cfg80211: add regulatory hint disconnect support
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / wireless / reg.c
blobed89c59bb431ab9c320c5f300123b501628f6c64
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 /**
13 * DOC: Wireless regulatory infrastructure
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/random.h>
38 #include <linux/nl80211.h>
39 #include <linux/platform_device.h>
40 #include <net/cfg80211.h>
41 #include "core.h"
42 #include "reg.h"
43 #include "regdb.h"
44 #include "nl80211.h"
46 #ifdef CONFIG_CFG80211_REG_DEBUG
47 #define REG_DBG_PRINT(format, args...) \
48 do { \
49 printk(KERN_DEBUG format , ## args); \
50 } while (0)
51 #else
52 #define REG_DBG_PRINT(args...)
53 #endif
55 /* Receipt of information from last regulatory request */
56 static struct regulatory_request *last_request;
58 /* To trigger userspace events */
59 static struct platform_device *reg_pdev;
62 * Central wireless core regulatory domains, we only need two,
63 * the current one and a world regulatory domain in case we have no
64 * information to give us an alpha2
66 const struct ieee80211_regdomain *cfg80211_regdomain;
69 * We use this as a place for the rd structure built from the
70 * last parsed country IE to rest until CRDA gets back to us with
71 * what it thinks should apply for the same country
73 static const struct ieee80211_regdomain *country_ie_regdomain;
76 * Protects static reg.c components:
77 * - cfg80211_world_regdom
78 * - cfg80211_regdom
79 * - country_ie_regdomain
80 * - last_request
82 DEFINE_MUTEX(reg_mutex);
83 #define assert_reg_lock() WARN_ON(!mutex_is_locked(&reg_mutex))
85 /* Used to queue up regulatory hints */
86 static LIST_HEAD(reg_requests_list);
87 static spinlock_t reg_requests_lock;
89 /* Used to queue up beacon hints for review */
90 static LIST_HEAD(reg_pending_beacons);
91 static spinlock_t reg_pending_beacons_lock;
93 /* Used to keep track of processed beacon hints */
94 static LIST_HEAD(reg_beacon_list);
96 struct reg_beacon {
97 struct list_head list;
98 struct ieee80211_channel chan;
101 /* We keep a static world regulatory domain in case of the absence of CRDA */
102 static const struct ieee80211_regdomain world_regdom = {
103 .n_reg_rules = 5,
104 .alpha2 = "00",
105 .reg_rules = {
106 /* IEEE 802.11b/g, channels 1..11 */
107 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
108 /* IEEE 802.11b/g, channels 12..13. No HT40
109 * channel fits here. */
110 REG_RULE(2467-10, 2472+10, 20, 6, 20,
111 NL80211_RRF_PASSIVE_SCAN |
112 NL80211_RRF_NO_IBSS),
113 /* IEEE 802.11 channel 14 - Only JP enables
114 * this and for 802.11b only */
115 REG_RULE(2484-10, 2484+10, 20, 6, 20,
116 NL80211_RRF_PASSIVE_SCAN |
117 NL80211_RRF_NO_IBSS |
118 NL80211_RRF_NO_OFDM),
119 /* IEEE 802.11a, channel 36..48 */
120 REG_RULE(5180-10, 5240+10, 40, 6, 20,
121 NL80211_RRF_PASSIVE_SCAN |
122 NL80211_RRF_NO_IBSS),
124 /* NB: 5260 MHz - 5700 MHz requies DFS */
126 /* IEEE 802.11a, channel 149..165 */
127 REG_RULE(5745-10, 5825+10, 40, 6, 20,
128 NL80211_RRF_PASSIVE_SCAN |
129 NL80211_RRF_NO_IBSS),
133 static const struct ieee80211_regdomain *cfg80211_world_regdom =
134 &world_regdom;
136 static char *ieee80211_regdom = "00";
137 static char user_alpha2[2];
139 module_param(ieee80211_regdom, charp, 0444);
140 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
142 static void reset_regdomains(void)
144 /* avoid freeing static information or freeing something twice */
145 if (cfg80211_regdomain == cfg80211_world_regdom)
146 cfg80211_regdomain = NULL;
147 if (cfg80211_world_regdom == &world_regdom)
148 cfg80211_world_regdom = NULL;
149 if (cfg80211_regdomain == &world_regdom)
150 cfg80211_regdomain = NULL;
152 kfree(cfg80211_regdomain);
153 kfree(cfg80211_world_regdom);
155 cfg80211_world_regdom = &world_regdom;
156 cfg80211_regdomain = NULL;
160 * Dynamic world regulatory domain requested by the wireless
161 * core upon initialization
163 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
165 BUG_ON(!last_request);
167 reset_regdomains();
169 cfg80211_world_regdom = rd;
170 cfg80211_regdomain = rd;
173 bool is_world_regdom(const char *alpha2)
175 if (!alpha2)
176 return false;
177 if (alpha2[0] == '0' && alpha2[1] == '0')
178 return true;
179 return false;
182 static bool is_alpha2_set(const char *alpha2)
184 if (!alpha2)
185 return false;
186 if (alpha2[0] != 0 && alpha2[1] != 0)
187 return true;
188 return false;
191 static bool is_alpha_upper(char letter)
193 /* ASCII A - Z */
194 if (letter >= 65 && letter <= 90)
195 return true;
196 return false;
199 static bool is_unknown_alpha2(const char *alpha2)
201 if (!alpha2)
202 return false;
204 * Special case where regulatory domain was built by driver
205 * but a specific alpha2 cannot be determined
207 if (alpha2[0] == '9' && alpha2[1] == '9')
208 return true;
209 return false;
212 static bool is_intersected_alpha2(const char *alpha2)
214 if (!alpha2)
215 return false;
217 * Special case where regulatory domain is the
218 * result of an intersection between two regulatory domain
219 * structures
221 if (alpha2[0] == '9' && alpha2[1] == '8')
222 return true;
223 return false;
226 static bool is_an_alpha2(const char *alpha2)
228 if (!alpha2)
229 return false;
230 if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
231 return true;
232 return false;
235 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
237 if (!alpha2_x || !alpha2_y)
238 return false;
239 if (alpha2_x[0] == alpha2_y[0] &&
240 alpha2_x[1] == alpha2_y[1])
241 return true;
242 return false;
245 static bool regdom_changes(const char *alpha2)
247 assert_cfg80211_lock();
249 if (!cfg80211_regdomain)
250 return true;
251 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
252 return false;
253 return true;
257 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
258 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
259 * has ever been issued.
261 static bool is_user_regdom_saved(void)
263 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
264 return false;
266 /* This would indicate a mistake on the design */
267 if (WARN((!is_world_regdom(user_alpha2) &&
268 !is_an_alpha2(user_alpha2)),
269 "Unexpected user alpha2: %c%c\n",
270 user_alpha2[0],
271 user_alpha2[1]))
272 return false;
274 return true;
278 * country_ie_integrity_changes - tells us if the country IE has changed
279 * @checksum: checksum of country IE of fields we are interested in
281 * If the country IE has not changed you can ignore it safely. This is
282 * useful to determine if two devices are seeing two different country IEs
283 * even on the same alpha2. Note that this will return false if no IE has
284 * been set on the wireless core yet.
286 static bool country_ie_integrity_changes(u32 checksum)
288 /* If no IE has been set then the checksum doesn't change */
289 if (unlikely(!last_request->country_ie_checksum))
290 return false;
291 if (unlikely(last_request->country_ie_checksum != checksum))
292 return true;
293 return false;
296 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
297 const struct ieee80211_regdomain *src_regd)
299 struct ieee80211_regdomain *regd;
300 int size_of_regd = 0;
301 unsigned int i;
303 size_of_regd = sizeof(struct ieee80211_regdomain) +
304 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
306 regd = kzalloc(size_of_regd, GFP_KERNEL);
307 if (!regd)
308 return -ENOMEM;
310 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
312 for (i = 0; i < src_regd->n_reg_rules; i++)
313 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
314 sizeof(struct ieee80211_reg_rule));
316 *dst_regd = regd;
317 return 0;
320 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
321 struct reg_regdb_search_request {
322 char alpha2[2];
323 struct list_head list;
326 static LIST_HEAD(reg_regdb_search_list);
327 static DEFINE_SPINLOCK(reg_regdb_search_lock);
329 static void reg_regdb_search(struct work_struct *work)
331 struct reg_regdb_search_request *request;
332 const struct ieee80211_regdomain *curdom, *regdom;
333 int i, r;
335 spin_lock(&reg_regdb_search_lock);
336 while (!list_empty(&reg_regdb_search_list)) {
337 request = list_first_entry(&reg_regdb_search_list,
338 struct reg_regdb_search_request,
339 list);
340 list_del(&request->list);
342 for (i=0; i<reg_regdb_size; i++) {
343 curdom = reg_regdb[i];
345 if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
346 r = reg_copy_regd(&regdom, curdom);
347 if (r)
348 break;
349 spin_unlock(&reg_regdb_search_lock);
350 mutex_lock(&cfg80211_mutex);
351 set_regdom(regdom);
352 mutex_unlock(&cfg80211_mutex);
353 spin_lock(&reg_regdb_search_lock);
354 break;
358 kfree(request);
360 spin_unlock(&reg_regdb_search_lock);
363 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
365 static void reg_regdb_query(const char *alpha2)
367 struct reg_regdb_search_request *request;
369 if (!alpha2)
370 return;
372 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
373 if (!request)
374 return;
376 memcpy(request->alpha2, alpha2, 2);
378 spin_lock(&reg_regdb_search_lock);
379 list_add_tail(&request->list, &reg_regdb_search_list);
380 spin_unlock(&reg_regdb_search_lock);
382 schedule_work(&reg_regdb_work);
384 #else
385 static inline void reg_regdb_query(const char *alpha2) {}
386 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
389 * This lets us keep regulatory code which is updated on a regulatory
390 * basis in userspace.
