1 /* myri_sbus.h: MyriCOM MyriNET SBUS card driver.
3 * Copyright (C) 1996, 1999 David S. Miller (davem@redhat.com)
6 static char version
[] =
7 "myri_sbus.c:v1.9 12/Sep/99 David S. Miller (davem@redhat.com)\n";
9 #include <linux/module.h>
10 #include <linux/config.h>
11 #include <linux/errno.h>
12 #include <linux/kernel.h>
13 #include <linux/types.h>
14 #include <linux/fcntl.h>
15 #include <linux/interrupt.h>
16 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/delay.h>
21 #include <linux/init.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/bitops.h>
32 #include <asm/system.h>
35 #include <asm/byteorder.h>
36 #include <asm/idprom.h>
38 #include <asm/openprom.h>
39 #include <asm/oplib.h>
40 #include <asm/auxio.h>
41 #include <asm/pgtable.h>
43 #include <asm/checksum.h>
45 #include "myri_sbus.h"
46 #include "myri_code.h"
48 /* #define DEBUG_DETECT */
49 /* #define DEBUG_IRQ */
50 /* #define DEBUG_TRANSMIT */
51 /* #define DEBUG_RECEIVE */
52 /* #define DEBUG_HEADER */
55 #define DET(x) printk x
61 #define DIRQ(x) printk x
67 #define DTX(x) printk x
73 #define DRX(x) printk x
79 #define DHDR(x) printk x
85 static struct myri_eth
*root_myri_dev
;
88 static void myri_reset_off(void __iomem
*lp
, void __iomem
*cregs
)
91 sbus_writel(0, lp
+ LANAI_EIMASK
);
93 /* Turn RESET function off. */
94 sbus_writel(CONTROL_ROFF
, cregs
+ MYRICTRL_CTRL
);
97 static void myri_reset_on(void __iomem
*cregs
)
99 /* Enable RESET function. */
100 sbus_writel(CONTROL_RON
, cregs
+ MYRICTRL_CTRL
);
103 sbus_writel(CONTROL_DIRQ
, cregs
+ MYRICTRL_CTRL
);
106 static void myri_disable_irq(void __iomem
*lp
, void __iomem
*cregs
)
108 sbus_writel(CONTROL_DIRQ
, cregs
+ MYRICTRL_CTRL
);
109 sbus_writel(0, lp
+ LANAI_EIMASK
);
110 sbus_writel(ISTAT_HOST
, lp
+ LANAI_ISTAT
);
113 static void myri_enable_irq(void __iomem
*lp
, void __iomem
*cregs
)
115 sbus_writel(CONTROL_EIRQ
, cregs
+ MYRICTRL_CTRL
);
116 sbus_writel(ISTAT_HOST
, lp
+ LANAI_EIMASK
);
119 static inline void bang_the_chip(struct myri_eth
*mp
)
121 struct myri_shmem __iomem
*shmem
= mp
->shmem
;
122 void __iomem
*cregs
= mp
->cregs
;
124 sbus_writel(1, &shmem
->send
);
125 sbus_writel(CONTROL_WON
, cregs
+ MYRICTRL_CTRL
);
128 static int myri_do_handshake(struct myri_eth
*mp
)
130 struct myri_shmem __iomem
*shmem
= mp
->shmem
;
131 void __iomem
*cregs
= mp
->cregs
;
132 struct myri_channel __iomem
*chan
= &shmem
->channel
;
135 DET(("myri_do_handshake: "));
136 if (sbus_readl(&chan
->state
) == STATE_READY
) {
137 DET(("Already STATE_READY, failed.\n"));
138 return -1; /* We're hosed... */
141 myri_disable_irq(mp
->lregs
, cregs
);
143 while (tick
++ <= 25) {
147 DET(("shakedown, CONTROL_WON, "));
148 sbus_writel(1, &shmem
->shakedown
);
149 sbus_writel(CONTROL_WON
, cregs
+ MYRICTRL_CTRL
);
151 softstate
= sbus_readl(&chan
->state
);
152 DET(("chanstate[%08x] ", softstate
));
153 if (softstate
== STATE_READY
) {
154 DET(("wakeup successful, "));
158 if (softstate
!= STATE_WFN
) {
159 DET(("not WFN setting that, "));
160 sbus_writel(STATE_WFN
, &chan
->state
);
166 myri_enable_irq(mp
->lregs
, cregs
);
169 DET(("25 ticks we lose, failure.\n"));
176 static int myri_load_lanai(struct myri_eth
*mp
)
178 struct net_device
*dev
= mp
->dev
;
179 struct myri_shmem __iomem
*shmem
= mp
->shmem
;
183 myri_disable_irq(mp
->lregs
, mp
->cregs
);
184 myri_reset_on(mp
->cregs
);
187 for (i
= 0; i
< mp
->eeprom
.ramsz
; i
++)
188 sbus_writeb(0, rptr
+ i
);
190 if (mp
->eeprom
.cpuvers
>= CPUVERS_3_0
)
191 sbus_writel(mp
->eeprom
.cval
, mp
->lregs
+ LANAI_CVAL
);
193 /* Load executable code. */
194 for (i
= 0; i
< sizeof(lanai4_code
); i
++)
195 sbus_writeb(lanai4_code
[i
], rptr
+ (lanai4_code_off
* 2) + i
);
197 /* Load data segment. */
198 for (i
= 0; i
< sizeof(lanai4_data
); i
++)
199 sbus_writeb(lanai4_data
[i
], rptr
+ (lanai4_data_off
* 2) + i
);
201 /* Set device address. */
202 sbus_writeb(0, &shmem
->addr
[0]);
203 sbus_writeb(0, &shmem
->addr
[1]);
204 for (i
= 0; i
< 6; i
++)
205 sbus_writeb(dev
->dev_addr
[i
],
206 &shmem
->addr
[i
+ 2]);
208 /* Set SBUS bursts and interrupt mask. */
209 sbus_writel(((mp
->myri_bursts
& 0xf8) >> 3), &shmem
->burst
);
210 sbus_writel(SHMEM_IMASK_RX
, &shmem
->imask
);
212 /* Release the LANAI. */
213 myri_disable_irq(mp
->lregs
, mp
->cregs
);
