[PATCH] 3c59x: fix networking for 10base2 NICs
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / 3c59x.c
blob274b0138d44200b8e828e315a0ebf071834dca20
1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
2 /*
3 Written 1996-1999 by Donald Becker.
5 This software may be used and distributed according to the terms
6 of the GNU General Public License, incorporated herein by reference.
8 This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
9 Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
10 and the EtherLink XL 3c900 and 3c905 cards.
12 Problem reports and questions should be directed to
13 vortex@scyld.com
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
20 Linux Kernel Additions:
22 0.99H+lk0.9 - David S. Miller - softnet, PCI DMA updates
23 0.99H+lk1.0 - Jeff Garzik <jgarzik@pobox.com>
24 Remove compatibility defines for kernel versions < 2.2.x.
25 Update for new 2.3.x module interface
26 LK1.1.2 (March 19, 2000)
27 * New PCI interface (jgarzik)
29 LK1.1.3 25 April 2000, Andrew Morton <andrewm@uow.edu.au>
30 - Merged with 3c575_cb.c
31 - Don't set RxComplete in boomerang interrupt enable reg
32 - spinlock in vortex_timer to protect mdio functions
33 - disable local interrupts around call to vortex_interrupt in
34 vortex_tx_timeout() (So vortex_interrupt can use spin_lock())
35 - Select window 3 in vortex_timer()'s write to Wn3_MAC_Ctrl
36 - In vortex_start_xmit(), move the lock to _after_ we've altered
37 vp->cur_tx and vp->tx_full. This defeats the race between
38 vortex_start_xmit() and vortex_interrupt which was identified
39 by Bogdan Costescu.
40 - Merged back support for six new cards from various sources
41 - Set vortex_have_pci if pci_module_init returns zero (fixes cardbus
42 insertion oops)
43 - Tell it that 3c905C has NWAY for 100bT autoneg
44 - Fix handling of SetStatusEnd in 'Too much work..' code, as
45 per 2.3.99's 3c575_cb (Dave Hinds).
46 - Split ISR into two for vortex & boomerang
47 - Fix MOD_INC/DEC races
48 - Handle resource allocation failures.
49 - Fix 3CCFE575CT LED polarity
50 - Make tx_interrupt_mitigation the default
52 LK1.1.4 25 April 2000, Andrew Morton <andrewm@uow.edu.au>
53 - Add extra TxReset to vortex_up() to fix 575_cb hotplug initialisation probs.
54 - Put vortex_info_tbl into __devinitdata
55 - In the vortex_error StatsFull HACK, disable stats in vp->intr_enable as well
56 as in the hardware.
57 - Increased the loop counter in issue_and_wait from 2,000 to 4,000.
59 LK1.1.5 28 April 2000, andrewm
60 - Added powerpc defines (John Daniel <jdaniel@etresoft.com> said these work...)
61 - Some extra diagnostics
62 - In vortex_error(), reset the Tx on maxCollisions. Otherwise most
63 chips usually get a Tx timeout.
64 - Added extra_reset module parm
65 - Replaced some inline timer manip with mod_timer
66 (Franois romieu <Francois.Romieu@nic.fr>)
67 - In vortex_up(), don't make Wn3_config initialisation dependent upon has_nway
68 (this came across from 3c575_cb).
70 LK1.1.6 06 Jun 2000, andrewm
71 - Backed out the PPC defines.
72 - Use del_timer_sync(), mod_timer().
73 - Fix wrapped ulong comparison in boomerang_rx()
74 - Add IS_TORNADO, use it to suppress 3c905C checksum error msg
75 (Donald Becker, I Lee Hetherington <ilh@sls.lcs.mit.edu>)
76 - Replace union wn3_config with BFINS/BFEXT manipulation for
77 sparc64 (Pete Zaitcev, Peter Jones)
78 - In vortex_error, do_tx_reset and vortex_tx_timeout(Vortex):
79 do a netif_wake_queue() to better recover from errors. (Anders Pedersen,
80 Donald Becker)
81 - Print a warning on out-of-memory (rate limited to 1 per 10 secs)
82 - Added two more Cardbus 575 NICs: 5b57 and 6564 (Paul Wagland)
84 LK1.1.7 2 Jul 2000 andrewm
85 - Better handling of shared IRQs
86 - Reset the transmitter on a Tx reclaim error
87 - Fixed crash under OOM during vortex_open() (Mark Hemment)
88 - Fix Rx cessation problem during OOM (help from Mark Hemment)
89 - The spinlocks around the mdio access were blocking interrupts for 300uS.
90 Fix all this to use spin_lock_bh() within mdio_read/write
91 - Only write to TxFreeThreshold if it's a boomerang - other NICs don't
92 have one.
93 - Added 802.3x MAC-layer flow control support
95 LK1.1.8 13 Aug 2000 andrewm
96 - Ignore request_region() return value - already reserved if Cardbus.
97 - Merged some additional Cardbus flags from Don's 0.99Qk
98 - Some fixes for 3c556 (Fred Maciel)
99 - Fix for EISA initialisation (Jan Rekorajski)
100 - Renamed MII_XCVR_PWR and EEPROM_230 to align with 3c575_cb and D. Becker's drivers
101 - Fixed MII_XCVR_PWR for 3CCFE575CT
102 - Added INVERT_LED_PWR, used it.
103 - Backed out the extra_reset stuff
105 LK1.1.9 12 Sep 2000 andrewm
106 - Backed out the tx_reset_resume flags. It was a no-op.
107 - In vortex_error, don't reset the Tx on txReclaim errors
108 - In vortex_error, don't reset the Tx on maxCollisions errors.
109 Hence backed out all the DownListPtr logic here.
110 - In vortex_error, give Tornado cards a partial TxReset on
111 maxCollisions (David Hinds). Defined MAX_COLLISION_RESET for this.
112 - Redid some driver flags and device names based on pcmcia_cs-3.1.20.
113 - Fixed a bug where, if vp->tx_full is set when the interface
114 is downed, it remains set when the interface is upped. Bad
115 things happen.
117 LK1.1.10 17 Sep 2000 andrewm
118 - Added EEPROM_8BIT for 3c555 (Fred Maciel)
119 - Added experimental support for the 3c556B Laptop Hurricane (Louis Gerbarg)
120 - Add HAS_NWAY to "3c900 Cyclone 10Mbps TPO"
122 LK1.1.11 13 Nov 2000 andrewm
123 - Dump MOD_INC/DEC_USE_COUNT, use SET_MODULE_OWNER
125 LK1.1.12 1 Jan 2001 andrewm (2.4.0-pre1)
126 - Call pci_enable_device before we request our IRQ (Tobias Ringstrom)
127 - Add 3c590 PCI latency timer hack to vortex_probe1 (from 0.99Ra)
128 - Added extended issue_and_wait for the 3c905CX.
129 - Look for an MII on PHY index 24 first (3c905CX oddity).
130 - Add HAS_NWAY to 3cSOHO100-TX (Brett Frankenberger)
131 - Don't free skbs we don't own on oom path in vortex_open().
133 LK1.1.13 27 Jan 2001
134 - Added explicit `medialock' flag so we can truly
135 lock the media type down with `options'.
136 - "check ioremap return and some tidbits" (Arnaldo Carvalho de Melo <acme@conectiva.com.br>)
137 - Added and used EEPROM_NORESET for 3c556B PM resumes.
138 - Fixed leakage of vp->rx_ring.
139 - Break out separate HAS_HWCKSM device capability flag.
140 - Kill vp->tx_full (ANK)
141 - Merge zerocopy fragment handling (ANK?)
143 LK1.1.14 15 Feb 2001
144 - Enable WOL. Can be turned on with `enable_wol' module option.
145 - EISA and PCI initialisation fixes (jgarzik, Manfred Spraul)
146 - If a device's internalconfig register reports it has NWAY,
147 use it, even if autoselect is enabled.
149 LK1.1.15 6 June 2001 akpm
150 - Prevent double counting of received bytes (Lars Christensen)
151 - Add ethtool support (jgarzik)
152 - Add module parm descriptions (Andrzej M. Krzysztofowicz)
153 - Implemented alloc_etherdev() API
154 - Special-case the 'Tx error 82' message.
156 LK1.1.16 18 July 2001 akpm
157 - Make NETIF_F_SG dependent upon nr_free_highpages(), not on CONFIG_HIGHMEM
158 - Lessen verbosity of bootup messages
159 - Fix WOL - use new PM API functions.
160 - Use netif_running() instead of vp->open in suspend/resume.
161 - Don't reset the interface logic on open/close/rmmod. It upsets
162 autonegotiation, and hence DHCP (from 0.99T).
163 - Back out EEPROM_NORESET flag because of the above (we do it for all
164 NICs).
165 - Correct 3c982 identification string
166 - Rename wait_for_completion() to issue_and_wait() to avoid completion.h
167 clash.
169 LK1.1.17 18Dec01 akpm
170 - PCI ID 9805 is a Python-T, not a dual-port Cyclone. Apparently.
171 And it has NWAY.
172 - Mask our advertised modes (vp->advertising) with our capabilities
173 (MII reg5) when deciding which duplex mode to use.
174 - Add `global_options' as default for options[]. Ditto global_enable_wol,
175 global_full_duplex.
177 LK1.1.18 01Jul02 akpm
178 - Fix for undocumented transceiver power-up bit on some 3c566B's
179 (Donald Becker, Rahul Karnik)
181 - See http://www.zip.com.au/~akpm/linux/#3c59x-2.3 for more details.
182 - Also see Documentation/networking/vortex.txt
184 LK1.1.19 10Nov02 Marc Zyngier <maz@wild-wind.fr.eu.org>
185 - EISA sysfs integration.
189 * FIXME: This driver _could_ support MTU changing, but doesn't. See Don's hamachi.c implementation
190 * as well as other drivers
192 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
193 * due to dead code elimination. There will be some performance benefits from this due to
194 * elimination of all the tests and reduced cache footprint.
198 #define DRV_NAME "3c59x"
202 /* A few values that may be tweaked. */
203 /* Keep the ring sizes a power of two for efficiency. */
204 #define TX_RING_SIZE 16
205 #define RX_RING_SIZE 32
206 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
208 /* "Knobs" that adjust features and parameters. */
209 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
210 Setting to > 1512 effectively disables this feature. */
211 #ifndef __arm__
212 static int rx_copybreak = 200;
213 #else
214 /* ARM systems perform better by disregarding the bus-master
215 transfer capability of these cards. -- rmk */
216 static int rx_copybreak = 1513;
217 #endif
218 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
219 static const int mtu = 1500;
220 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
221 static int max_interrupt_work = 32;
222 /* Tx timeout interval (millisecs) */
223 static int watchdog = 5000;
225 /* Allow aggregation of Tx interrupts. Saves CPU load at the cost
226 * of possible Tx stalls if the system is blocking interrupts
227 * somewhere else. Undefine this to disable.
229 #define tx_interrupt_mitigation 1
231 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
232 #define vortex_debug debug
233 #ifdef VORTEX_DEBUG
234 static int vortex_debug = VORTEX_DEBUG;
235 #else
236 static int vortex_debug = 1;
237 #endif
239 #include <linux/config.h>
240 #include <linux/module.h>
241 #include <linux/kernel.h>
242 #include <linux/string.h>
243 #include <linux/timer.h>
244 #include <linux/errno.h>
245 #include <linux/in.h>
246 #include <linux/ioport.h>
247 #include <linux/slab.h>
248 #include <linux/interrupt.h>
249 #include <linux/pci.h>
250 #include <linux/mii.h>
251 #include <linux/init.h>
252 #include <linux/netdevice.h>
253 #include <linux/etherdevice.h>
254 #include <linux/skbuff.h>
255 #include <linux/ethtool.h>
256 #include <linux/highmem.h>
257 #include <linux/eisa.h>
258 #include <linux/bitops.h>
259 #include <linux/jiffies.h>
260 #include <asm/irq.h> /* For NR_IRQS only. */
261 #include <asm/io.h>
262 #include <asm/uaccess.h>
264 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
265 This is only in the support-all-kernels source code. */
267 #define RUN_AT(x) (jiffies + (x))
269 #include <linux/delay.h>
272 static char version[] __devinitdata =
273 DRV_NAME ": Donald Becker and others. www.scyld.com/network/vortex.html\n";
275 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
276 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
277 MODULE_LICENSE("GPL");
280 /* Operational parameter that usually are not changed. */
282 /* The Vortex size is twice that of the original EtherLinkIII series: the
283 runtime register window, window 1, is now always mapped in.
284 The Boomerang size is twice as large as the Vortex -- it has additional
285 bus master control registers. */
286 #define VORTEX_TOTAL_SIZE 0x20
287 #define BOOMERANG_TOTAL_SIZE 0x40
289 /* Set iff a MII transceiver on any interface requires mdio preamble.
290 This only set with the original DP83840 on older 3c905 boards, so the extra
291 code size of a per-interface flag is not worthwhile. */
292 static char mii_preamble_required;
294 #define PFX DRV_NAME ": "
299 Theory of Operation
301 I. Board Compatibility
303 This device driver is designed for the 3Com FastEtherLink and FastEtherLink
304 XL, 3Com's PCI to 10/100baseT adapters. It also works with the 10Mbs
305 versions of the FastEtherLink cards. The supported product IDs are
306 3c590, 3c592, 3c595, 3c597, 3c900, 3c905
308 The related ISA 3c515 is supported with a separate driver, 3c515.c, included
309 with the kernel source or available from
310 cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
312 II. Board-specific settings
314 PCI bus devices are configured by the system at boot time, so no jumpers
315 need to be set on the board. The system BIOS should be set to assign the
316 PCI INTA signal to an otherwise unused system IRQ line.
318 The EEPROM settings for media type and forced-full-duplex are observed.
319 The EEPROM media type should be left at the default "autoselect" unless using
320 10base2 or AUI connections which cannot be reliably detected.
322 III. Driver operation
324 The 3c59x series use an interface that's very similar to the previous 3c5x9
325 series. The primary interface is two programmed-I/O FIFOs, with an
326 alternate single-contiguous-region bus-master transfer (see next).
328 The 3c900 "Boomerang" series uses a full-bus-master interface with separate
329 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
330 DEC Tulip and Intel Speedo3. The first chip version retains a compatible
331 programmed-I/O interface that has been removed in 'B' and subsequent board
332 revisions.
334 One extension that is advertised in a very large font is that the adapters
335 are capable of being bus masters. On the Vortex chip this capability was
336 only for a single contiguous region making it far less useful than the full
337 bus master capability. There is a significant performance impact of taking
338 an extra interrupt or polling for the completion of each transfer, as well
339 as difficulty sharing the single transfer engine between the transmit and
340 receive threads. Using DMA transfers is a win only with large blocks or
341 with the flawed versions of the Intel Orion motherboard PCI controller.
