ASoC: sgtl5000: guide user when regulator support is needed
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / cgroup.c
blob2731d115d725c0a216f06d18cd60367eab4210da
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #include <linux/cgroup.h>
30 #include <linux/ctype.h>
31 #include <linux/errno.h>
32 #include <linux/fs.h>
33 #include <linux/kernel.h>
34 #include <linux/list.h>
35 #include <linux/mm.h>
36 #include <linux/mutex.h>
37 #include <linux/mount.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/rcupdate.h>
41 #include <linux/sched.h>
42 #include <linux/backing-dev.h>
43 #include <linux/seq_file.h>
44 #include <linux/slab.h>
45 #include <linux/magic.h>
46 #include <linux/spinlock.h>
47 #include <linux/string.h>
48 #include <linux/sort.h>
49 #include <linux/kmod.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/cgroupstats.h>
53 #include <linux/hash.h>
54 #include <linux/namei.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/eventfd.h>
59 #include <linux/poll.h>
60 #include <linux/flex_array.h> /* used in cgroup_attach_proc */
62 #include <asm/atomic.h>
64 static DEFINE_MUTEX(cgroup_mutex);
67 * Generate an array of cgroup subsystem pointers. At boot time, this is
68 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
69 * registered after that. The mutable section of this array is protected by
70 * cgroup_mutex.
72 #define SUBSYS(_x) &_x ## _subsys,
73 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
74 #include <linux/cgroup_subsys.h>
77 #define MAX_CGROUP_ROOT_NAMELEN 64
80 * A cgroupfs_root represents the root of a cgroup hierarchy,
81 * and may be associated with a superblock to form an active
82 * hierarchy
84 struct cgroupfs_root {
85 struct super_block *sb;
88 * The bitmask of subsystems intended to be attached to this
89 * hierarchy
91 unsigned long subsys_bits;
93 /* Unique id for this hierarchy. */
94 int hierarchy_id;
96 /* The bitmask of subsystems currently attached to this hierarchy */
97 unsigned long actual_subsys_bits;
99 /* A list running through the attached subsystems */
100 struct list_head subsys_list;
102 /* The root cgroup for this hierarchy */
103 struct cgroup top_cgroup;
105 /* Tracks how many cgroups are currently defined in hierarchy.*/
106 int number_of_cgroups;
108 /* A list running through the active hierarchies */
109 struct list_head root_list;
111 /* Hierarchy-specific flags */
112 unsigned long flags;
114 /* The path to use for release notifications. */
115 char release_agent_path[PATH_MAX];
117 /* The name for this hierarchy - may be empty */
118 char name[MAX_CGROUP_ROOT_NAMELEN];
122 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
123 * subsystems that are otherwise unattached - it never has more than a
124 * single cgroup, and all tasks are part of that cgroup.
126 static struct cgroupfs_root rootnode;
129 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
130 * cgroup_subsys->use_id != 0.
132 #define CSS_ID_MAX (65535)
133 struct css_id {
135 * The css to which this ID points. This pointer is set to valid value
136 * after cgroup is populated. If cgroup is removed, this will be NULL.
137 * This pointer is expected to be RCU-safe because destroy()
138 * is called after synchronize_rcu(). But for safe use, css_is_removed()
139 * css_tryget() should be used for avoiding race.
141 struct cgroup_subsys_state __rcu *css;
143 * ID of this css.
145 unsigned short id;
147 * Depth in hierarchy which this ID belongs to.
149 unsigned short depth;
151 * ID is freed by RCU. (and lookup routine is RCU safe.)
153 struct rcu_head rcu_head;
155 * Hierarchy of CSS ID belongs to.
157 unsigned short stack[0]; /* Array of Length (depth+1) */
161 * cgroup_event represents events which userspace want to receive.
163 struct cgroup_event {
165 * Cgroup which the event belongs to.
167 struct cgroup *cgrp;
169 * Control file which the event associated.
171 struct cftype *cft;
173 * eventfd to signal userspace about the event.
175 struct eventfd_ctx *eventfd;
177 * Each of these stored in a list by the cgroup.
179 struct list_head list;
181 * All fields below needed to unregister event when
182 * userspace closes eventfd.
184 poll_table pt;
185 wait_queue_head_t *wqh;
186 wait_queue_t wait;
187 struct work_struct remove;
190 /* The list of hierarchy roots */
192 static LIST_HEAD(roots);
193 static int root_count;
195 static DEFINE_IDA(hierarchy_ida);
196 static int next_hierarchy_id;
197 static DEFINE_SPINLOCK(hierarchy_id_lock);
199 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
200 #define dummytop (&rootnode.top_cgroup)
202 /* This flag indicates whether tasks in the fork and exit paths should
203 * check for fork/exit handlers to call. This avoids us having to do
204 * extra work in the fork/exit path if none of the subsystems need to
205 * be called.
207 static int need_forkexit_callback __read_mostly;
209 #ifdef CONFIG_PROVE_LOCKING
210 int cgroup_lock_is_held(void)
212 return lockdep_is_held(&cgroup_mutex);
214 #else /* #ifdef CONFIG_PROVE_LOCKING */
215 int cgroup_lock_is_held(void)
217 return mutex_is_locked(&cgroup_mutex);
219 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
221 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
223 /* convenient tests for these bits */
224 inline int cgroup_is_removed(const struct cgroup *cgrp)
226 return test_bit(CGRP_REMOVED, &cgrp->flags);
229 /* bits in struct cgroupfs_root flags field */
230 enum {
231 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
234 static int cgroup_is_releasable(const struct cgroup *cgrp)
236 const int bits =
237 (1 << CGRP_RELEASABLE) |
238 (1 << CGRP_NOTIFY_ON_RELEASE);
239 return (cgrp->flags & bits) == bits;
242 static int notify_on_release(const struct cgroup *cgrp)
244 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
247 static int clone_children(const struct cgroup *cgrp)
249 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
253 * for_each_subsys() allows you to iterate on each subsystem attached to
254 * an active hierarchy
256 #define for_each_subsys(_root, _ss) \
257 list_for_each_entry(_ss, &_root->subsys_list, sibling)
259 /* for_each_active_root() allows you to iterate across the active hierarchies */
260 #define for_each_active_root(_root) \
261 list_for_each_entry(_root, &roots, root_list)
263 /* the list of cgroups eligible for automatic release. Protected by
264 * release_list_lock */
265 static LIST_HEAD(release_list);
266 static DEFINE_SPINLOCK(release_list_lock);
267 static void cgroup_release_agent(struct work_struct *work);
268 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
269 static void check_for_release(struct cgroup *cgrp);
271 /* Link structure for associating css_set objects with cgroups */
272 struct cg_cgroup_link {
274 * List running through cg_cgroup_links associated with a
275 * cgroup, anchored on cgroup->css_sets
277 struct list_head cgrp_link_list;
278 struct cgroup *cgrp;
280 * List running through cg_cgroup_links pointing at a
281 * single css_set object, anchored on css_set->cg_links
283 struct list_head cg_link_list;
284 struct css_set *cg;
287 /* The default css_set - used by init and its children prior to any
288 * hierarchies being mounted. It contains a pointer to the root state
289 * for each subsystem. Also used to anchor the list of css_sets. Not
290 * reference-counted, to improve performance when child cgroups
291 * haven't been created.
294 static struct css_set init_css_set;
295 static struct cg_cgroup_link init_css_set_link;
297 static int cgroup_init_idr(struct cgroup_subsys *ss,
298 struct cgroup_subsys_state *css);
300 /* css_set_lock protects the list of css_set objects, and the
301 * chain of tasks off each css_set. Nests outside task->alloc_lock
302 * due to cgroup_iter_start() */
303 static DEFINE_RWLOCK(css_set_lock);
304 static int css_set_count;
307 * hash table for cgroup groups. This improves the performance to find
308 * an existing css_set. This hash doesn't (currently) take into
309 * account cgroups in empty hierarchies.
311 #define CSS_SET_HASH_BITS 7
312 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
313 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
315 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
317 int i;
318 int index;
319 unsigned long tmp = 0UL;
321 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
322 tmp += (unsigned long)css[i];
323 tmp = (tmp >> 16) ^ tmp;
325 index = hash_long(tmp, CSS_SET_HASH_BITS);
327 return &css_set_table[index];
330 /* We don't maintain the lists running through each css_set to its
331 * task until after the first call to cgroup_iter_start(). This
332 * reduces the fork()/exit() overhead for people who have cgroups
333 * compiled into their kernel but not actually in use */
334 static int use_task_css_set_links __read_mostly;
336 static void __put_css_set(struct css_set *cg, int taskexit)
338 struct cg_cgroup_link *link;
339 struct cg_cgroup_link *saved_link;
341 * Ensure that the refcount doesn't hit zero while any readers
342 * can see it. Similar to atomic_dec_and_lock(), but for an
343 * rwlock
345 if (atomic_add_unless(&cg->refcount, -1, 1))
346 return;
347 write_lock(&css_set_lock);
348 if (!atomic_dec_and_test(&cg->refcount)) {
349 write_unlock(&css_set_lock);
350 return;
353 /* This css_set is dead. unlink it and release cgroup refcounts */
354 hlist_del(&cg->hlist);
355 css_set_count--;
357 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
358 cg_link_list) {
359 struct cgroup *cgrp = link->cgrp;
360 list_del(&link->cg_link_list);
361 list_del(&link->cgrp_link_list);
362 if (atomic_dec_and_test(&cgrp->count) &&
363 notify_on_release(cgrp)) {
364 if (taskexit)
365 set_bit(CGRP_RELEASABLE, &cgrp->flags);
366 check_for_release(cgrp);
369 kfree(link);
372 write_unlock(&css_set_lock);
373 kfree_rcu(cg, rcu_head);
377 * refcounted get/put for css_set objects
379 static inline void get_css_set(struct css_set *cg)
381 atomic_inc(&cg->refcount);
384 static inline void put_css_set(struct css_set *cg)
386 __put_css_set(cg, 0);
389 static inline void put_css_set_taskexit(struct css_set *cg)
391 __put_css_set(cg, 1);
395 * compare_css_sets - helper function for find_existing_css_set().