214 myri_reset_off(mp
->lregs
, mp
->cregs
);
215 myri_disable_irq(mp
->lregs
, mp
->cregs
);
217 /* Wait for the reset to complete. */
218 for (i
= 0; i
< 5000; i
++) {
219 if (sbus_readl(&shmem
->channel
.state
) != STATE_READY
)
226 printk(KERN_ERR
"myricom: Chip would not reset after firmware load.\n");
228 i
= myri_do_handshake(mp
);
230 printk(KERN_ERR
"myricom: Handshake with LANAI failed.\n");
232 if (mp
->eeprom
.cpuvers
== CPUVERS_4_0
)
233 sbus_writel(0, mp
->lregs
+ LANAI_VERS
);
238 static void myri_clean_rings(struct myri_eth
*mp
)
240 struct sendq __iomem
*sq
= mp
->sq
;
241 struct recvq __iomem
*rq
= mp
->rq
;
244 sbus_writel(0, &rq
->tail
);
245 sbus_writel(0, &rq
->head
);
246 for (i
= 0; i
< (RX_RING_SIZE
+1); i
++) {
247 if (mp
->rx_skbs
[i
] != NULL
) {
248 struct myri_rxd __iomem
*rxd
= &rq
->myri_rxd
[i
];
251 dma_addr
= sbus_readl(&rxd
->myri_scatters
[0].addr
);
252 sbus_unmap_single(mp
->myri_sdev
, dma_addr
, RX_ALLOC_SIZE
, SBUS_DMA_FROMDEVICE
);
253 dev_kfree_skb(mp
->rx_skbs
[i
]);
254 mp
->rx_skbs
[i
] = NULL
;
259 sbus_writel(0, &sq
->tail
);
260 sbus_writel(0, &sq
->head
);
261 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
262 if (mp
->tx_skbs
[i
] != NULL
) {
263 struct sk_buff
*skb
= mp
->tx_skbs
[i
];
264 struct myri_txd __iomem
*txd
= &sq
->myri_txd
[i
];
267 dma_addr
= sbus_readl(&txd
->myri_gathers
[0].addr
);
268 sbus_unmap_single(mp
->myri_sdev
, dma_addr
, (skb
->len
+ 3) & ~3, SBUS_DMA_TODEVICE
);
269 dev_kfree_skb(mp
->tx_skbs
[i
]);
270 mp
->tx_skbs
[i
] = NULL
;
275 static void myri_init_rings(struct myri_eth
*mp
, int from_irq
)
277 struct recvq __iomem
*rq
= mp
->rq
;
278 struct myri_rxd __iomem
*rxd
= &rq
->myri_rxd
[0];
279 struct net_device
*dev
= mp
->dev
;
280 gfp_t gfp_flags
= GFP_KERNEL
;
283 if (from_irq
|| in_interrupt())
284 gfp_flags
= GFP_ATOMIC
;
286 myri_clean_rings(mp
);
287 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
288 struct sk_buff
*skb
= myri_alloc_skb(RX_ALLOC_SIZE
, gfp_flags
);
293 mp
->rx_skbs
[i
] = skb
;
295 skb_put(skb
, RX_ALLOC_SIZE
);
297 dma_addr
= sbus_map_single(mp
->myri_sdev
, skb
->data
, RX_ALLOC_SIZE
, SBUS_DMA_FROMDEVICE
);
298 sbus_writel(dma_addr
, &rxd
[i
].myri_scatters
[0].addr
);
299 sbus_writel(RX_ALLOC_SIZE
, &rxd
[i
].myri_scatters
[0].len
);
300 sbus_writel(i
, &rxd
[i
].ctx
);
301 sbus_writel(1, &rxd
[i
].num_sg
);
303 sbus_writel(0, &rq
->head
);
304 sbus_writel(RX_RING_SIZE
, &rq
->tail
);
307 static int myri_init(struct myri_eth
*mp
, int from_irq
)
309 myri_init_rings(mp
, from_irq
);
313 static void myri_is_not_so_happy(struct myri_eth
*mp
)
318 static void dump_ehdr(struct ethhdr
*ehdr
)
320 printk("ehdr[h_dst(%02x:%02x:%02x:%02x:%02x:%02x)"
321 "h_source(%02x:%02x:%02x:%02x:%02x:%02x)h_proto(%04x)]\n",
322 ehdr
->h_dest
[0], ehdr
->h_dest
[1], ehdr
->h_dest
[2],
323 ehdr
->h_dest
[3], ehdr
->h_dest
[4], ehdr
->h_dest
[4],
324 ehdr
->h_source
[0], ehdr
->h_source
[1], ehdr
->h_source
[2],
325 ehdr
->h_source
[3], ehdr
->h_source
[4], ehdr
->h_source
[4],
329 static void dump_ehdr_and_myripad(unsigned char *stuff
)
331 struct ethhdr
*ehdr
= (struct ethhdr
*) (stuff
+ 2);
333 printk("pad[%02x:%02x]", stuff
[0], stuff
[1]);
334 printk("ehdr[h_dst(%02x:%02x:%02x:%02x:%02x:%02x)"
335 "h_source(%02x:%02x:%02x:%02x:%02x:%02x)h_proto(%04x)]\n",
336 ehdr
->h_dest
[0], ehdr
->h_dest
[1], ehdr
->h_dest
[2],
337 ehdr
->h_dest
[3], ehdr
->h_dest
[4], ehdr
->h_dest
[4],
338 ehdr
->h_source
[0], ehdr
->h_source
[1], ehdr
->h_source
[2],
339 ehdr
->h_source
[3], ehdr
->h_source
[4], ehdr
->h_source
[4],
344 static void myri_tx(struct myri_eth
*mp
, struct net_device
*dev
)
346 struct sendq __iomem
*sq
= mp
->sq
;
347 int entry
= mp
->tx_old
;
348 int limit
= sbus_readl(&sq
->head
);
350 DTX(("entry[%d] limit[%d] ", entry
, limit
));
353 while (entry
!= limit
) {
354 struct sk_buff
*skb
= mp
->tx_skbs
[entry
];
357 DTX(("SKB[%d] ", entry
));
358 dma_addr
= sbus_readl(&sq
->myri_txd
[entry
].myri_gathers
[0].addr
);
359 sbus_unmap_single(mp
->myri_sdev
, dma_addr
, skb
->len
, SBUS_DMA_TODEVICE
);
361 mp
->tx_skbs
[entry
] = NULL
;
362 mp
->enet_stats
.tx_packets
++;
363 entry
= NEXT_TX(entry
);
368 /* Determine the packet's protocol ID. The rule here is that we
369 * assume 802.3 if the type field is short enough to be a length.