392 static int call_crda(const char *alpha2)
394 char country_env[9 + 2] = "COUNTRY=";
395 char *envp[] = {
396 country_env,
397 NULL
400 if (!is_world_regdom((char *) alpha2))
401 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
402 alpha2[0], alpha2[1]);
403 else
404 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
405 "regulatory domain\n");
407 /* query internal regulatory database (if it exists) */
408 reg_regdb_query(alpha2);
410 country_env[8] = alpha2[0];
411 country_env[9] = alpha2[1];
413 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
416 /* Used by nl80211 before kmalloc'ing our regulatory domain */
417 bool reg_is_valid_request(const char *alpha2)
419 assert_cfg80211_lock();
421 if (!last_request)
422 return false;
424 return alpha2_equal(last_request->alpha2, alpha2);
427 /* Sanity check on a regulatory rule */
428 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
430 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
431 u32 freq_diff;
433 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
434 return false;
436 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
437 return false;
439 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
441 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
442 freq_range->max_bandwidth_khz > freq_diff)
443 return false;
445 return true;
448 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
450 const struct ieee80211_reg_rule *reg_rule = NULL;
451 unsigned int i;
453 if (!rd->n_reg_rules)
454 return false;
456 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
457 return false;
459 for (i = 0; i < rd->n_reg_rules; i++) {
460 reg_rule = &rd->reg_rules[i];
461 if (!is_valid_reg_rule(reg_rule))
462 return false;
465 return true;
468 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
469 u32 center_freq_khz,
470 u32 bw_khz)
472 u32 start_freq_khz, end_freq_khz;
474 start_freq_khz = center_freq_khz - (bw_khz/2);
475 end_freq_khz = center_freq_khz + (bw_khz/2);
477 if (start_freq_khz >= freq_range->start_freq_khz &&
478 end_freq_khz <= freq_range->end_freq_khz)
479 return true;
481 return false;
485 * freq_in_rule_band - tells us if a frequency is in a frequency band
486 * @freq_range: frequency rule we want to query
487 * @freq_khz: frequency we are inquiring about
489 * This lets us know if a specific frequency rule is or is not relevant to
490 * a specific frequency's band. Bands are device specific and artificial
491 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
492 * safe for now to assume that a frequency rule should not be part of a
493 * frequency's band if the start freq or end freq are off by more than 2 GHz.
494 * This resolution can be lowered and should be considered as we add
495 * regulatory rule support for other "bands".
497 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
498 u32 freq_khz)
500 #define ONE_GHZ_IN_KHZ 1000000
501 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
502 return true;
503 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
504 return true;
505 return false;
506 #undef ONE_GHZ_IN_KHZ
510 * This is a work around for sanity checking ieee80211_channel_to_frequency()'s
511 * work. ieee80211_channel_to_frequency() can for example currently provide a
512 * 2 GHz channel when in fact a 5 GHz channel was desired. An example would be
513 * an AP providing channel 8 on a country IE triplet when it sent this on the
514 * 5 GHz band, that channel is designed to be channel 8 on 5 GHz, not a 2 GHz
515 * channel.
517 * This can be removed once ieee80211_channel_to_frequency() takes in a band.
519 static bool chan_in_band(int chan, enum ieee80211_band band)
521 int center_freq = ieee80211_channel_to_frequency(chan);
523 switch (band) {
524 case IEEE80211_BAND_2GHZ:
525 if (center_freq <= 2484)
526 return true;
527 return false;
528 case IEEE80211_BAND_5GHZ:
529 if (center_freq >= 5005)
530 return true;
531 return false;
532 default:
533 return false;
538 * Some APs may send a country IE triplet for each channel they
539 * support and while this is completely overkill and silly we still
540 * need to support it. We avoid making a single rule for each channel
541 * though and to help us with this we use this helper to find the
542 * actual subband end channel. These type of country IE triplet
543 * scenerios are handled then, all yielding two regulaotry rules from
544 * parsing a country IE:
546 * [1]
547 * [2]
548 * [36]
549 * [40]
551 * [1]
552 * [2-4]
553 * [5-12]
554 * [36]
555 * [40-44]
557 * [1-4]
558 * [5-7]
559 * [36-44]
560 * [48-64]
562 * [36-36]
563 * [40-40]
564 * [44-44]
565 * [48-48]
566 * [52-52]
567 * [56-56]
568 * [60-60]
569 * [64-64]
570 * [100-100]
571 * [104-104]
572 * [108-108]
573 * [112-112]
574 * [116-116]
575 * [120-120]
576 * [124-124]
577 * [128-128]
578 * [132-132]
579 * [136-136]
580 * [140-140]
582 * Returns 0 if the IE has been found to be invalid in the middle
583 * somewhere.
585 static int max_subband_chan(enum ieee80211_band band,
586 int orig_cur_chan,
587 int orig_end_channel,
588 s8 orig_max_power,
589 u8 **country_ie,
590 u8 *country_ie_len)
592 u8 *triplets_start = *country_ie;
593 u8 len_at_triplet = *country_ie_len;
594 int end_subband_chan = orig_end_channel;
597 * We'll deal with padding for the caller unless
598 * its not immediate and we don't process any channels
600 if (*country_ie_len == 1) {
601 *country_ie += 1;
602 *country_ie_len -= 1;
603 return orig_end_channel;
606 /* Move to the next triplet and then start search */
607 *country_ie += 3;
608 *country_ie_len -= 3;
610 if (!chan_in_band(orig_cur_chan, band))
611 return 0;
613 while (*country_ie_len >= 3) {
614 int end_channel = 0;
615 struct ieee80211_country_ie_triplet *triplet =
616 (struct ieee80211_country_ie_triplet *) *country_ie;
617 int cur_channel = 0, next_expected_chan;
619 /* means last triplet is completely unrelated to this one */
620 if (triplet->ext.reg_extension_id >=
621 IEEE80211_COUNTRY_EXTENSION_ID) {
622 *country_ie -= 3;
623 *country_ie_len += 3;
624 break;
627 if (triplet->chans.first_channel == 0) {
628 *country_ie += 1;
629 *country_ie_len -= 1;
630 if (*country_ie_len != 0)
631 return 0;
632 break;
635 if (triplet->chans.num_channels == 0)
636 return 0;
638 /* Monitonically increasing channel order */
639 if (triplet->chans.first_channel <= end_subband_chan)
640 return 0;
642 if (!chan_in_band(triplet->chans.first_channel, band))
643 return 0;
645 /* 2 GHz */
646 if (triplet->chans.first_channel <= 14) {
647 end_channel = triplet->chans.first_channel +
648 triplet->chans.num_channels - 1;
650 else {
651 end_channel = triplet->chans.first_channel +
652 (4 * (triplet->chans.num_channels - 1));
655 if (!chan_in_band(end_channel, band))
656 return 0;
658 if (orig_max_power != triplet->chans.max_power) {
659 *country_ie -= 3;
660 *country_ie_len += 3;
661 break;
664 cur_channel = triplet->chans.first_channel;
666 /* The key is finding the right next expected channel */
667 if (band == IEEE80211_BAND_2GHZ)
668 next_expected_chan = end_subband_chan + 1;
669 else
670 next_expected_chan = end_subband_chan + 4;
672 if (cur_channel != next_expected_chan) {
673 *country_ie -= 3;
674 *country_ie_len += 3;
675 break;
678 end_subband_chan = end_channel;
680 /* Move to the next one */
681 *country_ie += 3;
682 *country_ie_len -= 3;
685 * Padding needs to be dealt with if we processed
686 * some channels.
688 if (*country_ie_len == 1) {
689 *country_ie += 1;
690 *country_ie_len -= 1;
691 break;
694 /* If seen, the IE is invalid */
695 if (*country_ie_len == 2)
696 return 0;
699 if (end_subband_chan == orig_end_channel) {
700 *country_ie = triplets_start;
701 *country_ie_len = len_at_triplet;
702 return orig_end_channel;
705 return end_subband_chan;
709 * Converts a country IE to a regulatory domain. A regulatory domain
710 * structure has a lot of information which the IE doesn't yet have,
711 * so for the other values we use upper max values as we will intersect
712 * with our userspace regulatory agent to get lower bounds.
