1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
24 #include <linux/smp.h>
25 #include <linux/page-flags.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bit_spinlock.h>
28 #include <linux/rcupdate.h>
29 #include <linux/swap.h>
30 #include <linux/spinlock.h>
32 #include <linux/seq_file.h>
34 #include <asm/uaccess.h>
36 struct cgroup_subsys mem_cgroup_subsys
;
37 static const int MEM_CGROUP_RECLAIM_RETRIES
= 5;
40 * Statistics for memory cgroup.
42 enum mem_cgroup_stat_index
{
44 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
46 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
47 MEM_CGROUP_STAT_RSS
, /* # of pages charged as rss */
49 MEM_CGROUP_STAT_NSTATS
,
52 struct mem_cgroup_stat_cpu
{
53 s64 count
[MEM_CGROUP_STAT_NSTATS
];
54 } ____cacheline_aligned_in_smp
;
56 struct mem_cgroup_stat
{
57 struct mem_cgroup_stat_cpu cpustat
[NR_CPUS
];
61 * For accounting under irq disable, no need for increment preempt count.
63 static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat
*stat
,
64 enum mem_cgroup_stat_index idx
, int val
)
66 int cpu
= smp_processor_id();
67 stat
->cpustat
[cpu
].count
[idx
] += val
;
70 static s64
mem_cgroup_read_stat(struct mem_cgroup_stat
*stat
,
71 enum mem_cgroup_stat_index idx
)
75 for_each_possible_cpu(cpu
)
76 ret
+= stat
->cpustat
[cpu
].count
[idx
];
81 * per-zone information in memory controller.
84 enum mem_cgroup_zstat_index
{
85 MEM_CGROUP_ZSTAT_ACTIVE
,
86 MEM_CGROUP_ZSTAT_INACTIVE
,
91 struct mem_cgroup_per_zone
{
93 * spin_lock to protect the per cgroup LRU
96 struct list_head active_list
;
97 struct list_head inactive_list
;
98 unsigned long count
[NR_MEM_CGROUP_ZSTAT
];
100 /* Macro for accessing counter */
101 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
103 struct mem_cgroup_per_node
{
104 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
107 struct mem_cgroup_lru_info
{
108 struct mem_cgroup_per_node
*nodeinfo
[MAX_NUMNODES
];
112 * The memory controller data structure. The memory controller controls both
113 * page cache and RSS per cgroup. We would eventually like to provide
114 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
115 * to help the administrator determine what knobs to tune.
117 * TODO: Add a water mark for the memory controller. Reclaim will begin when
118 * we hit the water mark. May be even add a low water mark, such that
119 * no reclaim occurs from a cgroup at it's low water mark, this is
120 * a feature that will be implemented much later in the future.
123 struct cgroup_subsys_state css
;
125 * the counter to account for memory usage
127 struct res_counter res
;
129 * Per cgroup active and inactive list, similar to the
130 * per zone LRU lists.
132 struct mem_cgroup_lru_info info
;
134 int prev_priority
; /* for recording reclaim priority */
138 struct mem_cgroup_stat stat
;
140 static struct mem_cgroup init_mem_cgroup
;
143 * We use the lower bit of the page->page_cgroup pointer as a bit spin
144 * lock. We need to ensure that page->page_cgroup is at least two
145 * byte aligned (based on comments from Nick Piggin). But since
146 * bit_spin_lock doesn't actually set that lock bit in a non-debug
147 * uniprocessor kernel, we should avoid setting it here too.