370 * This is normal practice and works for any 'now in use' protocol.
372 static __be16
myri_type_trans(struct sk_buff
*skb
, struct net_device
*dev
)
377 skb
->mac
.raw
= (((unsigned char *)skb
->data
) + MYRI_PAD_LEN
);
378 skb_pull(skb
, dev
->hard_header_len
);
382 DHDR(("myri_type_trans: "));
385 if (*eth
->h_dest
& 1) {
386 if (memcmp(eth
->h_dest
, dev
->broadcast
, ETH_ALEN
)==0)
387 skb
->pkt_type
= PACKET_BROADCAST
;
389 skb
->pkt_type
= PACKET_MULTICAST
;
390 } else if (dev
->flags
& (IFF_PROMISC
|IFF_ALLMULTI
)) {
391 if (memcmp(eth
->h_dest
, dev
->dev_addr
, ETH_ALEN
))
392 skb
->pkt_type
= PACKET_OTHERHOST
;
395 if (ntohs(eth
->h_proto
) >= 1536)
400 /* This is a magic hack to spot IPX packets. Older Novell breaks
401 * the protocol design and runs IPX over 802.3 without an 802.2 LLC
402 * layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This
403 * won't work for fault tolerant netware but does for the rest.
405 if (*(unsigned short *)rawp
== 0xFFFF)
406 return htons(ETH_P_802_3
);
409 return htons(ETH_P_802_2
);
412 static void myri_rx(struct myri_eth
*mp
, struct net_device
*dev
)
414 struct recvq __iomem
*rq
= mp
->rq
;
415 struct recvq __iomem
*rqa
= mp
->rqack
;
416 int entry
= sbus_readl(&rqa
->head
);
417 int limit
= sbus_readl(&rqa
->tail
);
420 DRX(("entry[%d] limit[%d] ", entry
, limit
));
425 while (entry
!= limit
) {
426 struct myri_rxd __iomem
*rxdack
= &rqa
->myri_rxd
[entry
];
427 u32 csum
= sbus_readl(&rxdack
->csum
);
428 int len
= sbus_readl(&rxdack
->myri_scatters
[0].len
);
429 int index
= sbus_readl(&rxdack
->ctx
);
430 struct myri_rxd __iomem
*rxd
= &rq
->myri_rxd
[sbus_readl(&rq
->tail
)];
431 struct sk_buff
*skb
= mp
->rx_skbs
[index
];
434 sbus_writel(NEXT_RX(entry
), &rqa
->head
);
436 /* Check for errors. */
437 DRX(("rxd[%d]: %p len[%d] csum[%08x] ", entry
, rxd
, len
, csum
));
438 sbus_dma_sync_single_for_cpu(mp
->myri_sdev
,
439 sbus_readl(&rxd
->myri_scatters
[0].addr
),
440 RX_ALLOC_SIZE
, SBUS_DMA_FROMDEVICE
);
441 if (len
< (ETH_HLEN
+ MYRI_PAD_LEN
) || (skb
->data
[0] != MYRI_PAD_LEN
)) {
443 mp
->enet_stats
.rx_errors
++;
444 if (len
< (ETH_HLEN
+ MYRI_PAD_LEN
)) {
445 DRX(("BAD_LENGTH] "));
446 mp
->enet_stats
.rx_length_errors
++;
448 DRX(("NO_PADDING] "));
449 mp
->enet_stats
.rx_frame_errors
++;
452 /* Return it to the LANAI. */
456 mp
->enet_stats
.rx_dropped
++;
457 sbus_dma_sync_single_for_device(mp
->myri_sdev
,
458 sbus_readl(&rxd
->myri_scatters
[0].addr
),
460 SBUS_DMA_FROMDEVICE
);
461 sbus_writel(RX_ALLOC_SIZE
, &rxd
->myri_scatters
[0].len
);
462 sbus_writel(index
, &rxd
->ctx
);
463 sbus_writel(1, &rxd
->num_sg
);
464 sbus_writel(NEXT_RX(sbus_readl(&rq
->tail
)), &rq
->tail
);
468 DRX(("len[%d] ", len
));
469 if (len
> RX_COPY_THRESHOLD
) {
470 struct sk_buff
*new_skb
;
474 new_skb
= myri_alloc_skb(RX_ALLOC_SIZE
, GFP_ATOMIC
);
475 if (new_skb
== NULL
) {
476 DRX(("skb_alloc(FAILED) "));
479 sbus_unmap_single(mp
->myri_sdev
,
480 sbus_readl(&rxd
->myri_scatters
[0].addr
),
482 SBUS_DMA_FROMDEVICE
);
483 mp
->rx_skbs
[index
] = new_skb
;
485 skb_put(new_skb
, RX_ALLOC_SIZE
);
486 dma_addr
= sbus_map_single(mp
->myri_sdev
,
489 SBUS_DMA_FROMDEVICE
);
490 sbus_writel(dma_addr
, &rxd
->myri_scatters
[0].addr
);
491 sbus_writel(RX_ALLOC_SIZE
, &rxd
->myri_scatters
[0].len
);
492 sbus_writel(index
, &rxd
->ctx
);
493 sbus_writel(1, &rxd
->num_sg
);
494 sbus_writel(NEXT_RX(sbus_readl(&rq
->tail
)), &rq
->tail
);
496 /* Trim the original skb for the netif. */
497 DRX(("trim(%d) ", len
));
500 struct sk_buff
*copy_skb
= dev_alloc_skb(len
);
503 if (copy_skb
== NULL
) {
504 DRX(("dev_alloc_skb(FAILED) "));
507 /* DMA sync already done above. */
509 DRX(("resv_and_put "));
510 skb_put(copy_skb
, len
);
511 memcpy(copy_skb
->data
, skb
->data
, len
);
513 /* Reuse original ring buffer. */