714 static struct ieee80211_regdomain *country_ie_2_rd(
715 enum ieee80211_band band,
716 u8 *country_ie,
717 u8 country_ie_len,
718 u32 *checksum)
720 struct ieee80211_regdomain *rd = NULL;
721 unsigned int i = 0;
722 char alpha2[2];
723 u32 flags = 0;
724 u32 num_rules = 0, size_of_regd = 0;
725 u8 *triplets_start = NULL;
726 u8 len_at_triplet = 0;
727 /* the last channel we have registered in a subband (triplet) */
728 int last_sub_max_channel = 0;
730 *checksum = 0xDEADBEEF;
732 /* Country IE requirements */
733 BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
734 country_ie_len & 0x01);
736 alpha2[0] = country_ie[0];
737 alpha2[1] = country_ie[1];
740 * Third octet can be:
741 * 'I' - Indoor
742 * 'O' - Outdoor
744 * anything else we assume is no restrictions
746 if (country_ie[2] == 'I')
747 flags = NL80211_RRF_NO_OUTDOOR;
748 else if (country_ie[2] == 'O')
749 flags = NL80211_RRF_NO_INDOOR;
751 country_ie += 3;
752 country_ie_len -= 3;
754 triplets_start = country_ie;
755 len_at_triplet = country_ie_len;
757 *checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);
760 * We need to build a reg rule for each triplet, but first we must
761 * calculate the number of reg rules we will need. We will need one
762 * for each channel subband
764 while (country_ie_len >= 3) {
765 int end_channel = 0;
766 struct ieee80211_country_ie_triplet *triplet =
767 (struct ieee80211_country_ie_triplet *) country_ie;
768 int cur_sub_max_channel = 0, cur_channel = 0;
770 if (triplet->ext.reg_extension_id >=
771 IEEE80211_COUNTRY_EXTENSION_ID) {
772 country_ie += 3;
773 country_ie_len -= 3;
774 continue;
778 * APs can add padding to make length divisible
779 * by two, required by the spec.
781 if (triplet->chans.first_channel == 0) {
782 country_ie++;
783 country_ie_len--;
784 /* This is expected to be at the very end only */
785 if (country_ie_len != 0)
786 return NULL;
787 break;
790 if (triplet->chans.num_channels == 0)
791 return NULL;
793 if (!chan_in_band(triplet->chans.first_channel, band))
794 return NULL;
796 /* 2 GHz */
797 if (band == IEEE80211_BAND_2GHZ)
798 end_channel = triplet->chans.first_channel +
799 triplet->chans.num_channels - 1;
800 else
802 * 5 GHz -- For example in country IEs if the first
803 * channel given is 36 and the number of channels is 4
804 * then the individual channel numbers defined for the
805 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
806 * and not 36, 37, 38, 39.
808 * See: http://tinyurl.com/11d-clarification
810 end_channel = triplet->chans.first_channel +
811 (4 * (triplet->chans.num_channels - 1));
813 cur_channel = triplet->chans.first_channel;
816 * Enhancement for APs that send a triplet for every channel
817 * or for whatever reason sends triplets with multiple channels
818 * separated when in fact they should be together.
820 end_channel = max_subband_chan(band,
821 cur_channel,
822 end_channel,
823 triplet->chans.max_power,
824 &country_ie,
825 &country_ie_len);
826 if (!end_channel)
827 return NULL;
829 if (!chan_in_band(end_channel, band))
830 return NULL;
832 cur_sub_max_channel = end_channel;
834 /* Basic sanity check */
835 if (cur_sub_max_channel < cur_channel)
836 return NULL;
839 * Do not allow overlapping channels. Also channels
840 * passed in each subband must be monotonically
841 * increasing
843 if (last_sub_max_channel) {
844 if (cur_channel <= last_sub_max_channel)
845 return NULL;
846 if (cur_sub_max_channel <= last_sub_max_channel)
847 return NULL;
851 * When dot11RegulatoryClassesRequired is supported
852 * we can throw ext triplets as part of this soup,
853 * for now we don't care when those change as we
854 * don't support them
856 *checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
857 ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
858 ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);
860 last_sub_max_channel = cur_sub_max_channel;
862 num_rules++;
864 if (country_ie_len >= 3) {
865 country_ie += 3;
866 country_ie_len -= 3;
870 * Note: this is not a IEEE requirement but
871 * simply a memory requirement
873 if (num_rules > NL80211_MAX_SUPP_REG_RULES)
874 return NULL;
877 country_ie = triplets_start;
878 country_ie_len = len_at_triplet;
880 size_of_regd = sizeof(struct ieee80211_regdomain) +
881 (num_rules * sizeof(struct ieee80211_reg_rule));
883 rd = kzalloc(size_of_regd, GFP_KERNEL);
884 if (!rd)
885 return NULL;
887 rd->n_reg_rules = num_rules;
888 rd->alpha2[0] = alpha2[0];
889 rd->alpha2[1] = alpha2[1];
891 /* This time around we fill in the rd */
892 while (country_ie_len >= 3) {
893 int end_channel = 0;
894 struct ieee80211_country_ie_triplet *triplet =
895 (struct ieee80211_country_ie_triplet *) country_ie;
896 struct ieee80211_reg_rule *reg_rule = NULL;
897 struct ieee80211_freq_range *freq_range = NULL;
898 struct ieee80211_power_rule *power_rule = NULL;
901 * Must parse if dot11RegulatoryClassesRequired is true,
902 * we don't support this yet
904 if (triplet->ext.reg_extension_id >=
905 IEEE80211_COUNTRY_EXTENSION_ID) {
906 country_ie += 3;
907 country_ie_len -= 3;
908 continue;
911 if (triplet->chans.first_channel == 0) {
912 country_ie++;
913 country_ie_len--;
914 break;
917 reg_rule = &rd->reg_rules[i];
918 freq_range = &reg_rule->freq_range;
919 power_rule = &reg_rule->power_rule;
921 reg_rule->flags = flags;
923 /* 2 GHz */
924 if (band == IEEE80211_BAND_2GHZ)
925 end_channel = triplet->chans.first_channel +
926 triplet->chans.num_channels -1;
927 else
928 end_channel = triplet->chans.first_channel +
929 (4 * (triplet->chans.num_channels - 1));
931 end_channel = max_subband_chan(band,
932 triplet->chans.first_channel,
933 end_channel,
934 triplet->chans.max_power,
935 &country_ie,
936 &country_ie_len);
939 * The +10 is since the regulatory domain expects
940 * the actual band edge, not the center of freq for
941 * its start and end freqs, assuming 20 MHz bandwidth on
942 * the channels passed
944 freq_range->start_freq_khz =
945 MHZ_TO_KHZ(ieee80211_channel_to_frequency(
946 triplet->chans.first_channel) - 10);
947 freq_range->end_freq_khz =
948 MHZ_TO_KHZ(ieee80211_channel_to_frequency(
949 end_channel) + 10);
952 * These are large arbitrary values we use to intersect later.
953 * Increment this if we ever support >= 40 MHz channels
954 * in IEEE 802.11
956 freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
957 power_rule->max_antenna_gain = DBI_TO_MBI(100);
958 power_rule->max_eirp = DBM_TO_MBM(triplet->chans.max_power);
960 i++;
962 if (country_ie_len >= 3) {
963 country_ie += 3;
964 country_ie_len -= 3;
967 BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
970 return rd;
975 * Helper for regdom_intersect(), this does the real
976 * mathematical intersection fun
978 static int reg_rules_intersect(
979 const struct ieee80211_reg_rule *rule1,
980 const struct ieee80211_reg_rule *rule2,
981 struct ieee80211_reg_rule *intersected_rule)
983 const struct ieee80211_freq_range *freq_range1, *freq_range2;
984 struct ieee80211_freq_range *freq_range;
985 const struct ieee80211_power_rule *power_rule1, *power_rule2;
986 struct ieee80211_power_rule *power_rule;
987 u32 freq_diff;
989 freq_range1 = &rule1->freq_range;
990 freq_range2 = &rule2->freq_range;
991 freq_range = &intersected_rule->freq_range;
993 power_rule1 = &rule1->power_rule;
994 power_rule2 = &rule2->power_rule;
995 power_rule = &intersected_rule->power_rule;
997 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
998 freq_range2->start_freq_khz);
999 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1000 freq_range2->end_freq_khz);
1001 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
1002 freq_range2->max_bandwidth_khz);
1004 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1005 if (freq_range->max_bandwidth_khz > freq_diff)
1006 freq_range->max_bandwidth_khz = freq_diff;
1008 power_rule->max_eirp = min(power_rule1->max_eirp,
1009 power_rule2->max_eirp);
1010 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1011 power_rule2->max_antenna_gain);
1013 intersected_rule->flags = (rule1->flags | rule2->flags);
1015 if (!is_valid_reg_rule(intersected_rule))
1016 return -EINVAL;
1018 return 0;
1022 * regdom_intersect - do the intersection between two regulatory domains
1023 * @rd1: first regulatory domain
1024 * @rd2: second regulatory domain
1026 * Use this function to get the intersection between two regulatory domains.
1027 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1028 * as no one single alpha2 can represent this regulatory domain.
1030 * Returns a pointer to the regulatory domain structure which will hold the
1031 * resulting intersection of rules between rd1 and rd2. We will
1032 * kzalloc() this structure for you.
1034 static struct ieee80211_regdomain *regdom_intersect(
1035 const struct ieee80211_regdomain *rd1,
1036 const struct ieee80211_regdomain *rd2)
1038 int r, size_of_regd;
1039 unsigned int x, y;
1040 unsigned int num_rules = 0, rule_idx = 0;
1041 const struct ieee80211_reg_rule *rule1, *rule2;
1042 struct ieee80211_reg_rule *intersected_rule;
1043 struct ieee80211_regdomain *rd;
1044 /* This is just a dummy holder to help us count */
1045 struct ieee80211_reg_rule irule;
1047 /* Uses the stack temporarily for counter arithmetic */
1048 intersected_rule = &irule;
1050 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
1052 if (!rd1 || !rd2)
1053 return NULL;
1056 * First we get a count of the rules we'll need, then we actually
1057 * build them. This is to so we can malloc() and free() a
1058 * regdomain once. The reason we use reg_rules_intersect() here
1059 * is it will return -EINVAL if the rule computed makes no sense.