149 #define PAGE_CGROUP_LOCK_BIT 0x0
150 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
151 #define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
153 #define PAGE_CGROUP_LOCK 0x0
157 * A page_cgroup page is associated with every page descriptor. The
158 * page_cgroup helps us identify information about the cgroup
161 struct list_head lru
; /* per cgroup LRU list */
163 struct mem_cgroup
*mem_cgroup
;
164 int ref_cnt
; /* cached, mapped, migrating */
167 #define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */
168 #define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */
170 static int page_cgroup_nid(struct page_cgroup
*pc
)
172 return page_to_nid(pc
->page
);
175 static enum zone_type
page_cgroup_zid(struct page_cgroup
*pc
)
177 return page_zonenum(pc
->page
);
181 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
182 MEM_CGROUP_CHARGE_TYPE_MAPPED
,
186 * Always modified under lru lock. Then, not necessary to preempt_disable()
188 static void mem_cgroup_charge_statistics(struct mem_cgroup
*mem
, int flags
,
191 int val
= (charge
)? 1 : -1;
192 struct mem_cgroup_stat
*stat
= &mem
->stat
;
194 VM_BUG_ON(!irqs_disabled());
195 if (flags
& PAGE_CGROUP_FLAG_CACHE
)
196 __mem_cgroup_stat_add_safe(stat
, MEM_CGROUP_STAT_CACHE
, val
);
198 __mem_cgroup_stat_add_safe(stat
, MEM_CGROUP_STAT_RSS
, val
);
201 static struct mem_cgroup_per_zone
*
202 mem_cgroup_zoneinfo(struct mem_cgroup
*mem
, int nid
, int zid
)
204 return &mem
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
207 static struct mem_cgroup_per_zone
*
208 page_cgroup_zoneinfo(struct page_cgroup
*pc
)
210 struct mem_cgroup
*mem
= pc
->mem_cgroup
;
211 int nid
= page_cgroup_nid(pc
);
212 int zid
= page_cgroup_zid(pc
);
214 return mem_cgroup_zoneinfo(mem
, nid
, zid
);
217 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup
*mem
,
218 enum mem_cgroup_zstat_index idx
)
221 struct mem_cgroup_per_zone
*mz
;
224 for_each_online_node(nid
)
225 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
226 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
227 total
+= MEM_CGROUP_ZSTAT(mz
, idx
);
232 static struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
234 return container_of(cgroup_subsys_state(cont
,
235 mem_cgroup_subsys_id
), struct mem_cgroup
,
239 static struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
241 return container_of(task_subsys_state(p
, mem_cgroup_subsys_id
),
242 struct mem_cgroup
, css
);
245 void mm_init_cgroup(struct mm_struct
*mm
, struct task_struct
*p
)
247 struct mem_cgroup
*mem
;
249 mem
= mem_cgroup_from_task(p
);
251 mm
->mem_cgroup
= mem
;
254 void mm_free_cgroup(struct mm_struct
*mm
)
256 css_put(&mm
->mem_cgroup
->css
);
259 static inline int page_cgroup_locked(struct page
*page
)
261 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT
, &page
->page_cgroup
);
264 static void page_assign_page_cgroup(struct page
*page
, struct page_cgroup
*pc
)
266 VM_BUG_ON(!page_cgroup_locked(page
));
267 page
->page_cgroup
= ((unsigned long)pc
| PAGE_CGROUP_LOCK
);
270 struct page_cgroup
*page_get_page_cgroup(struct page
*page
)
272 return (struct page_cgroup
*) (page
->page_cgroup
& ~PAGE_CGROUP_LOCK
);
275 static void lock_page_cgroup(struct page
*page
)
277 bit_spin_lock(PAGE_CGROUP_LOCK_BIT
, &page
->page_cgroup
);
280 static int try_lock_page_cgroup(struct page
*page
)
282 return bit_spin_trylock(PAGE_CGROUP_LOCK_BIT
, &page
->page_cgroup
);
285 static void unlock_page_cgroup(struct page
*page
)
287 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT
, &page
->page_cgroup
);
290 static void __mem_cgroup_remove_list(struct page_cgroup
*pc
)
292 int from
= pc
->flags
