;
1521 status
= verify_controller_parameters(pl022
, chip_info
);
1523 dev_err(&spi
->dev
, "controller data is incorrect");
1524 goto err_config_params
;
1526 /* Now set controller state based on controller data */
1527 chip
->xfer_type
= chip_info
->com_mode
;
1528 chip
->cs_control
= chip_info
->cs_control
;
1530 if (chip_info
->data_size
<= 8) {
1531 dev_dbg(&spi
->dev
, "1 <= n <=8 bits per word\n");
1533 chip
->read
= READING_U8
;
1534 chip
->write
= WRITING_U8
;
1535 } else if (chip_info
->data_size
<= 16) {
1536 dev_dbg(&spi
->dev
, "9 <= n <= 16 bits per word\n");
1538 chip
->read
= READING_U16
;
1539 chip
->write
= WRITING_U16
;
1541 if (pl022
->vendor
->max_bpw
>= 32) {
1542 dev_dbg(&spi
->dev
, "17 <= n <= 32 bits per word\n");
1544 chip
->read
= READING_U32
;
1545 chip
->write
= WRITING_U32
;
1548 "illegal data size for this controller!\n");
1550 "a standard pl022 can only handle "
1551 "1 <= n <= 16 bit words\n");
1552 goto err_config_params
;
1556 /* Now Initialize all register settings required for this chip */
1561 if ((chip_info
->com_mode
== DMA_TRANSFER
)
1562 && ((pl022
->master_info
)->enable_dma
)) {
1563 chip
->enable_dma
= 1;
1564 dev_dbg(&spi
->dev
, "DMA mode set in controller state\n");
1565 status
= process_dma_info(chip_info
, chip
);
1567 goto err_config_params
;
1568 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_ENABLED
,
1569 SSP_DMACR_MASK_RXDMAE
, 0);
1570 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_ENABLED
,
1571 SSP_DMACR_MASK_TXDMAE
, 1);
1573 chip
->enable_dma
= 0;
1574 dev_dbg(&spi
->dev
, "DMA mode NOT set in controller state\n");
1575 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_DISABLED
,
1576 SSP_DMACR_MASK_RXDMAE
, 0);
1577 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_DISABLED
,
1578 SSP_DMACR_MASK_TXDMAE
, 1);
1581 chip
->cpsr
= chip_info
->clk_freq
.cpsdvsr
;
1583 SSP_WRITE_BITS(chip
->cr0
, chip_info
->data_size
, SSP_CR0_MASK_DSS
, 0);
1584 SSP_WRITE_BITS(chip
->cr0
, chip_info
->duplex
, SSP_CR0_MASK_HALFDUP
, 5);
1585 SSP_WRITE_BITS(chip
->cr0
, chip_info
->clk_pol
, SSP_CR0_MASK_SPO
, 6);
1586 SSP_WRITE_BITS(chip
->cr0
, chip_info
->clk_phase
, SSP_CR0_MASK_SPH
, 7);
1587 SSP_WRITE_BITS(chip
->cr0
, chip_info
->clk_freq
.scr
, SSP_CR0_MASK_SCR
, 8);
1588 SSP_WRITE_BITS(chip
->cr0
, chip_info
->ctrl_len
, SSP_CR0_MASK_CSS
, 16);
1589 SSP_WRITE_BITS(chip
->cr0
, chip_info
->iface
, SSP_CR0_MASK_FRF
, 21);
1590 SSP_WRITE_BITS(chip
->cr1
, chip_info
->lbm
, SSP_CR1_MASK_LBM
, 0);
1591 SSP_WRITE_BITS(chip
->cr1
, SSP_DISABLED
, SSP_CR1_MASK_SSE
, 1);
1592 SSP_WRITE_BITS(chip
->cr1
, chip_info
->hierarchy
, SSP_CR1_MASK_MS
, 2);
1593 SSP_WRITE_BITS(chip
->cr1
, chip_info
->slave_tx_disable
, SSP_CR1_MASK_SOD
, 3);
1594 SSP_WRITE_BITS(chip
->cr1
, chip_info
->endian_rx
, SSP_CR1_MASK_RENDN
, 4);
1595 SSP_WRITE_BITS(chip
->cr1
, chip_info
->endian_tx
, SSP_CR1_MASK_TENDN
, 5);
1596 SSP_WRITE_BITS(chip
->cr1
, chip_info
->wait_state
, SSP_CR1_MASK_MWAIT
, 6);
1597 SSP_WRITE_BITS(chip
->cr1
, chip_info
->rx_lev_trig
, SSP_CR1_MASK_RXIFLSEL
, 7);
1598 SSP_WRITE_BITS(chip
->cr1
, chip_info
->tx_lev_trig
, SSP_CR1_MASK_TXIFLSEL
, 10);
1600 /* Save controller_state */
1601 spi_set_ctldata(spi
, chip
);
1610 * pl022_cleanup - cleanup function registered to SPI master framework
1611 * @spi: spi device which is requesting cleanup
1613 * This function is registered to the SPI framework for this SPI master
1614 * controller. It will free the runtime state of chip.