1060 * All rules that do check out OK are valid.
1063 for (x = 0; x < rd1->n_reg_rules; x++) {
1064 rule1 = &rd1->reg_rules[x];
1065 for (y = 0; y < rd2->n_reg_rules; y++) {
1066 rule2 = &rd2->reg_rules[y];
1067 if (!reg_rules_intersect(rule1, rule2,
1068 intersected_rule))
1069 num_rules++;
1070 memset(intersected_rule, 0,
1071 sizeof(struct ieee80211_reg_rule));
1075 if (!num_rules)
1076 return NULL;
1078 size_of_regd = sizeof(struct ieee80211_regdomain) +
1079 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
1081 rd = kzalloc(size_of_regd, GFP_KERNEL);
1082 if (!rd)
1083 return NULL;
1085 for (x = 0; x < rd1->n_reg_rules; x++) {
1086 rule1 = &rd1->reg_rules[x];
1087 for (y = 0; y < rd2->n_reg_rules; y++) {
1088 rule2 = &rd2->reg_rules[y];
1090 * This time around instead of using the stack lets
1091 * write to the target rule directly saving ourselves
1092 * a memcpy()
1094 intersected_rule = &rd->reg_rules[rule_idx];
1095 r = reg_rules_intersect(rule1, rule2,
1096 intersected_rule);
1098 * No need to memset here the intersected rule here as
1099 * we're not using the stack anymore
1101 if (r)
1102 continue;
1103 rule_idx++;
1107 if (rule_idx != num_rules) {
1108 kfree(rd);
1109 return NULL;
1112 rd->n_reg_rules = num_rules;
1113 rd->alpha2[0] = '9';
1114 rd->alpha2[1] = '8';
1116 return rd;
1120 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1121 * want to just have the channel structure use these
1123 static u32 map_regdom_flags(u32 rd_flags)
1125 u32 channel_flags = 0;
1126 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
1127 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
1128 if (rd_flags & NL80211_RRF_NO_IBSS)
1129 channel_flags |= IEEE80211_CHAN_NO_IBSS;
1130 if (rd_flags & NL80211_RRF_DFS)
1131 channel_flags |= IEEE80211_CHAN_RADAR;
1132 return channel_flags;
1135 static int freq_reg_info_regd(struct wiphy *wiphy,
1136 u32 center_freq,
1137 u32 desired_bw_khz,
1138 const struct ieee80211_reg_rule **reg_rule,
1139 const struct ieee80211_regdomain *custom_regd)
1141 int i;
1142 bool band_rule_found = false;
1143 const struct ieee80211_regdomain *regd;
1144 bool bw_fits = false;
1146 if (!desired_bw_khz)
1147 desired_bw_khz = MHZ_TO_KHZ(20);
1149 regd = custom_regd ? custom_regd : cfg80211_regdomain;
1152 * Follow the driver's regulatory domain, if present, unless a country
1153 * IE has been processed or a user wants to help complaince further
1155 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1156 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
1157 wiphy->regd)
1158 regd = wiphy->regd;
1160 if (!regd)
1161 return -EINVAL;
1163 for (i = 0; i < regd->n_reg_rules; i++) {
1164 const struct ieee80211_reg_rule *rr;
1165 const struct ieee80211_freq_range *fr = NULL;
1166 const struct ieee80211_power_rule *pr = NULL;
1168 rr = &regd->reg_rules[i];
1169 fr = &rr->freq_range;
1170 pr = &rr->power_rule;
1173 * We only need to know if one frequency rule was
1174 * was in center_freq's band, that's enough, so lets
1175 * not overwrite it once found
1177 if (!band_rule_found)
1178 band_rule_found = freq_in_rule_band(fr, center_freq);
1180 bw_fits = reg_does_bw_fit(fr,
1181 center_freq,
1182 desired_bw_khz);
1184 if (band_rule_found && bw_fits) {
1185 *reg_rule = rr;
1186 return 0;
1190 if (!band_rule_found)
1191 return -ERANGE;
1193 return -EINVAL;
1195 EXPORT_SYMBOL(freq_reg_info);
1197 int freq_reg_info(struct wiphy *wiphy,
1198 u32 center_freq,
1199 u32 desired_bw_khz,
1200 const struct ieee80211_reg_rule **reg_rule)
1202 assert_cfg80211_lock();
1203 return freq_reg_info_regd(wiphy,
1204 center_freq,
1205 desired_bw_khz,
1206 reg_rule,
1207 NULL);
1211 * Note that right now we assume the desired channel bandwidth
1212 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1213 * per channel, the primary and the extension channel). To support
1214 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
1215 * new ieee80211_channel.target_bw and re run the regulatory check
1216 * on the wiphy with the target_bw specified. Then we can simply use
1217 * that below for the desired_bw_khz below.
1219 static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
1220 unsigned int chan_idx)
1222 int r;
1223 u32 flags, bw_flags = 0;
1224 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1225 const struct ieee80211_reg_rule *reg_rule = NULL;
1226 const struct ieee80211_power_rule *power_rule = NULL;
1227 const struct ieee80211_freq_range *freq_range = NULL;
1228 struct ieee80211_supported_band *sband;
1229 struct ieee80211_channel *chan;
1230 struct wiphy *request_wiphy = NULL;
1232 assert_cfg80211_lock();
1234 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1236 sband = wiphy->bands[band];
1237 BUG_ON(chan_idx >= sband->n_channels);
1238 chan = &sband->channels[chan_idx];
1240 flags = chan->orig_flags;
1242 r = freq_reg_info(wiphy,
1243 MHZ_TO_KHZ(chan->center_freq),
1244 desired_bw_khz,
1245 &reg_rule);
1247 if (r) {
1249 * This means no regulatory rule was found in the country IE
1250 * with a frequency range on the center_freq's band, since
1251 * IEEE-802.11 allows for a country IE to have a subset of the
1252 * regulatory information provided in a country we ignore
1253 * disabling the channel unless at least one reg rule was
1254 * found on the center_freq's band. For details see this
1255 * clarification:
1257 * http://tinyurl.com/11d-clarification
1259 if (r == -ERANGE &&
1260 last_request->initiator ==
1261 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1262 REG_DBG_PRINT("cfg80211: Leaving channel %d MHz "
1263 "intact on %s - no rule found in band on "
1264 "Country IE\n",
1265 chan->center_freq, wiphy_name(wiphy));
1266 } else {
1268 * In this case we know the country IE has at least one reg rule
1269 * for the band so we respect its band definitions
1271 if (last_request->initiator ==
1272 NL80211_REGDOM_SET_BY_COUNTRY_IE)
1273 REG_DBG_PRINT("cfg80211: Disabling "
1274 "channel %d MHz on %s due to "
1275 "Country IE\n",
1276 chan->center_freq, wiphy_name(wiphy));
1277 flags |= IEEE80211_CHAN_DISABLED;
1278 chan->flags = flags;
1280 return;
1283 power_rule = &reg_rule->power_rule;
1284 freq_range = &reg_rule->freq_range;
1286 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1287 bw_flags = IEEE80211_CHAN_NO_HT40;
1289 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1290 request_wiphy && request_wiphy == wiphy &&
1291 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1293 * This gaurantees the driver's requested regulatory domain
1294 * will always be used as a base for further regulatory
1295 * settings
1297 chan->flags = chan->orig_flags =
1298 map_regdom_flags(reg_rule->flags) | bw_flags;
1299 chan->max_antenna_gain = chan->orig_mag =
1300 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1301 chan->max_power = chan->orig_mpwr =
1302 (int) MBM_TO_DBM(power_rule->max_eirp);
1303 return;
1306 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1307 chan->max_antenna_gain = min(chan->orig_mag,
1308 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
1309 if (chan->orig_mpwr)
1310 chan->max_power = min(chan->orig_mpwr,
1311 (int) MBM_TO_DBM(power_rule->max_eirp));
1312 else
1313 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1316 static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1318 unsigned int i;
1319 struct ieee80211_supported_band *sband;
1321 BUG_ON(!wiphy->bands[band]);
1322 sband = wiphy->bands[band];
1324 for (i = 0; i < sband->n_channels; i++)
1325 handle_channel(wiphy, band, i);
1328 static bool ignore_reg_update(struct wiphy *wiphy,
1329 enum nl80211_reg_initiator initiator)
1331 if (!last_request)
1332 return true;
1333 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1334 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1335 return true;
1337 * wiphy->regd will be set once the device has its own
1338 * desired regulatory domain set
1340 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
1341 !is_world_regdom(last_request->alpha2))
1342 return true;
1343 return false;
1346 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1348 struct cfg80211_registered_device *rdev;
1350 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1351 wiphy_update_regulatory(&rdev->wiphy, initiator);
1354 static void handle_reg_beacon(struct wiphy *wiphy,
1355 unsigned int chan_idx,
1356 struct reg_beacon *reg_beacon)
1358 struct ieee80211_supported_band *sband;
1359 struct ieee80211_channel *chan;
1360 bool channel_changed = false;
1361 struct ieee80211_channel chan_before;
1363 assert_cfg80211_lock();
1365 sband = wiphy->bands[reg_beacon->chan.band];
1366 chan = &sband->channels[chan_idx];
1368 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1369 return;
1371 if (chan->beacon_found)
1372 return;
1374 chan->beacon_found = true;
1376 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1377 return;
1379 chan_before.center_freq = chan->center_freq;
1380 chan_before.flags = chan->flags;
1382 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1383 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1384 channel_changed = true;
1387 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1388 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1389 channel_changed = true;
1392 if (channel_changed)
1393 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1397 * Called when a scan on a wiphy finds a beacon on
1398 * new channel
1400 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1401 struct reg_beacon *reg_beacon)
1403 unsigned int i;
1404 struct ieee80211_supported_band *sband;
1406 assert_cfg80211_lock();
1408 if (!wiphy->bands[reg_beacon->chan.band])
1409 return;
1411 sband = wiphy->bands[reg_beacon->chan.band];
1413 for (i = 0; i < sband->n_channels; i++)
1414 handle_reg_beacon(wiphy, i, reg_beacon);
1418 * Called upon reg changes or a new wiphy is added
1420 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1422 unsigned int i;
1423 struct ieee80211_supported_band *sband;
1424 struct reg_beacon *reg_beacon;
1426 assert_cfg80211_lock();
1428 if (list_empty(&reg_beacon_list))
1429 return;
1431 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1432 if (!wiphy->bands[reg_beacon->chan.band])
1433 continue;
1434 sband = wiphy->bands[reg_beacon->chan.band];
1435 for (i = 0; i < sband->n_channels; i++)
1436 handle_reg_beacon(wiphy, i, reg_beacon);
1440 static bool reg_is_world_roaming(struct wiphy *wiphy)
1442 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1443 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1444 return true;
1445 if (last_request &&
1446 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1447 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1448 return true;
1449 return false;
1452 /* Reap the advantages of previously found beacons */
1453 static void reg_process_beacons(struct wiphy *wiphy)
1456 * Means we are just firing up cfg80211, so no beacons would
1457 * have been processed yet.