515 sbus_dma_sync_single_for_device(mp
->myri_sdev
,
516 sbus_readl(&rxd
->myri_scatters
[0].addr
),
518 SBUS_DMA_FROMDEVICE
);
519 sbus_writel(RX_ALLOC_SIZE
, &rxd
->myri_scatters
[0].len
);
520 sbus_writel(index
, &rxd
->ctx
);
521 sbus_writel(1, &rxd
->num_sg
);
522 sbus_writel(NEXT_RX(sbus_readl(&rq
->tail
)), &rq
->tail
);
527 /* Just like the happy meal we get checksums from this card. */
529 skb
->ip_summed
= CHECKSUM_UNNECESSARY
; /* XXX */
531 skb
->protocol
= myri_type_trans(skb
, dev
);
532 DRX(("prot[%04x] netif_rx ", skb
->protocol
));
535 dev
->last_rx
= jiffies
;
536 mp
->enet_stats
.rx_packets
++;
537 mp
->enet_stats
.rx_bytes
+= len
;
540 entry
= NEXT_RX(entry
);
544 static irqreturn_t
myri_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
)
546 struct net_device
*dev
= (struct net_device
*) dev_id
;
547 struct myri_eth
*mp
= (struct myri_eth
*) dev
->priv
;
548 void __iomem
*lregs
= mp
->lregs
;
549 struct myri_channel __iomem
*chan
= &mp
->shmem
->channel
;
554 spin_lock_irqsave(&mp
->irq_lock
, flags
);
556 status
= sbus_readl(lregs
+ LANAI_ISTAT
);
557 DIRQ(("myri_interrupt: status[%08x] ", status
));
558 if (status
& ISTAT_HOST
) {
562 DIRQ(("IRQ_DISAB "));
563 myri_disable_irq(lregs
, mp
->cregs
);
564 softstate
= sbus_readl(&chan
->state
);
565 DIRQ(("state[%08x] ", softstate
));
566 if (softstate
!= STATE_READY
) {
567 DIRQ(("myri_not_so_happy "));
568 myri_is_not_so_happy(mp
);
570 DIRQ(("\nmyri_rx: "));
572 DIRQ(("\nistat=ISTAT_HOST "));
573 sbus_writel(ISTAT_HOST
, lregs
+ LANAI_ISTAT
);
575 myri_enable_irq(lregs
, mp
->cregs
);
579 spin_unlock_irqrestore(&mp
->irq_lock
, flags
);
581 return IRQ_RETVAL(handled
);
584 static int myri_open(struct net_device
*dev
)
586 struct myri_eth
*mp
= (struct myri_eth
*) dev
->priv
;
588 return myri_init(mp
, in_interrupt());
591 static int myri_close(struct net_device
*dev
)
593 struct myri_eth
*mp
= (struct myri_eth
*) dev
->priv
;
595 myri_clean_rings(mp
);
599 static void myri_tx_timeout(struct net_device
*dev
)
601 struct myri_eth
*mp
= (struct myri_eth
*) dev
->priv
;
603 printk(KERN_ERR
"%s: transmit timed out, resetting\n", dev
->name
);
605 mp
->enet_stats
.tx_errors
++;
607 netif_wake_queue(dev
);
610 static int myri_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
612 struct myri_eth
*mp
= (struct myri_eth
*) dev
->priv
;
613 struct sendq __iomem
*sq
= mp
->sq
;
614 struct myri_txd __iomem
*txd
;
616 unsigned int head
, tail
;
620 DTX(("myri_start_xmit: "));
624 netif_stop_queue(dev
);
626 /* This is just to prevent multiple PIO reads for TX_BUFFS_AVAIL. */
627 head
= sbus_readl(&sq
->head
);
628 tail
= sbus_readl(&sq
->tail
);
630 if (!TX_BUFFS_AVAIL(head
, tail
)) {
631 DTX(("no buffs available, returning 1\n"));
635 spin_lock_irqsave(&mp
->irq_lock
, flags
);
637 DHDR(("xmit[skbdata(%p)]\n", skb
->data
));
639 dump_ehdr_and_myripad(((unsigned char *) skb
->data
));
642 /* XXX Maybe this can go as well. */
646 len
= (len
+ 4) & (~3);
649 entry
= sbus_readl(&sq
->tail
);
651 txd
= &sq
->myri_txd
[entry
];
652 mp
->tx_skbs
[entry
] = skb
;
654 /* Must do this before we sbus map it. */
655 if (skb
->data
[MYRI_PAD_LEN
] & 0x1) {
656 sbus_writew(0xffff, &txd
->addr
[0]);
657 sbus_writew(0xffff, &txd
->addr
[1]);
658 sbus_writew(0xffff, &txd
->addr
[2]);
659 sbus_writew(0xffff, &txd
->addr
[3]);
661 sbus_writew(0xffff, &txd
->addr
[0]);
662 sbus_writew((skb
->data
[0] << 8) | skb
->data
[1], &txd
->addr
[1]);
663 sbus_writew((skb
->data
[2] << 8) | skb
->data
[3], &txd
->addr
[2]);
664 sbus_writew((skb
->data
[4] << 8) | skb
->data
[5], &txd
->addr
[3]);
667 dma_addr
= sbus_map_single(mp
->myri_sdev
, skb
->data
, len
, SBUS_DMA_TODEVICE
);
668 sbus_writel(dma_addr
, &txd
->myri_gathers
[0].addr
);
669 sbus_writel(len
, &txd
->myri_gathers
[0].len
);
670 sbus_writel(1, &txd
->num_sg
);