396 * @cg: candidate css_set being tested
397 * @old_cg: existing css_set for a task
398 * @new_cgrp: cgroup that's being entered by the task
399 * @template: desired set of css pointers in css_set (pre-calculated)
401 * Returns true if "cg" matches "old_cg" except for the hierarchy
402 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
404 static bool compare_css_sets(struct css_set *cg,
405 struct css_set *old_cg,
406 struct cgroup *new_cgrp,
407 struct cgroup_subsys_state *template[])
409 struct list_head *l1, *l2;
411 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
412 /* Not all subsystems matched */
413 return false;
417 * Compare cgroup pointers in order to distinguish between
418 * different cgroups in heirarchies with no subsystems. We
419 * could get by with just this check alone (and skip the
420 * memcmp above) but on most setups the memcmp check will
421 * avoid the need for this more expensive check on almost all
422 * candidates.
425 l1 = &cg->cg_links;
426 l2 = &old_cg->cg_links;
427 while (1) {
428 struct cg_cgroup_link *cgl1, *cgl2;
429 struct cgroup *cg1, *cg2;
431 l1 = l1->next;
432 l2 = l2->next;
433 /* See if we reached the end - both lists are equal length. */
434 if (l1 == &cg->cg_links) {
435 BUG_ON(l2 != &old_cg->cg_links);
436 break;
437 } else {
438 BUG_ON(l2 == &old_cg->cg_links);
440 /* Locate the cgroups associated with these links. */
441 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
442 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
443 cg1 = cgl1->cgrp;
444 cg2 = cgl2->cgrp;
445 /* Hierarchies should be linked in the same order. */
446 BUG_ON(cg1->root != cg2->root);
449 * If this hierarchy is the hierarchy of the cgroup
450 * that's changing, then we need to check that this
451 * css_set points to the new cgroup; if it's any other
452 * hierarchy, then this css_set should point to the
453 * same cgroup as the old css_set.
455 if (cg1->root == new_cgrp->root) {
456 if (cg1 != new_cgrp)
457 return false;
458 } else {
459 if (cg1 != cg2)
460 return false;
463 return true;
467 * find_existing_css_set() is a helper for
468 * find_css_set(), and checks to see whether an existing
469 * css_set is suitable.
471 * oldcg: the cgroup group that we're using before the cgroup
472 * transition
474 * cgrp: the cgroup that we're moving into
476 * template: location in which to build the desired set of subsystem
477 * state objects for the new cgroup group
479 static struct css_set *find_existing_css_set(
480 struct css_set *oldcg,
481 struct cgroup *cgrp,
482 struct cgroup_subsys_state *template[])
484 int i;
485 struct cgroupfs_root *root = cgrp->root;
486 struct hlist_head *hhead;
487 struct hlist_node *node;
488 struct css_set *cg;
491 * Build the set of subsystem state objects that we want to see in the
492 * new css_set. while subsystems can change globally, the entries here
493 * won't change, so no need for locking.
495 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
496 if (root->subsys_bits & (1UL << i)) {
497 /* Subsystem is in this hierarchy. So we want
498 * the subsystem state from the new
499 * cgroup */
500 template[i] = cgrp->subsys[i];
501 } else {
502 /* Subsystem is not in this hierarchy, so we
503 * don't want to change the subsystem state */
504 template[i] = oldcg->subsys[i];
508 hhead = css_set_hash(template);
509 hlist_for_each_entry(cg, node, hhead, hlist) {
510 if (!compare_css_sets(cg, oldcg, cgrp, template))
511 continue;
513 /* This css_set matches what we need */
514 return cg;
517 /* No existing cgroup group matched */
518 return NULL;
521 static void free_cg_links(struct list_head *tmp)
523 struct cg_cgroup_link *link;
524 struct cg_cgroup_link *saved_link;
526 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
527 list_del(&link->cgrp_link_list);
528 kfree(link);
533 * allocate_cg_links() allocates "count" cg_cgroup_link structures
534 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
535 * success or a negative error
537 static int allocate_cg_links(int count, struct list_head *tmp)
539 struct cg_cgroup_link *link;
540 int i;
541 INIT_LIST_HEAD(tmp);
542 for (i = 0; i < count; i++) {
543 link = kmalloc(sizeof(*link), GFP_KERNEL);
544 if (!link) {
545 free_cg_links(tmp);
546 return -ENOMEM;
548 list_add(&link->cgrp_link_list, tmp);
550 return 0;
554 * link_css_set - a helper function to link a css_set to a cgroup
555 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
556 * @cg: the css_set to be linked
557 * @cgrp: the destination cgroup
559 static void link_css_set(struct list_head *tmp_cg_links,
560 struct css_set *cg, struct cgroup *cgrp)
562 struct cg_cgroup_link *link;
564 BUG_ON(list_empty(tmp_cg_links));
565 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
566 cgrp_link_list);
567 link->cg = cg;
568 link->cgrp = cgrp;
569 atomic_inc(&cgrp->count);
570 list_move(&link->cgrp_link_list, &cgrp->css_sets);
572 * Always add links to the tail of the list so that the list
573 * is sorted by order of hierarchy creation
575 list_add_tail(&link->cg_link_list, &cg->cg_links);
579 * find_css_set() takes an existing cgroup group and a
580 * cgroup object, and returns a css_set object that's
581 * equivalent to the old group, but with the given cgroup
582 * substituted into the appropriate hierarchy. Must be called with
583 * cgroup_mutex held
585 static struct css_set *find_css_set(
586 struct css_set *oldcg, struct cgroup *cgrp)
588 struct css_set *res;
589 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
591 struct list_head tmp_cg_links;
593 struct hlist_head *hhead;
594 struct cg_cgroup_link *link;
596 /* First see if we already have a cgroup group that matches
597 * the desired set */
598 read_lock(&css_set_lock);
599 res = find_existing_css_set(oldcg, cgrp, template);
600 if (res)
601 get_css_set(res);
602 read_unlock(&css_set_lock);
604 if (res)
605 return res;
607 res = kmalloc(sizeof(*res), GFP_KERNEL);
608 if (!res)
609 return NULL;
611 /* Allocate all the cg_cgroup_link objects that we'll need */
612 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
613 kfree(res);
614 return NULL;
617 atomic_set(&res->refcount, 1);
618 INIT_LIST_HEAD(&res->cg_links);
619 INIT_LIST_HEAD(&res->tasks);
620 INIT_HLIST_NODE(&res->hlist);
622 /* Copy the set of subsystem state objects generated in
623 * find_existing_css_set() */
624 memcpy(res->subsys, template, sizeof(res->subsys));
626 write_lock(&css_set_lock);
627 /* Add reference counts and links from the new css_set. */
628 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
629 struct cgroup *c = link->cgrp;
630 if (c->root == cgrp->root)
631 c = cgrp;
632 link_css_set(&tmp_cg_links, res, c);
635 BUG_ON(!list_empty(&tmp_cg_links));
637 css_set_count++;
639 /* Add this cgroup group to the hash table */
640 hhead = css_set_hash(res->subsys);
641 hlist_add_head(&res->hlist, hhead);
643 write_unlock(&css_set_lock);
645 return res;
649 * Return the cgroup for "task" from the given hierarchy. Must be
650 * called with cgroup_mutex held.
652 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
653 struct cgroupfs_root *root)
655 struct css_set *css;
656 struct cgroup *res = NULL;
658 BUG_ON(!mutex_is_locked(&cgroup_mutex));
659 read_lock(&css_set_lock);
661 * No need to lock the task - since we hold cgroup_mutex the
662 * task can't change groups, so the only thing that can happen
663 * is that it exits and its css is set back to init_css_set.
665 css = task->cgroups;
666 if (css == &init_css_set) {
667 res = &root->top_cgroup;
668 } else {
669 struct cg_cgroup_link *link;
670 list_for_each_entry(link, &css->cg_links, cg_link_list) {
671 struct cgroup *c = link->cgrp;
672 if (c->root == root) {
673 res = c;
674 break;
678 read_unlock(&css_set_lock);
679 BUG_ON(!res);
680 return res;
684 * There is one global cgroup mutex. We also require taking
685 * task_lock() when dereferencing a task's cgroup subsys pointers.