1459 if (!last_request)
1460 return;
1461 if (!reg_is_world_roaming(wiphy))
1462 return;
1463 wiphy_update_beacon_reg(wiphy);
1466 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1468 if (!chan)
1469 return true;
1470 if (chan->flags & IEEE80211_CHAN_DISABLED)
1471 return true;
1472 /* This would happen when regulatory rules disallow HT40 completely */
1473 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1474 return true;
1475 return false;
1478 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1479 enum ieee80211_band band,
1480 unsigned int chan_idx)
1482 struct ieee80211_supported_band *sband;
1483 struct ieee80211_channel *channel;
1484 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1485 unsigned int i;
1487 assert_cfg80211_lock();
1489 sband = wiphy->bands[band];
1490 BUG_ON(chan_idx >= sband->n_channels);
1491 channel = &sband->channels[chan_idx];
1493 if (is_ht40_not_allowed(channel)) {
1494 channel->flags |= IEEE80211_CHAN_NO_HT40;
1495 return;
1499 * We need to ensure the extension channels exist to
1500 * be able to use HT40- or HT40+, this finds them (or not)
1502 for (i = 0; i < sband->n_channels; i++) {
1503 struct ieee80211_channel *c = &sband->channels[i];
1504 if (c->center_freq == (channel->center_freq - 20))
1505 channel_before = c;
1506 if (c->center_freq == (channel->center_freq + 20))
1507 channel_after = c;
1511 * Please note that this assumes target bandwidth is 20 MHz,
1512 * if that ever changes we also need to change the below logic
1513 * to include that as well.
1515 if (is_ht40_not_allowed(channel_before))
1516 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1517 else
1518 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1520 if (is_ht40_not_allowed(channel_after))
1521 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1522 else
1523 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1526 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1527 enum ieee80211_band band)
1529 unsigned int i;
1530 struct ieee80211_supported_band *sband;
1532 BUG_ON(!wiphy->bands[band]);
1533 sband = wiphy->bands[band];
1535 for (i = 0; i < sband->n_channels; i++)
1536 reg_process_ht_flags_channel(wiphy, band, i);
1539 static void reg_process_ht_flags(struct wiphy *wiphy)
1541 enum ieee80211_band band;
1543 if (!wiphy)
1544 return;
1546 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1547 if (wiphy->bands[band])
1548 reg_process_ht_flags_band(wiphy, band);
1553 void wiphy_update_regulatory(struct wiphy *wiphy,
1554 enum nl80211_reg_initiator initiator)
1556 enum ieee80211_band band;
1558 if (ignore_reg_update(wiphy, initiator))
1559 goto out;
1560 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1561 if (wiphy->bands[band])
1562 handle_band(wiphy, band);
1564 out:
1565 reg_process_beacons(wiphy);
1566 reg_process_ht_flags(wiphy);
1567 if (wiphy->reg_notifier)
1568 wiphy->reg_notifier(wiphy, last_request);
1571 static void handle_channel_custom(struct wiphy *wiphy,
1572 enum ieee80211_band band,
1573 unsigned int chan_idx,
1574 const struct ieee80211_regdomain *regd)
1576 int r;
1577 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1578 u32 bw_flags = 0;
1579 const struct ieee80211_reg_rule *reg_rule = NULL;
1580 const struct ieee80211_power_rule *power_rule = NULL;
1581 const struct ieee80211_freq_range *freq_range = NULL;
1582 struct ieee80211_supported_band *sband;
1583 struct ieee80211_channel *chan;
1585 assert_reg_lock();
1587 sband = wiphy->bands[band];
1588 BUG_ON(chan_idx >= sband->n_channels);
1589 chan = &sband->channels[chan_idx];
1591 r = freq_reg_info_regd(wiphy,
1592 MHZ_TO_KHZ(chan->center_freq),
1593 desired_bw_khz,
1594 &reg_rule,
1595 regd);
1597 if (r) {
1598 chan->flags = IEEE80211_CHAN_DISABLED;
1599 return;
1602 power_rule = &reg_rule->power_rule;
1603 freq_range = &reg_rule->freq_range;
1605 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1606 bw_flags = IEEE80211_CHAN_NO_HT40;
1608 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1609 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1610 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1613 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1614 const struct ieee80211_regdomain *regd)
1616 unsigned int i;
1617 struct ieee80211_supported_band *sband;
1619 BUG_ON(!wiphy->bands[band]);
1620 sband = wiphy->bands[band];
1622 for (i = 0; i < sband->n_channels; i++)
1623 handle_channel_custom(wiphy, band, i, regd);
1626 /* Used by drivers prior to wiphy registration */
1627 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1628 const struct ieee80211_regdomain *regd)
1630 enum ieee80211_band band;
1631 unsigned int bands_set = 0;
1633 mutex_lock(&reg_mutex);
1634 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1635 if (!wiphy->bands[band])
1636 continue;
1637 handle_band_custom(wiphy, band, regd);
1638 bands_set++;
1640 mutex_unlock(&reg_mutex);
1643 * no point in calling this if it won't have any effect
1644 * on your device's supportd bands.
1646 WARN_ON(!bands_set);
1648 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1651 * Return value which can be used by ignore_request() to indicate
1652 * it has been determined we should intersect two regulatory domains
1654 #define REG_INTERSECT 1
1656 /* This has the logic which determines when a new request
1657 * should be ignored. */
1658 static int ignore_request(struct wiphy *wiphy,
1659 struct regulatory_request *pending_request)
1661 struct wiphy *last_wiphy = NULL;
1663 assert_cfg80211_lock();
1665 /* All initial requests are respected */
1666 if (!last_request)
1667 return 0;
1669 switch (pending_request->initiator) {
1670 case NL80211_REGDOM_SET_BY_CORE:
1671 return 0;
1672 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1674 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1676 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1677 return -EINVAL;
1678 if (last_request->initiator ==
1679 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1680 if (last_wiphy != wiphy) {
1682 * Two cards with two APs claiming different
1683 * Country IE alpha2s. We could
1684 * intersect them, but that seems unlikely
1685 * to be correct. Reject second one for now.
1687 if (regdom_changes(pending_request->alpha2))
1688 return -EOPNOTSUPP;
1689 return -EALREADY;
1692 * Two consecutive Country IE hints on the same wiphy.
1693 * This should be picked up early by the driver/stack
1695 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1696 return 0;
1697 return -EALREADY;
1699 return REG_INTERSECT;
1700 case NL80211_REGDOM_SET_BY_DRIVER:
1701 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1702 if (regdom_changes(pending_request->alpha2))
1703 return 0;
1704 return -EALREADY;
1708 * This would happen if you unplug and plug your card
1709 * back in or if you add a new device for which the previously
1710 * loaded card also agrees on the regulatory domain.
1712 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1713 !regdom_changes(pending_request->alpha2))
1714 return -EALREADY;
1716 return REG_INTERSECT;
1717 case NL80211_REGDOM_SET_BY_USER:
1718 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1719 return REG_INTERSECT;
1721 * If the user knows better the user should set the regdom
1722 * to their country before the IE is picked up
1724 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1725 last_request->intersect)
1726 return -EOPNOTSUPP;
1728 * Process user requests only after previous user/driver/core
1729 * requests have been processed
1731 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1732 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1733 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1734 if (regdom_changes(last_request->alpha2))
1735 return -EAGAIN;
1738 if (!regdom_changes(pending_request->alpha2))
1739 return -EALREADY;
1741 return 0;
1744 return -EINVAL;
1748 * __regulatory_hint - hint to the wireless core a regulatory domain
1749 * @wiphy: if the hint comes from country information from an AP, this
1750 * is required to be set to the wiphy that received the information
1751 * @pending_request: the regulatory request currently being processed
1753 * The Wireless subsystem can use this function to hint to the wireless core
1754 * what it believes should be the current regulatory domain.