671 sbus_writel(KERNEL_CHANNEL
, &txd
->chan
);
672 sbus_writel(len
, &txd
->len
);
673 sbus_writel((u32
)-1, &txd
->csum_off
);
674 sbus_writel(0, &txd
->csum_field
);
676 sbus_writel(NEXT_TX(entry
), &sq
->tail
);
677 DTX(("BangTheChip "));
680 DTX(("tbusy=0, returning 0\n"));
681 netif_start_queue(dev
);
682 spin_unlock_irqrestore(&mp
->irq_lock
, flags
);
686 /* Create the MyriNet MAC header for an arbitrary protocol layer
688 * saddr=NULL means use device source address
689 * daddr=NULL means leave destination address (eg unresolved arp)
691 static int myri_header(struct sk_buff
*skb
, struct net_device
*dev
, unsigned short type
,
692 void *daddr
, void *saddr
, unsigned len
)
694 struct ethhdr
*eth
= (struct ethhdr
*) skb_push(skb
, ETH_HLEN
);
695 unsigned char *pad
= (unsigned char *) skb_push(skb
, MYRI_PAD_LEN
);
698 DHDR(("myri_header: pad[%02x,%02x] ", pad
[0], pad
[1]));
702 /* Set the MyriNET padding identifier. */
703 pad
[0] = MYRI_PAD_LEN
;
706 /* Set the protocol type. For a packet of type ETH_P_802_3 we put the length
707 * in here instead. It is up to the 802.2 layer to carry protocol information.
709 if (type
!= ETH_P_802_3
)
710 eth
->h_proto
= htons(type
);
712 eth
->h_proto
= htons(len
);
714 /* Set the source hardware address. */
716 memcpy(eth
->h_source
, saddr
, dev
->addr_len
);
718 memcpy(eth
->h_source
, dev
->dev_addr
, dev
->addr_len
);
720 /* Anyway, the loopback-device should never use this function... */
721 if (dev
->flags
& IFF_LOOPBACK
) {
723 for (i
= 0; i
< dev
->addr_len
; i
++)
725 return(dev
->hard_header_len
);
729 memcpy(eth
->h_dest
, daddr
, dev
->addr_len
);
730 return dev
->hard_header_len
;
732 return -dev
->hard_header_len
;
735 /* Rebuild the MyriNet MAC header. This is called after an ARP
736 * (or in future other address resolution) has completed on this
737 * sk_buff. We now let ARP fill in the other fields.
739 static int myri_rebuild_header(struct sk_buff
*skb
)
741 unsigned char *pad
= (unsigned char *) skb
->data
;
742 struct ethhdr
*eth
= (struct ethhdr
*) (pad
+ MYRI_PAD_LEN
);
743 struct net_device
*dev
= skb
->dev
;
746 DHDR(("myri_rebuild_header: pad[%02x,%02x] ", pad
[0], pad
[1]));
750 /* Refill MyriNet padding identifiers, this is just being anal. */
751 pad
[0] = MYRI_PAD_LEN
;
754 switch (eth
->h_proto
)
757 case __constant_htons(ETH_P_IP
):
758 return arp_find(eth
->h_dest
, skb
);
763 "%s: unable to resolve type %X addresses.\n",
764 dev
->name
, (int)eth
->h_proto
);
766 memcpy(eth
->h_source
, dev
->dev_addr
, dev
->addr_len
);
774 int myri_header_cache(struct neighbour
*neigh
, struct hh_cache
*hh
)
776 unsigned short type
= hh
->hh_type
;
779 struct net_device
*dev
= neigh
->dev
;
781 pad
= ((unsigned char *) hh
->hh_data
) +
782 HH_DATA_OFF(sizeof(*eth
) + MYRI_PAD_LEN
);
783 eth
= (struct ethhdr
*) (pad
+ MYRI_PAD_LEN
);
785 if (type
== __constant_htons(ETH_P_802_3
))
788 /* Refill MyriNet padding identifiers, this is just being anal. */
789 pad
[0] = MYRI_PAD_LEN
;
793 memcpy(eth
->h_source
, dev
->dev_addr
, dev
->addr_len
);
794 memcpy(eth
->h_dest
, neigh
->ha
, dev
->addr_len
);
800 /* Called by Address Resolution module to notify changes in address. */
801 void myri_header_cache_update(struct hh_cache
*hh
, struct net_device
*dev
, unsigned char * haddr
)
803 memcpy(((u8
*)hh
->hh_data
) + HH_DATA_OFF(sizeof(struct ethhdr
)),
804 haddr
, dev
->addr_len
);
807 static int myri_change_mtu(struct net_device
*dev
, int new_mtu
)
809 if ((new_mtu
< (ETH_HLEN
+ MYRI_PAD_LEN
)) || (new_mtu
> MYRINET_MTU
))
815 static struct net_device_stats
*myri_get_stats(struct net_device
*dev
)
816 { return &(((struct myri_eth
*)dev
->priv
)->enet_stats
); }
818 static void myri_set_multicast(struct net_device
*dev
)
820 /* Do nothing, all MyriCOM nodes transmit multicast frames
821 * as broadcast packets...