686 * See "The task_lock() exception", at the end of this comment.
688 * A task must hold cgroup_mutex to modify cgroups.
690 * Any task can increment and decrement the count field without lock.
691 * So in general, code holding cgroup_mutex can't rely on the count
692 * field not changing. However, if the count goes to zero, then only
693 * cgroup_attach_task() can increment it again. Because a count of zero
694 * means that no tasks are currently attached, therefore there is no
695 * way a task attached to that cgroup can fork (the other way to
696 * increment the count). So code holding cgroup_mutex can safely
697 * assume that if the count is zero, it will stay zero. Similarly, if
698 * a task holds cgroup_mutex on a cgroup with zero count, it
699 * knows that the cgroup won't be removed, as cgroup_rmdir()
700 * needs that mutex.
702 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
703 * (usually) take cgroup_mutex. These are the two most performance
704 * critical pieces of code here. The exception occurs on cgroup_exit(),
705 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
706 * is taken, and if the cgroup count is zero, a usermode call made
707 * to the release agent with the name of the cgroup (path relative to
708 * the root of cgroup file system) as the argument.
710 * A cgroup can only be deleted if both its 'count' of using tasks
711 * is zero, and its list of 'children' cgroups is empty. Since all
712 * tasks in the system use _some_ cgroup, and since there is always at
713 * least one task in the system (init, pid == 1), therefore, top_cgroup
714 * always has either children cgroups and/or using tasks. So we don't
715 * need a special hack to ensure that top_cgroup cannot be deleted.
717 * The task_lock() exception
719 * The need for this exception arises from the action of
720 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
721 * another. It does so using cgroup_mutex, however there are
722 * several performance critical places that need to reference
723 * task->cgroup without the expense of grabbing a system global
724 * mutex. Therefore except as noted below, when dereferencing or, as
725 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
726 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
727 * the task_struct routinely used for such matters.
729 * P.S. One more locking exception. RCU is used to guard the
730 * update of a tasks cgroup pointer by cgroup_attach_task()
734 * cgroup_lock - lock out any changes to cgroup structures
737 void cgroup_lock(void)
739 mutex_lock(&cgroup_mutex);
741 EXPORT_SYMBOL_GPL(cgroup_lock);
744 * cgroup_unlock - release lock on cgroup changes
746 * Undo the lock taken in a previous cgroup_lock() call.
748 void cgroup_unlock(void)
750 mutex_unlock(&cgroup_mutex);
752 EXPORT_SYMBOL_GPL(cgroup_unlock);
755 * A couple of forward declarations required, due to cyclic reference loop:
756 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
757 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
758 * -> cgroup_mkdir.
761 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
762 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
763 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
764 static int cgroup_populate_dir(struct cgroup *cgrp);
765 static const struct inode_operations cgroup_dir_inode_operations;
766 static const struct file_operations proc_cgroupstats_operations;
768 static struct backing_dev_info cgroup_backing_dev_info = {
769 .name = "cgroup",
770 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
773 static int alloc_css_id(struct cgroup_subsys *ss,
774 struct cgroup *parent, struct cgroup *child);
776 static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
778 struct inode *inode = new_inode(sb);
780 if (inode) {
781 inode->i_ino = get_next_ino();
782 inode->i_mode = mode;
783 inode->i_uid = current_fsuid();
784 inode->i_gid = current_fsgid();
785 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
786 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
788 return inode;
792 * Call subsys's pre_destroy handler.
793 * This is called before css refcnt check.
795 static int cgroup_call_pre_destroy(struct cgroup *cgrp)
797 struct cgroup_subsys *ss;
798 int ret = 0;
800 for_each_subsys(cgrp->root, ss)
801 if (ss->pre_destroy) {
802 ret = ss->pre_destroy(ss, cgrp);
803 if (ret)
804 break;
807 return ret;
810 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
812 /* is dentry a directory ? if so, kfree() associated cgroup */
813 if (S_ISDIR(inode->i_mode)) {
814 struct cgroup *cgrp = dentry->d_fsdata;
815 struct cgroup_subsys *ss;
816 BUG_ON(!(cgroup_is_removed(cgrp)));
817 /* It's possible for external users to be holding css
818 * reference counts on a cgroup; css_put() needs to
819 * be able to access the cgroup after decrementing
820 * the reference count in order to know if it needs to
821 * queue the cgroup to be handled by the release
822 * agent */
823 synchronize_rcu();
825 mutex_lock(&cgroup_mutex);
827 * Release the subsystem state objects.
829 for_each_subsys(cgrp->root, ss)
830 ss->destroy(ss, cgrp);
832 cgrp->root->number_of_cgroups--;
833 mutex_unlock(&cgroup_mutex);
836 * Drop the active superblock reference that we took when we
837 * created the cgroup
839 deactivate_super(cgrp->root->sb);
842 * if we're getting rid of the cgroup, refcount should ensure
843 * that there are no pidlists left.
845 BUG_ON(!list_empty(&cgrp->pidlists));
847 kfree_rcu(cgrp, rcu_head);
849 iput(inode);
852 static int cgroup_delete(const struct dentry *d)
854 return 1;
857 static void remove_dir(struct dentry *d)
859 struct dentry *parent = dget(d->d_parent);
861 d_delete(d);
862 simple_rmdir(parent->d_inode, d);
863 dput(parent);
866 static void cgroup_clear_directory(struct dentry *dentry)
868 struct list_head *node;
870 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
871 spin_lock(&dentry->d_lock);
872 node = dentry->d_subdirs.next;
873 while (node != &dentry->d_subdirs) {
874 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
876 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
877 list_del_init(node);
878 if (d->d_inode) {
879 /* This should never be called on a cgroup
880 * directory with child cgroups */
881 BUG_ON(d->d_inode->i_mode & S_IFDIR);
882 dget_dlock(d);
883 spin_unlock(&d->d_lock);
884 spin_unlock(&dentry->d_lock);
885 d_delete(d);
886 simple_unlink(dentry->d_inode, d);
887 dput(d);
888 spin_lock(&dentry->d_lock);
889 } else
890 spin_unlock(&d->d_lock);
891 node = dentry->d_subdirs.next;
893 spin_unlock(&dentry->d_lock);
897 * NOTE : the dentry must have been dget()'ed
899 static void cgroup_d_remove_dir(struct dentry *dentry)
901 struct dentry *parent;
903 cgroup_clear_directory(dentry);
905 parent = dentry->d_parent;
906 spin_lock(&parent->d_lock);
907 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
908 list_del_init(&dentry->d_u.d_child);
909 spin_unlock(&dentry->d_lock);
910 spin_unlock(&parent->d_lock);
911 remove_dir(dentry);
915 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
916 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
917 * reference to css->refcnt. In general, this refcnt is expected to goes down
918 * to zero, soon.
920 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
922 DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
924 static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
926 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
927 wake_up_all(&cgroup_rmdir_waitq);
930 void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
932 css_get(css);
935 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
937 cgroup_wakeup_rmdir_waiter(css->cgroup);
938 css_put(css);
942 * Call with cgroup_mutex held. Drops reference counts on modules, including
943 * any duplicate ones that parse_cgroupfs_options took. If this function
944 * returns an error, no reference counts are touched.
946 static int rebind_subsystems(struct cgroupfs_root *root,
947 unsigned long final_bits)
949 unsigned long added_bits, removed_bits;
950 struct cgroup *cgrp = &root->top_cgroup;
951 int i;
953 BUG_ON(!mutex_is_locked(&cgroup_mutex));
955 removed_bits = root->actual_subsys_bits & ~final_bits;
956 added_bits = final_bits & ~root->actual_subsys_bits;
957 /* Check that any added subsystems are currently free */
958 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
959 unsigned long bit = 1UL << i;
960 struct cgroup_subsys *ss = subsys[i];
961 if (!(bit & added_bits))
962 continue;
964 * Nobody should tell us to do a subsys that doesn't exist:
965 * parse_cgroupfs_options should catch that case and refcounts
966 * ensure that subsystems won't disappear once selected.
