fib: add __rcu annotations
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / ipv4 / fib_trie.c
blobb9d1f33e5e045497386c0f0d583aa2d65422f15c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
15 * This work is based on the LPC-trie which is originally descibed in:
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
26 * Code from fib_hash has been reused which includes the following header:
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
33 * IPv4 FIB: lookup engine and maintenance routines.
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
43 * Substantial contributions to this work comes from:
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
51 #define VERSION "0.409"
53 #include <asm/uaccess.h>
54 #include <asm/system.h>
55 #include <linux/bitops.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/mm.h>
59 #include <linux/string.h>
60 #include <linux/socket.h>
61 #include <linux/sockios.h>
62 #include <linux/errno.h>
63 #include <linux/in.h>
64 #include <linux/inet.h>
65 #include <linux/inetdevice.h>
66 #include <linux/netdevice.h>
67 #include <linux/if_arp.h>
68 #include <linux/proc_fs.h>
69 #include <linux/rcupdate.h>
70 #include <linux/skbuff.h>
71 #include <linux/netlink.h>
72 #include <linux/init.h>
73 #include <linux/list.h>
74 #include <linux/slab.h>
75 #include <net/net_namespace.h>
76 #include <net/ip.h>
77 #include <net/protocol.h>
78 #include <net/route.h>
79 #include <net/tcp.h>
80 #include <net/sock.h>
81 #include <net/ip_fib.h>
82 #include "fib_lookup.h"
84 #define MAX_STAT_DEPTH 32
86 #define KEYLENGTH (8*sizeof(t_key))
88 typedef unsigned int t_key;
90 #define T_TNODE 0
91 #define T_LEAF 1
92 #define NODE_TYPE_MASK 0x1UL
93 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
95 #define IS_TNODE(n) (!(n->parent & T_LEAF))
96 #define IS_LEAF(n) (n->parent & T_LEAF)
98 struct rt_trie_node {
99 unsigned long parent;
100 t_key key;
103 struct leaf {
104 unsigned long parent;
105 t_key key;
106 struct hlist_head list;
107 struct rcu_head rcu;
110 struct leaf_info {
111 struct hlist_node hlist;
112 struct rcu_head rcu;
113 int plen;
114 struct list_head falh;
117 struct tnode {
118 unsigned long parent;
119 t_key key;
120 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
121 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
122 unsigned int full_children; /* KEYLENGTH bits needed */
123 unsigned int empty_children; /* KEYLENGTH bits needed */
124 union {
125 struct rcu_head rcu;
126 struct work_struct work;
127 struct tnode *tnode_free;
129 struct rt_trie_node __rcu *child[0];
132 #ifdef CONFIG_IP_FIB_TRIE_STATS
133 struct trie_use_stats {
134 unsigned int gets;
135 unsigned int backtrack;
136 unsigned int semantic_match_passed;
137 unsigned int semantic_match_miss;
138 unsigned int null_node_hit;
139 unsigned int resize_node_skipped;
141 #endif
143 struct trie_stat {
144 unsigned int totdepth;
145 unsigned int maxdepth;
146 unsigned int tnodes;
147 unsigned int leaves;
148 unsigned int nullpointers;
149 unsigned int prefixes;
150 unsigned int nodesizes[MAX_STAT_DEPTH];
153 struct trie {
154 struct rt_trie_node __rcu *trie;
155 #ifdef CONFIG_IP_FIB_TRIE_STATS
156 struct trie_use_stats stats;
157 #endif
160 static void put_child(struct trie *t, struct tnode *tn, int i, struct rt_trie_node *n);
161 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
162 int wasfull);
163 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn);
164 static struct tnode *inflate(struct trie *t, struct tnode *tn);
165 static struct tnode *halve(struct trie *t, struct tnode *tn);
166 /* tnodes to free after resize(); protected by RTNL */
167 static struct tnode *tnode_free_head;
168 static size_t tnode_free_size;
171 * synchronize_rcu after call_rcu for that many pages; it should be especially
172 * useful before resizing the root node with PREEMPT_NONE configs; the value was
173 * obtained experimentally, aiming to avoid visible slowdown.
175 static const int sync_pages = 128;
177 static struct kmem_cache *fn_alias_kmem __read_mostly;
178 static struct kmem_cache *trie_leaf_kmem __read_mostly;
181 * caller must hold RTNL
183 static inline struct tnode *node_parent(const struct rt_trie_node *node)
185 unsigned long parent;
187 parent = rcu_dereference_index_check(node->parent, lockdep_rtnl_is_held());
189 return (struct tnode *)(parent & ~NODE_TYPE_MASK);
193 * caller must hold RCU read lock or RTNL
195 static inline struct tnode *node_parent_rcu(const struct rt_trie_node *node)
197 unsigned long parent;
199 parent = rcu_dereference_index_check(node->parent, rcu_read_lock_held() ||
200 lockdep_rtnl_is_held());
202 return (struct tnode *)(parent & ~NODE_TYPE_MASK);
205 /* Same as rcu_assign_pointer
206 * but that macro() assumes that value is a pointer.
208 static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr)
210 smp_wmb();
211 node->parent = (unsigned long)ptr | NODE_TYPE(node);
215 * caller must hold RTNL
217 static inline struct rt_trie_node *tnode_get_child(const struct tnode *tn, unsigned int i)
219 BUG_ON(i >= 1U << tn->bits);
221 return rtnl_dereference(tn->child[i]);
225 * caller must hold RCU read lock or RTNL
227 static inline struct rt_trie_node *tnode_get_child_rcu(const struct tnode *tn, unsigned int i)
229 BUG_ON(i >= 1U << tn->bits);
231 return rcu_dereference_rtnl(tn->child[i]);
234 static inline int tnode_child_length(const struct tnode *tn)
236 return 1 << tn->bits;
239 static inline t_key mask_pfx(t_key k, unsigned int l)
241 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
244 static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits)
246 if (offset < KEYLENGTH)
247 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
248 else
249 return 0;
252 static inline int tkey_equals(t_key a, t_key b)
254 return a == b;
257 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
259 if (bits == 0 || offset >= KEYLENGTH)
260 return 1;
261 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
262 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
265 static inline int tkey_mismatch(t_key a, int offset, t_key b)
267 t_key diff = a ^ b;
268 int i = offset;
270 if (!diff)
271 return 0;
272 while ((diff << i) >> (KEYLENGTH-1) == 0)
273 i++;
274 return i;
278 To understand this stuff, an understanding of keys and all their bits is
279 necessary. Every node in the trie has a key associated with it, but not
280 all of the bits in that key are significant.
282 Consider a node 'n' and its parent 'tp'.
284 If n is a leaf, every bit in its key is significant. Its presence is
285 necessitated by path compression, since during a tree traversal (when
286 searching for a leaf - unless we are doing an insertion) we will completely
287 ignore all skipped bits we encounter. Thus we need to verify, at the end of
288 a potentially successful search, that we have indeed been walking the
289 correct key path.
291 Note that we can never "miss" the correct key in the tree if present by
292 following the wrong path. Path compression ensures that segments of the key
293 that are the same for all keys with a given prefix are skipped, but the
294 skipped part *is* identical for each node in the subtrie below the skipped
295 bit! trie_insert() in this implementation takes care of that - note the
296 call to tkey_sub_equals() in trie_insert().
298 if n is an internal node - a 'tnode' here, the various parts of its key
299 have many different meanings.
301 Example:
302 _________________________________________________________________
303 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
304 -----------------------------------------------------------------
305 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
307 _________________________________________________________________
308 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
309 -----------------------------------------------------------------
310 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
312 tp->pos = 7
313 tp->bits = 3
314 n->pos = 15
315 n->bits = 4
317 First, let's just ignore the bits that come before the parent tp, that is
318 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
319 not use them for anything.
321 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
322 index into the parent's child array. That is, they will be used to find
323 'n' among tp's children.
325 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
326 for the node n.
328 All the bits we have seen so far are significant to the node n. The rest
329 of the bits are really not needed or indeed known in n->key.
331 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
332 n's child array, and will of course be different for each child.
335 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
336 at this point.