1616 static void pl022_cleanup(struct spi_device
*spi
)
1618 struct chip_data
*chip
= spi_get_ctldata(spi
);
1620 spi_set_ctldata(spi
, NULL
);
1626 pl022_probe(struct amba_device
*adev
, struct amba_id
*id
)
1628 struct device
*dev
= &adev
->dev
;
1629 struct pl022_ssp_controller
*platform_info
= adev
->dev
.platform_data
;
1630 struct spi_master
*master
;
1631 struct pl022
*pl022
= NULL
; /*Data for this driver */
1634 dev_info(&adev
->dev
,
1635 "ARM PL022 driver, device ID: 0x%08x\n", adev
->periphid
);
1636 if (platform_info
== NULL
) {
1637 dev_err(&adev
->dev
, "probe - no platform data supplied\n");
1642 /* Allocate master with space for data */
1643 master
= spi_alloc_master(dev
, sizeof(struct pl022
));
1644 if (master
== NULL
) {
1645 dev_err(&adev
->dev
, "probe - cannot alloc SPI master\n");
1650 pl022
= spi_master_get_devdata(master
);
1651 pl022
->master
= master
;
1652 pl022
->master_info
= platform_info
;
1654 pl022
->vendor
= id
->data
;
1657 * Bus Number Which has been Assigned to this SSP controller
1660 master
->bus_num
= platform_info
->bus_id
;
1661 master
->num_chipselect
= platform_info
->num_chipselect
;
1662 master
->cleanup
= pl022_cleanup
;
1663 master
->setup
= pl022_setup
;
1664 master
->transfer
= pl022_transfer
;
1666 dev_dbg(&adev
->dev
, "BUSNO: %d\n", master
->bus_num
);
1668 status
= amba_request_regions(adev
, NULL
);
1670 goto err_no_ioregion
;
1672 pl022
->virtbase
= ioremap(adev
->res
.start
, resource_size(&adev
->res
));
1673 if (pl022
->virtbase
== NULL
) {
1675 goto err_no_ioremap
;
1677 printk(KERN_INFO
"pl022: mapped registers from 0x%08x to %p\n",
1678 adev
->res
.start
, pl022
->virtbase
);
1680 pl022
->clk
= clk_get(&adev
->dev
, NULL
);
1681 if (IS_ERR(pl022
->clk
)) {
1682 status
= PTR_ERR(pl022
->clk
);
1683 dev_err(&adev
->dev
, "could not retrieve SSP/SPI bus clock\n");
1688 clk_enable(pl022
->clk
);
1689 writew((readw(SSP_CR1(pl022
->virtbase
)) & (~SSP_CR1_MASK_SSE
)),
1690 SSP_CR1(pl022
->virtbase
));
1691 load_ssp_default_config(pl022
);
1692 clk_disable(pl022
->clk
);
1694 status
= request_irq(adev
->irq
[0], pl022_interrupt_handler
, 0, "pl022",
1697 dev_err(&adev
->dev
, "probe - cannot get IRQ (%d)\n", status
);
1700 /* Initialize and start queue */
1701 status
= init_queue(pl022
);
1703 dev_err(&adev
->dev
, "probe - problem initializing queue\n");
1704 goto err_init_queue
;
1706 status
= start_queue(pl022
);
1708 dev_err(&adev
->dev
, "probe - problem starting queue\n");
1709 goto err_start_queue
;
1711 /* Register with the SPI framework */
1712 amba_set_drvdata(adev
, pl022
);
1713 status
= spi_register_master(master
);