968 BUG_ON(ss == NULL);
969 if (ss->root != &rootnode) {
970 /* Subsystem isn't free */
971 return -EBUSY;
975 /* Currently we don't handle adding/removing subsystems when
976 * any child cgroups exist. This is theoretically supportable
977 * but involves complex error handling, so it's being left until
978 * later */
979 if (root->number_of_cgroups > 1)
980 return -EBUSY;
982 /* Process each subsystem */
983 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
984 struct cgroup_subsys *ss = subsys[i];
985 unsigned long bit = 1UL << i;
986 if (bit & added_bits) {
987 /* We're binding this subsystem to this hierarchy */
988 BUG_ON(ss == NULL);
989 BUG_ON(cgrp->subsys[i]);
990 BUG_ON(!dummytop->subsys[i]);
991 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
992 mutex_lock(&ss->hierarchy_mutex);
993 cgrp->subsys[i] = dummytop->subsys[i];
994 cgrp->subsys[i]->cgroup = cgrp;
995 list_move(&ss->sibling, &root->subsys_list);
996 ss->root = root;
997 if (ss->bind)
998 ss->bind(ss, cgrp);
999 mutex_unlock(&ss->hierarchy_mutex);
1000 /* refcount was already taken, and we're keeping it */
1001 } else if (bit & removed_bits) {
1002 /* We're removing this subsystem */
1003 BUG_ON(ss == NULL);
1004 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1005 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1006 mutex_lock(&ss->hierarchy_mutex);
1007 if (ss->bind)
1008 ss->bind(ss, dummytop);
1009 dummytop->subsys[i]->cgroup = dummytop;
1010 cgrp->subsys[i] = NULL;
1011 subsys[i]->root = &rootnode;
1012 list_move(&ss->sibling, &rootnode.subsys_list);
1013 mutex_unlock(&ss->hierarchy_mutex);
1014 /* subsystem is now free - drop reference on module */
1015 module_put(ss->module);
1016 } else if (bit & final_bits) {
1017 /* Subsystem state should already exist */
1018 BUG_ON(ss == NULL);
1019 BUG_ON(!cgrp->subsys[i]);
1021 * a refcount was taken, but we already had one, so
1022 * drop the extra reference.
1024 module_put(ss->module);
1025 #ifdef CONFIG_MODULE_UNLOAD
1026 BUG_ON(ss->module && !module_refcount(ss->module));
1027 #endif
1028 } else {
1029 /* Subsystem state shouldn't exist */
1030 BUG_ON(cgrp->subsys[i]);
1033 root->subsys_bits = root->actual_subsys_bits = final_bits;
1034 synchronize_rcu();
1036 return 0;
1039 static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
1041 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
1042 struct cgroup_subsys *ss;
1044 mutex_lock(&cgroup_mutex);
1045 for_each_subsys(root, ss)
1046 seq_printf(seq, ",%s", ss->name);
1047 if (test_bit(ROOT_NOPREFIX, &root->flags))
1048 seq_puts(seq, ",noprefix");
1049 if (strlen(root->release_agent_path))
1050 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1051 if (clone_children(&root->top_cgroup))
1052 seq_puts(seq, ",clone_children");
1053 if (strlen(root->name))
1054 seq_printf(seq, ",name=%s", root->name);
1055 mutex_unlock(&cgroup_mutex);
1056 return 0;
1059 struct cgroup_sb_opts {
1060 unsigned long subsys_bits;
1061 unsigned long flags;
1062 char *release_agent;
1063 bool clone_children;
1064 char *name;
1065 /* User explicitly requested empty subsystem */
1066 bool none;
1068 struct cgroupfs_root *new_root;
1073 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1074 * with cgroup_mutex held to protect the subsys[] array. This function takes
1075 * refcounts on subsystems to be used, unless it returns error, in which case
1076 * no refcounts are taken.
1078 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1080 char *token, *o = data;
1081 bool all_ss = false, one_ss = false;
1082 unsigned long mask = (unsigned long)-1;
1083 int i;
1084 bool module_pin_failed = false;
1086 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1088 #ifdef CONFIG_CPUSETS
1089 mask = ~(1UL << cpuset_subsys_id);
1090 #endif
1092 memset(opts, 0, sizeof(*opts));
1094 while ((token = strsep(&o, ",")) != NULL) {
1095 if (!*token)
1096 return -EINVAL;
1097 if (!strcmp(token, "none")) {
1098 /* Explicitly have no subsystems */
1099 opts->none = true;
1100 continue;
1102 if (!strcmp(token, "all")) {
1103 /* Mutually exclusive option 'all' + subsystem name */
1104 if (one_ss)
1105 return -EINVAL;
1106 all_ss = true;
1107 continue;
1109 if (!strcmp(token, "noprefix")) {
1110 set_bit(ROOT_NOPREFIX, &opts->flags);
1111 continue;
1113 if (!strcmp(token, "clone_children")) {
1114 opts->clone_children = true;
1115 continue;
1117 if (!strncmp(token, "release_agent=", 14)) {
1118 /* Specifying two release agents is forbidden */
1119 if (opts->release_agent)
1120 return -EINVAL;
1121 opts->release_agent =
1122 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1123 if (!opts->release_agent)
1124 return -ENOMEM;
1125 continue;
1127 if (!strncmp(token, "name=", 5)) {
1128 const char *name = token + 5;
1129 /* Can't specify an empty name */
1130 if (!strlen(name))
1131 return -EINVAL;
1132 /* Must match [\w.-]+ */
1133 for (i = 0; i < strlen(name); i++) {
1134 char c = name[i];
1135 if (isalnum(c))
1136 continue;
1137 if ((c == '.') || (c == '-') || (c == '_'))
1138 continue;
1139 return -EINVAL;
1141 /* Specifying two names is forbidden */
1142 if (opts->name)
1143 return -EINVAL;
1144 opts->name = kstrndup(name,
1145 MAX_CGROUP_ROOT_NAMELEN - 1,
1146 GFP_KERNEL);
1147 if (!opts->name)
1148 return -ENOMEM;
1150 continue;
1153 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1154 struct cgroup_subsys *ss = subsys[i];
1155 if (ss == NULL)
1156 continue;
1157 if (strcmp(token, ss->name))
1158 continue;
1159 if (ss->disabled)
1160 continue;
1162 /* Mutually exclusive option 'all' + subsystem name */
1163 if (all_ss)
1164 return -EINVAL;
1165 set_bit(i, &opts->subsys_bits);
1166 one_ss = true;
1168 break;
1170 if (i == CGROUP_SUBSYS_COUNT)
1171 return -ENOENT;
1175 * If the 'all' option was specified select all the subsystems,
1176 * otherwise 'all, 'none' and a subsystem name options were not
1177 * specified, let's default to 'all'
1179 if (all_ss || (!all_ss && !one_ss && !opts->none)) {
1180 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1181 struct cgroup_subsys *ss = subsys[i];
1182 if (ss == NULL)
1183 continue;
1184 if (ss->disabled)
1185 continue;
1186 set_bit(i, &opts->subsys_bits);
1190 /* Consistency checks */
1193 * Option noprefix was introduced just for backward compatibility
1194 * with the old cpuset, so we allow noprefix only if mounting just
1195 * the cpuset subsystem.
1197 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1198 (opts->subsys_bits & mask))
1199 return -EINVAL;
1202 /* Can't specify "none" and some subsystems */
1203 if (opts->subsys_bits && opts->none)
1204 return -EINVAL;
1207 * We either have to specify by name or by subsystems. (So all
1208 * empty hierarchies must have a name).
1210 if (!opts->subsys_bits && !opts->name)
1211 return -EINVAL;
1214 * Grab references on all the modules we'll need, so the subsystems
1215 * don't dance around before rebind_subsystems attaches them. This may
1216 * take duplicate reference counts on a subsystem that's already used,
1217 * but rebind_subsystems handles this case.
1219 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1220 unsigned long bit = 1UL << i;
1222 if (!(bit & opts->subsys_bits))
1223 continue;
1224 if (!try_module_get(subsys[i]->module)) {
1225 module_pin_failed = true;
1226 break;
1229 if (module_pin_failed) {
1231 * oops, one of the modules was going away. this means that we
1232 * raced with a module_delete call, and to the user this is
1233 * essentially a "subsystem doesn't exist" case.