340 static inline void check_tnode(const struct tnode *tn)
342 WARN_ON(tn && tn->pos+tn->bits > 32);
345 static const int halve_threshold = 25;
346 static const int inflate_threshold = 50;
347 static const int halve_threshold_root = 15;
348 static const int inflate_threshold_root = 30;
350 static void __alias_free_mem(struct rcu_head *head)
352 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
353 kmem_cache_free(fn_alias_kmem, fa);
356 static inline void alias_free_mem_rcu(struct fib_alias *fa)
358 call_rcu(&fa->rcu, __alias_free_mem);
361 static void __leaf_free_rcu(struct rcu_head *head)
363 struct leaf *l = container_of(head, struct leaf, rcu);
364 kmem_cache_free(trie_leaf_kmem, l);
367 static inline void free_leaf(struct leaf *l)
369 call_rcu_bh(&l->rcu, __leaf_free_rcu);
372 static void __leaf_info_free_rcu(struct rcu_head *head)
374 kfree(container_of(head, struct leaf_info, rcu));
377 static inline void free_leaf_info(struct leaf_info *leaf)
379 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
382 static struct tnode *tnode_alloc(size_t size)
384 if (size <= PAGE_SIZE)
385 return kzalloc(size, GFP_KERNEL);
386 else
387 return vzalloc(size);
390 static void __tnode_vfree(struct work_struct *arg)
392 struct tnode *tn = container_of(arg, struct tnode, work);
393 vfree(tn);
396 static void __tnode_free_rcu(struct rcu_head *head)
398 struct tnode *tn = container_of(head, struct tnode, rcu);
399 size_t size = sizeof(struct tnode) +
400 (sizeof(struct rt_trie_node *) << tn->bits);
402 if (size <= PAGE_SIZE)
403 kfree(tn);
404 else {
405 INIT_WORK(&tn->work, __tnode_vfree);
406 schedule_work(&tn->work);
410 static inline void tnode_free(struct tnode *tn)
412 if (IS_LEAF(tn))
413 free_leaf((struct leaf *) tn);
414 else
415 call_rcu(&tn->rcu, __tnode_free_rcu);
418 static void tnode_free_safe(struct tnode *tn)
420 BUG_ON(IS_LEAF(tn));
421 tn->tnode_free = tnode_free_head;
422 tnode_free_head = tn;
423 tnode_free_size += sizeof(struct tnode) +
424 (sizeof(struct rt_trie_node *) << tn->bits);
427 static void tnode_free_flush(void)
429 struct tnode *tn;
431 while ((tn = tnode_free_head)) {
432 tnode_free_head = tn->tnode_free;
433 tn->tnode_free = NULL;
434 tnode_free(tn);
437 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
438 tnode_free_size = 0;
439 synchronize_rcu();
443 static struct leaf *leaf_new(void)
445 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
446 if (l) {
447 l->parent = T_LEAF;
448 INIT_HLIST_HEAD(&l->list);
450 return l;
453 static struct leaf_info *leaf_info_new(int plen)
455 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
456 if (li) {
457 li->plen = plen;
458 INIT_LIST_HEAD(&li->falh);
460 return li;
463 static struct tnode *tnode_new(t_key key, int pos, int bits)
465 size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits);
466 struct tnode *tn = tnode_alloc(sz);
468 if (tn) {
469 tn->parent = T_TNODE;
470 tn->pos = pos;
471 tn->bits = bits;
472 tn->key = key;
473 tn->full_children = 0;
474 tn->empty_children = 1<<bits;
477 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
478 sizeof(struct rt_trie_node) << bits);
479 return tn;
483 * Check whether a tnode 'n' is "full", i.e. it is an internal node
484 * and no bits are skipped. See discussion in dyntree paper p. 6
487 static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n)
489 if (n == NULL || IS_LEAF(n))
490 return 0;
492 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
495 static inline void put_child(struct trie *t, struct tnode *tn, int i,
496 struct rt_trie_node *n)
498 tnode_put_child_reorg(tn, i, n, -1);
502 * Add a child at position i overwriting the old value.
503 * Update the value of full_children and empty_children.
506 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
507 int wasfull)
509 struct rt_trie_node *chi = rtnl_dereference(tn->child[i]);
510 int isfull;
512 BUG_ON(i >= 1<<tn->bits);
514 /* update emptyChildren */
515 if (n == NULL && chi != NULL)
516 tn->empty_children++;
517 else if (n != NULL && chi == NULL)
518 tn->empty_children--;
520 /* update fullChildren */
521 if (wasfull == -1)
522 wasfull = tnode_full(tn, chi);
524 isfull = tnode_full(tn, n);
525 if (wasfull && !isfull)
526 tn->full_children--;
527 else if (!wasfull && isfull)
528 tn->full_children++;
530 if (n)
531 node_set_parent(n, tn);
533 rcu_assign_pointer(tn->child[i], n);
536 #define MAX_WORK 10
537 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn)
539 int i;
540 struct tnode *old_tn;
541 int inflate_threshold_use;
542 int halve_threshold_use;
543 int max_work;
545 if (!tn)
546 return NULL;
548 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
549 tn, inflate_threshold, halve_threshold);
551 /* No children */
552 if (tn->empty_children == tnode_child_length(tn)) {
553 tnode_free_safe(tn);
554 return NULL;
556 /* One child */
557 if (tn->empty_children == tnode_child_length(tn) - 1)
558 goto one_child;
560 * Double as long as the resulting node has a number of
561 * nonempty nodes that are above the threshold.
565 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
566 * the Helsinki University of Technology and Matti Tikkanen of Nokia
567 * Telecommunications, page 6:
568 * "A node is doubled if the ratio of non-empty children to all
569 * children in the *doubled* node is at least 'high'."
571 * 'high' in this instance is the variable 'inflate_threshold'. It
572 * is expressed as a percentage, so we multiply it with
573 * tnode_child_length() and instead of multiplying by 2 (since the
574 * child array will be doubled by inflate()) and multiplying
575 * the left-hand side by 100 (to handle the percentage thing) we
576 * multiply the left-hand side by 50.
578 * The left-hand side may look a bit weird: tnode_child_length(tn)
579 * - tn->empty_children is of course the number of non-null children
580 * in the current node. tn->full_children is the number of "full"
581 * children, that is non-null tnodes with a skip value of 0.
582 * All of those will be doubled in the resulting inflated tnode, so
583 * we just count them one extra time here.
585 * A clearer way to write this would be:
587 * to_be_doubled = tn->full_children;
588 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
589 * tn->full_children;
591 * new_child_length = tnode_child_length(tn) * 2;
593 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
594 * new_child_length;
595 * if (new_fill_factor >= inflate_threshold)
597 * ...and so on, tho it would mess up the while () loop.
599 * anyway,
600 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
601 * inflate_threshold
603 * avoid a division:
604 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
605 * inflate_threshold * new_child_length
607 * expand not_to_be_doubled and to_be_doubled, and shorten:
608 * 100 * (tnode_child_length(tn) - tn->empty_children +
609 * tn->full_children) >= inflate_threshold * new_child_length
611 * expand new_child_length:
612 * 100 * (tnode_child_length(tn) - tn->empty_children +
613 * tn->full_children) >=
614 * inflate_threshold * tnode_child_length(tn) * 2
616 * shorten again:
617 * 50 * (tn->full_children + tnode_child_length(tn) -
618 * tn->empty_children) >= inflate_threshold *
619 * tnode_child_length(tn)
623 check_tnode(tn);
625 /* Keep root node larger */
627 if (!node_parent((struct rt_trie_node *)tn)) {
628 inflate_threshold_use = inflate_threshold_root;
629 halve_threshold_use = halve_threshold_root;
630 } else {
631 inflate_threshold_use = inflate_threshold;
632 halve_threshold_use = halve_threshold;
635 max_work = MAX_WORK;
636 while ((tn->full_children > 0 && max_work-- &&
637 50 * (tn->full_children + tnode_child_length(tn)
638 - tn->empty_children)
639 >= inflate_threshold_use * tnode_child_length(tn))) {
641 old_tn = tn;
642 tn = inflate(t, tn);
644 if (IS_ERR(tn)) {
645 tn = old_tn;
646 #ifdef CONFIG_IP_FIB_TRIE_STATS
647 t->stats.resize_node_skipped++;
648 #endif
649 break;
653 check_tnode(tn);
655 /* Return if at least one inflate is run */
656 if (max_work != MAX_WORK)
657 return (struct rt_trie_node *) tn;
660 * Halve as long as the number of empty children in this
661 * node is above threshold.