343 The Boomerang chip's full-bus-master interface is useful, and has the
344 currently-unused advantages over other similar chips that queued transmit
345 packets may be reordered and receive buffer groups are associated with a
346 single frame.
348 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
349 Rather than a fixed intermediate receive buffer, this scheme allocates
350 full-sized skbuffs as receive buffers. The value RX_COPYBREAK is used as
351 the copying breakpoint: it is chosen to trade-off the memory wasted by
352 passing the full-sized skbuff to the queue layer for all frames vs. the
353 copying cost of copying a frame to a correctly-sized skbuff.
355 IIIC. Synchronization
356 The driver runs as two independent, single-threaded flows of control. One
357 is the send-packet routine, which enforces single-threaded use by the
358 dev->tbusy flag. The other thread is the interrupt handler, which is single
359 threaded by the hardware and other software.
361 IV. Notes
363 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
364 3c590, 3c595, and 3c900 boards.
365 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
366 the EISA version is called "Demon". According to Terry these names come
367 from rides at the local amusement park.
369 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
370 This driver only supports ethernet packets because of the skbuff allocation
371 limit of 4K.
374 /* This table drives the PCI probe routines. It's mostly boilerplate in all
375 of the drivers, and will likely be provided by some future kernel.
377 enum pci_flags_bit {
378 PCI_USES_IO=1, PCI_USES_MEM=2, PCI_USES_MASTER=4,
379 PCI_ADDR0=0x10<<0, PCI_ADDR1=0x10<<1, PCI_ADDR2=0x10<<2, PCI_ADDR3=0x10<<3,
382 enum { IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
383 EEPROM_8BIT=0x10, /* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
384 HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
385 INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
386 EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
387 EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
389 enum vortex_chips {
390 CH_3C590 = 0,
391 CH_3C592,
392 CH_3C597,
393 CH_3C595_1,
394 CH_3C595_2,
396 CH_3C595_3,
397 CH_3C900_1,
398 CH_3C900_2,
399 CH_3C900_3,
400 CH_3C900_4,
402 CH_3C900_5,
403 CH_3C900B_FL,
404 CH_3C905_1,
405 CH_3C905_2,
406 CH_3C905B_1,
408 CH_3C905B_2,
409 CH_3C905B_FX,
410 CH_3C905C,
411 CH_3C9202,
412 CH_3C980,
413 CH_3C9805,
415 CH_3CSOHO100_TX,
416 CH_3C555,
417 CH_3C556,
418 CH_3C556B,
419 CH_3C575,
421 CH_3C575_1,
422 CH_3CCFE575,
423 CH_3CCFE575CT,
424 CH_3CCFE656,
425 CH_3CCFEM656,
427 CH_3CCFEM656_1,
428 CH_3C450,
429 CH_3C920,
430 CH_3C982A,
431 CH_3C982B,
433 CH_905BT4,
434 CH_920B_EMB_WNM,
438 /* note: this array directly indexed by above enums, and MUST
439 * be kept in sync with both the enums above, and the PCI device
440 * table below
442 static struct vortex_chip_info {
443 const char *name;
444 int flags;
445 int drv_flags;
446 int io_size;
447 } vortex_info_tbl[] __devinitdata = {
448 {"3c590 Vortex 10Mbps",
449 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
450 {"3c592 EISA 10Mbps Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
451 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
452 {"3c597 EISA Fast Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
453 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
454 {"3c595 Vortex 100baseTx",
455 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
456 {"3c595 Vortex 100baseT4",
457 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
459 {"3c595 Vortex 100base-MII",
460 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
461 {"3c900 Boomerang 10baseT",
462 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
463 {"3c900 Boomerang 10Mbps Combo",
464 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
465 {"3c900 Cyclone 10Mbps TPO", /* AKPM: from Don's 0.99M */
466 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
467 {"3c900 Cyclone 10Mbps Combo",
468 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
470 {"3c900 Cyclone 10Mbps TPC", /* AKPM: from Don's 0.99M */
471 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
472 {"3c900B-FL Cyclone 10base-FL",
473 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
474 {"3c905 Boomerang 100baseTx",
475 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
476 {"3c905 Boomerang 100baseT4",
477 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
478 {"3c905B Cyclone 100baseTx",
479 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
481 {"3c905B Cyclone 10/100/BNC",
482 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
483 {"3c905B-FX Cyclone 100baseFx",
484 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
485 {"3c905C Tornado",
486 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
487 {"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
488 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
489 {"3c980 Cyclone",
490 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
492 {"3c980C Python-T",
493 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
494 {"3cSOHO100-TX Hurricane",
495 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
496 {"3c555 Laptop Hurricane",
497 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
498 {"3c556 Laptop Tornado",
499 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
500 HAS_HWCKSM, 128, },
501 {"3c556B Laptop Hurricane",
502 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
503 WNO_XCVR_PWR|HAS_HWCKSM, 128, },
505 {"3c575 [Megahertz] 10/100 LAN CardBus",
506 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
507 {"3c575 Boomerang CardBus",
508 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
509 {"3CCFE575BT Cyclone CardBus",
510 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
511 INVERT_LED_PWR|HAS_HWCKSM, 128, },
512 {"3CCFE575CT Tornado CardBus",
513 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
514 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
515 {"3CCFE656 Cyclone CardBus",
516 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
517 INVERT_LED_PWR|HAS_HWCKSM, 128, },
519 {"3CCFEM656B Cyclone+Winmodem CardBus",
520 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
521 INVERT_LED_PWR|HAS_HWCKSM, 128, },
522 {"3CXFEM656C Tornado+Winmodem CardBus", /* From pcmcia-cs-3.1.5 */
523 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
524 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
525 {"3c450 HomePNA Tornado", /* AKPM: from Don's 0.99Q */
526 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
527 {"3c920 Tornado",
528 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
529 {"3c982 Hydra Dual Port A",
530 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
532 {"3c982 Hydra Dual Port B",
533 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
534 {"3c905B-T4",
535 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
536 {"3c920B-EMB-WNM Tornado",
537 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
539 {NULL,}, /* NULL terminated list. */
543 static struct pci_device_id vortex_pci_tbl[] = {
544 { 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
545 { 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
546 { 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
547 { 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
548 { 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
550 { 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
551 { 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
552 { 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
553 { 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
554 { 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
556 { 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
557 { 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
558 { 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
559 { 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
560 { 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
562 { 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
563 { 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
564 { 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
565 { 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
566 { 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
567 { 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
569 { 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
570 { 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
571 { 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
572 { 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
573 { 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
575 { 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
576 { 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
577 { 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
578 { 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
579 { 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
581 { 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
582 { 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
583 { 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
584 { 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
585 { 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
587 { 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
588 { 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
590 {0,} /* 0 terminated list. */
592 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
595 /* Operational definitions.
596 These are not used by other compilation units and thus are not
597 exported in a ".h" file.
599 First the windows. There are eight register windows, with the command
600 and status registers available in each.
602 #define EL3WINDOW(win_num) iowrite16(SelectWindow + (win_num), ioaddr + EL3_CMD)
603 #define EL3_CMD 0x0e
604 #define EL3_STATUS 0x0e
606 /* The top five bits written to EL3_CMD are a command, the lower
607 11 bits are the parameter, if applicable.
608 Note that 11 parameters bits was fine for ethernet, but the new chip
609 can handle FDDI length frames (~4500 octets) and now parameters count
610 32-bit 'Dwords' rather than octets. */
612 enum vortex_cmd {
613 TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
614 RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
615 UpStall = 6<<11, UpUnstall = (6<<11)+1,
616 DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
617 RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
618 FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
619 SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
620 SetTxThreshold = 18<<11, SetTxStart = 19<<11,
621 StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
622 StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
624 /* The SetRxFilter command accepts the following classes: */
625 enum RxFilter {
626 RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
628 /* Bits in the general status register. */
629 enum vortex_status {
630 IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
631 TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
632 IntReq = 0x0040, StatsFull = 0x0080,
633 DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
634 DMAInProgress = 1<<11, /* DMA controller is still busy.*/
635 CmdInProgress = 1<<12, /* EL3_CMD is still busy.*/
638 /* Register window 1 offsets, the window used in normal operation.
639 On the Vortex this window is always mapped at offsets 0x10-0x1f. */
640 enum Window1 {
641 TX_FIFO = 0x10, RX_FIFO = 0x10, RxErrors = 0x14,
642 RxStatus = 0x18, Timer=0x1A, TxStatus = 0x1B,
643 TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
645 enum Window0 {
646 Wn0EepromCmd = 10, /* Window 0: EEPROM command register. */
647 Wn0EepromData = 12, /* Window 0: EEPROM results register. */
648 IntrStatus=0x0E, /* Valid in all windows. */
650 enum Win0_EEPROM_bits {
651 EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
652 EEPROM_EWENB = 0x30, /* Enable erasing/writing for 10 msec. */
653 EEPROM_EWDIS = 0x00, /* Disable EWENB before 10 msec timeout. */
655 /* EEPROM locations. */
656 enum eeprom_offset {
657 PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
658 EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
659 NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
660 DriverTune=13, Checksum=15};
662 enum Window2 { /* Window 2. */
663 Wn2_ResetOptions=12,
665 enum Window3 { /* Window 3: MAC/config bits. */
666 Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
669 #define BFEXT(value, offset, bitcount) \
670 ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
672 #define BFINS(lhs, rhs, offset, bitcount) \
673 (((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) | \
674 (((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
676 #define RAM_SIZE(v) BFEXT(v, 0, 3)
677 #define RAM_WIDTH(v) BFEXT(v, 3, 1)
678 #define RAM_SPEED(v) BFEXT(v, 4, 2)
679 #define ROM_SIZE(v) BFEXT(v, 6, 2)
680 #define RAM_SPLIT(v) BFEXT(v, 16, 2)
681 #define XCVR(v) BFEXT(v, 20, 4)
682 #define AUTOSELECT(v) BFEXT(v, 24, 1)
684 enum Window4 { /* Window 4: Xcvr/media bits. */
685 Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
687 enum Win4_Media_bits {
688 Media_SQE = 0x0008, /* Enable SQE error counting for AUI. */
689 Media_10TP = 0x00C0, /* Enable link beat and jabber for 10baseT. */
690 Media_Lnk = 0x0080, /* Enable just link beat for 100TX/100FX. */
691 Media_LnkBeat = 0x0800,
693 enum Window7 { /* Window 7: Bus Master control. */
694 Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
695 Wn7_MasterStatus = 12,
697 /* Boomerang bus master control registers. */
698 enum MasterCtrl {
699 PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
700 TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
703 /* The Rx and Tx descriptor lists.
704 Caution Alpha hackers: these types are 32 bits! Note also the 8 byte
705 alignment contraint on tx_ring[] and rx_ring[]. */
706 #define LAST_FRAG 0x80000000 /* Last Addr/Len pair in descriptor. */
707 #define DN_COMPLETE 0x00010000 /* This packet has been downloaded */
708 struct boom_rx_desc {
709 u32 next; /* Last entry points to 0. */
710 s32 status;
711 u32 addr; /* Up to 63 addr/len pairs possible. */
712 s32 length; /* Set LAST_FRAG to indicate last pair. */
714 /* Values for the Rx status entry. */
715 enum rx_desc_status {
716 RxDComplete=0x00008000, RxDError=0x4000,
717 /* See boomerang_rx() for actual error bits */
718 IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
719 IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
722 #ifdef MAX_SKB_FRAGS
723 #define DO_ZEROCOPY 1
724 #else
725 #define DO_ZEROCOPY 0
726 #endif
728 struct boom_tx_desc {
729 u32 next; /* Last entry points to 0. */
730 s32 status; /* bits 0:12 length, others see below. */
731 #if DO_ZEROCOPY
732 struct {
733 u32 addr;
734 s32 length;
735 } frag[1+MAX_SKB_FRAGS];
736 #else
737 u32 addr;
738 s32 length;
739 #endif
742 /* Values for the Tx status entry. */
743 enum tx_desc_status {
744 CRCDisable=0x2000, TxDComplete=0x8000,
745 AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
746 TxIntrUploaded=0x80000000, /* IRQ when in FIFO, but maybe not sent. */
749 /* Chip features we care about in vp->capabilities, read from the EEPROM. */
750 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
752 struct vortex_extra_stats {
753 unsigned long tx_deferred;
754 unsigned long tx_max_collisions;
755 unsigned long tx_multiple_collisions;
756 unsigned long tx_single_collisions;
757 unsigned long rx_bad_ssd;
760 struct vortex_private {
761 /* The Rx and Tx rings should be quad-word-aligned. */
762 struct boom_rx_desc* rx_ring;
763 struct boom_tx_desc* tx_ring;
764 dma_addr_t rx_ring_dma;
765 dma_addr_t tx_ring_dma;
766 /* The addresses of transmit- and receive-in-place skbuffs. */
767 struct sk_buff* rx_skbuff[RX_RING_SIZE];
768 struct sk_buff* tx_skbuff[TX_RING_SIZE];
769 unsigned int cur_rx, cur_tx; /* The next free ring entry */
770 unsigned int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */
771 struct net_device_stats stats; /* Generic stats */
772 struct vortex_extra_stats xstats; /* NIC-specific extra stats */
773 struct sk_buff *tx_skb; /* Packet being eaten by bus master ctrl. */
774 dma_addr_t tx_skb_dma; /* Allocated DMA address for bus master ctrl DMA. */
776 /* PCI configuration space information. */
777 struct device *gendev;
778 void __iomem *ioaddr; /* IO address space */
779 void __iomem *cb_fn_base; /* CardBus function status addr space. */
781 /* Some values here only for performance evaluation and path-coverage */
782 int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
783 int card_idx;
785 /* The remainder are related to chip state, mostly media selection. */
786 struct timer_list timer; /* Media selection timer. */
787 struct timer_list rx_oom_timer; /* Rx skb allocation retry timer */
788 int options; /* User-settable misc. driver options. */
789 unsigned int media_override:4, /* Passed-in media type. */
790 default_media:4, /* Read from the EEPROM/Wn3_Config. */
791 full_duplex:1, autoselect:1,
792 bus_master:1, /* Vortex can only do a fragment bus-m. */
793 full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang */
794 flow_ctrl:1, /* Use 802.3x flow control (PAUSE only) */
795 partner_flow_ctrl:1, /* Partner supports flow control */
796 has_nway:1,
797 enable_wol:1, /* Wake-on-LAN is enabled */
798 pm_state_valid:1, /* pci_dev->saved_config_space has sane contents */
799 open:1,
800 medialock:1,
801 must_free_region:1, /* Flag: if zero, Cardbus owns the I/O region */
802 large_frames:1; /* accept large frames */
803 int drv_flags;
804 u16 status_enable;
805 u16 intr_enable;
806 u16 available_media; /* From Wn3_Options. */
807 u16 capabilities, info1, info2; /* Various, from EEPROM. */
808 u16 advertising; /* NWay media advertisement */
809 unsigned char phys[2]; /* MII device addresses. */
810 u16 deferred; /* Resend these interrupts when we
811 * bale from the ISR */
812 u16 io_size; /* Size of PCI region (for release_region) */
813 spinlock_t lock; /* Serialise access to device & its vortex_private */
814 struct mii_if_info mii; /* MII lib hooks/info */
817 #ifdef CONFIG_PCI
818 #define DEVICE_PCI(dev) (((dev)->bus == &pci_bus_type) ? to_pci_dev((dev)) : NULL)
819 #else
820 #define DEVICE_PCI(dev) NULL
821 #endif
823 #define VORTEX_PCI(vp) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL)
825 #ifdef CONFIG_EISA
826 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
827 #else
828 #define DEVICE_EISA(dev) NULL
829 #endif
831 #define VORTEX_EISA(vp) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL)
833 /* The action to take with a media selection timer tick.