1235 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1236 /* drop refcounts only on the ones we took */
1237 unsigned long bit = 1UL << i;
1239 if (!(bit & opts->subsys_bits))
1240 continue;
1241 module_put(subsys[i]->module);
1243 return -ENOENT;
1246 return 0;
1249 static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1251 int i;
1252 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1253 unsigned long bit = 1UL << i;
1255 if (!(bit & subsys_bits))
1256 continue;
1257 module_put(subsys[i]->module);
1261 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1263 int ret = 0;
1264 struct cgroupfs_root *root = sb->s_fs_info;
1265 struct cgroup *cgrp = &root->top_cgroup;
1266 struct cgroup_sb_opts opts;
1268 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1269 mutex_lock(&cgroup_mutex);
1271 /* See what subsystems are wanted */
1272 ret = parse_cgroupfs_options(data, &opts);
1273 if (ret)
1274 goto out_unlock;
1276 /* Don't allow flags or name to change at remount */
1277 if (opts.flags != root->flags ||
1278 (opts.name && strcmp(opts.name, root->name))) {
1279 ret = -EINVAL;
1280 drop_parsed_module_refcounts(opts.subsys_bits);
1281 goto out_unlock;
1284 ret = rebind_subsystems(root, opts.subsys_bits);
1285 if (ret) {
1286 drop_parsed_module_refcounts(opts.subsys_bits);
1287 goto out_unlock;
1290 /* (re)populate subsystem files */
1291 cgroup_populate_dir(cgrp);
1293 if (opts.release_agent)
1294 strcpy(root->release_agent_path, opts.release_agent);
1295 out_unlock:
1296 kfree(opts.release_agent);
1297 kfree(opts.name);
1298 mutex_unlock(&cgroup_mutex);
1299 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1300 return ret;
1303 static const struct super_operations cgroup_ops = {
1304 .statfs = simple_statfs,
1305 .drop_inode = generic_delete_inode,
1306 .show_options = cgroup_show_options,
1307 .remount_fs = cgroup_remount,
1310 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1312 INIT_LIST_HEAD(&cgrp->sibling);
1313 INIT_LIST_HEAD(&cgrp->children);
1314 INIT_LIST_HEAD(&cgrp->css_sets);
1315 INIT_LIST_HEAD(&cgrp->release_list);
1316 INIT_LIST_HEAD(&cgrp->pidlists);
1317 mutex_init(&cgrp->pidlist_mutex);
1318 INIT_LIST_HEAD(&cgrp->event_list);
1319 spin_lock_init(&cgrp->event_list_lock);
1322 static void init_cgroup_root(struct cgroupfs_root *root)
1324 struct cgroup *cgrp = &root->top_cgroup;
1325 INIT_LIST_HEAD(&root->subsys_list);
1326 INIT_LIST_HEAD(&root->root_list);
1327 root->number_of_cgroups = 1;
1328 cgrp->root = root;
1329 cgrp->top_cgroup = cgrp;
1330 init_cgroup_housekeeping(cgrp);
1333 static bool init_root_id(struct cgroupfs_root *root)
1335 int ret = 0;
1337 do {
1338 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1339 return false;
1340 spin_lock(&hierarchy_id_lock);
1341 /* Try to allocate the next unused ID */
1342 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1343 &root->hierarchy_id);
1344 if (ret == -ENOSPC)
1345 /* Try again starting from 0 */
1346 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1347 if (!ret) {
1348 next_hierarchy_id = root->hierarchy_id + 1;
1349 } else if (ret != -EAGAIN) {
1350 /* Can only get here if the 31-bit IDR is full ... */
1351 BUG_ON(ret);
1353 spin_unlock(&hierarchy_id_lock);
1354 } while (ret);
1355 return true;
1358 static int cgroup_test_super(struct super_block *sb, void *data)
1360 struct cgroup_sb_opts *opts = data;
1361 struct cgroupfs_root *root = sb->s_fs_info;
1363 /* If we asked for a name then it must match */
1364 if (opts->name && strcmp(opts->name, root->name))
1365 return 0;
1368 * If we asked for subsystems (or explicitly for no
1369 * subsystems) then they must match
1371 if ((opts->subsys_bits || opts->none)
1372 && (opts->subsys_bits != root->subsys_bits))
1373 return 0;
1375 return 1;
1378 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1380 struct cgroupfs_root *root;
1382 if (!opts->subsys_bits && !opts->none)
1383 return NULL;
1385 root = kzalloc(sizeof(*root), GFP_KERNEL);
1386 if (!root)
1387 return ERR_PTR(-ENOMEM);
1389 if (!init_root_id(root)) {
1390 kfree(root);
1391 return ERR_PTR(-ENOMEM);
1393 init_cgroup_root(root);
1395 root->subsys_bits = opts->subsys_bits;
1396 root->flags = opts->flags;
1397 if (opts->release_agent)
1398 strcpy(root->release_agent_path, opts->release_agent);
1399 if (opts->name)
1400 strcpy(root->name, opts->name);
1401 if (opts->clone_children)
1402 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1403 return root;
1406 static void cgroup_drop_root(struct cgroupfs_root *root)
1408 if (!root)
1409 return;
1411 BUG_ON(!root->hierarchy_id);
1412 spin_lock(&hierarchy_id_lock);
1413 ida_remove(&hierarchy_ida, root->hierarchy_id);
1414 spin_unlock(&hierarchy_id_lock);
1415 kfree(root);
1418 static int cgroup_set_super(struct super_block *sb, void *data)
1420 int ret;
1421 struct cgroup_sb_opts *opts = data;
1423 /* If we don't have a new root, we can't set up a new sb */
1424 if (!opts->new_root)
1425 return -EINVAL;
1427 BUG_ON(!opts->subsys_bits && !opts->none);
1429 ret = set_anon_super(sb, NULL);
1430 if (ret)
1431 return ret;
1433 sb->s_fs_info = opts->new_root;
1434 opts->new_root->sb = sb;
1436 sb->s_blocksize = PAGE_CACHE_SIZE;
1437 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1438 sb->s_magic = CGROUP_SUPER_MAGIC;
1439 sb->s_op = &cgroup_ops;
1441 return 0;
1444 static int cgroup_get_rootdir(struct super_block *sb)
1446 static const struct dentry_operations cgroup_dops = {
1447 .d_iput = cgroup_diput,
1448 .d_delete = cgroup_delete,
1451 struct inode *inode =
1452 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1453 struct dentry *dentry;
1455 if (!inode)
1456 return -ENOMEM;
1458 inode->i_fop = &simple_dir_operations;
1459 inode->i_op = &cgroup_dir_inode_operations;
1460 /* directories start off with i_nlink == 2 (for "." entry) */
1461 inc_nlink(inode);
1462 dentry = d_alloc_root(inode);
1463 if (!dentry) {
1464 iput(inode);
1465 return -ENOMEM;
1467 sb->s_root = dentry;
1468 /* for everything else we want ->d_op set */
1469 sb->s_d_op = &cgroup_dops;
1470 return 0;
1473 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1474 int flags, const char *unused_dev_name,
1475 void *data)
1477 struct cgroup_sb_opts opts;
1478 struct cgroupfs_root *root;
1479 int ret = 0;
1480 struct super_block *sb;
1481 struct cgroupfs_root *new_root;
1483 /* First find the desired set of subsystems */
1484 mutex_lock(&cgroup_mutex);
1485 ret = parse_cgroupfs_options(data, &opts);
1486 mutex_unlock(&cgroup_mutex);
1487 if (ret)
1488 goto out_err;
1491 * Allocate a new cgroup root. We may not need it if we're
1492 * reusing an existing hierarchy.
1494 new_root = cgroup_root_from_opts(&opts);
1495 if (IS_ERR(new_root)) {
1496 ret = PTR_ERR(new_root);
1497 goto drop_modules;
1499 opts.new_root = new_root;
1501 /* Locate an existing or new sb for this hierarchy */
1502 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1503 if (IS_ERR(sb)) {
1504 ret = PTR_ERR(sb);
1505 cgroup_drop_root(opts.new_root);
1506 goto drop_modules;
1509 root = sb->s_fs_info;
1510 BUG_ON(!root);
1511 if (root == opts.new_root) {
1512 /* We used the new root structure, so this is a new hierarchy */
1513 struct list_head tmp_cg_links;
1514 struct cgroup *root_cgrp = &root->top_cgroup;
1515 struct inode *inode;
1516 struct cgroupfs_root *existing_root;
1517 int i;
1519 BUG_ON(sb->s_root != NULL);
1521 ret = cgroup_get_rootdir(sb);
1522 if (ret)
1523 goto drop_new_super;
1524 inode = sb->s_root->d_inode;
1526 mutex_lock(&inode->i_mutex);
1527 mutex_lock(&cgroup_mutex);
1529 if (strlen(root->name)) {
1530 /* Check for name clashes with existing mounts */
1531 for_each_active_root(existing_root) {
1532 if (!strcmp(existing_root->name, root->name)) {
1533 ret = -EBUSY;
1534 mutex_unlock(&cgroup_mutex);
1535 mutex_unlock(&inode->i_mutex);
1536 goto drop_new_super;
1542 * We're accessing css_set_count without locking
1543 * css_set_lock here, but that's OK - it can only be
1544 * increased by someone holding cgroup_lock, and
1545 * that's us. The worst that can happen is that we
1546 * have some link structures left over
1548 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1549 if (ret) {
1550 mutex_unlock(&cgroup_mutex);
1551 mutex_unlock(&inode->i_mutex);
1552 goto drop_new_super;
1555 ret = rebind_subsystems(root, root->subsys_bits);
1556 if (ret == -EBUSY) {
1557 mutex_unlock(&cgroup_mutex);
1558 mutex_unlock(&inode->i_mutex);
1559 free_cg_links(&tmp_cg_links);
1560 goto drop_new_super;
1563 * There must be no failure case after here, since rebinding
1564 * takes care of subsystems' refcounts, which are explicitly
1565 * dropped in the failure exit path.