664 max_work = MAX_WORK;
665 while (tn->bits > 1 && max_work-- &&
666 100 * (tnode_child_length(tn) - tn->empty_children) <
667 halve_threshold_use * tnode_child_length(tn)) {
669 old_tn = tn;
670 tn = halve(t, tn);
671 if (IS_ERR(tn)) {
672 tn = old_tn;
673 #ifdef CONFIG_IP_FIB_TRIE_STATS
674 t->stats.resize_node_skipped++;
675 #endif
676 break;
681 /* Only one child remains */
682 if (tn->empty_children == tnode_child_length(tn) - 1) {
683 one_child:
684 for (i = 0; i < tnode_child_length(tn); i++) {
685 struct rt_trie_node *n;
687 n = rtnl_dereference(tn->child[i]);
688 if (!n)
689 continue;
691 /* compress one level */
693 node_set_parent(n, NULL);
694 tnode_free_safe(tn);
695 return n;
698 return (struct rt_trie_node *) tn;
702 static void tnode_clean_free(struct tnode *tn)
704 int i;
705 struct tnode *tofree;
707 for (i = 0; i < tnode_child_length(tn); i++) {
708 tofree = (struct tnode *)rtnl_dereference(tn->child[i]);
709 if (tofree)
710 tnode_free(tofree);
712 tnode_free(tn);
715 static struct tnode *inflate(struct trie *t, struct tnode *tn)
717 struct tnode *oldtnode = tn;
718 int olen = tnode_child_length(tn);
719 int i;
721 pr_debug("In inflate\n");
723 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
725 if (!tn)
726 return ERR_PTR(-ENOMEM);
729 * Preallocate and store tnodes before the actual work so we
730 * don't get into an inconsistent state if memory allocation
731 * fails. In case of failure we return the oldnode and inflate
732 * of tnode is ignored.
735 for (i = 0; i < olen; i++) {
736 struct tnode *inode;
738 inode = (struct tnode *) tnode_get_child(oldtnode, i);
739 if (inode &&
740 IS_TNODE(inode) &&
741 inode->pos == oldtnode->pos + oldtnode->bits &&
742 inode->bits > 1) {
743 struct tnode *left, *right;
744 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
746 left = tnode_new(inode->key&(~m), inode->pos + 1,
747 inode->bits - 1);
748 if (!left)
749 goto nomem;
751 right = tnode_new(inode->key|m, inode->pos + 1,
752 inode->bits - 1);
754 if (!right) {
755 tnode_free(left);
756 goto nomem;
759 put_child(t, tn, 2*i, (struct rt_trie_node *) left);
760 put_child(t, tn, 2*i+1, (struct rt_trie_node *) right);
764 for (i = 0; i < olen; i++) {
765 struct tnode *inode;
766 struct rt_trie_node *node = tnode_get_child(oldtnode, i);
767 struct tnode *left, *right;
768 int size, j;
770 /* An empty child */
771 if (node == NULL)
772 continue;
774 /* A leaf or an internal node with skipped bits */
776 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
777 tn->pos + tn->bits - 1) {
778 if (tkey_extract_bits(node->key,
779 oldtnode->pos + oldtnode->bits,
780 1) == 0)
781 put_child(t, tn, 2*i, node);
782 else
783 put_child(t, tn, 2*i+1, node);
784 continue;
787 /* An internal node with two children */
788 inode = (struct tnode *) node;
790 if (inode->bits == 1) {
791 put_child(t, tn, 2*i, rtnl_dereference(inode->child[0]));
792 put_child(t, tn, 2*i+1, rtnl_dereference(inode->child[1]));
794 tnode_free_safe(inode);
795 continue;
798 /* An internal node with more than two children */
800 /* We will replace this node 'inode' with two new
801 * ones, 'left' and 'right', each with half of the
802 * original children. The two new nodes will have
803 * a position one bit further down the key and this
804 * means that the "significant" part of their keys
805 * (see the discussion near the top of this file)
806 * will differ by one bit, which will be "0" in
807 * left's key and "1" in right's key. Since we are
808 * moving the key position by one step, the bit that
809 * we are moving away from - the bit at position
810 * (inode->pos) - is the one that will differ between
811 * left and right. So... we synthesize that bit in the
812 * two new keys.
813 * The mask 'm' below will be a single "one" bit at
814 * the position (inode->pos)
817 /* Use the old key, but set the new significant
818 * bit to zero.
821 left = (struct tnode *) tnode_get_child(tn, 2*i);
822 put_child(t, tn, 2*i, NULL);
824 BUG_ON(!left);
826 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
827 put_child(t, tn, 2*i+1, NULL);
829 BUG_ON(!right);
831 size = tnode_child_length(left);
832 for (j = 0; j < size; j++) {
833 put_child(t, left, j, rtnl_dereference(inode->child[j]));
834 put_child(t, right, j, rtnl_dereference(inode->child[j + size]));
836 put_child(t, tn, 2*i, resize(t, left));
837 put_child(t, tn, 2*i+1, resize(t, right));
839 tnode_free_safe(inode);
841 tnode_free_safe(oldtnode);
842 return tn;
843 nomem:
844 tnode_clean_free(tn);
845 return ERR_PTR(-ENOMEM);
848 static struct tnode *halve(struct trie *t, struct tnode *tn)
850 struct tnode *oldtnode = tn;
851 struct rt_trie_node *left, *right;
852 int i;
853 int olen = tnode_child_length(tn);
855 pr_debug("In halve\n");
857 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
859 if (!tn)
860 return ERR_PTR(-ENOMEM);
863 * Preallocate and store tnodes before the actual work so we
864 * don't get into an inconsistent state if memory allocation
865 * fails. In case of failure we return the oldnode and halve
866 * of tnode is ignored.
869 for (i = 0; i < olen; i += 2) {
870 left = tnode_get_child(oldtnode, i);
871 right = tnode_get_child(oldtnode, i+1);
873 /* Two nonempty children */
874 if (left && right) {
875 struct tnode *newn;
877 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
879 if (!newn)
880 goto nomem;
882 put_child(t, tn, i/2, (struct rt_trie_node *)newn);
887 for (i = 0; i < olen; i += 2) {
888 struct tnode *newBinNode;
890 left = tnode_get_child(oldtnode, i);
891 right = tnode_get_child(oldtnode, i+1);
893 /* At least one of the children is empty */
894 if (left == NULL) {
895 if (right == NULL) /* Both are empty */
896 continue;
897 put_child(t, tn, i/2, right);
898 continue;
901 if (right == NULL) {
902 put_child(t, tn, i/2, left);
903 continue;
906 /* Two nonempty children */
907 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
908 put_child(t, tn, i/2, NULL);
909 put_child(t, newBinNode, 0, left);
910 put_child(t, newBinNode, 1, right);
911 put_child(t, tn, i/2, resize(t, newBinNode));
913 tnode_free_safe(oldtnode);
914 return tn;
915 nomem:
916 tnode_clean_free(tn);
917 return ERR_PTR(-ENOMEM);
920 /* readside must use rcu_read_lock currently dump routines
921 via get_fa_head and dump */
923 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
925 struct hlist_head *head = &l->list;
926 struct hlist_node *node;
927 struct leaf_info *li;
929 hlist_for_each_entry_rcu(li, node, head, hlist)
930 if (li->plen == plen)
931 return li;
933 return NULL;
936 static inline struct list_head *get_fa_head(struct leaf *l, int plen)
938 struct leaf_info *li = find_leaf_info(l, plen);
940 if (!li)
941 return NULL;
943 return &li->falh;
946 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
948 struct leaf_info *li = NULL, *last = NULL;
949 struct hlist_node *node;
951 if (hlist_empty(head)) {
952 hlist_add_head_rcu(&new->hlist, head);
953 } else {
954 hlist_for_each_entry(li, node, head, hlist) {
955 if (new->plen > li->plen)
956 break;
958 last = li;
960 if (last)
961 hlist_add_after_rcu(&last->hlist, &new->hlist);
962 else
963 hlist_add_before_rcu(&new->hlist, &li->hlist);
967 /* rcu_read_lock needs to be hold by caller from readside */
969 static struct leaf *
970 fib_find_node(struct trie *t, u32 key)
972 int pos;
973 struct tnode *tn;
974 struct rt_trie_node *n;
976 pos = 0;
977 n = rcu_dereference_rtnl(t->trie);
979 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
980 tn = (struct tnode *) n;
982 check_tnode(tn);
984 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
985 pos = tn->pos + tn->bits;
986 n = tnode_get_child_rcu(tn,
987 tkey_extract_bits(key,
988 tn->pos,
989 tn->bits));
990 } else
991 break;
993 /* Case we have found a leaf. Compare prefixes */
995 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
996 return (struct leaf *)n;
998 return NULL;
1001 static void trie_rebalance(struct trie *t, struct tnode *tn)
1003 int wasfull;
1004 t_key cindex, key;
1005 struct tnode *tp;
1007 key = tn->key;
1009 while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) {
1010 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1011 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
1012 tn = (struct tnode *) resize(t, (struct tnode *)tn);
1014 tnode_put_child_reorg((struct tnode *)tp, cindex,
1015 (struct rt_trie_node *)tn, wasfull);
1017 tp = node_parent((struct rt_trie_node *) tn);
1018 if (!tp)
1019 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1021 tnode_free_flush();
1022 if (!tp)
1023 break;
1024 tn = tp;
1027 /* Handle last (top) tnode */
1028 if (IS_TNODE(tn))
1029 tn = (struct tnode *)resize(t, (struct tnode *)tn);
1031 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1032 tnode_free_flush();
1035 /* only used from updater-side */
1037 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1039 int pos, newpos;
1040 struct tnode *tp = NULL, *tn = NULL;
1041 struct rt_trie_node *n;
1042 struct leaf *l;
1043 int missbit;
1044 struct list_head *fa_head = NULL;
1045 struct leaf_info *li;
1046 t_key cindex;
1048 pos = 0;
1049 n = rtnl_dereference(t->trie);
1051 /* If we point to NULL, stop. Either the tree is empty and we should
1052 * just put a new leaf in if, or we have reached an empty child slot,
1053 * and we should just put our new leaf in that.