& PAGE_CGROUP_FLAG_ACTIVE
;
293 struct mem_cgroup_per_zone
*mz
= page_cgroup_zoneinfo(pc
);
296 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_ACTIVE
) -= 1;
298 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_INACTIVE
) -= 1;
300 mem_cgroup_charge_statistics(pc
->mem_cgroup
, pc
->flags
, false);
301 list_del_init(&pc
->lru
);
304 static void __mem_cgroup_add_list(struct page_cgroup
*pc
)
306 int to
= pc
->flags
& PAGE_CGROUP_FLAG_ACTIVE
;
307 struct mem_cgroup_per_zone
*mz
= page_cgroup_zoneinfo(pc
);
310 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_INACTIVE
) += 1;
311 list_add(&pc
->lru
, &mz
->inactive_list
);
313 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_ACTIVE
) += 1;
314 list_add(&pc
->lru
, &mz
->active_list
);
316 mem_cgroup_charge_statistics(pc
->mem_cgroup
, pc
->flags
, true);
319 static void __mem_cgroup_move_lists(struct page_cgroup
*pc
, bool active
)
321 int from
= pc
->flags
& PAGE_CGROUP_FLAG_ACTIVE
;
322 struct mem_cgroup_per_zone
*mz
= page_cgroup_zoneinfo(pc
);
325 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_ACTIVE
) -= 1;
327 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_INACTIVE
) -= 1;
330 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_ACTIVE
) += 1;
331 pc
->flags
|= PAGE_CGROUP_FLAG_ACTIVE
;
332 list_move(&pc
->lru
, &mz
->active_list
);
334 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_INACTIVE
) += 1;
335 pc
->flags
&= ~PAGE_CGROUP_FLAG_ACTIVE
;
336 list_move(&pc
->lru
, &mz
->inactive_list
);
340 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*mem
)
345 ret
= task
->mm
&& mm_match_cgroup(task
->mm
, mem
);
351 * This routine assumes that the appropriate zone's lru lock is already held
353 void mem_cgroup_move_lists(struct page
*page
, bool active
)
355 struct page_cgroup
*pc
;
356 struct mem_cgroup_per_zone
*mz
;
360 * We cannot lock_page_cgroup while holding zone's lru_lock,
361 * because other holders of lock_page_cgroup can be interrupted
362 * with an attempt to rotate_reclaimable_page. But we cannot
363 * safely get to page_cgroup without it, so just try_lock it:
364 * mem_cgroup_isolate_pages allows for page left on wrong list.
366 if (!try_lock_page_cgroup(page
))
369 pc
= page_get_page_cgroup(page
);
371 mz
= page_cgroup_zoneinfo(pc
);
372 spin_lock_irqsave(&mz
->lru_lock
, flags
);
373 __mem_cgroup_move_lists(pc
, active
);
374 spin_unlock_irqrestore(&mz
->lru_lock
, flags
);
376 unlock_page_cgroup(page
);
380 * Calculate mapped_ratio under memory controller. This will be used in
381 * vmscan.c for deteremining we have to reclaim mapped pages.
383 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup
*mem
)
388 * usage is recorded in bytes. But, here, we assume the number of
389 * physical pages can be represented by "long" on any arch.
391 total
= (long) (mem
->res
.usage
>> PAGE_SHIFT
) + 1L;
392 rss
= (long)mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_RSS
);
393 return (int)((rss
* 100L) / total
);
397 * This function is called from vmscan.c. In page reclaiming loop. balance
398 * between active and inactive list is calculated. For memory controller
399 * page reclaiming, we should use using mem_cgroup's imbalance rather than
400 * zone's global lru imbalance.
402 long mem_cgroup_reclaim_imbalance(struct mem_cgroup
*mem
)
404 unsigned long active
, inactive
;
405 /* active and inactive are the number of pages. 'long' is ok.*/
406 active
= mem_cgroup_get_all_zonestat(mem
, MEM_CGROUP_ZSTAT_ACTIVE
);
407 inactive
= mem_cgroup_get_all_zonestat(mem
, MEM_CGROUP_ZSTAT_INACTIVE
);
408 return (long) (active
/ (inactive
+ 1));
412 * prev_priority control...this will be used in memory reclaim path.