1568 /* EBUSY should be the only error here */
1569 BUG_ON(ret);
1571 list_add(&root->root_list, &roots);
1572 root_count++;
1574 sb->s_root->d_fsdata = root_cgrp;
1575 root->top_cgroup.dentry = sb->s_root;
1577 /* Link the top cgroup in this hierarchy into all
1578 * the css_set objects */
1579 write_lock(&css_set_lock);
1580 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1581 struct hlist_head *hhead = &css_set_table[i];
1582 struct hlist_node *node;
1583 struct css_set *cg;
1585 hlist_for_each_entry(cg, node, hhead, hlist)
1586 link_css_set(&tmp_cg_links, cg, root_cgrp);
1588 write_unlock(&css_set_lock);
1590 free_cg_links(&tmp_cg_links);
1592 BUG_ON(!list_empty(&root_cgrp->sibling));
1593 BUG_ON(!list_empty(&root_cgrp->children));
1594 BUG_ON(root->number_of_cgroups != 1);
1596 cgroup_populate_dir(root_cgrp);
1597 mutex_unlock(&cgroup_mutex);
1598 mutex_unlock(&inode->i_mutex);
1599 } else {
1601 * We re-used an existing hierarchy - the new root (if
1602 * any) is not needed
1604 cgroup_drop_root(opts.new_root);
1605 /* no subsys rebinding, so refcounts don't change */
1606 drop_parsed_module_refcounts(opts.subsys_bits);
1609 kfree(opts.release_agent);
1610 kfree(opts.name);
1611 return dget(sb->s_root);
1613 drop_new_super:
1614 deactivate_locked_super(sb);
1615 drop_modules:
1616 drop_parsed_module_refcounts(opts.subsys_bits);
1617 out_err:
1618 kfree(opts.release_agent);
1619 kfree(opts.name);
1620 return ERR_PTR(ret);
1623 static void cgroup_kill_sb(struct super_block *sb) {
1624 struct cgroupfs_root *root = sb->s_fs_info;
1625 struct cgroup *cgrp = &root->top_cgroup;
1626 int ret;
1627 struct cg_cgroup_link *link;
1628 struct cg_cgroup_link *saved_link;
1630 BUG_ON(!root);
1632 BUG_ON(root->number_of_cgroups != 1);
1633 BUG_ON(!list_empty(&cgrp->children));
1634 BUG_ON(!list_empty(&cgrp->sibling));
1636 mutex_lock(&cgroup_mutex);
1638 /* Rebind all subsystems back to the default hierarchy */
1639 ret = rebind_subsystems(root, 0);
1640 /* Shouldn't be able to fail ... */
1641 BUG_ON(ret);
1644 * Release all the links from css_sets to this hierarchy's
1645 * root cgroup
1647 write_lock(&css_set_lock);
1649 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1650 cgrp_link_list) {
1651 list_del(&link->cg_link_list);
1652 list_del(&link->cgrp_link_list);
1653 kfree(link);
1655 write_unlock(&css_set_lock);
1657 if (!list_empty(&root->root_list)) {
1658 list_del(&root->root_list);
1659 root_count--;
1662 mutex_unlock(&cgroup_mutex);
1664 kill_litter_super(sb);
1665 cgroup_drop_root(root);
1668 static struct file_system_type cgroup_fs_type = {
1669 .name = "cgroup",
1670 .mount = cgroup_mount,
1671 .kill_sb = cgroup_kill_sb,
1674 static struct kobject *cgroup_kobj;
1676 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1678 return dentry->d_fsdata;
1681 static inline struct cftype *__d_cft(struct dentry *dentry)
1683 return dentry->d_fsdata;
1687 * cgroup_path - generate the path of a cgroup
1688 * @cgrp: the cgroup in question
1689 * @buf: the buffer to write the path into
1690 * @buflen: the length of the buffer
1692 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1693 * reference. Writes path of cgroup into buf. Returns 0 on success,
1694 * -errno on error.
1696 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1698 char *start;
1699 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1700 rcu_read_lock_held() ||
1701 cgroup_lock_is_held());
1703 if (!dentry || cgrp == dummytop) {
1705 * Inactive subsystems have no dentry for their root
1706 * cgroup
1708 strcpy(buf, "/");
1709 return 0;
1712 start = buf + buflen;
1714 *--start = '\0';
1715 for (;;) {
1716 int len = dentry->d_name.len;
1718 if ((start -= len) < buf)
1719 return -ENAMETOOLONG;
1720 memcpy(start, dentry->d_name.name, len);
1721 cgrp = cgrp->parent;
1722 if (!cgrp)
1723 break;
1725 dentry = rcu_dereference_check(cgrp->dentry,
1726 rcu_read_lock_held() ||
1727 cgroup_lock_is_held());
1728 if (!cgrp->parent)
1729 continue;
1730 if (--start < buf)
1731 return -ENAMETOOLONG;
1732 *start = '/';
1734 memmove(buf, start, buf + buflen - start);
1735 return 0;
1737 EXPORT_SYMBOL_GPL(cgroup_path);
1740 * cgroup_task_migrate - move a task from one cgroup to another.
1742 * 'guarantee' is set if the caller promises that a new css_set for the task
1743 * will already exist. If not set, this function might sleep, and can fail with
1744 * -ENOMEM. Otherwise, it can only fail with -ESRCH.
1746 static int cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1747 struct task_struct *tsk, bool guarantee)
1749 struct css_set *oldcg;
1750 struct css_set *newcg;
1753 * get old css_set. we need to take task_lock and refcount it, because
1754 * an exiting task can change its css_set to init_css_set and drop its
1755 * old one without taking cgroup_mutex.
1757 task_lock(tsk);
1758 oldcg = tsk->cgroups;
1759 get_css_set(oldcg);
1760 task_unlock(tsk);
1762 /* locate or allocate a new css_set for this task. */
1763 if (guarantee) {
1764 /* we know the css_set we want already exists. */
1765 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
1766 read_lock(&css_set_lock);
1767 newcg = find_existing_css_set(oldcg, cgrp, template);
1768 BUG_ON(!newcg);
1769 get_css_set(newcg);
1770 read_unlock(&css_set_lock);
1771 } else {
1772 might_sleep();
1773 /* find_css_set will give us newcg already referenced. */
1774 newcg = find_css_set(oldcg, cgrp);
1775 if (!newcg) {
1776 put_css_set(oldcg);
1777 return -ENOMEM;
1780 put_css_set(oldcg);
1782 /* if PF_EXITING is set, the tsk->cgroups pointer is no longer safe. */
1783 task_lock(tsk);
1784 if (tsk->flags & PF_EXITING) {
1785 task_unlock(tsk);
1786 put_css_set(newcg);
1787 return -ESRCH;
1789 rcu_assign_pointer(tsk->cgroups, newcg);
1790 task_unlock(tsk);
1792 /* Update the css_set linked lists if we're using them */
1793 write_lock(&css_set_lock);
1794 if (!list_empty(&tsk->cg_list))
1795 list_move(&tsk->cg_list, &newcg->tasks);
1796 write_unlock(&css_set_lock);
1799 * We just gained a reference on oldcg by taking it from the task. As
1800 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1801 * it here; it will be freed under RCU.
1803 put_css_set(oldcg);
1805 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1806 return 0;
1810 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1811 * @cgrp: the cgroup the task is attaching to
1812 * @tsk: the task to be attached
1814 * Call holding cgroup_mutex. May take task_lock of
1815 * the task 'tsk' during call.
1817 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1819 int retval;
1820 struct cgroup_subsys *ss, *failed_ss = NULL;
1821 struct cgroup *oldcgrp;
1822 struct cgroupfs_root *root = cgrp->root;
1824 /* Nothing to do if the task is already in that cgroup */
1825 oldcgrp = task_cgroup_from_root(tsk, root);
1826 if (cgrp == oldcgrp)
1827 return 0;
1829 for_each_subsys(root, ss) {
1830 if (ss->can_attach) {
1831 retval = ss->can_attach(ss, cgrp, tsk);
1832 if (retval) {
1834 * Remember on which subsystem the can_attach()
1835 * failed, so that we only call cancel_attach()
1836 * against the subsystems whose can_attach()
1837 * succeeded. (See below)
1839 failed_ss = ss;
1840 goto out;
1843 if (ss->can_attach_task) {
1844 retval = ss->can_attach_task(cgrp, tsk);
1845 if (retval) {
1846 failed_ss = ss;
1847 goto out;
1852 retval = cgroup_task_migrate(cgrp, oldcgrp, tsk, false);
1853 if (retval)
1854 goto out;
1856 for_each_subsys(root, ss) {
1857 if (ss->pre_attach)
1858 ss->pre_attach(cgrp);
1859 if (ss->attach_task)
1860 ss->attach_task(cgrp, tsk);
1861 if (ss->attach)
1862 ss->attach(ss, cgrp, oldcgrp, tsk);
1865 synchronize_rcu();
1868 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1869 * is no longer empty.
1871 cgroup_wakeup_rmdir_waiter(cgrp);
1872 out:
1873 if (retval) {
1874 for_each_subsys(root, ss) {
1875 if (ss == failed_ss)
1877 * This subsystem was the one that failed the
1878 * can_attach() check earlier, so we don't need
1879 * to call cancel_attach() against it or any
1880 * remaining subsystems.
1882 break;
1883 if (ss->cancel_attach)
1884 ss->cancel_attach(ss, cgrp, tsk);
1887 return retval;
1891 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1892 * @from: attach to all cgroups of a given task
1893 * @tsk: the task to be attached
1895 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1897 struct cgroupfs_root *root;
1898 int retval = 0;
1900 cgroup_lock();
1901 for_each_active_root(root) {
1902 struct cgroup *from_cg = task_cgroup_from_root(from, root);
1904 retval = cgroup_attach_task(from_cg, tsk);
1905 if (retval)
1906 break;
1908 cgroup_unlock();
1910 return retval;
1912 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
1915 * cgroup_attach_proc works in two stages, the first of which prefetches all
1916 * new css_sets needed (to make sure we have enough memory before committing
1917 * to the move) and stores them in a list of entries of the following type.