1054 * If we point to a T_TNODE, check if it matches our key. Note that
1055 * a T_TNODE might be skipping any number of bits - its 'pos' need
1056 * not be the parent's 'pos'+'bits'!
1058 * If it does match the current key, get pos/bits from it, extract
1059 * the index from our key, push the T_TNODE and walk the tree.
1061 * If it doesn't, we have to replace it with a new T_TNODE.
1063 * If we point to a T_LEAF, it might or might not have the same key
1064 * as we do. If it does, just change the value, update the T_LEAF's
1065 * value, and return it.
1066 * If it doesn't, we need to replace it with a T_TNODE.
1069 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1070 tn = (struct tnode *) n;
1072 check_tnode(tn);
1074 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1075 tp = tn;
1076 pos = tn->pos + tn->bits;
1077 n = tnode_get_child(tn,
1078 tkey_extract_bits(key,
1079 tn->pos,
1080 tn->bits));
1082 BUG_ON(n && node_parent(n) != tn);
1083 } else
1084 break;
1088 * n ----> NULL, LEAF or TNODE
1090 * tp is n's (parent) ----> NULL or TNODE
1093 BUG_ON(tp && IS_LEAF(tp));
1095 /* Case 1: n is a leaf. Compare prefixes */
1097 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1098 l = (struct leaf *) n;
1099 li = leaf_info_new(plen);
1101 if (!li)
1102 return NULL;
1104 fa_head = &li->falh;
1105 insert_leaf_info(&l->list, li);
1106 goto done;
1108 l = leaf_new();
1110 if (!l)
1111 return NULL;
1113 l->key = key;
1114 li = leaf_info_new(plen);
1116 if (!li) {
1117 free_leaf(l);
1118 return NULL;
1121 fa_head = &li->falh;
1122 insert_leaf_info(&l->list, li);
1124 if (t->trie && n == NULL) {
1125 /* Case 2: n is NULL, and will just insert a new leaf */
1127 node_set_parent((struct rt_trie_node *)l, tp);
1129 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1130 put_child(t, (struct tnode *)tp, cindex, (struct rt_trie_node *)l);
1131 } else {
1132 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1134 * Add a new tnode here
1135 * first tnode need some special handling
1138 if (tp)
1139 pos = tp->pos+tp->bits;
1140 else
1141 pos = 0;
1143 if (n) {
1144 newpos = tkey_mismatch(key, pos, n->key);
1145 tn = tnode_new(n->key, newpos, 1);
1146 } else {
1147 newpos = 0;
1148 tn = tnode_new(key, newpos, 1); /* First tnode */
1151 if (!tn) {
1152 free_leaf_info(li);
1153 free_leaf(l);
1154 return NULL;
1157 node_set_parent((struct rt_trie_node *)tn, tp);
1159 missbit = tkey_extract_bits(key, newpos, 1);
1160 put_child(t, tn, missbit, (struct rt_trie_node *)l);
1161 put_child(t, tn, 1-missbit, n);
1163 if (tp) {
1164 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1165 put_child(t, (struct tnode *)tp, cindex,
1166 (struct rt_trie_node *)tn);
1167 } else {
1168 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1169 tp = tn;
1173 if (tp && tp->pos + tp->bits > 32)
1174 pr_warning("fib_trie"
1175 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1176 tp, tp->pos, tp->bits, key, plen);
1178 /* Rebalance the trie */
1180 trie_rebalance(t, tp);
1181 done:
1182 return fa_head;
1186 * Caller must hold RTNL.
1188 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1190 struct trie *t = (struct trie *) tb->tb_data;
1191 struct fib_alias *fa, *new_fa;
1192 struct list_head *fa_head = NULL;
1193 struct fib_info *fi;
1194 int plen = cfg->fc_dst_len;
1195 u8 tos = cfg->fc_tos;
1196 u32 key, mask;
1197 int err;
1198 struct leaf *l;
1200 if (plen > 32)
1201 return -EINVAL;
1203 key = ntohl(cfg->fc_dst);
1205 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1207 mask = ntohl(inet_make_mask(plen));
1209 if (key & ~mask)
1210 return -EINVAL;
1212 key = key & mask;
1214 fi = fib_create_info(cfg);
1215 if (IS_ERR(fi)) {
1216 err = PTR_ERR(fi);
1217 goto err;
1220 l = fib_find_node(t, key);
1221 fa = NULL;
1223 if (l) {
1224 fa_head = get_fa_head(l, plen);
1225 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1228 /* Now fa, if non-NULL, points to the first fib alias
1229 * with the same keys [prefix,tos,priority], if such key already
1230 * exists or to the node before which we will insert new one.
1232 * If fa is NULL, we will need to allocate a new one and
1233 * insert to the head of f.
1235 * If f is NULL, no fib node matched the destination key
1236 * and we need to allocate a new one of those as well.
1239 if (fa && fa->fa_tos == tos &&
1240 fa->fa_info->fib_priority == fi->fib_priority) {
1241 struct fib_alias *fa_first, *fa_match;
1243 err = -EEXIST;
1244 if (cfg->fc_nlflags & NLM_F_EXCL)
1245 goto out;
1247 /* We have 2 goals:
1248 * 1. Find exact match for type, scope, fib_info to avoid
1249 * duplicate routes
1250 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1252 fa_match = NULL;
1253 fa_first = fa;
1254 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1255 list_for_each_entry_continue(fa, fa_head, fa_list) {
1256 if (fa->fa_tos != tos)
1257 break;
1258 if (fa->fa_info->fib_priority != fi->fib_priority)
1259 break;
1260 if (fa->fa_type == cfg->fc_type &&
1261 fa->fa_info == fi) {
1262 fa_match = fa;
1263 break;
1267 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1268 struct fib_info *fi_drop;
1269 u8 state;
1271 fa = fa_first;
1272 if (fa_match) {
1273 if (fa == fa_match)
1274 err = 0;
1275 goto out;
1277 err = -ENOBUFS;
1278 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1279 if (new_fa == NULL)
1280 goto out;
1282 fi_drop = fa->fa_info;
1283 new_fa->fa_tos = fa->fa_tos;
1284 new_fa->fa_info = fi;
1285 new_fa->fa_type = cfg->fc_type;
1286 state = fa->fa_state;
1287 new_fa->fa_state = state & ~FA_S_ACCESSED;
1289 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1290 alias_free_mem_rcu(fa);
1292 fib_release_info(fi_drop);
1293 if (state & FA_S_ACCESSED)
1294 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1295 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1296 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1298 goto succeeded;
1300 /* Error if we find a perfect match which
1301 * uses the same scope, type, and nexthop
1302 * information.
1304 if (fa_match)
1305 goto out;
1307 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1308 fa = fa_first;
1310 err = -ENOENT;
1311 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1312 goto out;
1314 err = -ENOBUFS;
1315 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1316 if (new_fa == NULL)
1317 goto out;
1319 new_fa->fa_info = fi;
1320 new_fa->fa_tos = tos;
1321 new_fa->fa_type = cfg->fc_type;
1322 new_fa->fa_state = 0;
1324 * Insert new entry to the list.