414 int mem_cgroup_get_reclaim_priority(struct mem_cgroup
*mem
)
416 return mem
->prev_priority
;
419 void mem_cgroup_note_reclaim_priority(struct mem_cgroup
*mem
, int priority
)
421 if (priority
< mem
->prev_priority
)
422 mem
->prev_priority
= priority
;
425 void mem_cgroup_record_reclaim_priority(struct mem_cgroup
*mem
, int priority
)
427 mem
->prev_priority
= priority
;
431 * Calculate # of pages to be scanned in this priority/zone.
434 * priority starts from "DEF_PRIORITY" and decremented in each loop.
435 * (see include/linux/mmzone.h)
438 long mem_cgroup_calc_reclaim_active(struct mem_cgroup
*mem
,
439 struct zone
*zone
, int priority
)
442 int nid
= zone
->zone_pgdat
->node_id
;
443 int zid
= zone_idx(zone
);
444 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
446 nr_active
= MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_ACTIVE
);
447 return (nr_active
>> priority
);
450 long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup
*mem
,
451 struct zone
*zone
, int priority
)
454 int nid
= zone
->zone_pgdat
->node_id
;
455 int zid
= zone_idx(zone
);
456 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
458 nr_inactive
= MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_INACTIVE
);
459 return (nr_inactive
>> priority
);
462 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan
,
463 struct list_head
*dst
,
464 unsigned long *scanned
, int order
,
465 int mode
, struct zone
*z
,
466 struct mem_cgroup
*mem_cont
,
469 unsigned long nr_taken
= 0;
473 struct list_head
*src
;
474 struct page_cgroup
*pc
, *tmp
;
475 int nid
= z
->zone_pgdat
->node_id
;
476 int zid
= zone_idx(z
);
477 struct mem_cgroup_per_zone
*mz
;
479 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
481 src
= &mz
->active_list
;
483 src
= &mz
->inactive_list
;
486 spin_lock(&mz
->lru_lock
);
488 list_for_each_entry_safe_reverse(pc
, tmp
, src
, lru
) {
489 if (scan
>= nr_to_scan
)
493 if (unlikely(!PageLRU(page
)))
496 if (PageActive(page
) && !active
) {
497 __mem_cgroup_move_lists(pc
, true);
500 if (!PageActive(page
) && active
) {
501 __mem_cgroup_move_lists(pc
, false);
506 list_move(&pc
->lru
, &pc_list
);
508 if (__isolate_lru_page(page
, mode
) == 0) {
509 list_move(&page
->lru
, dst
);
514 list_splice(&pc_list
, src
);
515 spin_unlock(&mz
->lru_lock
);
522 * Charge the memory controller for page usage.
524 * 0 if the charge was successful
525 * < 0 if the cgroup is over its limit
527 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
528 gfp_t gfp_mask
, enum charge_type ctype
)
530 struct mem_cgroup
*mem
;
531 struct page_cgroup
*pc
;
533 unsigned long nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
534 struct mem_cgroup_per_zone
*mz
;
536 if (mem_cgroup_subsys
.disabled
)
540 * Should page_cgroup's go to their own slab?
541 * One could optimize the performance of the charging routine
542 * by saving a bit in the page_flags and using it as a lock
543 * to see if the cgroup page already has a page_cgroup associated
547 lock_page_cgroup(page
);
548 pc
= page_get_page_cgroup(page
);
550 * The page_cgroup exists and
551 * the page has already been accounted.
554 VM_BUG_ON(pc
->page
!= page
);
555 VM_BUG_ON(pc
->ref_cnt
<= 0);
558 unlock_page_cgroup(page
);
561 unlock_page_cgroup(page
);
563 pc
= kzalloc(sizeof(struct page_cgroup
), gfp_mask
);
568 * We always charge the cgroup the mm_struct belongs to.