834 Note that we deviate from the 3Com order by checking 10base2 before AUI.
836 enum xcvr_types {
837 XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
838 XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
841 static const struct media_table {
842 char *name;
843 unsigned int media_bits:16, /* Bits to set in Wn4_Media register. */
844 mask:8, /* The transceiver-present bit in Wn3_Config.*/
845 next:8; /* The media type to try next. */
846 int wait; /* Time before we check media status. */
847 } media_tbl[] = {
848 { "10baseT", Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
849 { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
850 { "undefined", 0, 0x80, XCVR_10baseT, 10000},
851 { "10base2", 0, 0x10, XCVR_AUI, (1*HZ)/10},
852 { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
853 { "100baseFX", Media_Lnk, 0x04, XCVR_MII, (14*HZ)/10},
854 { "MII", 0, 0x41, XCVR_10baseT, 3*HZ },
855 { "undefined", 0, 0x01, XCVR_10baseT, 10000},
856 { "Autonegotiate", 0, 0x41, XCVR_10baseT, 3*HZ},
857 { "MII-External", 0, 0x41, XCVR_10baseT, 3*HZ },
858 { "Default", 0, 0xFF, XCVR_10baseT, 10000},
861 static struct {
862 const char str[ETH_GSTRING_LEN];
863 } ethtool_stats_keys[] = {
864 { "tx_deferred" },
865 { "tx_max_collisions" },
866 { "tx_multiple_collisions" },
867 { "tx_single_collisions" },
868 { "rx_bad_ssd" },
871 /* number of ETHTOOL_GSTATS u64's */
872 #define VORTEX_NUM_STATS 5
874 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
875 int chip_idx, int card_idx);
876 static void vortex_up(struct net_device *dev);
877 static void vortex_down(struct net_device *dev, int final);
878 static int vortex_open(struct net_device *dev);
879 static void mdio_sync(void __iomem *ioaddr, int bits);
880 static int mdio_read(struct net_device *dev, int phy_id, int location);
881 static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
882 static void vortex_timer(unsigned long arg);
883 static void rx_oom_timer(unsigned long arg);
884 static int vortex_start_xmit(struct sk_buff *skb, struct net_device *dev);
885 static int boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev);
886 static int vortex_rx(struct net_device *dev);
887 static int boomerang_rx(struct net_device *dev);
888 static irqreturn_t vortex_interrupt(int irq, void *dev_id, struct pt_regs *regs);
889 static irqreturn_t boomerang_interrupt(int irq, void *dev_id, struct pt_regs *regs);
890 static int vortex_close(struct net_device *dev);
891 static void dump_tx_ring(struct net_device *dev);
892 static void update_stats(void __iomem *ioaddr, struct net_device *dev);
893 static struct net_device_stats *vortex_get_stats(struct net_device *dev);
894 static void set_rx_mode(struct net_device *dev);
895 #ifdef CONFIG_PCI
896 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
897 #endif
898 static void vortex_tx_timeout(struct net_device *dev);
899 static void acpi_set_WOL(struct net_device *dev);
900 static struct ethtool_ops vortex_ethtool_ops;
901 static void set_8021q_mode(struct net_device *dev, int enable);
903 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
904 /* Option count limit only -- unlimited interfaces are supported. */
905 #define MAX_UNITS 8
906 static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
907 static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
908 static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
909 static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
910 static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
911 static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
912 static int global_options = -1;
913 static int global_full_duplex = -1;
914 static int global_enable_wol = -1;
915 static int global_use_mmio = -1;
917 /* Variables to work-around the Compaq PCI BIOS32 problem. */
918 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
919 static struct net_device *compaq_net_device;
921 static int vortex_cards_found;
923 module_param(debug, int, 0);
924 module_param(global_options, int, 0);
925 module_param_array(options, int, NULL, 0);
926 module_param(global_full_duplex, int, 0);
927 module_param_array(full_duplex, int, NULL, 0);
928 module_param_array(hw_checksums, int, NULL, 0);
929 module_param_array(flow_ctrl, int, NULL, 0);
930 module_param(global_enable_wol, int, 0);
931 module_param_array(enable_wol, int, NULL, 0);
932 module_param(rx_copybreak, int, 0);
933 module_param(max_interrupt_work, int, 0);
934 module_param(compaq_ioaddr, int, 0);
935 module_param(compaq_irq, int, 0);
936 module_param(compaq_device_id, int, 0);
937 module_param(watchdog, int, 0);
938 module_param(global_use_mmio, int, 0);
939 module_param_array(use_mmio, int, NULL, 0);
940 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
941 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
942 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
943 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
944 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
945 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
946 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
947 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
948 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
949 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
950 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
951 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
952 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
953 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
954 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
955 MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
956 MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
958 #ifdef CONFIG_NET_POLL_CONTROLLER
959 static void poll_vortex(struct net_device *dev)
961 struct vortex_private *vp = netdev_priv(dev);
962 unsigned long flags;
963 local_save_flags(flags);
964 local_irq_disable();
965 (vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev,NULL);
966 local_irq_restore(flags);
968 #endif
970 #ifdef CONFIG_PM
972 static int vortex_suspend(struct pci_dev *pdev, pm_message_t state)
974 struct net_device *dev = pci_get_drvdata(pdev);
976 if (dev && dev->priv) {
977 if (netif_running(dev)) {
978 netif_device_detach(dev);
979 vortex_down(dev, 1);
981 pci_save_state(pdev);
982 pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
983 free_irq(dev->irq, dev);
984 pci_disable_device(pdev);
985 pci_set_power_state(pdev, pci_choose_state(pdev, state));
987 return 0;
990 static int vortex_resume(struct pci_dev *pdev)
992 struct net_device *dev = pci_get_drvdata(pdev);
993 struct vortex_private *vp = netdev_priv(dev);
995 if (dev && vp) {
996 pci_set_power_state(pdev, PCI_D0);
997 pci_restore_state(pdev);
998 pci_enable_device(pdev);
999 pci_set_master(pdev);
1000 if (request_irq(dev->irq, vp->full_bus_master_rx ?
1001 &boomerang_interrupt : &vortex_interrupt, SA_SHIRQ, dev->name, dev)) {
1002 printk(KERN_WARNING "%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1003 pci_disable_device(pdev);
1004 return -EBUSY;
1006 if (netif_running(dev)) {
1007 vortex_up(dev);
1008 netif_device_attach(dev);
1011 return 0;
1014 #endif /* CONFIG_PM */
1016 #ifdef CONFIG_EISA
1017 static struct eisa_device_id vortex_eisa_ids[] = {
1018 { "TCM5920", CH_3C592 },
1019 { "TCM5970", CH_3C597 },
1020 { "" }
1023 static int vortex_eisa_probe(struct device *device);
1024 static int vortex_eisa_remove(struct device *device);
1026 static struct eisa_driver vortex_eisa_driver = {
1027 .id_table = vortex_eisa_ids,
1028 .driver = {
1029 .name = "3c59x",
1030 .probe = vortex_eisa_probe,
1031 .remove = vortex_eisa_remove
1035 static int vortex_eisa_probe(struct device *device)
1037 void __iomem *ioaddr;
1038 struct eisa_device *edev;
1040 edev = to_eisa_device(device);
1042 if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
1043 return -EBUSY;
1045 ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
1047 if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
1048 edev->id.driver_data, vortex_cards_found)) {
1049 release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
1050 return -ENODEV;
1053 vortex_cards_found++;
1055 return 0;
1058 static int vortex_eisa_remove(struct device *device)
1060 struct eisa_device *edev;
1061 struct net_device *dev;
1062 struct vortex_private *vp;
1063 void __iomem *ioaddr;
1065 edev = to_eisa_device(device);
1066 dev = eisa_get_drvdata(edev);
1068 if (!dev) {
1069 printk("vortex_eisa_remove called for Compaq device!\n");
1070 BUG();
1073 vp = netdev_priv(dev);
1074 ioaddr = vp->ioaddr;
1076 unregister_netdev(dev);
1077 iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
1078 release_region(dev->base_addr, VORTEX_TOTAL_SIZE);
1080 free_netdev(dev);
1081 return 0;
1083 #endif
1085 /* returns count found (>= 0), or negative on error */
1086 static int __init vortex_eisa_init(void)
1088 int eisa_found = 0;
1089 int orig_cards_found = vortex_cards_found;
1091 #ifdef CONFIG_EISA
1092 int err;
1094 err = eisa_driver_register (&vortex_eisa_driver);
1095 if (!err) {
1097 * Because of the way EISA bus is probed, we cannot assume
1098 * any device have been found when we exit from
1099 * eisa_driver_register (the bus root driver may not be
1100 * initialized yet). So we blindly assume something was
1101 * found, and let the sysfs magic happend...
1103 eisa_found = 1;
1105 #endif
1107 /* Special code to work-around the Compaq PCI BIOS32 problem. */
1108 if (compaq_ioaddr) {
1109 vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
1110 compaq_irq, compaq_device_id, vortex_cards_found++);
1113 return vortex_cards_found - orig_cards_found + eisa_found;
1116 /* returns count (>= 0), or negative on error */
1117 static int __devinit vortex_init_one(struct pci_dev *pdev,
1118 const struct pci_device_id *ent)
1120 int rc, unit, pci_bar;
1121 struct vortex_chip_info *vci;
1122 void __iomem *ioaddr;
1124 /* wake up and enable device */
1125 rc = pci_enable_device(pdev);
1126 if (rc < 0)
1127 goto out;
1129 unit = vortex_cards_found;
1131 if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
1132 /* Determine the default if the user didn't override us */
1133 vci = &vortex_info_tbl[ent->driver_data];
1134 pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
1135 } else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
1136 pci_bar = use_mmio[unit] ? 1 : 0;
1137 else
1138 pci_bar = global_use_mmio ? 1 : 0;
1140 ioaddr = pci_iomap(pdev, pci_bar, 0);
1141 if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
1142 ioaddr = pci_iomap(pdev, 0, 0);
1144 rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
1145 ent->driver_data, unit);
1146 if (rc < 0) {
1147 pci_disable_device(pdev);
1148 goto out;
1151 vortex_cards_found++;
1153 out:
1154 return rc;
1158 * Start up the PCI/EISA device which is described by *gendev.
1159 * Return 0 on success.