1756 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1757 * already been set or other standard error codes.
1759 * Caller must hold &cfg80211_mutex and &reg_mutex
1761 static int __regulatory_hint(struct wiphy *wiphy,
1762 struct regulatory_request *pending_request)
1764 bool intersect = false;
1765 int r = 0;
1767 assert_cfg80211_lock();
1769 r = ignore_request(wiphy, pending_request);
1771 if (r == REG_INTERSECT) {
1772 if (pending_request->initiator ==
1773 NL80211_REGDOM_SET_BY_DRIVER) {
1774 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1775 if (r) {
1776 kfree(pending_request);
1777 return r;
1780 intersect = true;
1781 } else if (r) {
1783 * If the regulatory domain being requested by the
1784 * driver has already been set just copy it to the
1785 * wiphy
1787 if (r == -EALREADY &&
1788 pending_request->initiator ==
1789 NL80211_REGDOM_SET_BY_DRIVER) {
1790 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1791 if (r) {
1792 kfree(pending_request);
1793 return r;
1795 r = -EALREADY;
1796 goto new_request;
1798 kfree(pending_request);
1799 return r;
1802 new_request:
1803 kfree(last_request);
1805 last_request = pending_request;
1806 last_request->intersect = intersect;
1808 pending_request = NULL;
1810 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1811 user_alpha2[0] = last_request->alpha2[0];
1812 user_alpha2[1] = last_request->alpha2[1];
1815 /* When r == REG_INTERSECT we do need to call CRDA */
1816 if (r < 0) {
1818 * Since CRDA will not be called in this case as we already
1819 * have applied the requested regulatory domain before we just
1820 * inform userspace we have processed the request
1822 if (r == -EALREADY)
1823 nl80211_send_reg_change_event(last_request);
1824 return r;
1827 return call_crda(last_request->alpha2);
1830 /* This processes *all* regulatory hints */
1831 static void reg_process_hint(struct regulatory_request *reg_request)
1833 int r = 0;
1834 struct wiphy *wiphy = NULL;
1836 BUG_ON(!reg_request->alpha2);
1838 mutex_lock(&cfg80211_mutex);
1839 mutex_lock(&reg_mutex);
1841 if (wiphy_idx_valid(reg_request->wiphy_idx))
1842 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1844 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1845 !wiphy) {
1846 kfree(reg_request);
1847 goto out;
1850 r = __regulatory_hint(wiphy, reg_request);
1851 /* This is required so that the orig_* parameters are saved */
1852 if (r == -EALREADY && wiphy &&
1853 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1854 wiphy_update_regulatory(wiphy, reg_request->initiator);
1855 out:
1856 mutex_unlock(&reg_mutex);
1857 mutex_unlock(&cfg80211_mutex);
1860 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1861 static void reg_process_pending_hints(void)
1863 struct regulatory_request *reg_request;
1865 spin_lock(&reg_requests_lock);
1866 while (!list_empty(&reg_requests_list)) {
1867 reg_request = list_first_entry(&reg_requests_list,
1868 struct regulatory_request,
1869 list);
1870 list_del_init(&reg_request->list);
1872 spin_unlock(&reg_requests_lock);
1873 reg_process_hint(reg_request);
1874 spin_lock(&reg_requests_lock);
1876 spin_unlock(&reg_requests_lock);
1879 /* Processes beacon hints -- this has nothing to do with country IEs */
1880 static void reg_process_pending_beacon_hints(void)
1882 struct cfg80211_registered_device *rdev;
1883 struct reg_beacon *pending_beacon, *tmp;
1886 * No need to hold the reg_mutex here as we just touch wiphys
1887 * and do not read or access regulatory variables.
1889 mutex_lock(&cfg80211_mutex);
1891 /* This goes through the _pending_ beacon list */
1892 spin_lock_bh(&reg_pending_beacons_lock);
1894 if (list_empty(&reg_pending_beacons)) {
1895 spin_unlock_bh(&reg_pending_beacons_lock);
1896 goto out;
1899 list_for_each_entry_safe(pending_beacon, tmp,
1900 &reg_pending_beacons, list) {
1902 list_del_init(&pending_beacon->list);
1904 /* Applies the beacon hint to current wiphys */
1905 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1906 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1908 /* Remembers the beacon hint for new wiphys or reg changes */
1909 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1912 spin_unlock_bh(&reg_pending_beacons_lock);
1913 out:
1914 mutex_unlock(&cfg80211_mutex);
1917 static void reg_todo(struct work_struct *work)
1919 reg_process_pending_hints();
1920 reg_process_pending_beacon_hints();
1923 static DECLARE_WORK(reg_work, reg_todo);
1925 static void queue_regulatory_request(struct regulatory_request *request)
1927 spin_lock(&reg_requests_lock);
1928 list_add_tail(&request->list, &reg_requests_list);
1929 spin_unlock(&reg_requests_lock);
1931 schedule_work(&reg_work);
1935 * Core regulatory hint -- happens during cfg80211_init()
1936 * and when we restore regulatory settings.
1938 static int regulatory_hint_core(const char *alpha2)
1940 struct regulatory_request *request;
1942 kfree(last_request);
1943 last_request = NULL;
1945 request = kzalloc(sizeof(struct regulatory_request),
1946 GFP_KERNEL);
1947 if (!request)
1948 return -ENOMEM;
1950 request->alpha2[0] = alpha2[0];
1951 request->alpha2[1] = alpha2[1];
1952 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1955 * This ensures last_request is populated once modules
1956 * come swinging in and calling regulatory hints and
1957 * wiphy_apply_custom_regulatory().
1959 reg_process_hint(request);
1961 return 0;
1964 /* User hints */
1965 int regulatory_hint_user(const char *alpha2)
1967 struct regulatory_request *request;
1969 BUG_ON(!alpha2);
1971 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1972 if (!request)
1973 return -ENOMEM;
1975 request->wiphy_idx = WIPHY_IDX_STALE;
1976 request->alpha2[0] = alpha2[0];
1977 request->alpha2[1] = alpha2[1];
1978 request->initiator = NL80211_REGDOM_SET_BY_USER;
1980 queue_regulatory_request(request);
1982 return 0;
1985 /* Driver hints */
1986 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1988 struct regulatory_request *request;
1990 BUG_ON(!alpha2);
1991 BUG_ON(!wiphy);
1993 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1994 if (!request)
1995 return -ENOMEM;
1997 request->wiphy_idx = get_wiphy_idx(wiphy);
1999 /* Must have registered wiphy first */
2000 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
2002 request->alpha2[0] = alpha2[0];
2003 request->alpha2[1] = alpha2[1];
2004 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2006 queue_regulatory_request(request);
2008 return 0;
2010 EXPORT_SYMBOL(regulatory_hint);
2012 /* Caller must hold reg_mutex */
2013 static bool reg_same_country_ie_hint(struct wiphy *wiphy,
2014 u32 country_ie_checksum)
2016 struct wiphy *request_wiphy;
2018 assert_reg_lock();
2020 if (unlikely(last_request->initiator !=
2021 NL80211_REGDOM_SET_BY_COUNTRY_IE))
2022 return false;
2024 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2026 if (!request_wiphy)
2027 return false;
2029 if (likely(request_wiphy != wiphy))
2030 return !country_ie_integrity_changes(country_ie_checksum);
2032 * We should not have let these through at this point, they
2033 * should have been picked up earlier by the first alpha2 check
2034 * on the device
2036 if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
2037 return true;
2038 return false;
2042 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
2043 * therefore cannot iterate over the rdev list here.
2045 void regulatory_hint_11d(struct wiphy *wiphy,
2046 enum ieee80211_band band,
2047 u8 *country_ie,
2048 u8 country_ie_len)
2050 struct ieee80211_regdomain *rd = NULL;
2051 char alpha2[2];
2052 u32 checksum = 0;
2053 enum environment_cap env = ENVIRON_ANY;
2054 struct regulatory_request *request;
2056 mutex_lock(&reg_mutex);
2058 if (unlikely(!last_request))
2059 goto out;
2061 /* IE len must be evenly divisible by 2 */
2062 if (country_ie_len & 0x01)
2063 goto out;
2065 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2066 goto out;
2069 * Pending country IE processing, this can happen after we
2070 * call CRDA and wait for a response if a beacon was received before
2071 * we were able to process the last regulatory_hint_11d() call
2073 if (country_ie_regdomain)
2074 goto out;
2076 alpha2[0] = country_ie[0];
2077 alpha2[1] = country_ie[1];
2079 if (country_ie[2] == 'I')
2080 env = ENVIRON_INDOOR;
2081 else if (country_ie[2] == 'O')
2082 env = ENVIRON_OUTDOOR;
2085 * We will run this only upon a successful connection on cfg80211.
2086 * We leave conflict resolution to the workqueue, where can hold
2087 * cfg80211_mutex.
2089 if (likely(last_request->initiator ==
2090 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2091 wiphy_idx_valid(last_request->wiphy_idx)))
2092 goto out;
2094 rd = country_ie_2_rd(band, country_ie, country_ie_len, &checksum);
2095 if (!rd) {
2096 REG_DBG_PRINT("cfg80211: Ignoring bogus country IE\n");
2097 goto out;
2101 * This will not happen right now but we leave it here for the
2102 * the future when we want to add suspend/resume support and having
2103 * the user move to another country after doing so, or having the user
2104 * move to another AP. Right now we just trust the first AP.