569 * The mm_struct's mem_cgroup changes on task migration if the
570 * thread group leader migrates. It's possible that mm is not
571 * set, if so charge the init_mm (happens for pagecache usage).
577 mem
= rcu_dereference(mm
->mem_cgroup
);
579 * For every charge from the cgroup, increment reference count
584 while (res_counter_charge(&mem
->res
, PAGE_SIZE
)) {
585 if (!(gfp_mask
& __GFP_WAIT
))
588 if (try_to_free_mem_cgroup_pages(mem
, gfp_mask
))
592 * try_to_free_mem_cgroup_pages() might not give us a full
593 * picture of reclaim. Some pages are reclaimed and might be
594 * moved to swap cache or just unmapped from the cgroup.
595 * Check the limit again to see if the reclaim reduced the
596 * current usage of the cgroup before giving up
598 if (res_counter_check_under_limit(&mem
->res
))
602 mem_cgroup_out_of_memory(mem
, gfp_mask
);
605 congestion_wait(WRITE
, HZ
/10);
609 pc
->mem_cgroup
= mem
;
611 pc
->flags
= PAGE_CGROUP_FLAG_ACTIVE
;
612 if (ctype
== MEM_CGROUP_CHARGE_TYPE_CACHE
)
613 pc
->flags
|= PAGE_CGROUP_FLAG_CACHE
;
615 lock_page_cgroup(page
);
616 if (page_get_page_cgroup(page
)) {
617 unlock_page_cgroup(page
);
619 * Another charge has been added to this page already.
620 * We take lock_page_cgroup(page) again and read
621 * page->cgroup, increment refcnt.... just retry is OK.
623 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
628 page_assign_page_cgroup(page
, pc
);
630 mz
= page_cgroup_zoneinfo(pc
);
631 spin_lock_irqsave(&mz
->lru_lock
, flags
);
632 __mem_cgroup_add_list(pc
);
633 spin_unlock_irqrestore(&mz
->lru_lock
, flags
);
635 unlock_page_cgroup(page
);
645 int mem_cgroup_charge(struct page
*page
, struct mm_struct
*mm
, gfp_t gfp_mask
)
647 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
648 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
651 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
656 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
657 MEM_CGROUP_CHARGE_TYPE_CACHE
);
661 * Uncharging is always a welcome operation, we never complain, simply
664 void mem_cgroup_uncharge_page(struct page
*page
)
666 struct page_cgroup
*pc
;
667 struct mem_cgroup
*mem
;
668 struct mem_cgroup_per_zone
*mz
;
671 if (mem_cgroup_subsys
.disabled
)
675 * Check if our page_cgroup is valid
677 lock_page_cgroup(page
);
678 pc
= page_get_page_cgroup(page
);
682 VM_BUG_ON(pc
->page
!= page
);
683 VM_BUG_ON(pc
->ref_cnt
<= 0);
685 if (--(pc
->ref_cnt
) == 0) {
686 mz
= page_cgroup_zoneinfo(pc
);
687 spin_lock_irqsave(&mz
->lru_lock
, flags
);
688 __mem_cgroup_remove_list(pc
);
689 spin_unlock_irqrestore(&mz
->lru_lock
, flags
);
691 page_assign_page_cgroup(page
, NULL
);
692 unlock_page_cgroup(page
);
694 mem
= pc
->mem_cgroup
;
695 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
703 unlock_page_cgroup(page
);
707 * Returns non-zero if a page (under migration) has valid page_cgroup member.
708 * Refcnt of page_cgroup is incremented.