1161 * NOTE: pdev can be NULL, for the case of a Compaq device
1163 static int __devinit vortex_probe1(struct device *gendev,
1164 void __iomem *ioaddr, int irq,
1165 int chip_idx, int card_idx)
1167 struct vortex_private *vp;
1168 int option;
1169 unsigned int eeprom[0x40], checksum = 0; /* EEPROM contents */
1170 int i, step;
1171 struct net_device *dev;
1172 static int printed_version;
1173 int retval, print_info;
1174 struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1175 char *print_name = "3c59x";
1176 struct pci_dev *pdev = NULL;
1177 struct eisa_device *edev = NULL;
1179 if (!printed_version) {
1180 printk (version);
1181 printed_version = 1;
1184 if (gendev) {
1185 if ((pdev = DEVICE_PCI(gendev))) {
1186 print_name = pci_name(pdev);
1189 if ((edev = DEVICE_EISA(gendev))) {
1190 print_name = edev->dev.bus_id;
1194 dev = alloc_etherdev(sizeof(*vp));
1195 retval = -ENOMEM;
1196 if (!dev) {
1197 printk (KERN_ERR PFX "unable to allocate etherdev, aborting\n");
1198 goto out;
1200 SET_MODULE_OWNER(dev);
1201 SET_NETDEV_DEV(dev, gendev);
1202 vp = netdev_priv(dev);
1204 option = global_options;
1206 /* The lower four bits are the media type. */
1207 if (dev->mem_start) {
1209 * The 'options' param is passed in as the third arg to the
1210 * LILO 'ether=' argument for non-modular use
1212 option = dev->mem_start;
1214 else if (card_idx < MAX_UNITS) {
1215 if (options[card_idx] >= 0)
1216 option = options[card_idx];
1219 if (option > 0) {
1220 if (option & 0x8000)
1221 vortex_debug = 7;
1222 if (option & 0x4000)
1223 vortex_debug = 2;
1224 if (option & 0x0400)
1225 vp->enable_wol = 1;
1228 print_info = (vortex_debug > 1);
1229 if (print_info)
1230 printk (KERN_INFO "See Documentation/networking/vortex.txt\n");
1232 printk(KERN_INFO "%s: 3Com %s %s at %p.\n",
1233 print_name,
1234 pdev ? "PCI" : "EISA",
1235 vci->name,
1236 ioaddr);
1238 dev->base_addr = (unsigned long)ioaddr;
1239 dev->irq = irq;
1240 dev->mtu = mtu;
1241 vp->ioaddr = ioaddr;
1242 vp->large_frames = mtu > 1500;
1243 vp->drv_flags = vci->drv_flags;
1244 vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1245 vp->io_size = vci->io_size;
1246 vp->card_idx = card_idx;
1248 /* module list only for Compaq device */
1249 if (gendev == NULL) {
1250 compaq_net_device = dev;
1253 /* PCI-only startup logic */
1254 if (pdev) {
1255 /* EISA resources already marked, so only PCI needs to do this here */
1256 /* Ignore return value, because Cardbus drivers already allocate for us */
1257 if (request_region(dev->base_addr, vci->io_size, print_name) != NULL)
1258 vp->must_free_region = 1;
1260 /* enable bus-mastering if necessary */
1261 if (vci->flags & PCI_USES_MASTER)
1262 pci_set_master(pdev);
1264 if (vci->drv_flags & IS_VORTEX) {
1265 u8 pci_latency;
1266 u8 new_latency = 248;
1268 /* Check the PCI latency value. On the 3c590 series the latency timer
1269 must be set to the maximum value to avoid data corruption that occurs
1270 when the timer expires during a transfer. This bug exists the Vortex
1271 chip only. */
1272 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1273 if (pci_latency < new_latency) {
1274 printk(KERN_INFO "%s: Overriding PCI latency"
1275 " timer (CFLT) setting of %d, new value is %d.\n",
1276 print_name, pci_latency, new_latency);
1277 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1282 spin_lock_init(&vp->lock);
1283 vp->gendev = gendev;
1284 vp->mii.dev = dev;
1285 vp->mii.mdio_read = mdio_read;
1286 vp->mii.mdio_write = mdio_write;
1287 vp->mii.phy_id_mask = 0x1f;
1288 vp->mii.reg_num_mask = 0x1f;
1290 /* Makes sure rings are at least 16 byte aligned. */
1291 vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1292 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1293 &vp->rx_ring_dma);
1294 retval = -ENOMEM;
1295 if (vp->rx_ring == 0)
1296 goto free_region;
1298 vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1299 vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1301 /* if we are a PCI driver, we store info in pdev->driver_data
1302 * instead of a module list */
1303 if (pdev)
1304 pci_set_drvdata(pdev, dev);
1305 if (edev)
1306 eisa_set_drvdata(edev, dev);
1308 vp->media_override = 7;
1309 if (option >= 0) {
1310 vp->media_override = ((option & 7) == 2) ? 0 : option & 15;
1311 if (vp->media_override != 7)
1312 vp->medialock = 1;
1313 vp->full_duplex = (option & 0x200) ? 1 : 0;
1314 vp->bus_master = (option & 16) ? 1 : 0;
1317 if (global_full_duplex > 0)
1318 vp->full_duplex = 1;
1319 if (global_enable_wol > 0)
1320 vp->enable_wol = 1;
1322 if (card_idx < MAX_UNITS) {
1323 if (full_duplex[card_idx] > 0)
1324 vp->full_duplex = 1;
1325 if (flow_ctrl[card_idx] > 0)
1326 vp->flow_ctrl = 1;
1327 if (enable_wol[card_idx] > 0)
1328 vp->enable_wol = 1;
1331 vp->mii.force_media = vp->full_duplex;
1332 vp->options = option;
1333 /* Read the station address from the EEPROM. */
1334 EL3WINDOW(0);
1336 int base;
1338 if (vci->drv_flags & EEPROM_8BIT)
1339 base = 0x230;
1340 else if (vci->drv_flags & EEPROM_OFFSET)
1341 base = EEPROM_Read + 0x30;
1342 else
1343 base = EEPROM_Read;
1345 for (i = 0; i < 0x40; i++) {
1346 int timer;
1347 iowrite16(base + i, ioaddr + Wn0EepromCmd);
1348 /* Pause for at least 162 us. for the read to take place. */
1349 for (timer = 10; timer >= 0; timer--) {
1350 udelay(162);
1351 if ((ioread16(ioaddr + Wn0EepromCmd) & 0x8000) == 0)
1352 break;
1354 eeprom[i] = ioread16(ioaddr + Wn0EepromData);
1357 for (i = 0; i < 0x18; i++)
1358 checksum ^= eeprom[i];
1359 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1360 if (checksum != 0x00) { /* Grrr, needless incompatible change 3Com. */
1361 while (i < 0x21)
1362 checksum ^= eeprom[i++];
1363 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1365 if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1366 printk(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1367 for (i = 0; i < 3; i++)
1368 ((u16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1369 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1370 if (print_info) {
1371 for (i = 0; i < 6; i++)
1372 printk("%c%2.2x", i ? ':' : ' ', dev->dev_addr[i]);
1374 /* Unfortunately an all zero eeprom passes the checksum and this
1375 gets found in the wild in failure cases. Crypto is hard 8) */
1376 if (!is_valid_ether_addr(dev->dev_addr)) {
1377 retval = -EINVAL;
1378 printk(KERN_ERR "*** EEPROM MAC address is invalid.\n");
1379 goto free_ring; /* With every pack */
1381 EL3WINDOW(2);
1382 for (i = 0; i < 6; i++)
1383 iowrite8(dev->dev_addr[i], ioaddr + i);
1385 #ifdef __sparc__
1386 if (print_info)
1387 printk(", IRQ %s\n", __irq_itoa(dev->irq));
1388 #else
1389 if (print_info)
1390 printk(", IRQ %d\n", dev->irq);
1391 /* Tell them about an invalid IRQ. */
1392 if (dev->irq <= 0 || dev->irq >= NR_IRQS)
1393 printk(KERN_WARNING " *** Warning: IRQ %d is unlikely to work! ***\n",
1394 dev->irq);
1395 #endif
1397 EL3WINDOW(4);
1398 step = (ioread8(ioaddr + Wn4_NetDiag) & 0x1e) >> 1;
1399 if (print_info) {
1400 printk(KERN_INFO " product code %02x%02x rev %02x.%d date %02d-"
1401 "%02d-%02d\n", eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1402 step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1406 if (pdev && vci->drv_flags & HAS_CB_FNS) {
1407 unsigned short n;
1409 vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1410 if (!vp->cb_fn_base) {
1411 retval = -ENOMEM;
1412 goto free_ring;
1415 if (print_info) {
1416 printk(KERN_INFO "%s: CardBus functions mapped %8.8lx->%p\n",
1417 print_name, pci_resource_start(pdev, 2),
1418 vp->cb_fn_base);
1420 EL3WINDOW(2);
1422 n = ioread16(ioaddr + Wn2_ResetOptions) & ~0x4010;
1423 if (vp->drv_flags & INVERT_LED_PWR)
1424 n |= 0x10;
1425 if (vp->drv_flags & INVERT_MII_PWR)
1426 n |= 0x4000;
1427 iowrite16(n, ioaddr + Wn2_ResetOptions);
1428 if (vp->drv_flags & WNO_XCVR_PWR) {
1429 EL3WINDOW(0);
1430 iowrite16(0x0800, ioaddr);
1434 /* Extract our information from the EEPROM data. */
1435 vp->info1 = eeprom[13];
1436 vp->info2 = eeprom[15];
1437 vp->capabilities = eeprom[16];
1439 if (vp->info1 & 0x8000) {
1440 vp->full_duplex = 1;
1441 if (print_info)
1442 printk(KERN_INFO "Full duplex capable\n");
1446 static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1447 unsigned int config;
1448 EL3WINDOW(3);
1449 vp->available_media = ioread16(ioaddr + Wn3_Options);
1450 if ((vp->available_media & 0xff) == 0) /* Broken 3c916 */
1451 vp->available_media = 0x40;
1452 config = ioread32(ioaddr + Wn3_Config);
1453 if (print_info) {
1454 printk(KERN_DEBUG " Internal config register is %4.4x, "
1455 "transceivers %#x.\n", config, ioread16(ioaddr + Wn3_Options));
1456 printk(KERN_INFO " %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1457 8 << RAM_SIZE(config),
1458 RAM_WIDTH(config) ? "word" : "byte",
1459 ram_split[RAM_SPLIT(config)],
1460 AUTOSELECT(config) ? "autoselect/" : "",
1461 XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1462 media_tbl[XCVR(config)].name);
1464 vp->default_media = XCVR(config);
1465 if (vp->default_media == XCVR_NWAY)
1466 vp->has_nway = 1;
1467 vp->autoselect = AUTOSELECT(config);
1470 if (vp->media_override != 7) {
1471 printk(KERN_INFO "%s: Media override to transceiver type %d (%s).\n",
1472 print_name, vp->media_override,
1473 media_tbl[vp->media_override].name);
1474 dev->if_port = vp->media_override;
1475 } else
1476 dev->if_port = vp->default_media;
1478 if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1479 dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1480 int phy, phy_idx = 0;
1481 EL3WINDOW(4);
1482 mii_preamble_required++;
1483 if (vp->drv_flags & EXTRA_PREAMBLE)
1484 mii_preamble_required++;
1485 mdio_sync(ioaddr, 32);
1486 mdio_read(dev, 24, MII_BMSR);
1487 for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1488 int mii_status, phyx;
1491 * For the 3c905CX we look at index 24 first, because it bogusly
1492 * reports an external PHY at all indices
1494 if (phy == 0)
1495 phyx = 24;
1496 else if (phy <= 24)
1497 phyx = phy - 1;
1498 else
1499 phyx = phy;
1500 mii_status = mdio_read(dev, phyx, MII_BMSR);
1501 if (mii_status && mii_status != 0xffff) {
1502 vp->phys[phy_idx++] = phyx;
1503 if (print_info) {
1504 printk(KERN_INFO " MII transceiver found at address %d,"
1505 " status %4x.\n", phyx, mii_status);
1507 if ((mii_status & 0x0040) == 0)
1508 mii_preamble_required++;
1511 mii_preamble_required--;
1512 if (phy_idx == 0) {
1513 printk(KERN_WARNING" ***WARNING*** No MII transceivers found!\n");
1514 vp->phys[0] = 24;
1515 } else {
1516 vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1517 if (vp->full_duplex) {
1518 /* Only advertise the FD media types. */
1519 vp->advertising &= ~0x02A0;
1520 mdio_write(dev, vp->phys[0], 4, vp->advertising);
1523 vp->mii.phy_id = vp->phys[0];
1526 if (vp->capabilities & CapBusMaster) {
1527 vp->full_bus_master_tx = 1;
1528 if (print_info) {
1529 printk(KERN_INFO " Enabling bus-master transmits and %s receives.\n",
1530 (vp->info2 & 1) ? "early" : "whole-frame" );
1532 vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1533 vp->bus_master = 0; /* AKPM: vortex only */
1536 /* The 3c59x-specific entries in the device structure. */
1537 dev->open = vortex_open;
1538 if (vp->full_bus_master_tx) {
1539 dev->hard_start_xmit = boomerang_start_xmit;
1540 /* Actually, it still should work with iommu. */
1541 if (card_idx < MAX_UNITS &&
1542 ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1543 hw_checksums[card_idx] == 1)) {
1544 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1546 } else {
1547 dev->hard_start_xmit = vortex_start_xmit;
1550 if (print_info) {
1551 printk(KERN_INFO "%s: scatter/gather %sabled. h/w checksums %sabled\n",
1552 print_name,
1553 (dev->features & NETIF_F_SG) ? "en":"dis",
1554 (dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1557 dev->stop = vortex_close;
1558 dev->get_stats = vortex_get_stats;
1559 #ifdef CONFIG_PCI
1560 dev->do_ioctl = vortex_ioctl;
1561 #endif
1562 dev->ethtool_ops = &vortex_ethtool_ops;
1563 dev->set_multicast_list = set_rx_mode;
1564 dev->tx_timeout = vortex_tx_timeout;
1565 dev->watchdog_timeo = (watchdog * HZ) / 1000;
1566 #ifdef CONFIG_NET_POLL_CONTROLLER
1567 dev->poll_controller = poll_vortex;
1568 #endif
1569 if (pdev) {
1570 vp->pm_state_valid = 1;
1571 pci_save_state(VORTEX_PCI(vp));
1572 acpi_set_WOL(dev);
1574 retval = register_netdev(dev);
1575 if (retval == 0)
1576 return 0;
1578 free_ring:
1579 pci_free_consistent(pdev,
1580 sizeof(struct boom_rx_desc) * RX_RING_SIZE
1581 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1582 vp->rx_ring,
1583 vp->rx_ring_dma);
1584 free_region:
1585 if (vp->must_free_region)
1586 release_region(dev->base_addr, vci->io_size);
1587 free_netdev(dev);
1588 printk(KERN_ERR PFX "vortex_probe1 fails. Returns %d\n", retval);
1589 out:
1590 return retval;
1593 static void
1594 issue_and_wait(struct net_device *dev, int cmd)
1596 struct vortex_private *vp = netdev_priv(dev);
1597 void __iomem *ioaddr = vp->ioaddr;
1598 int i;
1600 iowrite16(cmd, ioaddr + EL3_CMD);
1601 for (i = 0; i < 2000; i++) {
1602 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1603 return;
1606 /* OK, that didn't work. Do it the slow way. One second */
1607 for (i = 0; i < 100000; i++) {
1608 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1609 if (vortex_debug > 1)
1610 printk(KERN_INFO "%s: command 0x%04x took %d usecs\n",
1611 dev->name, cmd, i * 10);
1612 return;
1614 udelay(10);
1616 printk(KERN_ERR "%s: command 0x%04x did not complete! Status=0x%x\n",
1617 dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1620 static void
1621 vortex_set_duplex(struct net_device *dev)
1623 struct vortex_private *vp = netdev_priv(dev);
1624 void __iomem *ioaddr = vp->ioaddr;
1626 printk(KERN_INFO "%s: setting %s-duplex.\n",
1627 dev->name, (vp->full_duplex) ? "full" : "half");
1629 EL3WINDOW(3);
1630 /* Set the full-duplex bit. */
1631 iowrite16(((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1632 (vp->large_frames ? 0x40 : 0) |