1327 if (!fa_head) {
1328 fa_head = fib_insert_node(t, key, plen);
1329 if (unlikely(!fa_head)) {
1330 err = -ENOMEM;
1331 goto out_free_new_fa;
1335 list_add_tail_rcu(&new_fa->fa_list,
1336 (fa ? &fa->fa_list : fa_head));
1338 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1339 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1340 &cfg->fc_nlinfo, 0);
1341 succeeded:
1342 return 0;
1344 out_free_new_fa:
1345 kmem_cache_free(fn_alias_kmem, new_fa);
1346 out:
1347 fib_release_info(fi);
1348 err:
1349 return err;
1352 /* should be called with rcu_read_lock */
1353 static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l,
1354 t_key key, const struct flowi4 *flp,
1355 struct fib_result *res, int fib_flags)
1357 struct leaf_info *li;
1358 struct hlist_head *hhead = &l->list;
1359 struct hlist_node *node;
1361 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1362 struct fib_alias *fa;
1363 int plen = li->plen;
1364 __be32 mask = inet_make_mask(plen);
1366 if (l->key != (key & ntohl(mask)))
1367 continue;
1369 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1370 struct fib_info *fi = fa->fa_info;
1371 int nhsel, err;
1373 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1374 continue;
1375 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1376 continue;
1377 fib_alias_accessed(fa);
1378 err = fib_props[fa->fa_type].error;
1379 if (err) {
1380 #ifdef CONFIG_IP_FIB_TRIE_STATS
1381 t->stats.semantic_match_passed++;
1382 #endif
1383 return err;
1385 if (fi->fib_flags & RTNH_F_DEAD)
1386 continue;
1387 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1388 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1390 if (nh->nh_flags & RTNH_F_DEAD)
1391 continue;
1392 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1393 continue;
1395 #ifdef CONFIG_IP_FIB_TRIE_STATS
1396 t->stats.semantic_match_passed++;
1397 #endif
1398 res->prefixlen = plen;
1399 res->nh_sel = nhsel;
1400 res->type = fa->fa_type;
1401 res->scope = fa->fa_info->fib_scope;
1402 res->fi = fi;
1403 res->table = tb;
1404 res->fa_head = &li->falh;
1405 if (!(fib_flags & FIB_LOOKUP_NOREF))
1406 atomic_inc(&res->fi->fib_clntref);
1407 return 0;
1411 #ifdef CONFIG_IP_FIB_TRIE_STATS
1412 t->stats.semantic_match_miss++;
1413 #endif
1416 return 1;
1419 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1420 struct fib_result *res, int fib_flags)
1422 struct trie *t = (struct trie *) tb->tb_data;
1423 int ret;
1424 struct rt_trie_node *n;
1425 struct tnode *pn;
1426 unsigned int pos, bits;
1427 t_key key = ntohl(flp->daddr);
1428 unsigned int chopped_off;
1429 t_key cindex = 0;
1430 unsigned int current_prefix_length = KEYLENGTH;
1431 struct tnode *cn;
1432 t_key pref_mismatch;
1434 rcu_read_lock();
1436 n = rcu_dereference(t->trie);
1437 if (!n)
1438 goto failed;
1440 #ifdef CONFIG_IP_FIB_TRIE_STATS
1441 t->stats.gets++;
1442 #endif
1444 /* Just a leaf? */
1445 if (IS_LEAF(n)) {
1446 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1447 goto found;
1450 pn = (struct tnode *) n;
1451 chopped_off = 0;
1453 while (pn) {
1454 pos = pn->pos;
1455 bits = pn->bits;
1457 if (!chopped_off)
1458 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1459 pos, bits);
1461 n = tnode_get_child_rcu(pn, cindex);
1463 if (n == NULL) {
1464 #ifdef CONFIG_IP_FIB_TRIE_STATS
1465 t->stats.null_node_hit++;
1466 #endif
1467 goto backtrace;
1470 if (IS_LEAF(n)) {
1471 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1472 if (ret > 0)
1473 goto backtrace;
1474 goto found;
1477 cn = (struct tnode *)n;
1480 * It's a tnode, and we can do some extra checks here if we
1481 * like, to avoid descending into a dead-end branch.
1482 * This tnode is in the parent's child array at index
1483 * key[p_pos..p_pos+p_bits] but potentially with some bits
1484 * chopped off, so in reality the index may be just a
1485 * subprefix, padded with zero at the end.
1486 * We can also take a look at any skipped bits in this
1487 * tnode - everything up to p_pos is supposed to be ok,
1488 * and the non-chopped bits of the index (se previous
1489 * paragraph) are also guaranteed ok, but the rest is
1490 * considered unknown.
1492 * The skipped bits are key[pos+bits..cn->pos].
1495 /* If current_prefix_length < pos+bits, we are already doing
1496 * actual prefix matching, which means everything from
1497 * pos+(bits-chopped_off) onward must be zero along some
1498 * branch of this subtree - otherwise there is *no* valid
1499 * prefix present. Here we can only check the skipped
1500 * bits. Remember, since we have already indexed into the
1501 * parent's child array, we know that the bits we chopped of
1502 * *are* zero.
1505 /* NOTA BENE: Checking only skipped bits
1506 for the new node here */
1508 if (current_prefix_length < pos+bits) {
1509 if (tkey_extract_bits(cn->key, current_prefix_length,
1510 cn->pos - current_prefix_length)
1511 || !(cn->child[0]))
1512 goto backtrace;
1516 * If chopped_off=0, the index is fully validated and we
1517 * only need to look at the skipped bits for this, the new,
1518 * tnode. What we actually want to do is to find out if
1519 * these skipped bits match our key perfectly, or if we will
1520 * have to count on finding a matching prefix further down,
1521 * because if we do, we would like to have some way of
1522 * verifying the existence of such a prefix at this point.
1525 /* The only thing we can do at this point is to verify that
1526 * any such matching prefix can indeed be a prefix to our
1527 * key, and if the bits in the node we are inspecting that
1528 * do not match our key are not ZERO, this cannot be true.
1529 * Thus, find out where there is a mismatch (before cn->pos)
1530 * and verify that all the mismatching bits are zero in the
1531 * new tnode's key.
1535 * Note: We aren't very concerned about the piece of
1536 * the key that precede pn->pos+pn->bits, since these
1537 * have already been checked. The bits after cn->pos
1538 * aren't checked since these are by definition
1539 * "unknown" at this point. Thus, what we want to see
1540 * is if we are about to enter the "prefix matching"
1541 * state, and in that case verify that the skipped
1542 * bits that will prevail throughout this subtree are
1543 * zero, as they have to be if we are to find a
1544 * matching prefix.
1547 pref_mismatch = mask_pfx(cn->key ^ key, cn->pos);
1550 * In short: If skipped bits in this node do not match
1551 * the search key, enter the "prefix matching"
1552 * state.directly.
1554 if (pref_mismatch) {
1555 int mp = KEYLENGTH - fls(pref_mismatch);
1557 if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0)
1558 goto backtrace;
1560 if (current_prefix_length >= cn->pos)
1561 current_prefix_length = mp;
1564 pn = (struct tnode *)n; /* Descend */
1565 chopped_off = 0;
1566 continue;
1568 backtrace:
1569 chopped_off++;
1571 /* As zero don't change the child key (cindex) */
1572 while ((chopped_off <= pn->bits)
1573 && !(cindex & (1<<(chopped_off-1))))
1574 chopped_off++;
1576 /* Decrease current_... with bits chopped off */
1577 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1578 current_prefix_length = pn->pos + pn->bits
1579 - chopped_off;
1582 * Either we do the actual chop off according or if we have
1583 * chopped off all bits in this tnode walk up to our parent.
1586 if (chopped_off <= pn->bits) {
1587 cindex &= ~(1 << (chopped_off-1));
1588 } else {
1589 struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn);
1590 if (!parent)
1591 goto failed;
1593 /* Get Child's index */
1594 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1595 pn = parent;
1596 chopped_off = 0;
1598 #ifdef CONFIG_IP_FIB_TRIE_STATS
1599 t->stats.backtrack++;
1600 #endif
1601 goto backtrace;
1604 failed:
1605 ret = 1;
1606 found:
1607 rcu_read_unlock();
1608 return ret;
1612 * Remove the leaf and return parent.