825 static inline void set_boardid_from_idprom(struct myri_eth
*mp
, int num
)
827 mp
->eeprom
.id
[0] = 0;
828 mp
->eeprom
.id
[1] = idprom
->id_machtype
;
829 mp
->eeprom
.id
[2] = (idprom
->id_sernum
>> 16) & 0xff;
830 mp
->eeprom
.id
[3] = (idprom
->id_sernum
>> 8) & 0xff;
831 mp
->eeprom
.id
[4] = (idprom
->id_sernum
>> 0) & 0xff;
832 mp
->eeprom
.id
[5] = num
;
835 static inline void determine_reg_space_size(struct myri_eth
*mp
)
837 switch(mp
->eeprom
.cpuvers
) {
842 mp
->reg_size
= (3 * 128 * 1024) + 4096;
847 mp
->reg_size
= ((4096<<1) + mp
->eeprom
.ramsz
);
853 printk("myricom: AIEEE weird cpu version %04x assuming pre4.0\n",
855 mp
->reg_size
= (3 * 128 * 1024) + 4096;
860 static void dump_eeprom(struct myri_eth
*mp
)
862 printk("EEPROM: clockval[%08x] cpuvers[%04x] "
863 "id[%02x,%02x,%02x,%02x,%02x,%02x]\n",
864 mp
->eeprom
.cval
, mp
->eeprom
.cpuvers
,
865 mp
->eeprom
.id
[0], mp
->eeprom
.id
[1], mp
->eeprom
.id
[2],
866 mp
->eeprom
.id
[3], mp
->eeprom
.id
[4], mp
->eeprom
.id
[5]);
867 printk("EEPROM: ramsz[%08x]\n", mp
->eeprom
.ramsz
);
868 printk("EEPROM: fvers[%02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x\n",
869 mp
->eeprom
.fvers
[0], mp
->eeprom
.fvers
[1], mp
->eeprom
.fvers
[2],
870 mp
->eeprom
.fvers
[3], mp
->eeprom
.fvers
[4], mp
->eeprom
.fvers
[5],
871 mp
->eeprom
.fvers
[6], mp
->eeprom
.fvers
[7]);
872 printk("EEPROM: %02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x\n",
873 mp
->eeprom
.fvers
[8], mp
->eeprom
.fvers
[9], mp
->eeprom
.fvers
[10],
874 mp
->eeprom
.fvers
[11], mp
->eeprom
.fvers
[12], mp
->eeprom
.fvers
[13],
875 mp
->eeprom
.fvers
[14], mp
->eeprom
.fvers
[15]);
876 printk("EEPROM: %02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x\n",
877 mp
->eeprom
.fvers
[16], mp
->eeprom
.fvers
[17], mp
->eeprom
.fvers
[18],
878 mp
->eeprom
.fvers
[19], mp
->eeprom
.fvers
[20], mp
->eeprom
.fvers
[21],
879 mp
->eeprom
.fvers
[22], mp
->eeprom
.fvers
[23]);
880 printk("EEPROM: %02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x]\n",
881 mp
->eeprom
.fvers
[24], mp
->eeprom
.fvers
[25], mp
->eeprom
.fvers
[26],
882 mp
->eeprom
.fvers
[27], mp
->eeprom
.fvers
[28], mp
->eeprom
.fvers
[29],
883 mp
->eeprom
.fvers
[30], mp
->eeprom
.fvers
[31]);
884 printk("EEPROM: mvers[%02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x\n",
885 mp
->eeprom
.mvers
[0], mp
->eeprom
.mvers
[1], mp
->eeprom
.mvers
[2],
886 mp
->eeprom
.mvers
[3], mp
->eeprom
.mvers
[4], mp
->eeprom
.mvers
[5],
887 mp
->eeprom
.mvers
[6], mp
->eeprom
.mvers
[7]);
888 printk("EEPROM: %02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x]\n",
889 mp
->eeprom
.mvers
[8], mp
->eeprom
.mvers
[9], mp
->eeprom
.mvers
[10],
890 mp
->eeprom
.mvers
[11], mp
->eeprom
.mvers
[12], mp
->eeprom
.mvers
[13],
891 mp
->eeprom
.mvers
[14], mp
->eeprom
.mvers
[15]);
892 printk("EEPROM: dlval[%04x] brd_type[%04x] bus_type[%04x] prod_code[%04x]\n",
893 mp
->eeprom
.dlval
, mp
->eeprom
.brd_type
, mp
->eeprom
.bus_type
,
894 mp
->eeprom
.prod_code
);
895 printk("EEPROM: serial_num[%08x]\n", mp