1716 "probe - problem registering spi master\n");
1717 goto err_spi_register
;
1719 dev_dbg(dev
, "probe succeded\n");
1725 destroy_queue(pl022
);
1726 free_irq(adev
->irq
[0], pl022
);
1728 clk_put(pl022
->clk
);
1730 iounmap(pl022
->virtbase
);
1732 amba_release_regions(adev
);
1734 spi_master_put(master
);
1741 pl022_remove(struct amba_device
*adev
)
1743 struct pl022
*pl022
= amba_get_drvdata(adev
);
1748 /* Remove the queue */
1749 status
= destroy_queue(pl022
);
1752 "queue remove failed (%d)\n", status
);
1755 load_ssp_default_config(pl022
);
1756 free_irq(adev
->irq
[0], pl022
);
1757 clk_disable(pl022
->clk
);
1758 clk_put(pl022
->clk
);
1759 iounmap(pl022
->virtbase
);
1760 amba_release_regions(adev
);
1761 tasklet_disable(&pl022
->pump_transfers
);
1762 spi_unregister_master(pl022
->master
);
1763 spi_master_put(pl022
->master
);
1764 amba_set_drvdata(adev
, NULL
);
1765 dev_dbg(&adev
->dev
, "remove succeded\n");
1770 static int pl022_suspend(struct amba_device
*adev
, pm_message_t state
)
1772 struct pl022
*pl022
= amba_get_drvdata(adev
);
1775 status
= stop_queue(pl022
);
1777 dev_warn(&adev
->dev
, "suspend cannot stop queue\n");
1781 clk_enable(pl022
->clk
);
1782 load_ssp_default_config(pl022
);
1783 clk_disable(pl022
->clk
);
1784 dev_dbg(&adev
->dev
, "suspended\n");
1788 static int pl022_resume(struct amba_device
*adev
)
1790 struct pl022
*pl022
= amba_get_drvdata(adev
);
1793 /* Start the queue running */
1794 status
= start_queue(pl022
);
1796 dev_err(&adev
->dev
, "problem starting queue (%d)\n", status
);
1798 dev_dbg(&adev
->dev
, "resumed\n");
1803 #define pl022_suspend NULL
1804 #define pl022_resume NULL
1805 #endif /* CONFIG_PM */
1807 static struct vendor_data vendor_arm
= {
1814 static struct vendor_data vendor_st
= {
1820 static struct amba_id pl022_ids
[] = {
1823 * ARM PL022 variant, this has a 16bit wide
1824 * and 8 locations deep TX/RX FIFO
1828 .data
= &vendor_arm
,
1832 * ST Micro derivative, this has 32bit wide
1833 * and 32 locations deep TX/RX FIFO
1842 static struct amba_driver pl022_driver
= {
1844 .name
= "ssp-pl022",
1846 .id_table
= pl022_ids
,
1847 .probe
= pl022_probe
,
1848 .remove
= __exit_p(pl022_remove
),
1849 .suspend
= pl022_suspend
,
1850 .resume
= pl022_resume
,
1854 static int __init
pl022_init(void)
1856 return amba_driver_register(&pl022_driver
);
1859 module_init(pl022_init
);
1861 static void __exit
pl022_exit(void)
1863 amba_driver_unregister(&pl022_driver
);
1866 module_exit(pl022_exit
);
1868 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
1869 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
1870 MODULE_LICENSE("GPL");