710 int mem_cgroup_prepare_migration(struct page
*page
)
712 struct page_cgroup
*pc
;
714 if (mem_cgroup_subsys
.disabled
)
717 lock_page_cgroup(page
);
718 pc
= page_get_page_cgroup(page
);
721 unlock_page_cgroup(page
);
725 void mem_cgroup_end_migration(struct page
*page
)
727 mem_cgroup_uncharge_page(page
);
731 * We know both *page* and *newpage* are now not-on-LRU and PG_locked.
732 * And no race with uncharge() routines because page_cgroup for *page*
733 * has extra one reference by mem_cgroup_prepare_migration.
735 void mem_cgroup_page_migration(struct page
*page
, struct page
*newpage
)
737 struct page_cgroup
*pc
;
738 struct mem_cgroup_per_zone
*mz
;
741 lock_page_cgroup(page
);
742 pc
= page_get_page_cgroup(page
);
744 unlock_page_cgroup(page
);
748 mz
= page_cgroup_zoneinfo(pc
);
749 spin_lock_irqsave(&mz
->lru_lock
, flags
);
750 __mem_cgroup_remove_list(pc
);
751 spin_unlock_irqrestore(&mz
->lru_lock
, flags
);
753 page_assign_page_cgroup(page
, NULL
);
754 unlock_page_cgroup(page
);
757 lock_page_cgroup(newpage
);
758 page_assign_page_cgroup(newpage
, pc
);
760 mz
= page_cgroup_zoneinfo(pc
);
761 spin_lock_irqsave(&mz
->lru_lock
, flags
);
762 __mem_cgroup_add_list(pc
);
763 spin_unlock_irqrestore(&mz
->lru_lock
, flags
);
765 unlock_page_cgroup(newpage
);
769 * This routine traverse page_cgroup in given list and drop them all.
770 * This routine ignores page_cgroup->ref_cnt.
771 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
773 #define FORCE_UNCHARGE_BATCH (128)
774 static void mem_cgroup_force_empty_list(struct mem_cgroup
*mem
,
775 struct mem_cgroup_per_zone
*mz
,
778 struct page_cgroup
*pc
;
780 int count
= FORCE_UNCHARGE_BATCH
;
782 struct list_head
*list
;
785 list
= &mz
->active_list
;
787 list
= &mz
->inactive_list
;
789 spin_lock_irqsave(&mz
->lru_lock
, flags
);
790 while (!list_empty(list
)) {
791 pc
= list_entry(list
->prev
, struct page_cgroup
, lru
);
794 spin_unlock_irqrestore(&mz
->lru_lock
, flags
);
795 mem_cgroup_uncharge_page(page
);
798 count
= FORCE_UNCHARGE_BATCH
;
801 spin_lock_irqsave(&mz
->lru_lock
, flags
);
803 spin_unlock_irqrestore(&mz
->lru_lock
, flags
);
807 * make mem_cgroup's charge to be 0 if there is no task.
808 * This enables deleting this mem_cgroup.
810 static int mem_cgroup_force_empty(struct mem_cgroup
*mem
)
815 if (mem_cgroup_subsys
.disabled
)
820 * page reclaim code (kswapd etc..) will move pages between
821 * active_list <-> inactive_list while we don't take a lock.
822 * So, we have to do loop here until all lists are empty.