1633 ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1634 0x100 : 0),
1635 ioaddr + Wn3_MAC_Ctrl);
1638 static void vortex_check_media(struct net_device *dev, unsigned int init)
1640 struct vortex_private *vp = netdev_priv(dev);
1641 unsigned int ok_to_print = 0;
1643 if (vortex_debug > 3)
1644 ok_to_print = 1;
1646 if (mii_check_media(&vp->mii, ok_to_print, init)) {
1647 vp->full_duplex = vp->mii.full_duplex;
1648 vortex_set_duplex(dev);
1649 } else if (init) {
1650 vortex_set_duplex(dev);
1654 static void
1655 vortex_up(struct net_device *dev)
1657 struct vortex_private *vp = netdev_priv(dev);
1658 void __iomem *ioaddr = vp->ioaddr;
1659 unsigned int config;
1660 int i, mii_reg1, mii_reg5;
1662 if (VORTEX_PCI(vp)) {
1663 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
1664 if (vp->pm_state_valid)
1665 pci_restore_state(VORTEX_PCI(vp));
1666 pci_enable_device(VORTEX_PCI(vp));
1669 /* Before initializing select the active media port. */
1670 EL3WINDOW(3);
1671 config = ioread32(ioaddr + Wn3_Config);
1673 if (vp->media_override != 7) {
1674 printk(KERN_INFO "%s: Media override to transceiver %d (%s).\n",
1675 dev->name, vp->media_override,
1676 media_tbl[vp->media_override].name);
1677 dev->if_port = vp->media_override;
1678 } else if (vp->autoselect) {
1679 if (vp->has_nway) {
1680 if (vortex_debug > 1)
1681 printk(KERN_INFO "%s: using NWAY device table, not %d\n",
1682 dev->name, dev->if_port);
1683 dev->if_port = XCVR_NWAY;
1684 } else {
1685 /* Find first available media type, starting with 100baseTx. */
1686 dev->if_port = XCVR_100baseTx;
1687 while (! (vp->available_media & media_tbl[dev->if_port].mask))
1688 dev->if_port = media_tbl[dev->if_port].next;
1689 if (vortex_debug > 1)
1690 printk(KERN_INFO "%s: first available media type: %s\n",
1691 dev->name, media_tbl[dev->if_port].name);
1693 } else {
1694 dev->if_port = vp->default_media;
1695 if (vortex_debug > 1)
1696 printk(KERN_INFO "%s: using default media %s\n",
1697 dev->name, media_tbl[dev->if_port].name);
1700 init_timer(&vp->timer);
1701 vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait);
1702 vp->timer.data = (unsigned long)dev;
1703 vp->timer.function = vortex_timer; /* timer handler */
1704 add_timer(&vp->timer);
1706 init_timer(&vp->rx_oom_timer);
1707 vp->rx_oom_timer.data = (unsigned long)dev;
1708 vp->rx_oom_timer.function = rx_oom_timer;
1710 if (vortex_debug > 1)
1711 printk(KERN_DEBUG "%s: Initial media type %s.\n",
1712 dev->name, media_tbl[dev->if_port].name);
1714 vp->full_duplex = vp->mii.force_media;
1715 config = BFINS(config, dev->if_port, 20, 4);
1716 if (vortex_debug > 6)
1717 printk(KERN_DEBUG "vortex_up(): writing 0x%x to InternalConfig\n", config);
1718 iowrite32(config, ioaddr + Wn3_Config);
1720 if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1721 EL3WINDOW(4);
1722 mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1723 mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1724 vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1726 vortex_check_media(dev, 1);
1728 else
1729 vortex_set_duplex(dev);
1731 issue_and_wait(dev, TxReset);
1733 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1735 issue_and_wait(dev, RxReset|0x04);
1738 iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1740 if (vortex_debug > 1) {
1741 EL3WINDOW(4);
1742 printk(KERN_DEBUG "%s: vortex_up() irq %d media status %4.4x.\n",
1743 dev->name, dev->irq, ioread16(ioaddr + Wn4_Media));
1746 /* Set the station address and mask in window 2 each time opened. */
1747 EL3WINDOW(2);
1748 for (i = 0; i < 6; i++)
1749 iowrite8(dev->dev_addr[i], ioaddr + i);
1750 for (; i < 12; i+=2)
1751 iowrite16(0, ioaddr + i);
1753 if (vp->cb_fn_base) {
1754 unsigned short n = ioread16(ioaddr + Wn2_ResetOptions) & ~0x4010;
1755 if (vp->drv_flags & INVERT_LED_PWR)
1756 n |= 0x10;
1757 if (vp->drv_flags & INVERT_MII_PWR)
1758 n |= 0x4000;
1759 iowrite16(n, ioaddr + Wn2_ResetOptions);
1762 if (dev->if_port == XCVR_10base2)
1763 /* Start the thinnet transceiver. We should really wait 50ms...*/
1764 iowrite16(StartCoax, ioaddr + EL3_CMD);
1765 if (dev->if_port != XCVR_NWAY) {
1766 EL3WINDOW(4);
1767 iowrite16((ioread16(ioaddr + Wn4_Media) & ~(Media_10TP|Media_SQE)) |
1768 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1771 /* Switch to the stats window, and clear all stats by reading. */
1772 iowrite16(StatsDisable, ioaddr + EL3_CMD);
1773 EL3WINDOW(6);
1774 for (i = 0; i < 10; i++)
1775 ioread8(ioaddr + i);
1776 ioread16(ioaddr + 10);
1777 ioread16(ioaddr + 12);
1778 /* New: On the Vortex we must also clear the BadSSD counter. */
1779 EL3WINDOW(4);
1780 ioread8(ioaddr + 12);
1781 /* ..and on the Boomerang we enable the extra statistics bits. */
1782 iowrite16(0x0040, ioaddr + Wn4_NetDiag);
1784 /* Switch to register set 7 for normal use. */
1785 EL3WINDOW(7);
1787 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1788 vp->cur_rx = vp->dirty_rx = 0;
1789 /* Initialize the RxEarly register as recommended. */
1790 iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1791 iowrite32(0x0020, ioaddr + PktStatus);
1792 iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1794 if (vp->full_bus_master_tx) { /* Boomerang bus master Tx. */
1795 vp->cur_tx = vp->dirty_tx = 0;
1796 if (vp->drv_flags & IS_BOOMERANG)
1797 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1798 /* Clear the Rx, Tx rings. */
1799 for (i = 0; i < RX_RING_SIZE; i++) /* AKPM: this is done in vortex_open, too */
1800 vp->rx_ring[i].status = 0;
1801 for (i = 0; i < TX_RING_SIZE; i++)
1802 vp->tx_skbuff[i] = NULL;
1803 iowrite32(0, ioaddr + DownListPtr);
1805 /* Set receiver mode: presumably accept b-case and phys addr only. */
1806 set_rx_mode(dev);
1807 /* enable 802.1q tagged frames */
1808 set_8021q_mode(dev, 1);
1809 iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1811 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1812 iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1813 /* Allow status bits to be seen. */
1814 vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1815 (vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1816 (vp->full_bus_master_rx ? UpComplete : RxComplete) |
1817 (vp->bus_master ? DMADone : 0);
1818 vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1819 (vp->full_bus_master_rx ? 0 : RxComplete) |
1820 StatsFull | HostError | TxComplete | IntReq
1821 | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1822 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1823 /* Ack all pending events, and set active indicator mask. */
1824 iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1825 ioaddr + EL3_CMD);
1826 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1827 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
1828 iowrite32(0x8000, vp->cb_fn_base + 4);
1829 netif_start_queue (dev);
1832 static int
1833 vortex_open(struct net_device *dev)
1835 struct vortex_private *vp = netdev_priv(dev);
1836 int i;
1837 int retval;
1839 /* Use the now-standard shared IRQ implementation. */
1840 if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1841 &boomerang_interrupt : &vortex_interrupt, SA_SHIRQ, dev->name, dev))) {
1842 printk(KERN_ERR "%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1843 goto out;
1846 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1847 if (vortex_debug > 2)
1848 printk(KERN_DEBUG "%s: Filling in the Rx ring.\n", dev->name);
1849 for (i = 0; i < RX_RING_SIZE; i++) {
1850 struct sk_buff *skb;
1851 vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1852 vp->rx_ring[i].status = 0; /* Clear complete bit. */
1853 vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1854 skb = dev_alloc_skb(PKT_BUF_SZ);
1855 vp->rx_skbuff[i] = skb;
1856 if (skb == NULL)
1857 break; /* Bad news! */
1858 skb->dev = dev; /* Mark as being used by this device. */
1859 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1860 vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1862 if (i != RX_RING_SIZE) {
1863 int j;
1864 printk(KERN_EMERG "%s: no memory for rx ring\n", dev->name);
1865 for (j = 0; j < i; j++) {
1866 if (vp->rx_skbuff[j]) {
1867 dev_kfree_skb(vp->rx_skbuff[j]);
1868 vp->rx_skbuff[j] = NULL;
1871 retval = -ENOMEM;
1872 goto out_free_irq;
1874 /* Wrap the ring. */
1875 vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1878 vortex_up(dev);
1879 return 0;
1881 out_free_irq:
1882 free_irq(dev->irq, dev);
1883 out:
1884 if (vortex_debug > 1)
1885 printk(KERN_ERR "%s: vortex_open() fails: returning %d\n", dev->name, retval);
1886 return retval;
1889 static void
1890 vortex_timer(unsigned long data)
1892 struct net_device *dev = (struct net_device *)data;
1893 struct vortex_private *vp = netdev_priv(dev);
1894 void __iomem *ioaddr = vp->ioaddr;
1895 int next_tick = 60*HZ;
1896 int ok = 0;
1897 int media_status, old_window;
1899 if (vortex_debug > 2) {
1900 printk(KERN_DEBUG "%s: Media selection timer tick happened, %s.\n",
1901 dev->name, media_tbl[dev->if_port].name);
1902 printk(KERN_DEBUG "dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1905 disable_irq(dev->irq);
1906 old_window = ioread16(ioaddr + EL3_CMD) >> 13;
1907 EL3WINDOW(4);
1908 media_status = ioread16(ioaddr + Wn4_Media);
1909 switch (dev->if_port) {
1910 case XCVR_10baseT: case XCVR_100baseTx: case XCVR_100baseFx:
1911 if (media_status & Media_LnkBeat) {
1912 netif_carrier_on(dev);
1913 ok = 1;
1914 if (vortex_debug > 1)
1915 printk(KERN_DEBUG "%s: Media %s has link beat, %x.\n",
1916 dev->name, media_tbl[dev->if_port].name, media_status);
1917 } else {
1918 netif_carrier_off(dev);
1919 if (vortex_debug > 1) {
1920 printk(KERN_DEBUG "%s: Media %s has no link beat, %x.\n",
1921 dev->name, media_tbl[dev->if_port].name, media_status);
1924 break;
1925 case XCVR_MII: case XCVR_NWAY:
1927 ok = 1;
1928 spin_lock_bh(&vp->lock);
1929 vortex_check_media(dev, 0);
1930 spin_unlock_bh(&vp->lock);
1932 break;
1933 default: /* Other media types handled by Tx timeouts. */
1934 if (vortex_debug > 1)
1935 printk(KERN_DEBUG "%s: Media %s has no indication, %x.\n",
1936 dev->name, media_tbl[dev->if_port].name, media_status);
1937 ok = 1;
1940 if (!netif_carrier_ok(dev))
1941 next_tick = 5*HZ;
1943 if (vp->medialock)
1944 goto leave_media_alone;
1946 if (!ok) {
1947 unsigned int config;
1949 do {
1950 dev->if_port = media_tbl[dev->if_port].next;
1951 } while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1952 if (dev->if_port == XCVR_Default) { /* Go back to default. */
1953 dev->if_port = vp->default_media;
1954 if (vortex_debug > 1)
1955 printk(KERN_DEBUG "%s: Media selection failing, using default "
1956 "%s port.\n",
1957 dev->name, media_tbl[dev->if_port].name);
1958 } else {
1959 if (vortex_debug > 1)
1960 printk(KERN_DEBUG "%s: Media selection failed, now trying "
1961 "%s port.\n",
1962 dev->name, media_tbl[dev->if_port].name);
1963 next_tick = media_tbl[dev->if_port].wait;
1965 iowrite16((media_status & ~(Media_10TP|Media_SQE)) |
1966 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1968 EL3WINDOW(3);
1969 config = ioread32(ioaddr + Wn3_Config);
1970 config = BFINS(config, dev->if_port, 20, 4);
1971 iowrite32(config, ioaddr + Wn3_Config);
1973 iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1974 ioaddr + EL3_CMD);
1975 if (vortex_debug > 1)
1976 printk(KERN_DEBUG "wrote 0x%08x to Wn3_Config\n", config);
1977 /* AKPM: FIXME: Should reset Rx & Tx here. P60 of 3c90xc.pdf */
1980 leave_media_alone:
1981 if (vortex_debug > 2)
1982 printk(KERN_DEBUG "%s: Media selection timer finished, %s.\n",
1983 dev->name, media_tbl[dev->if_port].name);
1985 EL3WINDOW(old_window);
1986 enable_irq(dev->irq);
1987 mod_timer(&vp->timer, RUN_AT(next_tick));
1988 if (vp->deferred)
1989 iowrite16(FakeIntr, ioaddr + EL3_CMD);
1990 return;
1993 static void vortex_tx_timeout(struct net_device *dev)
1995 struct vortex_private *vp = netdev_priv(dev);
1996 void __iomem *ioaddr = vp->ioaddr;
1998 printk(KERN_ERR "%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1999 dev->name, ioread8(ioaddr + TxStatus),
2000 ioread16(ioaddr + EL3_STATUS));
2001 EL3WINDOW(4);
2002 printk(KERN_ERR " diagnostics: net %04x media %04x dma %08x fifo %04x\n",
2003 ioread16(ioaddr + Wn4_NetDiag),
2004 ioread16(ioaddr + Wn4_Media),
2005 ioread32(ioaddr + PktStatus),
2006 ioread16(ioaddr + Wn4_FIFODiag));
2007 /* Slight code bloat to be user friendly. */
2008 if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
2009 printk(KERN_ERR "%s: Transmitter encountered 16 collisions --"
2010 " network cable problem?\n", dev->name);
2011 if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
2012 printk(KERN_ERR "%s: Interrupt posted but not delivered --"
2013 " IRQ blocked by another device?\n", dev->name);
2014 /* Bad idea here.. but we might as well handle a few events. */
2017 * Block interrupts because vortex_interrupt does a bare spin_lock()
2019 unsigned long flags;
2020 local_irq_save(flags);
2021 if (vp->full_bus_master_tx)
2022 boomerang_interrupt(dev->irq, dev, NULL);
2023 else
2024 vortex_interrupt(dev->irq, dev, NULL);
2025 local_irq_restore(flags);
2029 if (vortex_debug > 0)
2030 dump_tx_ring(dev);
2032 issue_and_wait(dev, TxReset);
2034 vp->stats.tx_errors++;
2035 if (vp->full_bus_master_tx) {
2036 printk(KERN_DEBUG "%s: Resetting the Tx ring pointer.\n", dev->name);
2037 if (vp->cur_tx - vp->dirty_tx > 0 && ioread32(ioaddr + DownListPtr) == 0)
2038 iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
2039 ioaddr + DownListPtr);
2040 if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE)
2041 netif_wake_queue (dev);
2042 if (vp->drv_flags & IS_BOOMERANG)
2043 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
2044 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2045 } else {
2046 vp->stats.tx_dropped++;
2047 netif_wake_queue(dev);
2050 /* Issue Tx Enable */
2051 iowrite16(TxEnable, ioaddr + EL3_CMD);
2052 dev->trans_start = jiffies;
2054 /* Switch to register set 7 for normal use. */
2055 EL3WINDOW(7);
2059 * Handle uncommon interrupt sources. This is a separate routine to minimize
2060 * the cache impact.