1614 static void trie_leaf_remove(struct trie *t, struct leaf *l)
1616 struct tnode *tp = node_parent((struct rt_trie_node *) l);
1618 pr_debug("entering trie_leaf_remove(%p)\n", l);
1620 if (tp) {
1621 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1622 put_child(t, (struct tnode *)tp, cindex, NULL);
1623 trie_rebalance(t, tp);
1624 } else
1625 rcu_assign_pointer(t->trie, NULL);
1627 free_leaf(l);
1631 * Caller must hold RTNL.
1633 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1635 struct trie *t = (struct trie *) tb->tb_data;
1636 u32 key, mask;
1637 int plen = cfg->fc_dst_len;
1638 u8 tos = cfg->fc_tos;
1639 struct fib_alias *fa, *fa_to_delete;
1640 struct list_head *fa_head;
1641 struct leaf *l;
1642 struct leaf_info *li;
1644 if (plen > 32)
1645 return -EINVAL;
1647 key = ntohl(cfg->fc_dst);
1648 mask = ntohl(inet_make_mask(plen));
1650 if (key & ~mask)
1651 return -EINVAL;
1653 key = key & mask;
1654 l = fib_find_node(t, key);
1656 if (!l)
1657 return -ESRCH;
1659 fa_head = get_fa_head(l, plen);
1660 fa = fib_find_alias(fa_head, tos, 0);
1662 if (!fa)
1663 return -ESRCH;
1665 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1667 fa_to_delete = NULL;
1668 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1669 list_for_each_entry_continue(fa, fa_head, fa_list) {
1670 struct fib_info *fi = fa->fa_info;
1672 if (fa->fa_tos != tos)
1673 break;
1675 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1676 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1677 fa->fa_info->fib_scope == cfg->fc_scope) &&
1678 (!cfg->fc_prefsrc ||
1679 fi->fib_prefsrc == cfg->fc_prefsrc) &&
1680 (!cfg->fc_protocol ||
1681 fi->fib_protocol == cfg->fc_protocol) &&
1682 fib_nh_match(cfg, fi) == 0) {
1683 fa_to_delete = fa;
1684 break;
1688 if (!fa_to_delete)
1689 return -ESRCH;
1691 fa = fa_to_delete;
1692 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1693 &cfg->fc_nlinfo, 0);
1695 l = fib_find_node(t, key);
1696 li = find_leaf_info(l, plen);
1698 list_del_rcu(&fa->fa_list);
1700 if (list_empty(fa_head)) {
1701 hlist_del_rcu(&li->hlist);
1702 free_leaf_info(li);
1705 if (hlist_empty(&l->list))
1706 trie_leaf_remove(t, l);
1708 if (fa->fa_state & FA_S_ACCESSED)
1709 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1711 fib_release_info(fa->fa_info);
1712 alias_free_mem_rcu(fa);
1713 return 0;
1716 static int trie_flush_list(struct list_head *head)
1718 struct fib_alias *fa, *fa_node;
1719 int found = 0;
1721 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1722 struct fib_info *fi = fa->fa_info;
1724 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1725 list_del_rcu(&fa->fa_list);
1726 fib_release_info(fa->fa_info);
1727 alias_free_mem_rcu(fa);
1728 found++;
1731 return found;
1734 static int trie_flush_leaf(struct leaf *l)
1736 int found = 0;
1737 struct hlist_head *lih = &l->list;
1738 struct hlist_node *node, *tmp;
1739 struct leaf_info *li = NULL;
1741 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1742 found += trie_flush_list(&li->falh);
1744 if (list_empty(&li->falh)) {
1745 hlist_del_rcu(&li->hlist);
1746 free_leaf_info(li);
1749 return found;
1753 * Scan for the next right leaf starting at node p->child[idx]
1754 * Since we have back pointer, no recursion necessary.
1756 static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c)
1758 do {
1759 t_key idx;
1761 if (c)
1762 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1763 else
1764 idx = 0;
1766 while (idx < 1u << p->bits) {
1767 c = tnode_get_child_rcu(p, idx++);
1768 if (!c)
1769 continue;
1771 if (IS_LEAF(c)) {
1772 prefetch(rcu_dereference_rtnl(p->child[idx]));
1773 return (struct leaf *) c;
1776 /* Rescan start scanning in new node */
1777 p = (struct tnode *) c;
1778 idx = 0;
1781 /* Node empty, walk back up to parent */
1782 c = (struct rt_trie_node *) p;
1783 } while ((p = node_parent_rcu(c)) != NULL);
1785 return NULL; /* Root of trie */
1788 static struct leaf *trie_firstleaf(struct trie *t)
1790 struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie);
1792 if (!n)
1793 return NULL;
1795 if (IS_LEAF(n)) /* trie is just a leaf */
1796 return (struct leaf *) n;
1798 return leaf_walk_rcu(n, NULL);
1801 static struct leaf *trie_nextleaf(struct leaf *l)
1803 struct rt_trie_node *c = (struct rt_trie_node *) l;
1804 struct tnode *p = node_parent_rcu(c);
1806 if (!p)
1807 return NULL; /* trie with just one leaf */
1809 return leaf_walk_rcu(p, c);
1812 static struct leaf *trie_leafindex(struct trie *t, int index)
1814 struct leaf *l = trie_firstleaf(t);
1816 while (l && index-- > 0)
1817 l = trie_nextleaf(l);
1819 return l;
1824 * Caller must hold RTNL.
1826 int fib_table_flush(struct fib_table *tb)
1828 struct trie *t = (struct trie *) tb->tb_data;
1829 struct leaf *l, *ll = NULL;
1830 int found = 0;
1832 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1833 found += trie_flush_leaf(l);
1835 if (ll && hlist_empty(&ll->list))
1836 trie_leaf_remove(t, ll);
1837 ll = l;
1840 if (ll && hlist_empty(&ll->list))
1841 trie_leaf_remove(t, ll);
1843 pr_debug("trie_flush found=%d\n", found);
1844 return found;
1847 void fib_free_table(struct fib_table *tb)
1849 kfree(tb);
1852 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1853 struct fib_table *tb,
1854 struct sk_buff *skb, struct netlink_callback *cb)
1856 int i, s_i;
1857 struct fib_alias *fa;
1858 __be32 xkey = htonl(key);
1860 s_i = cb->args[5];
1861 i = 0;
1863 /* rcu_read_lock is hold by caller */
1865 list_for_each_entry_rcu(fa, fah, fa_list) {
1866 if (i < s_i) {
1867 i++;
1868 continue;
1871 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1872 cb->nlh->nlmsg_seq,
1873 RTM_NEWROUTE,
1874 tb->tb_id,
1875 fa->fa_type,
1876 xkey,
1877 plen,
1878 fa->fa_tos,
1879 fa->fa_info, NLM_F_MULTI) < 0) {
1880 cb->args[5] = i;
1881 return -1;
1883 i++;
1885 cb->args[5] = i;
1886 return skb->len;
1889 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1890 struct sk_buff *skb, struct netlink_callback *cb)
1892 struct leaf_info *li;
1893 struct hlist_node *node;
1894 int i, s_i;
1896 s_i = cb->args[4];
1897 i = 0;
1899 /* rcu_read_lock is hold by caller */
1900 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1901 if (i < s_i) {
1902 i++;
1903 continue;
1906 if (i > s_i)
1907 cb->args[5] = 0;
1909 if (list_empty(&li->falh))
1910 continue;
1912 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1913 cb->args[4] = i;
1914 return -1;
1916 i++;
1919 cb->args[4] = i;
1920 return skb->len;
1923 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1924 struct netlink_callback *cb)
1926 struct leaf *l;
1927 struct trie *t = (struct trie *) tb->tb_data;
1928 t_key key = cb->args[2];
1929 int count = cb->args[3];
1931 rcu_read_lock();
1932 /* Dump starting at last key.
1933 * Note: 0.0.0.0/0 (ie default) is first key.