1918 * TODO: possible optimization: use css_set->rcu_head for chaining instead
1920 struct cg_list_entry {
1921 struct css_set *cg;
1922 struct list_head links;
1925 static bool css_set_check_fetched(struct cgroup *cgrp,
1926 struct task_struct *tsk, struct css_set *cg,
1927 struct list_head *newcg_list)
1929 struct css_set *newcg;
1930 struct cg_list_entry *cg_entry;
1931 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
1933 read_lock(&css_set_lock);
1934 newcg = find_existing_css_set(cg, cgrp, template);
1935 if (newcg)
1936 get_css_set(newcg);
1937 read_unlock(&css_set_lock);
1939 /* doesn't exist at all? */
1940 if (!newcg)
1941 return false;
1942 /* see if it's already in the list */
1943 list_for_each_entry(cg_entry, newcg_list, links) {
1944 if (cg_entry->cg == newcg) {
1945 put_css_set(newcg);
1946 return true;
1950 /* not found */
1951 put_css_set(newcg);
1952 return false;
1956 * Find the new css_set and store it in the list in preparation for moving the
1957 * given task to the given cgroup. Returns 0 or -ENOMEM.
1959 static int css_set_prefetch(struct cgroup *cgrp, struct css_set *cg,
1960 struct list_head *newcg_list)
1962 struct css_set *newcg;
1963 struct cg_list_entry *cg_entry;
1965 /* ensure a new css_set will exist for this thread */
1966 newcg = find_css_set(cg, cgrp);
1967 if (!newcg)
1968 return -ENOMEM;
1969 /* add it to the list */
1970 cg_entry = kmalloc(sizeof(struct cg_list_entry), GFP_KERNEL);
1971 if (!cg_entry) {
1972 put_css_set(newcg);
1973 return -ENOMEM;
1975 cg_entry->cg = newcg;
1976 list_add(&cg_entry->links, newcg_list);
1977 return 0;
1981 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
1982 * @cgrp: the cgroup to attach to
1983 * @leader: the threadgroup leader task_struct of the group to be attached
1985 * Call holding cgroup_mutex and the threadgroup_fork_lock of the leader. Will
1986 * take task_lock of each thread in leader's threadgroup individually in turn.
1988 int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
1990 int retval, i, group_size;
1991 struct cgroup_subsys *ss, *failed_ss = NULL;
1992 bool cancel_failed_ss = false;
1993 /* guaranteed to be initialized later, but the compiler needs this */
1994 struct cgroup *oldcgrp = NULL;
1995 struct css_set *oldcg;
1996 struct cgroupfs_root *root = cgrp->root;
1997 /* threadgroup list cursor and array */
1998 struct task_struct *tsk;
1999 struct flex_array *group;
2001 * we need to make sure we have css_sets for all the tasks we're
2002 * going to move -before- we actually start moving them, so that in
2003 * case we get an ENOMEM we can bail out before making any changes.
2005 struct list_head newcg_list;
2006 struct cg_list_entry *cg_entry, *temp_nobe;
2009 * step 0: in order to do expensive, possibly blocking operations for
2010 * every thread, we cannot iterate the thread group list, since it needs
2011 * rcu or tasklist locked. instead, build an array of all threads in the
2012 * group - threadgroup_fork_lock prevents new threads from appearing,
2013 * and if threads exit, this will just be an over-estimate.
2015 group_size = get_nr_threads(leader);
2016 /* flex_array supports very large thread-groups better than kmalloc. */
2017 group = flex_array_alloc(sizeof(struct task_struct *), group_size,
2018 GFP_KERNEL);
2019 if (!group)
2020 return -ENOMEM;
2021 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2022 retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
2023 if (retval)
2024 goto out_free_group_list;
2026 /* prevent changes to the threadgroup list while we take a snapshot. */
2027 rcu_read_lock();
2028 if (!thread_group_leader(leader)) {
2030 * a race with de_thread from another thread's exec() may strip
2031 * us of our leadership, making while_each_thread unsafe to use
2032 * on this task. if this happens, there is no choice but to
2033 * throw this task away and try again (from cgroup_procs_write);
2034 * this is "double-double-toil-and-trouble-check locking".
2036 rcu_read_unlock();
2037 retval = -EAGAIN;
2038 goto out_free_group_list;
2040 /* take a reference on each task in the group to go in the array. */
2041 tsk = leader;
2042 i = 0;
2043 do {
2044 /* as per above, nr_threads may decrease, but not increase. */
2045 BUG_ON(i >= group_size);
2046 get_task_struct(tsk);
2048 * saying GFP_ATOMIC has no effect here because we did prealloc
2049 * earlier, but it's good form to communicate our expectations.
2051 retval = flex_array_put_ptr(group, i, tsk, GFP_ATOMIC);
2052 BUG_ON(retval != 0);
2053 i++;
2054 } while_each_thread(leader, tsk);
2055 /* remember the number of threads in the array for later. */
2056 group_size = i;
2057 rcu_read_unlock();
2060 * step 1: check that we can legitimately attach to the cgroup.
2062 for_each_subsys(root, ss) {
2063 if (ss->can_attach) {
2064 retval = ss->can_attach(ss, cgrp, leader);
2065 if (retval) {
2066 failed_ss = ss;
2067 goto out_cancel_attach;
2070 /* a callback to be run on every thread in the threadgroup. */
2071 if (ss->can_attach_task) {
2072 /* run on each task in the threadgroup. */
2073 for (i = 0; i < group_size; i++) {
2074 tsk = flex_array_get_ptr(group, i);
2075 retval = ss->can_attach_task(cgrp, tsk);
2076 if (retval) {
2077 failed_ss = ss;
2078 cancel_failed_ss = true;
2079 goto out_cancel_attach;
2086 * step 2: make sure css_sets exist for all threads to be migrated.
2087 * we use find_css_set, which allocates a new one if necessary.
2089 INIT_LIST_HEAD(&newcg_list);
2090 for (i = 0; i < group_size; i++) {
2091 tsk = flex_array_get_ptr(group, i);
2092 /* nothing to do if this task is already in the cgroup */
2093 oldcgrp = task_cgroup_from_root(tsk, root);
2094 if (cgrp == oldcgrp)
2095 continue;
2096 /* get old css_set pointer */
2097 task_lock(tsk);
2098 if (tsk->flags & PF_EXITING) {
2099 /* ignore this task if it's going away */
2100 task_unlock(tsk);
2101 continue;
2103 oldcg = tsk->cgroups;
2104 get_css_set(oldcg);
2105 task_unlock(tsk);
2106 /* see if the new one for us is already in the list? */
2107 if (css_set_check_fetched(cgrp, tsk, oldcg, &newcg_list)) {
2108 /* was already there, nothing to do. */
2109 put_css_set(oldcg);
2110 } else {
2111 /* we don't already have it. get new one. */
2112 retval = css_set_prefetch(cgrp, oldcg, &newcg_list);
2113 put_css_set(oldcg);
2114 if (retval)
2115 goto out_list_teardown;
2120 * step 3: now that we're guaranteed success wrt the css_sets, proceed
2121 * to move all tasks to the new cgroup, calling ss->attach_task for each
2122 * one along the way. there are no failure cases after here, so this is
2123 * the commit point.
2125 for_each_subsys(root, ss) {
2126 if (ss->pre_attach)
2127 ss->pre_attach(cgrp);
2129 for (i = 0; i < group_size; i++) {
2130 tsk = flex_array_get_ptr(group, i);
2131 /* leave current thread as it is if it's already there */
2132 oldcgrp = task_cgroup_from_root(tsk, root);
2133 if (cgrp == oldcgrp)
2134 continue;
2135 /* attach each task to each subsystem */
2136 for_each_subsys(root, ss) {
2137 if (ss->attach_task)
2138 ss->attach_task(cgrp, tsk);
2140 /* if the thread is PF_EXITING, it can just get skipped. */
2141 retval = cgroup_task_migrate(cgrp, oldcgrp, tsk, true);
2142 BUG_ON(retval != 0 && retval != -ESRCH);
2144 /* nothing is sensitive to fork() after this point. */
2147 * step 4: do expensive, non-thread-specific subsystem callbacks.
2148 * TODO: if ever a subsystem needs to know the oldcgrp for each task
2149 * being moved, this call will need to be reworked to communicate that.