2062 static void
2063 vortex_error(struct net_device *dev, int status)
2065 struct vortex_private *vp = netdev_priv(dev);
2066 void __iomem *ioaddr = vp->ioaddr;
2067 int do_tx_reset = 0, reset_mask = 0;
2068 unsigned char tx_status = 0;
2070 if (vortex_debug > 2) {
2071 printk(KERN_ERR "%s: vortex_error(), status=0x%x\n", dev->name, status);
2074 if (status & TxComplete) { /* Really "TxError" for us. */
2075 tx_status = ioread8(ioaddr + TxStatus);
2076 /* Presumably a tx-timeout. We must merely re-enable. */
2077 if (vortex_debug > 2
2078 || (tx_status != 0x88 && vortex_debug > 0)) {
2079 printk(KERN_ERR "%s: Transmit error, Tx status register %2.2x.\n",
2080 dev->name, tx_status);
2081 if (tx_status == 0x82) {
2082 printk(KERN_ERR "Probably a duplex mismatch. See "
2083 "Documentation/networking/vortex.txt\n");
2085 dump_tx_ring(dev);
2087 if (tx_status & 0x14) vp->stats.tx_fifo_errors++;
2088 if (tx_status & 0x38) vp->stats.tx_aborted_errors++;
2089 if (tx_status & 0x08) vp->xstats.tx_max_collisions++;
2090 iowrite8(0, ioaddr + TxStatus);
2091 if (tx_status & 0x30) { /* txJabber or txUnderrun */
2092 do_tx_reset = 1;
2093 } else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET)) { /* maxCollisions */
2094 do_tx_reset = 1;
2095 reset_mask = 0x0108; /* Reset interface logic, but not download logic */
2096 } else { /* Merely re-enable the transmitter. */
2097 iowrite16(TxEnable, ioaddr + EL3_CMD);
2101 if (status & RxEarly) { /* Rx early is unused. */
2102 vortex_rx(dev);
2103 iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
2105 if (status & StatsFull) { /* Empty statistics. */
2106 static int DoneDidThat;
2107 if (vortex_debug > 4)
2108 printk(KERN_DEBUG "%s: Updating stats.\n", dev->name);
2109 update_stats(ioaddr, dev);
2110 /* HACK: Disable statistics as an interrupt source. */
2111 /* This occurs when we have the wrong media type! */
2112 if (DoneDidThat == 0 &&
2113 ioread16(ioaddr + EL3_STATUS) & StatsFull) {
2114 printk(KERN_WARNING "%s: Updating statistics failed, disabling "
2115 "stats as an interrupt source.\n", dev->name);
2116 EL3WINDOW(5);
2117 iowrite16(SetIntrEnb | (ioread16(ioaddr + 10) & ~StatsFull), ioaddr + EL3_CMD);
2118 vp->intr_enable &= ~StatsFull;
2119 EL3WINDOW(7);
2120 DoneDidThat++;
2123 if (status & IntReq) { /* Restore all interrupt sources. */
2124 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
2125 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
2127 if (status & HostError) {
2128 u16 fifo_diag;
2129 EL3WINDOW(4);
2130 fifo_diag = ioread16(ioaddr + Wn4_FIFODiag);
2131 printk(KERN_ERR "%s: Host error, FIFO diagnostic register %4.4x.\n",
2132 dev->name, fifo_diag);
2133 /* Adapter failure requires Tx/Rx reset and reinit. */
2134 if (vp->full_bus_master_tx) {
2135 int bus_status = ioread32(ioaddr + PktStatus);
2136 /* 0x80000000 PCI master abort. */
2137 /* 0x40000000 PCI target abort. */
2138 if (vortex_debug)
2139 printk(KERN_ERR "%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2141 /* In this case, blow the card away */
2142 /* Must not enter D3 or we can't legally issue the reset! */
2143 vortex_down(dev, 0);
2144 issue_and_wait(dev, TotalReset | 0xff);
2145 vortex_up(dev); /* AKPM: bug. vortex_up() assumes that the rx ring is full. It may not be. */
2146 } else if (fifo_diag & 0x0400)
2147 do_tx_reset = 1;
2148 if (fifo_diag & 0x3000) {
2149 /* Reset Rx fifo and upload logic */
2150 issue_and_wait(dev, RxReset|0x07);
2151 /* Set the Rx filter to the current state. */
2152 set_rx_mode(dev);
2153 /* enable 802.1q VLAN tagged frames */
2154 set_8021q_mode(dev, 1);
2155 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2156 iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2160 if (do_tx_reset) {
2161 issue_and_wait(dev, TxReset|reset_mask);
2162 iowrite16(TxEnable, ioaddr + EL3_CMD);
2163 if (!vp->full_bus_master_tx)
2164 netif_wake_queue(dev);
2168 static int
2169 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2171 struct vortex_private *vp = netdev_priv(dev);
2172 void __iomem *ioaddr = vp->ioaddr;
2174 /* Put out the doubleword header... */
2175 iowrite32(skb->len, ioaddr + TX_FIFO);
2176 if (vp->bus_master) {
2177 /* Set the bus-master controller to transfer the packet. */
2178 int len = (skb->len + 3) & ~3;
2179 iowrite32(vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len, PCI_DMA_TODEVICE),
2180 ioaddr + Wn7_MasterAddr);
2181 iowrite16(len, ioaddr + Wn7_MasterLen);
2182 vp->tx_skb = skb;
2183 iowrite16(StartDMADown, ioaddr + EL3_CMD);
2184 /* netif_wake_queue() will be called at the DMADone interrupt. */
2185 } else {
2186 /* ... and the packet rounded to a doubleword. */
2187 iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2188 dev_kfree_skb (skb);
2189 if (ioread16(ioaddr + TxFree) > 1536) {
2190 netif_start_queue (dev); /* AKPM: redundant? */
2191 } else {
2192 /* Interrupt us when the FIFO has room for max-sized packet. */
2193 netif_stop_queue(dev);
2194 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2198 dev->trans_start = jiffies;
2200 /* Clear the Tx status stack. */
2202 int tx_status;
2203 int i = 32;
2205 while (--i > 0 && (tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2206 if (tx_status & 0x3C) { /* A Tx-disabling error occurred. */
2207 if (vortex_debug > 2)
2208 printk(KERN_DEBUG "%s: Tx error, status %2.2x.\n",
2209 dev->name, tx_status);
2210 if (tx_status & 0x04) vp->stats.tx_fifo_errors++;
2211 if (tx_status & 0x38) vp->stats.tx_aborted_errors++;
2212 if (tx_status & 0x30) {
2213 issue_and_wait(dev, TxReset);
2215 iowrite16(TxEnable, ioaddr + EL3_CMD);
2217 iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2220 return 0;
2223 static int
2224 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2226 struct vortex_private *vp = netdev_priv(dev);
2227 void __iomem *ioaddr = vp->ioaddr;
2228 /* Calculate the next Tx descriptor entry. */
2229 int entry = vp->cur_tx % TX_RING_SIZE;
2230 struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2231 unsigned long flags;
2233 if (vortex_debug > 6) {
2234 printk(KERN_DEBUG "boomerang_start_xmit()\n");
2235 printk(KERN_DEBUG "%s: Trying to send a packet, Tx index %d.\n",
2236 dev->name, vp->cur_tx);
2239 if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2240 if (vortex_debug > 0)
2241 printk(KERN_WARNING "%s: BUG! Tx Ring full, refusing to send buffer.\n",
2242 dev->name);
2243 netif_stop_queue(dev);
2244 return 1;
2247 vp->tx_skbuff[entry] = skb;
2249 vp->tx_ring[entry].next = 0;
2250 #if DO_ZEROCOPY
2251 if (skb->ip_summed != CHECKSUM_HW)
2252 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2253 else
2254 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2256 if (!skb_shinfo(skb)->nr_frags) {
2257 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2258 skb->len, PCI_DMA_TODEVICE));
2259 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2260 } else {
2261 int i;
2263 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2264 skb->len-skb->data_len, PCI_DMA_TODEVICE));
2265 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len-skb->data_len);
2267 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2268 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2270 vp->tx_ring[entry].frag[i+1].addr =
2271 cpu_to_le32(pci_map_single(VORTEX_PCI(vp),
2272 (void*)page_address(frag->page) + frag->page_offset,
2273 frag->size, PCI_DMA_TODEVICE));
2275 if (i == skb_shinfo(skb)->nr_frags-1)
2276 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size|LAST_FRAG);
2277 else
2278 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size);
2281 #else
2282 vp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE));
2283 vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2284 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2285 #endif
2287 spin_lock_irqsave(&vp->lock, flags);
2288 /* Wait for the stall to complete. */
2289 issue_and_wait(dev, DownStall);
2290 prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2291 if (ioread32(ioaddr + DownListPtr) == 0) {
2292 iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2293 vp->queued_packet++;
2296 vp->cur_tx++;
2297 if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2298 netif_stop_queue (dev);
2299 } else { /* Clear previous interrupt enable. */
2300 #if defined(tx_interrupt_mitigation)
2301 /* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2302 * were selected, this would corrupt DN_COMPLETE. No?
2304 prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2305 #endif
2307 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2308 spin_unlock_irqrestore(&vp->lock, flags);
2309 dev->trans_start = jiffies;
2310 return 0;
2313 /* The interrupt handler does all of the Rx thread work and cleans up
2314 after the Tx thread. */
2317 * This is the ISR for the vortex series chips.
2318 * full_bus_master_tx == 0 && full_bus_master_rx == 0
2321 static irqreturn_t
2322 vortex_interrupt(int irq, void *dev_id, struct pt_regs *regs)
2324 struct net_device *dev = dev_id;
2325 struct vortex_private *vp = netdev_priv(dev);
2326 void __iomem *ioaddr;
2327 int status;
2328 int work_done = max_interrupt_work;
2329 int handled = 0;
2331 ioaddr = vp->ioaddr;
2332 spin_lock(&vp->lock);
2334 status = ioread16(ioaddr + EL3_STATUS);
2336 if (vortex_debug > 6)
2337 printk("vortex_interrupt(). status=0x%4x\n", status);
2339 if ((status & IntLatch) == 0)
2340 goto handler_exit; /* No interrupt: shared IRQs cause this */
2341 handled = 1;
2343 if (status & IntReq) {
2344 status |= vp->deferred;
2345 vp->deferred = 0;
2348 if (status == 0xffff) /* h/w no longer present (hotplug)? */
2349 goto handler_exit;
2351 if (vortex_debug > 4)
2352 printk(KERN_DEBUG "%s: interrupt, status %4.4x, latency %d ticks.\n",
2353 dev->name, status, ioread8(ioaddr + Timer));
2355 do {
2356 if (vortex_debug > 5)
2357 printk(KERN_DEBUG "%s: In interrupt loop, status %4.4x.\n",
2358 dev->name, status);
2359 if (status & RxComplete)
2360 vortex_rx(dev);
2362 if (status & TxAvailable) {
2363 if (vortex_debug > 5)
2364 printk(KERN_DEBUG " TX room bit was handled.\n");
2365 /* There's room in the FIFO for a full-sized packet. */
2366 iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2367 netif_wake_queue (dev);
2370 if (status & DMADone) {
2371 if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2372 iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2373 pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2374 dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2375 if (ioread16(ioaddr + TxFree) > 1536) {
2377 * AKPM: FIXME: I don't think we need this. If the queue was stopped due to
2378 * insufficient FIFO room, the TxAvailable test will succeed and call
2379 * netif_wake_queue()
2381 netif_wake_queue(dev);
2382 } else { /* Interrupt when FIFO has room for max-sized packet. */
2383 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2384 netif_stop_queue(dev);
2388 /* Check for all uncommon interrupts at once. */
2389 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2390 if (status == 0xffff)
2391 break;
2392 vortex_error(dev, status);
2395 if (--work_done < 0) {
2396 printk(KERN_WARNING "%s: Too much work in interrupt, status "
2397 "%4.4x.\n", dev->name, status);
2398 /* Disable all pending interrupts. */
2399 do {
2400 vp->deferred |= status;
2401 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2402 ioaddr + EL3_CMD);
2403 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2404 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2405 /* The timer will reenable interrupts. */
2406 mod_timer(&vp->timer, jiffies + 1*HZ);
2407 break;
2409 /* Acknowledge the IRQ. */
2410 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2411 } while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2413 if (vortex_debug > 4)
2414 printk(KERN_DEBUG "%s: exiting interrupt, status %4.4x.\n",
2415 dev->name, status);
2416 handler_exit:
2417 spin_unlock(&vp->lock);
2418 return IRQ_RETVAL(handled);
2422 * This is the ISR for the boomerang series chips.