2106 * If we hit this before we add this support we want to be informed of
2107 * it as it would indicate a mistake in the current design
2109 if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
2110 goto free_rd_out;
2112 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2113 if (!request)
2114 goto free_rd_out;
2117 * We keep this around for when CRDA comes back with a response so
2118 * we can intersect with that
2120 country_ie_regdomain = rd;
2122 request->wiphy_idx = get_wiphy_idx(wiphy);
2123 request->alpha2[0] = rd->alpha2[0];
2124 request->alpha2[1] = rd->alpha2[1];
2125 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2126 request->country_ie_checksum = checksum;
2127 request->country_ie_env = env;
2129 mutex_unlock(&reg_mutex);
2131 queue_regulatory_request(request);
2133 return;
2135 free_rd_out:
2136 kfree(rd);
2137 out:
2138 mutex_unlock(&reg_mutex);
2141 static void restore_alpha2(char *alpha2, bool reset_user)
2143 /* indicates there is no alpha2 to consider for restoration */
2144 alpha2[0] = '9';
2145 alpha2[1] = '7';
2147 /* The user setting has precedence over the module parameter */
2148 if (is_user_regdom_saved()) {
2149 /* Unless we're asked to ignore it and reset it */
2150 if (reset_user) {
2151 REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
2152 "including user preference\n");
2153 user_alpha2[0] = '9';
2154 user_alpha2[1] = '7';
2157 * If we're ignoring user settings, we still need to
2158 * check the module parameter to ensure we put things
2159 * back as they were for a full restore.
2161 if (!is_world_regdom(ieee80211_regdom)) {
2162 REG_DBG_PRINT("cfg80211: Keeping preference on "
2163 "module parameter ieee80211_regdom: %c%c\n",
2164 ieee80211_regdom[0],
2165 ieee80211_regdom[1]);
2166 alpha2[0] = ieee80211_regdom[0];
2167 alpha2[1] = ieee80211_regdom[1];
2169 } else {
2170 REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
2171 "while preserving user preference for: %c%c\n",
2172 user_alpha2[0],
2173 user_alpha2[1]);
2174 alpha2[0] = user_alpha2[0];
2175 alpha2[1] = user_alpha2[1];
2177 } else if (!is_world_regdom(ieee80211_regdom)) {
2178 REG_DBG_PRINT("cfg80211: Keeping preference on "
2179 "module parameter ieee80211_regdom: %c%c\n",
2180 ieee80211_regdom[0],
2181 ieee80211_regdom[1]);
2182 alpha2[0] = ieee80211_regdom[0];
2183 alpha2[1] = ieee80211_regdom[1];
2184 } else
2185 REG_DBG_PRINT("cfg80211: Restoring regulatory settings\n");
2189 * Restoring regulatory settings involves ingoring any
2190 * possibly stale country IE information and user regulatory
2191 * settings if so desired, this includes any beacon hints
2192 * learned as we could have traveled outside to another country
2193 * after disconnection. To restore regulatory settings we do
2194 * exactly what we did at bootup:
2196 * - send a core regulatory hint
2197 * - send a user regulatory hint if applicable
2199 * Device drivers that send a regulatory hint for a specific country
2200 * keep their own regulatory domain on wiphy->regd so that does does
2201 * not need to be remembered.
2203 static void restore_regulatory_settings(bool reset_user)
2205 char alpha2[2];
2206 struct reg_beacon *reg_beacon, *btmp;
2208 mutex_lock(&cfg80211_mutex);
2209 mutex_lock(&reg_mutex);
2211 reset_regdomains();
2212 restore_alpha2(alpha2, reset_user);
2214 /* Clear beacon hints */
2215 spin_lock_bh(&reg_pending_beacons_lock);
2216 if (!list_empty(&reg_pending_beacons)) {
2217 list_for_each_entry_safe(reg_beacon, btmp,
2218 &reg_pending_beacons, list) {
2219 list_del(&reg_beacon->list);
2220 kfree(reg_beacon);
2223 spin_unlock_bh(&reg_pending_beacons_lock);
2225 if (!list_empty(&reg_beacon_list)) {
2226 list_for_each_entry_safe(reg_beacon, btmp,
2227 &reg_beacon_list, list) {
2228 list_del(&reg_beacon->list);
2229 kfree(reg_beacon);
2233 /* First restore to the basic regulatory settings */
2234 cfg80211_regdomain = cfg80211_world_regdom;
2236 mutex_unlock(&reg_mutex);
2237 mutex_unlock(&cfg80211_mutex);
2239 regulatory_hint_core(cfg80211_regdomain->alpha2);
2242 * This restores the ieee80211_regdom module parameter
2243 * preference or the last user requested regulatory
2244 * settings, user regulatory settings takes precedence.
2246 if (is_an_alpha2(alpha2))
2247 regulatory_hint_user(user_alpha2);
2251 void regulatory_hint_disconnect(void)
2253 REG_DBG_PRINT("cfg80211: All devices are disconnected, going to "
2254 "restore regulatory settings\n");
2255 restore_regulatory_settings(false);
2258 static bool freq_is_chan_12_13_14(u16 freq)
2260 if (freq == ieee80211_channel_to_frequency(12) ||
2261 freq == ieee80211_channel_to_frequency(13) ||
2262 freq == ieee80211_channel_to_frequency(14))
2263 return true;
2264 return false;
2267 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2268 struct ieee80211_channel *beacon_chan,
2269 gfp_t gfp)
2271 struct reg_beacon *reg_beacon;
2273 if (likely((beacon_chan->beacon_found ||
2274 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
2275 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2276 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
2277 return 0;
2279 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2280 if (!reg_beacon)
2281 return -ENOMEM;
2283 REG_DBG_PRINT("cfg80211: Found new beacon on "
2284 "frequency: %d MHz (Ch %d) on %s\n",
2285 beacon_chan->center_freq,
2286 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2287 wiphy_name(wiphy));
2289 memcpy(&reg_beacon->chan, beacon_chan,
2290 sizeof(struct ieee80211_channel));
2294 * Since we can be called from BH or and non-BH context
2295 * we must use spin_lock_bh()
2297 spin_lock_bh(&reg_pending_beacons_lock);
2298 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2299 spin_unlock_bh(&reg_pending_beacons_lock);
2301 schedule_work(&reg_work);
2303 return 0;
2306 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2308 unsigned int i;
2309 const struct ieee80211_reg_rule *reg_rule = NULL;
2310 const struct ieee80211_freq_range *freq_range = NULL;
2311 const struct ieee80211_power_rule *power_rule = NULL;
2313 printk(KERN_INFO " (start_freq - end_freq @ bandwidth), "
2314 "(max_antenna_gain, max_eirp)\n");
2316 for (i = 0; i < rd->n_reg_rules; i++) {
2317 reg_rule = &rd->reg_rules[i];
2318 freq_range = &reg_rule->freq_range;
2319 power_rule = &reg_rule->power_rule;
2322 * There may not be documentation for max antenna gain
2323 * in certain regions
2325 if (power_rule->max_antenna_gain)
2326 printk(KERN_INFO " (%d KHz - %d KHz @ %d KHz), "
2327 "(%d mBi, %d mBm)\n",
2328 freq_range->start_freq_khz,
2329 freq_range->end_freq_khz,
2330 freq_range->max_bandwidth_khz,
2331 power_rule->max_antenna_gain,
2332 power_rule->max_eirp);
2333 else
2334 printk(KERN_INFO " (%d KHz - %d KHz @ %d KHz), "
2335 "(N/A, %d mBm)\n",
2336 freq_range->start_freq_khz,
2337 freq_range->end_freq_khz,
2338 freq_range->max_bandwidth_khz,
2339 power_rule->max_eirp);
2343 static void print_regdomain(const struct ieee80211_regdomain *rd)
2346 if (is_intersected_alpha2(rd->alpha2)) {
2348 if (last_request->initiator ==
2349 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2350 struct cfg80211_registered_device *rdev;
2351 rdev = cfg80211_rdev_by_wiphy_idx(
2352 last_request->wiphy_idx);
2353 if (rdev) {
2354 printk(KERN_INFO "cfg80211: Current regulatory "
2355 "domain updated by AP to: %c%c\n",
2356 rdev->country_ie_alpha2[0],
2357 rdev->country_ie_alpha2[1]);
2358 } else
2359 printk(KERN_INFO "cfg80211: Current regulatory "
2360 "domain intersected: \n");
2361 } else
2362 printk(KERN_INFO "cfg80211: Current regulatory "
2363 "domain intersected: \n");
2364 } else if (is_world_regdom(rd->alpha2))
2365 printk(KERN_INFO "cfg80211: World regulatory "
2366 "domain updated:\n");
2367 else {
2368 if (is_unknown_alpha2(rd->alpha2))
2369 printk(KERN_INFO "cfg80211: Regulatory domain "
2370 "changed to driver built-in settings "
2371 "(unknown country)\n");
2372 else
2373 printk(KERN_INFO "cfg80211: Regulatory domain "
2374 "changed to country: %c%c\n",
2375 rd->alpha2[0], rd->alpha2[1]);
2377 print_rd_rules(rd);
2380 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2382 printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
2383 rd->alpha2[0], rd->alpha2[1]);
2384 print_rd_rules(rd);
2387 #ifdef CONFIG_CFG80211_REG_DEBUG
2388 static void reg_country_ie_process_debug(
2389 const struct ieee80211_regdomain *rd,
2390 const struct ieee80211_regdomain *country_ie_regdomain,