->eeprom
.serial_num
);
899 static int __init
myri_ether_init(struct sbus_dev
*sdev
, int num
)
901 static unsigned version_printed
;
902 struct net_device
*dev
;
904 unsigned char prop_buf
[32];
907 DET(("myri_ether_init(%p,%d):\n", sdev
, num
));
908 dev
= alloc_etherdev(sizeof(struct myri_eth
));
913 if (version_printed
++ == 0)
916 mp
= (struct myri_eth
*) dev
->priv
;
917 spin_lock_init(&mp
->irq_lock
);
918 mp
->myri_sdev
= sdev
;
920 /* Clean out skb arrays. */
921 for (i
= 0; i
< (RX_RING_SIZE
+ 1); i
++)
922 mp
->rx_skbs
[i
] = NULL
;
924 for (i
= 0; i
< TX_RING_SIZE
; i
++)
925 mp
->tx_skbs
[i
] = NULL
;
927 /* First check for EEPROM information. */
928 i
= prom_getproperty(sdev
->prom_node
, "myrinet-eeprom-info",
929 (char *)&mp
->eeprom
, sizeof(struct myri_eeprom
));
930 DET(("prom_getprop(myrinet-eeprom-info) returns %d\n", i
));
931 if (i
== 0 || i
== -1) {
932 /* No eeprom property, must cook up the values ourselves. */
933 DET(("No EEPROM: "));
934 mp
->eeprom
.bus_type
= BUS_TYPE_SBUS
;
935 mp
->eeprom
.cpuvers
= prom_getintdefault(sdev
->prom_node
,"cpu_version",0);
936 mp
->eeprom
.cval
= prom_getintdefault(sdev
->prom_node
,"clock_value",0);
937 mp
->eeprom
.ramsz
= prom_getintdefault(sdev
->prom_node
,"sram_size",0);
938 DET(("cpuvers[%d] cval[%d] ramsz[%d]\n", mp
->eeprom
.cpuvers
,
939 mp
->eeprom
.cval
, mp
->eeprom
.ramsz
));
940 if (mp
->eeprom
.cpuvers
== 0) {
941 DET(("EEPROM: cpuvers was zero, setting to %04x\n",CPUVERS_2_3
));
942 mp
->eeprom
.cpuvers
= CPUVERS_2_3
;
944 if (mp
->eeprom
.cpuvers
< CPUVERS_3_0
) {
945 DET(("EEPROM: cpuvers < CPUVERS_3_0, clockval set to zero.\n"));
948 if (mp
->eeprom
.ramsz
== 0) {
949 DET(("EEPROM: ramsz == 0, setting to 128k\n"));
950 mp
->eeprom
.ramsz
= (128 * 1024);
952 i
= prom_getproperty(sdev
->prom_node
, "myrinet-board-id",
954 DET(("EEPROM: prom_getprop(myrinet-board-id) returns %d\n", i
));
955 if ((i
!= 0) && (i
!= -1))
956 memcpy(&mp
->eeprom
.id
[0], &prop_buf
[0], 6);
958 set_boardid_from_idprom(mp
, num
);
959 i
= prom_getproperty(sdev
->prom_node
, "fpga_version",
960 &mp
->eeprom
.fvers
[0], 32);
961 DET(("EEPROM: prom_getprop(fpga_version) returns %d\n", i
));
962 if (i
== 0 || i
== -1)
963 memset(&mp
->eeprom
.fvers
[0], 0, 32);
965 if (mp
->eeprom
.cpuvers
== CPUVERS_4_1
) {
966 DET(("EEPROM: cpuvers CPUVERS_4_1, "));
967 if (mp
->eeprom
.ramsz
== (128 * 1024)) {
968 DET(("ramsize 128k, setting to 256k, "));
969 mp
->eeprom
.ramsz
= (256 * 1024);
971 if ((mp
->eeprom
.cval
==0x40414041)||(mp
->eeprom
.cval
==0x90449044)){
972 DET(("changing cval from %08x to %08x ",
973 mp
->eeprom
.cval
, 0x50e450e4));
974 mp
->eeprom
.cval
= 0x50e450e4;
983 for (i
= 0; i
< 6; i
++)
984 dev
->dev_addr
[i
] = mp
->eeprom
.id
[i
];
986 determine_reg_space_size(mp
);
988 /* Map in the MyriCOM register/localram set. */
989 if (mp
->eeprom
.cpuvers
< CPUVERS_4_0
) {
990 /* XXX Makes no sense, if control reg is non-existant this
991 * XXX driver cannot function at all... maybe pre-4.0 is
992 * XXX only a valid version for PCI cards? Ask feldy...