2423 * full_bus_master_tx == 1 && full_bus_master_rx == 1
2426 static irqreturn_t
2427 boomerang_interrupt(int irq, void *dev_id, struct pt_regs *regs)
2429 struct net_device *dev = dev_id;
2430 struct vortex_private *vp = netdev_priv(dev);
2431 void __iomem *ioaddr;
2432 int status;
2433 int work_done = max_interrupt_work;
2435 ioaddr = vp->ioaddr;
2438 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2439 * and boomerang_start_xmit
2441 spin_lock(&vp->lock);
2443 status = ioread16(ioaddr + EL3_STATUS);
2445 if (vortex_debug > 6)
2446 printk(KERN_DEBUG "boomerang_interrupt. status=0x%4x\n", status);
2448 if ((status & IntLatch) == 0)
2449 goto handler_exit; /* No interrupt: shared IRQs can cause this */
2451 if (status == 0xffff) { /* h/w no longer present (hotplug)? */
2452 if (vortex_debug > 1)
2453 printk(KERN_DEBUG "boomerang_interrupt(1): status = 0xffff\n");
2454 goto handler_exit;
2457 if (status & IntReq) {
2458 status |= vp->deferred;
2459 vp->deferred = 0;
2462 if (vortex_debug > 4)
2463 printk(KERN_DEBUG "%s: interrupt, status %4.4x, latency %d ticks.\n",
2464 dev->name, status, ioread8(ioaddr + Timer));
2465 do {
2466 if (vortex_debug > 5)
2467 printk(KERN_DEBUG "%s: In interrupt loop, status %4.4x.\n",
2468 dev->name, status);
2469 if (status & UpComplete) {
2470 iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2471 if (vortex_debug > 5)
2472 printk(KERN_DEBUG "boomerang_interrupt->boomerang_rx\n");
2473 boomerang_rx(dev);
2476 if (status & DownComplete) {
2477 unsigned int dirty_tx = vp->dirty_tx;
2479 iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2480 while (vp->cur_tx - dirty_tx > 0) {
2481 int entry = dirty_tx % TX_RING_SIZE;
2482 #if 1 /* AKPM: the latter is faster, but cyclone-only */
2483 if (ioread32(ioaddr + DownListPtr) ==
2484 vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2485 break; /* It still hasn't been processed. */
2486 #else
2487 if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2488 break; /* It still hasn't been processed. */
2489 #endif
2491 if (vp->tx_skbuff[entry]) {
2492 struct sk_buff *skb = vp->tx_skbuff[entry];
2493 #if DO_ZEROCOPY
2494 int i;
2495 for (i=0; i<=skb_shinfo(skb)->nr_frags; i++)
2496 pci_unmap_single(VORTEX_PCI(vp),
2497 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2498 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2499 PCI_DMA_TODEVICE);
2500 #else
2501 pci_unmap_single(VORTEX_PCI(vp),
2502 le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2503 #endif
2504 dev_kfree_skb_irq(skb);
2505 vp->tx_skbuff[entry] = NULL;
2506 } else {
2507 printk(KERN_DEBUG "boomerang_interrupt: no skb!\n");
2509 /* vp->stats.tx_packets++; Counted below. */
2510 dirty_tx++;
2512 vp->dirty_tx = dirty_tx;
2513 if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2514 if (vortex_debug > 6)
2515 printk(KERN_DEBUG "boomerang_interrupt: wake queue\n");
2516 netif_wake_queue (dev);
2520 /* Check for all uncommon interrupts at once. */
2521 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2522 vortex_error(dev, status);
2524 if (--work_done < 0) {
2525 printk(KERN_WARNING "%s: Too much work in interrupt, status "
2526 "%4.4x.\n", dev->name, status);
2527 /* Disable all pending interrupts. */
2528 do {
2529 vp->deferred |= status;
2530 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2531 ioaddr + EL3_CMD);
2532 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2533 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2534 /* The timer will reenable interrupts. */
2535 mod_timer(&vp->timer, jiffies + 1*HZ);
2536 break;
2538 /* Acknowledge the IRQ. */
2539 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2540 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
2541 iowrite32(0x8000, vp->cb_fn_base + 4);
2543 } while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2545 if (vortex_debug > 4)
2546 printk(KERN_DEBUG "%s: exiting interrupt, status %4.4x.\n",
2547 dev->name, status);
2548 handler_exit:
2549 spin_unlock(&vp->lock);
2550 return IRQ_HANDLED;
2553 static int vortex_rx(struct net_device *dev)
2555 struct vortex_private *vp = netdev_priv(dev);
2556 void __iomem *ioaddr = vp->ioaddr;
2557 int i;
2558 short rx_status;
2560 if (vortex_debug > 5)
2561 printk(KERN_DEBUG "vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2562 ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2563 while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2564 if (rx_status & 0x4000) { /* Error, update stats. */
2565 unsigned char rx_error = ioread8(ioaddr + RxErrors);
2566 if (vortex_debug > 2)
2567 printk(KERN_DEBUG " Rx error: status %2.2x.\n", rx_error);
2568 vp->stats.rx_errors++;
2569 if (rx_error & 0x01) vp->stats.rx_over_errors++;
2570 if (rx_error & 0x02) vp->stats.rx_length_errors++;
2571 if (rx_error & 0x04) vp->stats.rx_frame_errors++;
2572 if (rx_error & 0x08) vp->stats.rx_crc_errors++;
2573 if (rx_error & 0x10) vp->stats.rx_length_errors++;
2574 } else {
2575 /* The packet length: up to 4.5K!. */
2576 int pkt_len = rx_status & 0x1fff;
2577 struct sk_buff *skb;
2579 skb = dev_alloc_skb(pkt_len + 5);
2580 if (vortex_debug > 4)
2581 printk(KERN_DEBUG "Receiving packet size %d status %4.4x.\n",
2582 pkt_len, rx_status);
2583 if (skb != NULL) {
2584 skb->dev = dev;
2585 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2586 /* 'skb_put()' points to the start of sk_buff data area. */
2587 if (vp->bus_master &&
2588 ! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2589 dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2590 pkt_len, PCI_DMA_FROMDEVICE);
2591 iowrite32(dma, ioaddr + Wn7_MasterAddr);
2592 iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2593 iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2594 while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2596 pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2597 } else {
2598 ioread32_rep(ioaddr + RX_FIFO,
2599 skb_put(skb, pkt_len),
2600 (pkt_len + 3) >> 2);
2602 iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2603 skb->protocol = eth_type_trans(skb, dev);
2604 netif_rx(skb);
2605 dev->last_rx = jiffies;
2606 vp->stats.rx_packets++;
2607 /* Wait a limited time to go to next packet. */
2608 for (i = 200; i >= 0; i--)
2609 if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2610 break;
2611 continue;
2612 } else if (vortex_debug > 0)
2613 printk(KERN_NOTICE "%s: No memory to allocate a sk_buff of "
2614 "size %d.\n", dev->name, pkt_len);
2615 vp->stats.rx_dropped++;
2617 issue_and_wait(dev, RxDiscard);
2620 return 0;
2623 static int
2624 boomerang_rx(struct net_device *dev)
2626 struct vortex_private *vp = netdev_priv(dev);
2627 int entry = vp->cur_rx % RX_RING_SIZE;
2628 void __iomem *ioaddr = vp->ioaddr;
2629 int rx_status;
2630 int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2632 if (vortex_debug > 5)
2633 printk(KERN_DEBUG "boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2635 while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2636 if (--rx_work_limit < 0)
2637 break;
2638 if (rx_status & RxDError) { /* Error, update stats. */
2639 unsigned char rx_error = rx_status >> 16;
2640 if (vortex_debug > 2)
2641 printk(KERN_DEBUG " Rx error: status %2.2x.\n", rx_error);
2642 vp->stats.rx_errors++;
2643 if (rx_error & 0x01) vp->stats.rx_over_errors++;
2644 if (rx_error & 0x02) vp->stats.rx_length_errors++;
2645 if (rx_error & 0x04) vp->stats.rx_frame_errors++;
2646 if (rx_error & 0x08) vp->stats.rx_crc_errors++;
2647 if (rx_error & 0x10) vp->stats.rx_length_errors++;
2648 } else {
2649 /* The packet length: up to 4.5K!. */
2650 int pkt_len = rx_status & 0x1fff;
2651 struct sk_buff *skb;
2652 dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2654 if (vortex_debug > 4)
2655 printk(KERN_DEBUG "Receiving packet size %d status %4.4x.\n",
2656 pkt_len, rx_status);
2658 /* Check if the packet is long enough to just accept without
2659 copying to a properly sized skbuff. */
2660 if (pkt_len < rx_copybreak && (skb = dev_alloc_skb(pkt_len + 2)) != 0) {
2661 skb->dev = dev;
2662 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2663 pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2664 /* 'skb_put()' points to the start of sk_buff data area. */
2665 memcpy(skb_put(skb, pkt_len),
2666 vp->rx_skbuff[entry]->data,
2667 pkt_len);
2668 pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2669 vp->rx_copy++;
2670 } else {
2671 /* Pass up the skbuff already on the Rx ring. */
2672 skb = vp->rx_skbuff[entry];
2673 vp->rx_skbuff[entry] = NULL;
2674 skb_put(skb, pkt_len);
2675 pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2676 vp->rx_nocopy++;
2678 skb->protocol = eth_type_trans(skb, dev);
2679 { /* Use hardware checksum info. */
2680 int csum_bits = rx_status & 0xee000000;
2681 if (csum_bits &&
2682 (csum_bits == (IPChksumValid | TCPChksumValid) ||
2683 csum_bits == (IPChksumValid | UDPChksumValid))) {
2684 skb->ip_summed = CHECKSUM_UNNECESSARY;
2685 vp->rx_csumhits++;
2688 netif_rx(skb);
2689 dev->last_rx = jiffies;
2690 vp->stats.rx_packets++;
2692 entry = (++vp->cur_rx) % RX_RING_SIZE;
2694 /* Refill the Rx ring buffers. */
2695 for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2696 struct sk_buff *skb;
2697 entry = vp->dirty_rx % RX_RING_SIZE;
2698 if (vp->rx_skbuff[entry] == NULL) {
2699 skb = dev_alloc_skb(PKT_BUF_SZ);
2700 if (skb == NULL) {
2701 static unsigned long last_jif;
2702 if (time_after(jiffies, last_jif + 10 * HZ)) {
2703 printk(KERN_WARNING "%s: memory shortage\n", dev->name);
2704 last_jif = jiffies;
2706 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2707 mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2708 break; /* Bad news! */
2710 skb->dev = dev; /* Mark as being used by this device. */
2711 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2712 vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2713 vp->rx_skbuff[entry] = skb;
2715 vp->rx_ring[entry].status = 0; /* Clear complete bit. */
2716 iowrite16(UpUnstall, ioaddr + EL3_CMD);
2718 return 0;
2722 * If we've hit a total OOM refilling the Rx ring we poll once a second
2723 * for some memory. Otherwise there is no way to restart the rx process.
2725 static void
2726 rx_oom_timer(unsigned long arg)
2728 struct net_device *dev = (struct net_device *)arg;
2729 struct vortex_private *vp = netdev_priv(dev);
2731 spin_lock_irq(&vp->lock);
2732 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE) /* This test is redundant, but makes me feel good */
2733 boomerang_rx(dev);
2734 if (vortex_debug > 1) {
2735 printk(KERN_DEBUG "%s: rx_oom_timer %s\n", dev->name,
2736 ((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2738 spin_unlock_irq(&vp->lock);
2741 static void
2742 vortex_down(struct net_device *dev, int final_down)
2744 struct vortex_private *vp = netdev_priv(dev);
2745 void __iomem *ioaddr = vp->ioaddr;
2747 netif_stop_queue (dev);
2749 del_timer_sync(&vp->rx_oom_timer);
2750 del_timer_sync(&vp->timer);
2752 /* Turn off statistics ASAP. We update vp->stats below. */
2753 iowrite16(StatsDisable, ioaddr + EL3_CMD);
2755 /* Disable the receiver and transmitter. */
2756 iowrite16(RxDisable, ioaddr + EL3_CMD);
2757 iowrite16(TxDisable, ioaddr + EL3_CMD);
2759 /* Disable receiving 802.1q tagged frames */
2760 set_8021q_mode(dev, 0);
2762 if (dev->if_port == XCVR_10base2)
2763 /* Turn off thinnet power. Green! */
2764 iowrite16(StopCoax, ioaddr + EL3_CMD);
2766 iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2768 update_stats(ioaddr, dev);
2769 if (vp->full_bus_master_rx)
2770 iowrite32(0, ioaddr + UpListPtr);
2771 if (vp->full_bus_master_tx)
2772 iowrite32(0, ioaddr + DownListPtr);
2774 if (final_down && VORTEX_PCI(vp)) {
2775 vp->pm_state_valid = 1;
2776 pci_save_state(VORTEX_PCI(vp));
2777 acpi_set_WOL(dev);
2781 static int
2782 vortex_close(struct net_device *dev)
2784 struct vortex_private *vp = netdev_priv(dev);
2785 void __iomem *ioaddr = vp->ioaddr;
2786 int i;
2788 if (netif_device_present(dev))
2789 vortex_down(dev, 1);
2791 if (vortex_debug > 1) {
2792 printk(KERN_DEBUG"%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2793 dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2794 printk(KERN_DEBUG "%s: vortex close stats: rx_nocopy %d rx_copy %d"
2795 " tx_queued %d Rx pre-checksummed %d.\n",
2796 dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2799 #if DO_ZEROCOPY
2800 if (vp->rx_csumhits &&
2801 (vp->drv_flags & HAS_HWCKSM) == 0 &&
2802 (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2803 printk(KERN_WARNING "%s supports hardware checksums, and we're "
2804 "not using them!\n", dev->name);
2806 #endif
2808 free_irq(dev->irq, dev);
2810 if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2811 for (i = 0; i < RX_RING_SIZE; i++)
2812 if (vp->rx_skbuff[i]) {
2813 pci_unmap_single( VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2814 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2815 dev_kfree_skb(vp->rx_skbuff[i]);
2816 vp->rx_skbuff[i] = NULL;
2819 if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2820 for (i = 0; i < TX_RING_SIZE; i++) {
2821 if (vp->tx_skbuff[i]) {
2822 struct sk_buff *skb = vp->tx_skbuff[i];
2823 #if DO_ZEROCOPY
2824 int k;
2826 for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2827 pci_unmap_single(VORTEX_PCI(vp),
2828 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2829 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2830 PCI_DMA_TODEVICE);
2831 #else
2832 pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2833 #endif
2834 dev_kfree_skb(skb);
2835 vp->tx_skbuff[i] = NULL;
2840 return 0;
2843 static void
2844 dump_tx_ring(struct net_device *dev)
2846 if (vortex_debug > 0) {
2847 struct vortex_private *vp = netdev_priv(dev);
2848 void __iomem *ioaddr = vp->ioaddr;
2850 if (vp->full_bus_master_tx) {
2851 int i;
2852 int stalled = ioread32(ioaddr + PktStatus) & 0x04; /* Possible racy. But it's only debug stuff */
2854 printk(KERN_ERR " Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2855 vp->full_bus_master_tx,
2856 vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2857 vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2858 printk(KERN_ERR " Transmit list %8.8x vs. %p.\n",
2859 ioread32(ioaddr + DownListPtr),
2860 &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2861 issue_and_wait(dev, DownStall);
2862 for (i = 0; i < TX_RING_SIZE; i++) {
2863 printk(KERN_ERR " %d: @%p length %8.8x status %8.8x\n", i,
2864 &vp->tx_ring[i],
2865 #if DO_ZEROCOPY
2866 le32_to_cpu(vp->tx_ring[i].frag[0].length),
2867 #else
2868 le32_to_cpu(vp->tx_ring[i].length),
2869 #endif
2870 le32_to_cpu(vp->tx_ring[i].status));
2872 if (!stalled)
2873 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2878 static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2880 struct vortex_private *vp = netdev_priv(dev);
2881 void __iomem *ioaddr = vp->ioaddr;
2882 unsigned long flags;
2884 if (netif_device_present(dev)) { /* AKPM: Used to be netif_running */
2885 spin_lock_irqsave (&vp->lock, flags);
2886 update_stats(ioaddr, dev);
2887 spin_unlock_irqrestore (&vp->lock, flags);
2889 return &vp->stats;
2892 /* Update statistics.
2893 Unlike with the EL3 we need not worry about interrupts changing
2894 the window setting from underneath us, but we must still guard
2895 against a race condition with a StatsUpdate interrupt updating the
2896 table. This is done by checking that the ASM (!) code generated uses
2897 atomic updates with '+='.
2899 static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2901 struct vortex_private *vp = netdev_priv(dev);
2902 int old_window = ioread16(ioaddr + EL3_CMD);
2904 if (old_window == 0xffff) /* Chip suspended or ejected. */
2905 return;
2906 /* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2907 /* Switch to the stats window, and read everything. */
2908 EL3WINDOW(6);
2909 vp->stats.tx_carrier_errors += ioread8(ioaddr + 0);
2910 vp->stats.tx_heartbeat_errors += ioread8(ioaddr + 1);
2911 vp->stats.tx_window_errors += ioread8(ioaddr + 4);
2912 vp->stats.rx_fifo_errors += ioread8(ioaddr + 5);
2913 vp->stats.tx_packets += ioread8(ioaddr + 6);
2914 vp->stats.tx_packets += (ioread8(ioaddr + 9)&0x30) << 4;
2915 /* Rx packets */ ioread8(ioaddr + 7); /* Must read to clear */
2916 /* Don't bother with register 9, an extension of registers 6&7.