1935 if (count == 0)
1936 l = trie_firstleaf(t);
1937 else {
1938 /* Normally, continue from last key, but if that is missing
1939 * fallback to using slow rescan
1941 l = fib_find_node(t, key);
1942 if (!l)
1943 l = trie_leafindex(t, count);
1946 while (l) {
1947 cb->args[2] = l->key;
1948 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1949 cb->args[3] = count;
1950 rcu_read_unlock();
1951 return -1;
1954 ++count;
1955 l = trie_nextleaf(l);
1956 memset(&cb->args[4], 0,
1957 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1959 cb->args[3] = count;
1960 rcu_read_unlock();
1962 return skb->len;
1965 void __init fib_trie_init(void)
1967 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1968 sizeof(struct fib_alias),
1969 0, SLAB_PANIC, NULL);
1971 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1972 max(sizeof(struct leaf),
1973 sizeof(struct leaf_info)),
1974 0, SLAB_PANIC, NULL);
1978 struct fib_table *fib_trie_table(u32 id)
1980 struct fib_table *tb;
1981 struct trie *t;
1983 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1984 GFP_KERNEL);
1985 if (tb == NULL)
1986 return NULL;
1988 tb->tb_id = id;
1989 tb->tb_default = -1;
1991 t = (struct trie *) tb->tb_data;
1992 memset(t, 0, sizeof(*t));
1994 if (id == RT_TABLE_LOCAL)
1995 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
1997 return tb;
2000 #ifdef CONFIG_PROC_FS
2001 /* Depth first Trie walk iterator */
2002 struct fib_trie_iter {
2003 struct seq_net_private p;
2004 struct fib_table *tb;
2005 struct tnode *tnode;
2006 unsigned int index;
2007 unsigned int depth;
2010 static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter)
2012 struct tnode *tn = iter->tnode;
2013 unsigned int cindex = iter->index;
2014 struct tnode *p;
2016 /* A single entry routing table */
2017 if (!tn)
2018 return NULL;
2020 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2021 iter->tnode, iter->index, iter->depth);
2022 rescan:
2023 while (cindex < (1<<tn->bits)) {
2024 struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex);
2026 if (n) {
2027 if (IS_LEAF(n)) {
2028 iter->tnode = tn;
2029 iter->index = cindex + 1;
2030 } else {
2031 /* push down one level */
2032 iter->tnode = (struct tnode *) n;
2033 iter->index = 0;
2034 ++iter->depth;
2036 return n;
2039 ++cindex;
2042 /* Current node exhausted, pop back up */
2043 p = node_parent_rcu((struct rt_trie_node *)tn);
2044 if (p) {
2045 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2046 tn = p;
2047 --iter->depth;
2048 goto rescan;
2051 /* got root? */
2052 return NULL;
2055 static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter,
2056 struct trie *t)
2058 struct rt_trie_node *n;
2060 if (!t)
2061 return NULL;
2063 n = rcu_dereference(t->trie);
2064 if (!n)
2065 return NULL;
2067 if (IS_TNODE(n)) {
2068 iter->tnode = (struct tnode *) n;
2069 iter->index = 0;
2070 iter->depth = 1;
2071 } else {
2072 iter->tnode = NULL;
2073 iter->index = 0;
2074 iter->depth = 0;
2077 return n;
2080 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2082 struct rt_trie_node *n;
2083 struct fib_trie_iter iter;
2085 memset(s, 0, sizeof(*s));
2087 rcu_read_lock();
2088 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2089 if (IS_LEAF(n)) {
2090 struct leaf *l = (struct leaf *)n;
2091 struct leaf_info *li;
2092 struct hlist_node *tmp;
2094 s->leaves++;
2095 s->totdepth += iter.depth;
2096 if (iter.depth > s->maxdepth)
2097 s->maxdepth = iter.depth;
2099 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2100 ++s->prefixes;
2101 } else {
2102 const struct tnode *tn = (const struct tnode *) n;
2103 int i;
2105 s->tnodes++;
2106 if (tn->bits < MAX_STAT_DEPTH)
2107 s->nodesizes[tn->bits]++;
2109 for (i = 0; i < (1<<tn->bits); i++)
2110 if (!tn->child[i])
2111 s->nullpointers++;
2114 rcu_read_unlock();
2118 * This outputs /proc/net/fib_triestats
2120 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2122 unsigned int i, max, pointers, bytes, avdepth;
2124 if (stat->leaves)
2125 avdepth = stat->totdepth*100 / stat->leaves;
2126 else
2127 avdepth = 0;
2129 seq_printf(seq, "\tAver depth: %u.%02d\n",
2130 avdepth / 100, avdepth % 100);
2131 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2133 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2134 bytes = sizeof(struct leaf) * stat->leaves;
2136 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2137 bytes += sizeof(struct leaf_info) * stat->prefixes;
2139 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2140 bytes += sizeof(struct tnode) * stat->tnodes;
2142 max = MAX_STAT_DEPTH;
2143 while (max > 0 && stat->nodesizes[max-1] == 0)
2144 max--;
2146 pointers = 0;
2147 for (i = 1; i <= max; i++)
2148 if (stat->nodesizes[i] != 0) {
2149 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2150 pointers += (1<<i) * stat->nodesizes[i];
2152 seq_putc(seq, '\n');
2153 seq_printf(seq, "\tPointers: %u\n", pointers);
2155 bytes += sizeof(struct rt_trie_node *) * pointers;
2156 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2157 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2160 #ifdef CONFIG_IP_FIB_TRIE_STATS
2161 static void trie_show_usage(struct seq_file *seq,
2162 const struct trie_use_stats *stats)
2164 seq_printf(seq, "\nCounters:\n---------\n");
2165 seq_printf(seq, "gets = %u\n", stats->gets);
2166 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2167 seq_printf(seq, "semantic match passed = %u\n",
2168 stats->semantic_match_passed);
2169 seq_printf(seq, "semantic match miss = %u\n",
2170 stats->semantic_match_miss);
2171 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2172 seq_printf(seq, "skipped node resize = %u\n\n",
2173 stats->resize_node_skipped);
2175 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2177 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2179 if (tb->tb_id == RT_TABLE_LOCAL)
2180 seq_puts(seq, "Local:\n");
2181 else if (tb->tb_id == RT_TABLE_MAIN)
2182 seq_puts(seq, "Main:\n");
2183 else
2184 seq_printf(seq, "Id %d:\n", tb->tb_id);
2188 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2190 struct net *net = (struct net *)seq->private;
2191 unsigned int h;
2193 seq_printf(seq,
2194 "Basic info: size of leaf:"
2195 " %Zd bytes, size of tnode: %Zd bytes.\n",
2196 sizeof(struct leaf), sizeof(struct tnode));
2198 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2199 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2200 struct hlist_node *node;
2201 struct fib_table *tb;
2203 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2204 struct trie *t = (struct trie *) tb->tb_data;
2205 struct trie_stat stat;
2207 if (!t)
2208 continue;
2210 fib_table_print(seq, tb);
2212 trie_collect_stats(t, &stat);
2213 trie_show_stats(seq, &stat);
2214 #ifdef CONFIG_IP_FIB_TRIE_STATS
2215 trie_show_usage(seq, &t->stats);
2216 #endif
2220 return 0;
2223 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2225 return single_open_net(inode, file, fib_triestat_seq_show);
2228 static const struct file_operations fib_triestat_fops = {
2229 .owner = THIS_MODULE,
2230 .open = fib_triestat_seq_open,
2231 .read = seq_read,
2232 .llseek = seq_lseek,
2233 .release = single_release_net,
2236 static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2238 struct fib_trie_iter *iter = seq->private;
2239 struct net *net = seq_file_net(seq);
2240 loff_t idx = 0;
2241 unsigned int h;
2243 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2244 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2245 struct hlist_node *node;
2246 struct fib_table *tb;
2248 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2249 struct rt_trie_node *n;
2251 for (n = fib_trie_get_first(iter,
2252 (struct trie *) tb->tb_data);
2253 n; n = fib_trie_get_next(iter))
2254 if (pos == idx++) {
2255 iter->tb = tb;
2256 return n;
2261 return NULL;
2264 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2265 __acquires(RCU)
2267 rcu_read_lock();
2268 return fib_trie_get_idx(seq, *pos);
2271 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2273 struct fib_trie_iter *iter = seq->private;
2274 struct net *net = seq_file_net(seq);
2275 struct fib_table *tb = iter->tb;
2276 struct hlist_node *tb_node;
2277 unsigned int h;
2278 struct rt_trie_node *n;
2280 ++*pos;
2281 /* next node in same table */
2282 n = fib_trie_get_next(iter);
2283 if (n)
2284 return n;