2391 const struct ieee80211_regdomain *intersected_rd)
2393 printk(KERN_DEBUG "cfg80211: Received country IE:\n");
2394 print_regdomain_info(country_ie_regdomain);
2395 printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
2396 print_regdomain_info(rd);
2397 if (intersected_rd) {
2398 printk(KERN_DEBUG "cfg80211: We intersect both of these "
2399 "and get:\n");
2400 print_regdomain_info(intersected_rd);
2401 return;
2403 printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
2405 #else
2406 static inline void reg_country_ie_process_debug(
2407 const struct ieee80211_regdomain *rd,
2408 const struct ieee80211_regdomain *country_ie_regdomain,
2409 const struct ieee80211_regdomain *intersected_rd)
2412 #endif
2414 /* Takes ownership of rd only if it doesn't fail */
2415 static int __set_regdom(const struct ieee80211_regdomain *rd)
2417 const struct ieee80211_regdomain *intersected_rd = NULL;
2418 struct cfg80211_registered_device *rdev = NULL;
2419 struct wiphy *request_wiphy;
2420 /* Some basic sanity checks first */
2422 if (is_world_regdom(rd->alpha2)) {
2423 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2424 return -EINVAL;
2425 update_world_regdomain(rd);
2426 return 0;
2429 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2430 !is_unknown_alpha2(rd->alpha2))
2431 return -EINVAL;
2433 if (!last_request)
2434 return -EINVAL;
2437 * Lets only bother proceeding on the same alpha2 if the current
2438 * rd is non static (it means CRDA was present and was used last)
2439 * and the pending request came in from a country IE
2441 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2443 * If someone else asked us to change the rd lets only bother
2444 * checking if the alpha2 changes if CRDA was already called
2446 if (!regdom_changes(rd->alpha2))
2447 return -EINVAL;
2451 * Now lets set the regulatory domain, update all driver channels
2452 * and finally inform them of what we have done, in case they want
2453 * to review or adjust their own settings based on their own
2454 * internal EEPROM data
2457 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2458 return -EINVAL;
2460 if (!is_valid_rd(rd)) {
2461 printk(KERN_ERR "cfg80211: Invalid "
2462 "regulatory domain detected:\n");
2463 print_regdomain_info(rd);
2464 return -EINVAL;
2467 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2469 if (!last_request->intersect) {
2470 int r;
2472 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2473 reset_regdomains();
2474 cfg80211_regdomain = rd;
2475 return 0;
2479 * For a driver hint, lets copy the regulatory domain the
2480 * driver wanted to the wiphy to deal with conflicts
2484 * Userspace could have sent two replies with only
2485 * one kernel request.
2487 if (request_wiphy->regd)
2488 return -EALREADY;
2490 r = reg_copy_regd(&request_wiphy->regd, rd);
2491 if (r)
2492 return r;
2494 reset_regdomains();
2495 cfg80211_regdomain = rd;
2496 return 0;
2499 /* Intersection requires a bit more work */
2501 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2503 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2504 if (!intersected_rd)
2505 return -EINVAL;
2508 * We can trash what CRDA provided now.
2509 * However if a driver requested this specific regulatory
2510 * domain we keep it for its private use
2512 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2513 request_wiphy->regd = rd;
2514 else
2515 kfree(rd);
2517 rd = NULL;
2519 reset_regdomains();
2520 cfg80211_regdomain = intersected_rd;
2522 return 0;
2526 * Country IE requests are handled a bit differently, we intersect
2527 * the country IE rd with what CRDA believes that country should have
2531 * Userspace could have sent two replies with only
2532 * one kernel request. By the second reply we would have
2533 * already processed and consumed the country_ie_regdomain.
2535 if (!country_ie_regdomain)
2536 return -EALREADY;
2537 BUG_ON(rd == country_ie_regdomain);
2540 * Intersect what CRDA returned and our what we
2541 * had built from the Country IE received
2544 intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2546 reg_country_ie_process_debug(rd,
2547 country_ie_regdomain,
2548 intersected_rd);
2550 kfree(country_ie_regdomain);
2551 country_ie_regdomain = NULL;
2553 if (!intersected_rd)
2554 return -EINVAL;
2556 rdev = wiphy_to_dev(request_wiphy);
2558 rdev->country_ie_alpha2[0] = rd->alpha2[0];
2559 rdev->country_ie_alpha2[1] = rd->alpha2[1];
2560 rdev->env = last_request->country_ie_env;
2562 BUG_ON(intersected_rd == rd);
2564 kfree(rd);
2565 rd = NULL;
2567 reset_regdomains();
2568 cfg80211_regdomain = intersected_rd;
2570 return 0;
2575 * Use this call to set the current regulatory domain. Conflicts with
2576 * multiple drivers can be ironed out later. Caller must've already
2577 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2579 int set_regdom(const struct ieee80211_regdomain *rd)
2581 int r;
2583 assert_cfg80211_lock();
2585 mutex_lock(&reg_mutex);
2587 /* Note that this doesn't update the wiphys, this is done below */
2588 r = __set_regdom(rd);
2589 if (r) {
2590 kfree(rd);
2591 mutex_unlock(&reg_mutex);
2592 return r;
2595 /* This would make this whole thing pointless */
2596 if (!last_request->intersect)
2597 BUG_ON(rd != cfg80211_regdomain);
2599 /* update all wiphys now with the new established regulatory domain */
2600 update_all_wiphy_regulatory(last_request->initiator);
2602 print_regdomain(cfg80211_regdomain);
2604 nl80211_send_reg_change_event(last_request);
2606 mutex_unlock(&reg_mutex);
2608 return r;
2611 /* Caller must hold cfg80211_mutex */
2612 void reg_device_remove(struct wiphy *wiphy)
2614 struct wiphy *request_wiphy = NULL;
2616 assert_cfg80211_lock();
2618 mutex_lock(&reg_mutex);
2620 kfree(wiphy->regd);
2622 if (last_request)
2623 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2625 if (!request_wiphy || request_wiphy != wiphy)
2626 goto out;
2628 last_request->wiphy_idx = WIPHY_IDX_STALE;
2629 last_request->country_ie_env = ENVIRON_ANY;
2630 out:
2631 mutex_unlock(&reg_mutex);
2634 int regulatory_init(void)
2636 int err = 0;
2638 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2639 if (IS_ERR(reg_pdev))
2640 return PTR_ERR(reg_pdev);
2642 spin_lock_init(&reg_requests_lock);
2643 spin_lock_init(&reg_pending_beacons_lock);
2645 cfg80211_regdomain = cfg80211_world_regdom;
2647 user_alpha2[0] = '9';
2648 user_alpha2[1] = '7';
2650 /* We always try to get an update for the static regdomain */
2651 err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2652 if (err) {
2653 if (err == -ENOMEM)
2654 return err;
2656 * N.B. kobject_uevent_env() can fail mainly for when we're out
2657 * memory which is handled and propagated appropriately above
2658 * but it can also fail during a netlink_broadcast() or during
2659 * early boot for call_usermodehelper(). For now treat these
2660 * errors as non-fatal.
2662 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2663 "to call CRDA during init");
2664 #ifdef CONFIG_CFG80211_REG_DEBUG
2665 /* We want to find out exactly why when debugging */
2666 WARN_ON(err);
2667 #endif
2671 * Finally, if the user set the module parameter treat it
2672 * as a user hint.
2674 if (!is_world_regdom(ieee80211_regdom))
2675 regulatory_hint_user(ieee80211_regdom);
2677 return 0;
2680 void regulatory_exit(void)
2682 struct regulatory_request *reg_request, *tmp;
2683 struct reg_beacon *reg_beacon, *btmp;
2685 cancel_work_sync(&reg_work);
2687 mutex_lock(&cfg80211_mutex);
2688 mutex_lock(&reg_mutex);
2690 reset_regdomains();
2692 kfree(country_ie_regdomain);
2693 country_ie_regdomain = NULL;
2695 kfree(last_request);
2697 platform_device_unregister(reg_pdev);
2699 spin_lock_bh(&reg_pending_beacons_lock);
2700 if (!list_empty(&reg_pending_beacons)) {
2701 list_for_each_entry_safe(reg_beacon, btmp,
2702 &reg_pending_beacons, list) {
2703 list_del(&reg_beacon->list);
2704 kfree(reg_beacon);
2707 spin_unlock_bh(&reg_pending_beacons_lock);
2709 if (!list_empty(&reg_beacon_list)) {
2710 list_for_each_entry_safe(reg_beacon, btmp,
2711 &reg_beacon_list, list) {
2712 list_del(&reg_beacon->list);
2713 kfree(reg_beacon);
2717 spin_lock(&reg_requests_lock);
2718 if (!list_empty(&reg_requests_list)) {
2719 list_for_each_entry_safe(reg_request, tmp,
2720 &reg_requests_list, list) {
2721 list_del(&reg_request->list);
2722 kfree(reg_request);
2725 spin_unlock(&reg_requests_lock);
2727 mutex_unlock(&reg_mutex);
2728 mutex_unlock(&cfg80211_mutex);