2917 If we do use the 6&7 values the atomic update assumption above
2918 is invalid. */
2919 vp->stats.rx_bytes += ioread16(ioaddr + 10);
2920 vp->stats.tx_bytes += ioread16(ioaddr + 12);
2921 /* Extra stats for get_ethtool_stats() */
2922 vp->xstats.tx_multiple_collisions += ioread8(ioaddr + 2);
2923 vp->xstats.tx_single_collisions += ioread8(ioaddr + 3);
2924 vp->xstats.tx_deferred += ioread8(ioaddr + 8);
2925 EL3WINDOW(4);
2926 vp->xstats.rx_bad_ssd += ioread8(ioaddr + 12);
2928 vp->stats.collisions = vp->xstats.tx_multiple_collisions
2929 + vp->xstats.tx_single_collisions
2930 + vp->xstats.tx_max_collisions;
2933 u8 up = ioread8(ioaddr + 13);
2934 vp->stats.rx_bytes += (up & 0x0f) << 16;
2935 vp->stats.tx_bytes += (up & 0xf0) << 12;
2938 EL3WINDOW(old_window >> 13);
2939 return;
2942 static int vortex_nway_reset(struct net_device *dev)
2944 struct vortex_private *vp = netdev_priv(dev);
2945 void __iomem *ioaddr = vp->ioaddr;
2946 unsigned long flags;
2947 int rc;
2949 spin_lock_irqsave(&vp->lock, flags);
2950 EL3WINDOW(4);
2951 rc = mii_nway_restart(&vp->mii);
2952 spin_unlock_irqrestore(&vp->lock, flags);
2953 return rc;
2956 static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2958 struct vortex_private *vp = netdev_priv(dev);
2959 void __iomem *ioaddr = vp->ioaddr;
2960 unsigned long flags;
2961 int rc;
2963 spin_lock_irqsave(&vp->lock, flags);
2964 EL3WINDOW(4);
2965 rc = mii_ethtool_gset(&vp->mii, cmd);
2966 spin_unlock_irqrestore(&vp->lock, flags);
2967 return rc;
2970 static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2972 struct vortex_private *vp = netdev_priv(dev);
2973 void __iomem *ioaddr = vp->ioaddr;
2974 unsigned long flags;
2975 int rc;
2977 spin_lock_irqsave(&vp->lock, flags);
2978 EL3WINDOW(4);
2979 rc = mii_ethtool_sset(&vp->mii, cmd);
2980 spin_unlock_irqrestore(&vp->lock, flags);
2981 return rc;
2984 static u32 vortex_get_msglevel(struct net_device *dev)
2986 return vortex_debug;
2989 static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2991 vortex_debug = dbg;
2994 static int vortex_get_stats_count(struct net_device *dev)
2996 return VORTEX_NUM_STATS;
2999 static void vortex_get_ethtool_stats(struct net_device *dev,
3000 struct ethtool_stats *stats, u64 *data)
3002 struct vortex_private *vp = netdev_priv(dev);
3003 void __iomem *ioaddr = vp->ioaddr;
3004 unsigned long flags;
3006 spin_lock_irqsave(&vp->lock, flags);
3007 update_stats(ioaddr, dev);
3008 spin_unlock_irqrestore(&vp->lock, flags);
3010 data[0] = vp->xstats.tx_deferred;
3011 data[1] = vp->xstats.tx_max_collisions;
3012 data[2] = vp->xstats.tx_multiple_collisions;
3013 data[3] = vp->xstats.tx_single_collisions;
3014 data[4] = vp->xstats.rx_bad_ssd;
3018 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
3020 switch (stringset) {
3021 case ETH_SS_STATS:
3022 memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
3023 break;
3024 default:
3025 WARN_ON(1);
3026 break;
3030 static void vortex_get_drvinfo(struct net_device *dev,
3031 struct ethtool_drvinfo *info)
3033 struct vortex_private *vp = netdev_priv(dev);
3035 strcpy(info->driver, DRV_NAME);
3036 if (VORTEX_PCI(vp)) {
3037 strcpy(info->bus_info, pci_name(VORTEX_PCI(vp)));
3038 } else {
3039 if (VORTEX_EISA(vp))
3040 sprintf(info->bus_info, vp->gendev->bus_id);
3041 else
3042 sprintf(info->bus_info, "EISA 0x%lx %d",
3043 dev->base_addr, dev->irq);
3047 static struct ethtool_ops vortex_ethtool_ops = {
3048 .get_drvinfo = vortex_get_drvinfo,
3049 .get_strings = vortex_get_strings,
3050 .get_msglevel = vortex_get_msglevel,
3051 .set_msglevel = vortex_set_msglevel,
3052 .get_ethtool_stats = vortex_get_ethtool_stats,
3053 .get_stats_count = vortex_get_stats_count,
3054 .get_settings = vortex_get_settings,
3055 .set_settings = vortex_set_settings,
3056 .get_link = ethtool_op_get_link,
3057 .nway_reset = vortex_nway_reset,
3058 .get_perm_addr = ethtool_op_get_perm_addr,
3061 #ifdef CONFIG_PCI
3063 * Must power the device up to do MDIO operations
3065 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3067 int err;
3068 struct vortex_private *vp = netdev_priv(dev);
3069 void __iomem *ioaddr = vp->ioaddr;
3070 unsigned long flags;
3071 int state = 0;
3073 if(VORTEX_PCI(vp))
3074 state = VORTEX_PCI(vp)->current_state;
3076 /* The kernel core really should have pci_get_power_state() */
3078 if(state != 0)
3079 pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3080 spin_lock_irqsave(&vp->lock, flags);
3081 EL3WINDOW(4);
3082 err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3083 spin_unlock_irqrestore(&vp->lock, flags);
3084 if(state != 0)
3085 pci_set_power_state(VORTEX_PCI(vp), state);
3087 return err;
3089 #endif
3092 /* Pre-Cyclone chips have no documented multicast filter, so the only
3093 multicast setting is to receive all multicast frames. At least
3094 the chip has a very clean way to set the mode, unlike many others. */
3095 static void set_rx_mode(struct net_device *dev)
3097 struct vortex_private *vp = netdev_priv(dev);
3098 void __iomem *ioaddr = vp->ioaddr;
3099 int new_mode;
3101 if (dev->flags & IFF_PROMISC) {
3102 if (vortex_debug > 0)
3103 printk(KERN_NOTICE "%s: Setting promiscuous mode.\n", dev->name);
3104 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3105 } else if ((dev->mc_list) || (dev->flags & IFF_ALLMULTI)) {
3106 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3107 } else
3108 new_mode = SetRxFilter | RxStation | RxBroadcast;
3110 iowrite16(new_mode, ioaddr + EL3_CMD);
3113 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
3114 /* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3115 Note that this must be done after each RxReset due to some backwards
3116 compatibility logic in the Cyclone and Tornado ASICs */
3118 /* The Ethernet Type used for 802.1q tagged frames */
3119 #define VLAN_ETHER_TYPE 0x8100
3121 static void set_8021q_mode(struct net_device *dev, int enable)
3123 struct vortex_private *vp = netdev_priv(dev);
3124 void __iomem *ioaddr = vp->ioaddr;
3125 int old_window = ioread16(ioaddr + EL3_CMD);
3126 int mac_ctrl;
3128 if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3129 /* cyclone and tornado chipsets can recognize 802.1q
3130 * tagged frames and treat them correctly */
3132 int max_pkt_size = dev->mtu+14; /* MTU+Ethernet header */
3133 if (enable)
3134 max_pkt_size += 4; /* 802.1Q VLAN tag */
3136 EL3WINDOW(3);
3137 iowrite16(max_pkt_size, ioaddr+Wn3_MaxPktSize);
3139 /* set VlanEtherType to let the hardware checksumming
3140 treat tagged frames correctly */
3141 EL3WINDOW(7);
3142 iowrite16(VLAN_ETHER_TYPE, ioaddr+Wn7_VlanEtherType);
3143 } else {
3144 /* on older cards we have to enable large frames */
3146 vp->large_frames = dev->mtu > 1500 || enable;
3148 EL3WINDOW(3);
3149 mac_ctrl = ioread16(ioaddr+Wn3_MAC_Ctrl);
3150 if (vp->large_frames)
3151 mac_ctrl |= 0x40;
3152 else
3153 mac_ctrl &= ~0x40;
3154 iowrite16(mac_ctrl, ioaddr+Wn3_MAC_Ctrl);
3157 EL3WINDOW(old_window);
3159 #else
3161 static void set_8021q_mode(struct net_device *dev, int enable)
3166 #endif
3168 /* MII transceiver control section.
3169 Read and write the MII registers using software-generated serial
3170 MDIO protocol. See the MII specifications or DP83840A data sheet
3171 for details. */
3173 /* The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
3174 met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3175 "overclocking" issues. */
3176 #define mdio_delay() ioread32(mdio_addr)
3178 #define MDIO_SHIFT_CLK 0x01
3179 #define MDIO_DIR_WRITE 0x04
3180 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3181 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3182 #define MDIO_DATA_READ 0x02
3183 #define MDIO_ENB_IN 0x00
3185 /* Generate the preamble required for initial synchronization and
3186 a few older transceivers. */
3187 static void mdio_sync(void __iomem *ioaddr, int bits)
3189 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3191 /* Establish sync by sending at least 32 logic ones. */
3192 while (-- bits >= 0) {
3193 iowrite16(MDIO_DATA_WRITE1, mdio_addr);
3194 mdio_delay();
3195 iowrite16(MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr);
3196 mdio_delay();
3200 static int mdio_read(struct net_device *dev, int phy_id, int location)
3202 int i;
3203 struct vortex_private *vp = netdev_priv(dev);
3204 void __iomem *ioaddr = vp->ioaddr;
3205 int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3206 unsigned int retval = 0;
3207 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3209 if (mii_preamble_required)
3210 mdio_sync(ioaddr, 32);
3212 /* Shift the read command bits out. */
3213 for (i = 14; i >= 0; i--) {
3214 int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3215 iowrite16(dataval, mdio_addr);
3216 mdio_delay();
3217 iowrite16(dataval | MDIO_SHIFT_CLK, mdio_addr);
3218 mdio_delay();
3220 /* Read the two transition, 16 data, and wire-idle bits. */
3221 for (i = 19; i > 0; i--) {
3222 iowrite16(MDIO_ENB_IN, mdio_addr);
3223 mdio_delay();
3224 retval = (retval << 1) | ((ioread16(mdio_addr) & MDIO_DATA_READ) ? 1 : 0);
3225 iowrite16(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3226 mdio_delay();
3228 return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3231 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3233 struct vortex_private *vp = netdev_priv(dev);
3234 void __iomem *ioaddr = vp->ioaddr;
3235 int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3236 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3237 int i;
3239 if (mii_preamble_required)
3240 mdio_sync(ioaddr, 32);
3242 /* Shift the command bits out. */
3243 for (i = 31; i >= 0; i--) {
3244 int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3245 iowrite16(dataval, mdio_addr);
3246 mdio_delay();
3247 iowrite16(dataval | MDIO_SHIFT_CLK, mdio_addr);
3248 mdio_delay();
3250 /* Leave the interface idle. */
3251 for (i = 1; i >= 0; i--) {
3252 iowrite16(MDIO_ENB_IN, mdio_addr);
3253 mdio_delay();
3254 iowrite16(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3255 mdio_delay();
3257 return;
3260 /* ACPI: Advanced Configuration and Power Interface. */
3261 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3262 static void acpi_set_WOL(struct net_device *dev)
3264 struct vortex_private *vp = netdev_priv(dev);
3265 void __iomem *ioaddr = vp->ioaddr;
3267 if (vp->enable_wol) {
3268 /* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3269 EL3WINDOW(7);
3270 iowrite16(2, ioaddr + 0x0c);
3271 /* The RxFilter must accept the WOL frames. */
3272 iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3273 iowrite16(RxEnable, ioaddr + EL3_CMD);
3275 pci_enable_wake(VORTEX_PCI(vp), 0, 1);
3277 /* Change the power state to D3; RxEnable doesn't take effect. */
3278 pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3283 static void __devexit vortex_remove_one(struct pci_dev *pdev)
3285 struct net_device *dev = pci_get_drvdata(pdev);
3286 struct vortex_private *vp;
3288 if (!dev) {
3289 printk("vortex_remove_one called for Compaq device!\n");
3290 BUG();
3293 vp = netdev_priv(dev);
3295 if (vp->cb_fn_base)
3296 pci_iounmap(VORTEX_PCI(vp), vp->cb_fn_base);
3298 unregister_netdev(dev);
3300 if (VORTEX_PCI(vp)) {
3301 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
3302 if (vp->pm_state_valid)
3303 pci_restore_state(VORTEX_PCI(vp));
3304 pci_disable_device(VORTEX_PCI(vp));
3306 /* Should really use issue_and_wait() here */
3307 iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3308 vp->ioaddr + EL3_CMD);
3310 pci_iounmap(VORTEX_PCI(vp), vp->ioaddr);
3312 pci_free_consistent(pdev,
3313 sizeof(struct boom_rx_desc) * RX_RING_SIZE
3314 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3315 vp->rx_ring,
3316 vp->rx_ring_dma);
3317 if (vp->must_free_region)
3318 release_region(dev->base_addr, vp->io_size);
3319 free_netdev(dev);
3323 static struct pci_driver vortex_driver = {
3324 .name = "3c59x",
3325 .probe = vortex_init_one,
3326 .remove = __devexit_p(vortex_remove_one),
3327 .id_table = vortex_pci_tbl,
3328 #ifdef CONFIG_PM
3329 .suspend = vortex_suspend,
3330 .resume = vortex_resume,
3331 #endif
3335 static int vortex_have_pci;
3336 static int vortex_have_eisa;
3339 static int __init vortex_init(void)
3341 int pci_rc, eisa_rc;
3343 pci_rc = pci_module_init(&vortex_driver);
3344 eisa_rc = vortex_eisa_init();
3346 if (pci_rc == 0)
3347 vortex_have_pci = 1;
3348 if (eisa_rc > 0)
3349 vortex_have_eisa = 1;
3351 return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3355 static void __exit vortex_eisa_cleanup(void)
3357 struct vortex_private *vp;
3358 void __iomem *ioaddr;
3360 #ifdef CONFIG_EISA
3361 /* Take care of the EISA devices */
3362 eisa_driver_unregister(&vortex_eisa_driver);
3363 #endif
3365 if (compaq_net_device) {
3366 vp = compaq_net_device->priv;
3367 ioaddr = ioport_map(compaq_net_device->base_addr,
3368 VORTEX_TOTAL_SIZE);
3370 unregister_netdev(compaq_net_device);
3371 iowrite16(TotalReset, ioaddr + EL3_CMD);
3372 release_region(compaq_net_device->base_addr,
3373 VORTEX_TOTAL_SIZE);
3375 free_netdev(compaq_net_device);
3380 static void __exit vortex_cleanup(void)
3382 if (vortex_have_pci)
3383 pci_unregister_driver(&vortex_driver);
3384 if (vortex_have_eisa)
3385 vortex_eisa_cleanup();
3389 module_init(vortex_init);
3390 module_exit(vortex_cleanup);