2286 /* walk rest of this hash chain */
2287 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2288 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2289 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2290 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2291 if (n)
2292 goto found;
2295 /* new hash chain */
2296 while (++h < FIB_TABLE_HASHSZ) {
2297 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2298 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2299 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2300 if (n)
2301 goto found;
2304 return NULL;
2306 found:
2307 iter->tb = tb;
2308 return n;
2311 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2312 __releases(RCU)
2314 rcu_read_unlock();
2317 static void seq_indent(struct seq_file *seq, int n)
2319 while (n-- > 0)
2320 seq_puts(seq, " ");
2323 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2325 switch (s) {
2326 case RT_SCOPE_UNIVERSE: return "universe";
2327 case RT_SCOPE_SITE: return "site";
2328 case RT_SCOPE_LINK: return "link";
2329 case RT_SCOPE_HOST: return "host";
2330 case RT_SCOPE_NOWHERE: return "nowhere";
2331 default:
2332 snprintf(buf, len, "scope=%d", s);
2333 return buf;
2337 static const char *const rtn_type_names[__RTN_MAX] = {
2338 [RTN_UNSPEC] = "UNSPEC",
2339 [RTN_UNICAST] = "UNICAST",
2340 [RTN_LOCAL] = "LOCAL",
2341 [RTN_BROADCAST] = "BROADCAST",
2342 [RTN_ANYCAST] = "ANYCAST",
2343 [RTN_MULTICAST] = "MULTICAST",
2344 [RTN_BLACKHOLE] = "BLACKHOLE",
2345 [RTN_UNREACHABLE] = "UNREACHABLE",
2346 [RTN_PROHIBIT] = "PROHIBIT",
2347 [RTN_THROW] = "THROW",
2348 [RTN_NAT] = "NAT",
2349 [RTN_XRESOLVE] = "XRESOLVE",
2352 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2354 if (t < __RTN_MAX && rtn_type_names[t])
2355 return rtn_type_names[t];
2356 snprintf(buf, len, "type %u", t);
2357 return buf;
2360 /* Pretty print the trie */
2361 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2363 const struct fib_trie_iter *iter = seq->private;
2364 struct rt_trie_node *n = v;
2366 if (!node_parent_rcu(n))
2367 fib_table_print(seq, iter->tb);
2369 if (IS_TNODE(n)) {
2370 struct tnode *tn = (struct tnode *) n;
2371 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2373 seq_indent(seq, iter->depth-1);
2374 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2375 &prf, tn->pos, tn->bits, tn->full_children,
2376 tn->empty_children);
2378 } else {
2379 struct leaf *l = (struct leaf *) n;
2380 struct leaf_info *li;
2381 struct hlist_node *node;
2382 __be32 val = htonl(l->key);
2384 seq_indent(seq, iter->depth);
2385 seq_printf(seq, " |-- %pI4\n", &val);
2387 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2388 struct fib_alias *fa;
2390 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2391 char buf1[32], buf2[32];
2393 seq_indent(seq, iter->depth+1);
2394 seq_printf(seq, " /%d %s %s", li->plen,
2395 rtn_scope(buf1, sizeof(buf1),
2396 fa->fa_info->fib_scope),
2397 rtn_type(buf2, sizeof(buf2),
2398 fa->fa_type));
2399 if (fa->fa_tos)
2400 seq_printf(seq, " tos=%d", fa->fa_tos);
2401 seq_putc(seq, '\n');
2406 return 0;
2409 static const struct seq_operations fib_trie_seq_ops = {
2410 .start = fib_trie_seq_start,
2411 .next = fib_trie_seq_next,
2412 .stop = fib_trie_seq_stop,
2413 .show = fib_trie_seq_show,
2416 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2418 return seq_open_net(inode, file, &fib_trie_seq_ops,
2419 sizeof(struct fib_trie_iter));
2422 static const struct file_operations fib_trie_fops = {
2423 .owner = THIS_MODULE,
2424 .open = fib_trie_seq_open,
2425 .read = seq_read,
2426 .llseek = seq_lseek,
2427 .release = seq_release_net,
2430 struct fib_route_iter {
2431 struct seq_net_private p;
2432 struct trie *main_trie;
2433 loff_t pos;
2434 t_key key;
2437 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2439 struct leaf *l = NULL;
2440 struct trie *t = iter->main_trie;
2442 /* use cache location of last found key */
2443 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2444 pos -= iter->pos;
2445 else {
2446 iter->pos = 0;
2447 l = trie_firstleaf(t);
2450 while (l && pos-- > 0) {
2451 iter->pos++;
2452 l = trie_nextleaf(l);
2455 if (l)
2456 iter->key = pos; /* remember it */
2457 else
2458 iter->pos = 0; /* forget it */
2460 return l;
2463 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2464 __acquires(RCU)
2466 struct fib_route_iter *iter = seq->private;
2467 struct fib_table *tb;
2469 rcu_read_lock();
2470 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2471 if (!tb)
2472 return NULL;
2474 iter->main_trie = (struct trie *) tb->tb_data;
2475 if (*pos == 0)
2476 return SEQ_START_TOKEN;
2477 else
2478 return fib_route_get_idx(iter, *pos - 1);
2481 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2483 struct fib_route_iter *iter = seq->private;
2484 struct leaf *l = v;
2486 ++*pos;
2487 if (v == SEQ_START_TOKEN) {
2488 iter->pos = 0;
2489 l = trie_firstleaf(iter->main_trie);
2490 } else {
2491 iter->pos++;
2492 l = trie_nextleaf(l);
2495 if (l)
2496 iter->key = l->key;
2497 else
2498 iter->pos = 0;
2499 return l;
2502 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2503 __releases(RCU)
2505 rcu_read_unlock();
2508 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2510 unsigned int flags = 0;
2512 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2513 flags = RTF_REJECT;
2514 if (fi && fi->fib_nh->nh_gw)
2515 flags |= RTF_GATEWAY;
2516 if (mask == htonl(0xFFFFFFFF))
2517 flags |= RTF_HOST;
2518 flags |= RTF_UP;
2519 return flags;
2523 * This outputs /proc/net/route.
2524 * The format of the file is not supposed to be changed
2525 * and needs to be same as fib_hash output to avoid breaking
2526 * legacy utilities
2528 static int fib_route_seq_show(struct seq_file *seq, void *v)
2530 struct leaf *l = v;
2531 struct leaf_info *li;
2532 struct hlist_node *node;
2534 if (v == SEQ_START_TOKEN) {
2535 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2536 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2537 "\tWindow\tIRTT");
2538 return 0;
2541 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2542 struct fib_alias *fa;
2543 __be32 mask, prefix;
2545 mask = inet_make_mask(li->plen);
2546 prefix = htonl(l->key);
2548 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2549 const struct fib_info *fi = fa->fa_info;
2550 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2551 int len;
2553 if (fa->fa_type == RTN_BROADCAST
2554 || fa->fa_type == RTN_MULTICAST)
2555 continue;
2557 if (fi)
2558 seq_printf(seq,
2559 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2560 "%d\t%08X\t%d\t%u\t%u%n",
2561 fi->fib_dev ? fi->fib_dev->name : "*",
2562 prefix,
2563 fi->fib_nh->nh_gw, flags, 0, 0,
2564 fi->fib_priority,
2565 mask,
2566 (fi->fib_advmss ?
2567 fi->fib_advmss + 40 : 0),
2568 fi->fib_window,
2569 fi->fib_rtt >> 3, &len);
2570 else
2571 seq_printf(seq,
2572 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2573 "%d\t%08X\t%d\t%u\t%u%n",
2574 prefix, 0, flags, 0, 0, 0,
2575 mask, 0, 0, 0, &len);
2577 seq_printf(seq, "%*s\n", 127 - len, "");
2581 return 0;
2584 static const struct seq_operations fib_route_seq_ops = {
2585 .start = fib_route_seq_start,
2586 .next = fib_route_seq_next,
2587 .stop = fib_route_seq_stop,
2588 .show = fib_route_seq_show,
2591 static int fib_route_seq_open(struct inode *inode, struct file *file)
2593 return seq_open_net(inode, file, &fib_route_seq_ops,
2594 sizeof(struct fib_route_iter));
2597 static const struct file_operations fib_route_fops = {
2598 .owner = THIS_MODULE,
2599 .open = fib_route_seq_open,
2600 .read = seq_read,
2601 .llseek = seq_lseek,
2602 .release = seq_release_net,
2605 int __net_init fib_proc_init(struct net *net)
2607 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
2608 goto out1;
2610 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2611 &fib_triestat_fops))
2612 goto out2;
2614 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
2615 goto out3;
2617 return 0;
2619 out3:
2620 proc_net_remove(net, "fib_triestat");
2621 out2:
2622 proc_net_remove(net, "fib_trie");
2623 out1:
2624 return -ENOMEM;
2627 void __net_exit fib_proc_exit(struct net *net)
2629 proc_net_remove(net, "fib_trie");
2630 proc_net_remove(net, "fib_triestat");
2631 proc_net_remove(net, "route");
2634 #endif /* CONFIG_PROC_FS */