824 while (mem
->res
.usage
> 0) {
825 if (atomic_read(&mem
->css
.cgroup
->count
) > 0)
827 for_each_node_state(node
, N_POSSIBLE
)
828 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
829 struct mem_cgroup_per_zone
*mz
;
830 mz
= mem_cgroup_zoneinfo(mem
, node
, zid
);
831 /* drop all page_cgroup in active_list */
832 mem_cgroup_force_empty_list(mem
, mz
, 1);
833 /* drop all page_cgroup in inactive_list */
834 mem_cgroup_force_empty_list(mem
, mz
, 0);
843 static int mem_cgroup_write_strategy(char *buf
, unsigned long long *tmp
)
845 *tmp
= memparse(buf
, &buf
);
850 * Round up the value to the closest page size
852 *tmp
= ((*tmp
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
) << PAGE_SHIFT
;
856 static ssize_t
mem_cgroup_read(struct cgroup
*cont
,
857 struct cftype
*cft
, struct file
*file
,
858 char __user
*userbuf
, size_t nbytes
, loff_t
*ppos
)
860 return res_counter_read(&mem_cgroup_from_cont(cont
)->res
,
861 cft
->private, userbuf
, nbytes
, ppos
,
865 static ssize_t
mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
866 struct file
*file
, const char __user
*userbuf
,
867 size_t nbytes
, loff_t
*ppos
)
869 return res_counter_write(&mem_cgroup_from_cont(cont
)->res
,
870 cft
->private, userbuf
, nbytes
, ppos
,
871 mem_cgroup_write_strategy
);
874 static ssize_t
mem_force_empty_write(struct cgroup
*cont
,
875 struct cftype
*cft
, struct file
*file
,
876 const char __user
*userbuf
,
877 size_t nbytes
, loff_t
*ppos
)
879 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
880 int ret
= mem_cgroup_force_empty(mem
);
887 * Note: This should be removed if cgroup supports write-only file.
889 static ssize_t
mem_force_empty_read(struct cgroup
*cont
,
891 struct file
*file
, char __user
*userbuf
,
892 size_t nbytes
, loff_t
*ppos
)
897 static const struct mem_cgroup_stat_desc
{
900 } mem_cgroup_stat_desc
[] = {
901 [MEM_CGROUP_STAT_CACHE
] = { "cache", PAGE_SIZE
, },
902 [MEM_CGROUP_STAT_RSS
] = { "rss", PAGE_SIZE
, },
905 static int mem_control_stat_show(struct seq_file
*m
, void *arg
)
907 struct cgroup
*cont
= m
->private;
908 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
909 struct mem_cgroup_stat
*stat
= &mem_cont
->stat
;
912 for (i
= 0; i
< ARRAY_SIZE(stat
->cpustat
[0].count
); i
++) {
915 val
= mem_cgroup_read_stat(stat
, i
);
916 val
*= mem_cgroup_stat_desc
[i
].unit
;
917 seq_printf(m
, "%s %lld\n", mem_cgroup_stat_desc
[i
].msg
,
920 /* showing # of active pages */
922 unsigned long active
, inactive
;
924 inactive
= mem_cgroup_get_all_zonestat(mem_cont
,
925 MEM_CGROUP_ZSTAT_INACTIVE
);
926 active
= mem_cgroup_get_all_zonestat(mem_cont
,
927 MEM_CGROUP_ZSTAT_ACTIVE
);
928 seq_printf(m
, "active %ld\n", (active
) * PAGE_SIZE
);
929 seq_printf(m
, "inactive %ld\n", (inactive
) * PAGE_SIZE
);
934 static const struct file_operations mem_control_stat_file_operations
= {
937 .release
= single_release
,
940 static int mem_control_stat_open(struct inode
*unused
, struct file
*file
)
943 struct cgroup
*cont
= file
->f_dentry
->d_parent
->d_fsdata
;
945 file
->f_op
= &mem_control_stat_file_operations
;
946 return single_open(file
, mem_control_stat_show
, cont
);
949 static struct cftype mem_cgroup_files
[] = {
951 .name
= "usage_in_bytes",
952 .private = RES_USAGE
,
953 .read
= mem_cgroup_read
,
956 .name
= "limit_in_bytes",
957 .private = RES_LIMIT
,
958 .write
= mem_cgroup_write
,
959 .read
= mem_cgroup_read
,
963 .private = RES_FAILCNT
,
964 .read
= mem_cgroup_read
,
967 .name
= "force_empty",
968 .write
= mem_force_empty_write
,
969 .read
= mem_force_empty_read
,
973 .open
= mem_control_stat_open
,
977 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
979 struct mem_cgroup_per_node
*pn
;
980 struct mem_cgroup_per_zone
*mz
;
981 int zone
, tmp
= node
;
983 * This routine is called against possible nodes.