994 DET(("Mapping regs for cpuvers < CPUVERS_4_0\n"));
995 mp
->regs
= sbus_ioremap(&sdev
->resource
[0], 0,
996 mp
->reg_size
, "MyriCOM Regs");
998 printk("MyriCOM: Cannot map MyriCOM registers.\n");
1001 mp
->lanai
= mp
->regs
+ (256 * 1024);
1002 mp
->lregs
= mp
->lanai
+ (0x10000 * 2);
1004 DET(("Mapping regs for cpuvers >= CPUVERS_4_0\n"));
1005 mp
->cregs
= sbus_ioremap(&sdev
->resource
[0], 0,
1006 PAGE_SIZE
, "MyriCOM Control Regs");
1007 mp
->lregs
= sbus_ioremap(&sdev
->resource
[0], (256 * 1024),
1008 PAGE_SIZE
, "MyriCOM LANAI Regs");
1010 sbus_ioremap(&sdev
->resource
[0], (512 * 1024),
1011 mp
->eeprom
.ramsz
, "MyriCOM SRAM");
1013 DET(("Registers mapped: cregs[%p] lregs[%p] lanai[%p]\n",
1014 mp
->cregs
, mp
->lregs
, mp
->lanai
));
1016 if (mp
->eeprom
.cpuvers
>= CPUVERS_4_0
)
1017 mp
->shmem_base
= 0xf000;
1019 mp
->shmem_base
= 0x8000;
1021 DET(("Shared memory base is %04x, ", mp
->shmem_base
));
1023 mp
->shmem
= (struct myri_shmem __iomem
*)
1024 (mp
->lanai
+ (mp
->shmem_base
* 2));
1025 DET(("shmem mapped at %p\n", mp
->shmem
));
1027 mp
->rqack
= &mp
->shmem
->channel
.recvqa
;
1028 mp
->rq
= &mp
->shmem
->channel
.recvq
;
1029 mp
->sq
= &mp
->shmem
->channel
.sendq
;
1031 /* Reset the board. */
1032 DET(("Resetting LANAI\n"));
1033 myri_reset_off(mp
->lregs
, mp
->cregs
);
1034 myri_reset_on(mp
->cregs
);
1036 /* Turn IRQ's off. */
1037 myri_disable_irq(mp
->lregs
, mp
->cregs
);
1039 /* Reset once more. */
1040 myri_reset_on(mp
->cregs
);
1042 /* Get the supported DVMA burst sizes from our SBUS. */
1043 mp
->myri_bursts
= prom_getintdefault(mp
->myri_sdev
->bus
->prom_node
,
1044 "burst-sizes", 0x00);
1046 if (!sbus_can_burst64(sdev
))
1047 mp
->myri_bursts
&= ~(DMA_BURST64
);
1049 DET(("MYRI bursts %02x\n", mp
->myri_bursts
));
1051 /* Encode SBUS interrupt level in second control register. */
1052 i
= prom_getint(sdev
->prom_node
, "interrupts");
1055 DET(("prom_getint(interrupts)==%d, irqlvl set to %04x\n",
1058 sbus_writel((1 << i
), mp
->cregs
+ MYRICTRL_IRQLVL
);
1061 dev
->open
= &myri_open
;
1062 dev
->stop
= &myri_close
;
1063 dev
->hard_start_xmit
= &myri_start_xmit
;
1064 dev
->tx_timeout
= &myri_tx_timeout
;
1065 dev
->watchdog_timeo
= 5*HZ
;
1066 dev
->get_stats
= &myri_get_stats
;
1067 dev
->set_multicast_list
= &myri_set_multicast
;
1068 dev
->irq
= sdev
->irqs
[0];
1070 /* Register interrupt handler now. */
1071 DET(("Requesting MYRIcom IRQ line.\n"));
1072 if (request_irq(dev
->irq
, &myri_interrupt
,
1073 SA_SHIRQ
, "MyriCOM Ethernet", (void *) dev
)) {
1074 printk("MyriCOM: Cannot register interrupt handler.\n");
1078 dev
->mtu
= MYRINET_MTU
;
1079 dev
->change_mtu
= myri_change_mtu
;
1080 dev
->hard_header
= myri_header
;
1081 dev
->rebuild_header
= myri_rebuild_header
;
1082 dev
->hard_header_len
= (ETH_HLEN
+ MYRI_PAD_LEN
);
1083 dev
->hard_header_cache
= myri_header_cache
;
1084 dev
->header_cache_update
= myri_header_cache_update
;
1086 /* Load code onto the LANai. */
1087 DET(("Loading LANAI firmware\n"));
1088 myri_load_lanai(mp
);
1090 if (register_netdev(dev
)) {
1091 printk("MyriCOM: Cannot register device.\n");
1096 mp
->next_module
= root_myri_dev
;
1100 printk("%s: MyriCOM MyriNET Ethernet ", dev
->name
);
1102 for (i
= 0; i
< 6; i
++)
1103 printk("%2.2x%c", dev
->dev_addr
[i
],
1104 i
== 5 ? ' ' : ':');
1110 free_irq(dev
->irq
, dev
);
1112 /* This will also free the co-allocated 'dev->priv' */
1117 static int __init
myri_sbus_match(struct sbus_dev
*sdev
)
1119 char *name
= sdev
->prom_name
;
1121 if (!strcmp(name
, "MYRICOM,mlanai") ||
1122 !strcmp(name
, "myri"))
1128 static int __init
myri_sbus_probe(void)
1130 struct sbus_bus
*bus
;
1131 struct sbus_dev
*sdev
= NULL
;
1136 root_myri_dev
= NULL
;
1143 for_each_sbus(bus
) {
1144 for_each_sbusdev(sdev
, bus
) {
1145 if (myri_sbus_match(sdev
)) {
1147 DET(("Found myricom myrinet as %s\n", sdev
->prom_name
));
1148 if ((v
= myri_ether_init(sdev
, (cards
- 1))))
1158 static void __exit
myri_sbus_cleanup(void)
1161 while (root_myri_dev
) {
1162 struct myri_eth
*next
= root_myri_dev
->next_module
;
1164 unregister_netdev(root_myri_dev
->dev
);
1165 /* this will also free the co-allocated 'root_myri_dev' */
1166 free_netdev(root_myri_dev
->dev
);
1167 root_myri_dev
= next
;
1172 module_init(myri_sbus_probe
);
1173 module_exit(myri_sbus_cleanup
);
1174 MODULE_LICENSE("GPL");