984 * But it's BUG to call kmalloc() against offline node.
986 * TODO: this routine can waste much memory for nodes which will
987 * never be onlined. It's better to use memory hotplug callback
990 if (!node_state(node
, N_NORMAL_MEMORY
))
992 pn
= kmalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
996 mem
->info
.nodeinfo
[node
] = pn
;
997 memset(pn
, 0, sizeof(*pn
));
999 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
1000 mz
= &pn
->zoneinfo
[zone
];
1001 INIT_LIST_HEAD(&mz
->active_list
);
1002 INIT_LIST_HEAD(&mz
->inactive_list
);
1003 spin_lock_init(&mz
->lru_lock
);
1008 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
1010 kfree(mem
->info
.nodeinfo
[node
]);
1013 static struct cgroup_subsys_state
*
1014 mem_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
1016 struct mem_cgroup
*mem
;
1019 if (unlikely((cont
->parent
) == NULL
)) {
1020 mem
= &init_mem_cgroup
;
1021 init_mm
.mem_cgroup
= mem
;
1023 mem
= kzalloc(sizeof(struct mem_cgroup
), GFP_KERNEL
);
1026 return ERR_PTR(-ENOMEM
);
1028 res_counter_init(&mem
->res
);
1030 memset(&mem
->info
, 0, sizeof(mem
->info
));
1032 for_each_node_state(node
, N_POSSIBLE
)
1033 if (alloc_mem_cgroup_per_zone_info(mem
, node
))
1038 for_each_node_state(node
, N_POSSIBLE
)
1039 free_mem_cgroup_per_zone_info(mem
, node
);
1040 if (cont
->parent
!= NULL
)
1042 return ERR_PTR(-ENOMEM
);
1045 static void mem_cgroup_pre_destroy(struct cgroup_subsys
*ss
,
1046 struct cgroup
*cont
)
1048 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
1049 mem_cgroup_force_empty(mem
);
1052 static void mem_cgroup_destroy(struct cgroup_subsys
*ss
,
1053 struct cgroup
*cont
)
1056 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
1058 for_each_node_state(node
, N_POSSIBLE
)
1059 free_mem_cgroup_per_zone_info(mem
, node
);
1061 kfree(mem_cgroup_from_cont(cont
));
1064 static int mem_cgroup_populate(struct cgroup_subsys
*ss
,
1065 struct cgroup
*cont
)
1067 if (mem_cgroup_subsys
.disabled
)
1069 return cgroup_add_files(cont
, ss
, mem_cgroup_files
,
1070 ARRAY_SIZE(mem_cgroup_files
));
1073 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
1074 struct cgroup
*cont
,
1075 struct cgroup
*old_cont
,
1076 struct task_struct
*p
)
1078 struct mm_struct
*mm
;
1079 struct mem_cgroup
*mem
, *old_mem
;
1081 if (mem_cgroup_subsys
.disabled
)
1084 mm
= get_task_mm(p
);
1088 mem
= mem_cgroup_from_cont(cont
);
1089 old_mem
= mem_cgroup_from_cont(old_cont
);
1095 * Only thread group leaders are allowed to migrate, the mm_struct is
1096 * in effect owned by the leader
1098 if (!thread_group_leader(p
))
1102 rcu_assign_pointer(mm
->mem_cgroup
, mem
);
1103 css_put(&old_mem
->css
);
1109 struct cgroup_subsys mem_cgroup_subsys
= {
1111 .subsys_id
= mem_cgroup_subsys_id
,
1112 .create
= mem_cgroup_create
,
1113 .pre_destroy
= mem_cgroup_pre_destroy
,
1114 .destroy
= mem_cgroup_destroy
,
1115 .populate
= mem_cgroup_populate
,
1116 .attach
= mem_cgroup_move_task
,