2151 for_each_subsys(root, ss) {
2152 if (ss->attach)
2153 ss->attach(ss, cgrp, oldcgrp, leader);
2157 * step 5: success! and cleanup
2159 synchronize_rcu();
2160 cgroup_wakeup_rmdir_waiter(cgrp);
2161 retval = 0;
2162 out_list_teardown:
2163 /* clean up the list of prefetched css_sets. */
2164 list_for_each_entry_safe(cg_entry, temp_nobe, &newcg_list, links) {
2165 list_del(&cg_entry->links);
2166 put_css_set(cg_entry->cg);
2167 kfree(cg_entry);
2169 out_cancel_attach:
2170 /* same deal as in cgroup_attach_task */
2171 if (retval) {
2172 for_each_subsys(root, ss) {
2173 if (ss == failed_ss) {
2174 if (cancel_failed_ss && ss->cancel_attach)
2175 ss->cancel_attach(ss, cgrp, leader);
2176 break;
2178 if (ss->cancel_attach)
2179 ss->cancel_attach(ss, cgrp, leader);
2182 /* clean up the array of referenced threads in the group. */
2183 for (i = 0; i < group_size; i++) {
2184 tsk = flex_array_get_ptr(group, i);
2185 put_task_struct(tsk);
2187 out_free_group_list:
2188 flex_array_free(group);
2189 return retval;
2193 * Find the task_struct of the task to attach by vpid and pass it along to the
2194 * function to attach either it or all tasks in its threadgroup. Will take
2195 * cgroup_mutex; may take task_lock of task.
2197 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2199 struct task_struct *tsk;
2200 const struct cred *cred = current_cred(), *tcred;
2201 int ret;
2203 if (!cgroup_lock_live_group(cgrp))
2204 return -ENODEV;
2206 if (pid) {
2207 rcu_read_lock();
2208 tsk = find_task_by_vpid(pid);
2209 if (!tsk) {
2210 rcu_read_unlock();
2211 cgroup_unlock();
2212 return -ESRCH;
2214 if (threadgroup) {
2216 * RCU protects this access, since tsk was found in the
2217 * tid map. a race with de_thread may cause group_leader
2218 * to stop being the leader, but cgroup_attach_proc will
2219 * detect it later.
2221 tsk = tsk->group_leader;
2222 } else if (tsk->flags & PF_EXITING) {
2223 /* optimization for the single-task-only case */
2224 rcu_read_unlock();
2225 cgroup_unlock();
2226 return -ESRCH;
2230 * even if we're attaching all tasks in the thread group, we
2231 * only need to check permissions on one of them.
2233 tcred = __task_cred(tsk);
2234 if (cred->euid &&
2235 cred->euid != tcred->uid &&
2236 cred->euid != tcred->suid) {
2237 rcu_read_unlock();
2238 cgroup_unlock();
2239 return -EACCES;
2241 get_task_struct(tsk);
2242 rcu_read_unlock();
2243 } else {
2244 if (threadgroup)
2245 tsk = current->group_leader;
2246 else
2247 tsk = current;
2248 get_task_struct(tsk);
2251 if (threadgroup) {
2252 threadgroup_fork_write_lock(tsk);
2253 ret = cgroup_attach_proc(cgrp, tsk);
2254 threadgroup_fork_write_unlock(tsk);
2255 } else {
2256 ret = cgroup_attach_task(cgrp, tsk);
2258 put_task_struct(tsk);
2259 cgroup_unlock();
2260 return ret;
2263 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2265 return attach_task_by_pid(cgrp, pid, false);
2268 static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2270 int ret;
2271 do {
2273 * attach_proc fails with -EAGAIN if threadgroup leadership
2274 * changes in the middle of the operation, in which case we need
2275 * to find the task_struct for the new leader and start over.
2277 ret = attach_task_by_pid(cgrp, tgid, true);
2278 } while (ret == -EAGAIN);
2279 return ret;
2283 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2284 * @cgrp: the cgroup to be checked for liveness
2286 * On success, returns true; the lock should be later released with
2287 * cgroup_unlock(). On failure returns false with no lock held.
2289 bool cgroup_lock_live_group(struct cgroup *cgrp)
2291 mutex_lock(&cgroup_mutex);
2292 if (cgroup_is_removed(cgrp)) {
2293 mutex_unlock(&cgroup_mutex);
2294 return false;
2296 return true;
2298 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2300 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2301 const char *buffer)
2303 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2304 if (strlen(buffer) >= PATH_MAX)
2305 return -EINVAL;
2306 if (!cgroup_lock_live_group(cgrp))
2307 return -ENODEV;
2308 strcpy(cgrp->root->release_agent_path, buffer);
2309 cgroup_unlock();
2310 return 0;
2313 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2314 struct seq_file *seq)
2316 if (!cgroup_lock_live_group(cgrp))
2317 return -ENODEV;
2318 seq_puts(seq, cgrp->root->release_agent_path);
2319 seq_putc(seq, '\n');
2320 cgroup_unlock();
2321 return 0;
2324 /* A buffer size big enough for numbers or short strings */
2325 #define CGROUP_LOCAL_BUFFER_SIZE 64
2327 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2328 struct file *file,
2329 const char __user *userbuf,
2330 size_t nbytes, loff_t *unused_ppos)
2332 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2333 int retval = 0;
2334 char *end;
2336 if (!nbytes)
2337 return -EINVAL;
2338 if (nbytes >= sizeof(buffer))
2339 return -E2BIG;
2340 if (copy_from_user(buffer, userbuf, nbytes))
2341 return -EFAULT;
2343 buffer[nbytes] = 0; /* nul-terminate */
2344 if (cft->write_u64) {
2345 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2346 if (*end)
2347 return -EINVAL;
2348 retval = cft->write_u64(cgrp, cft, val);
2349 } else {
2350 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2351 if (*end)
2352 return -EINVAL;
2353 retval = cft->write_s64(cgrp, cft, val);
2355 if (!retval)
2356 retval = nbytes;
2357 return retval;
2360 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2361 struct file *file,
2362 const char __user *userbuf,
2363 size_t nbytes, loff_t *unused_ppos)
2365 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2366 int retval = 0;
2367 size_t max_bytes = cft->max_write_len;
2368 char *buffer = local_buffer;
2370 if (!max_bytes)
2371 max_bytes = sizeof(local_buffer) - 1;
2372 if (nbytes >= max_bytes)
2373 return -E2BIG;
2374 /* Allocate a dynamic buffer if we need one */
2375 if (nbytes >= sizeof(local_buffer)) {
2376 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2377 if (buffer == NULL)
2378 return -ENOMEM;
2380 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2381 retval = -EFAULT;
2382 goto out;
2385 buffer[nbytes] = 0; /* nul-terminate */
2386 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2387 if (!retval)
2388 retval = nbytes;
2389 out:
2390 if (buffer != local_buffer)
2391 kfree(buffer);
2392 return retval;
2395 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2396 size_t nbytes, loff_t *ppos)
2398 struct cftype *cft = __d_cft(file->f_dentry);
2399 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2401 if (cgroup_is_removed(cgrp))
2402 return -ENODEV;
2403 if (cft->write)
2404 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2405 if (cft->write_u64 || cft->write_s64)
2406 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2407 if (cft->write_string)
2408 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2409 if (cft->trigger) {
2410 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2411 return ret ? ret : nbytes;
2413 return -EINVAL;
2416 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2417 struct file *file,
2418 char __user *buf, size_t nbytes,
2419 loff_t *ppos)
2421 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2422 u64 val = cft->read_u64(cgrp, cft);
2423 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2425 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2428 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2429 struct file *file,
2430 char __user *buf, size_t nbytes,
2431 loff_t *ppos)
2433 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2434 s64 val = cft->read_s64(cgrp, cft);
2435 int len = sprintf(tmp, "%lld\n", (long long) val);
2437 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2440 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2441 size_t nbytes, loff_t *ppos)
2443 struct cftype *cft = __d_cft(file->f_dentry);
2444 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2446 if (cgroup_is_removed(cgrp))
2447 return -ENODEV;
2449 if (cft->read)
2450 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2451 if (cft->read_u64)
2452 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2453 if (cft->read_s64)
2454 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2455 return -EINVAL;
2459 * seqfile ops/methods for returning structured data. Currently just
2460 * supports string->u64 maps, but can be extended in future.
2463 struct cgroup_seqfile_state {
2464 struct cftype *cft;
2465 struct cgroup *cgroup;
2468 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2470 struct seq_file *sf = cb->state;
2471 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2474 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2476 struct cgroup_seqfile_state *state = m->private;
2477 struct cftype *cft = state->cft;
2478 if (cft->read_map) {
2479 struct cgroup_map_cb cb = {
2480 .fill = cgroup_map_add,
2481 .state = m,
2483 return cft->read_map(state->cgroup, cft, &cb);
2485 return cft->read_seq_string(state->cgroup, cft, m);
2488 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2490 struct seq_file *seq = file->private_data;
2491 kfree(seq->private);
2492 return single_release(inode, file);
2495 static const struct file_operations cgroup_seqfile_operations = {
2496 .read = seq_read,
2497 .write = cgroup_file_write,
2498 .llseek = seq_lseek,
2499 .release = cgroup_seqfile_release,
2502 static int cgroup_file_open(struct inode *inode, struct file *file)
2504 int err;
2505 struct cftype *cft;
2507 err = generic_file_open(inode, file);
2508 if (err)
2509 return err;
2510 cft = __d_cft(file->f_dentry);
2512 if (cft->read_map || cft->read_seq_string) {
2513 struct cgroup_seqfile_state *state =
2514 kzalloc(sizeof(*state), GFP_USER);
2515 if (!state)
2516 return -ENOMEM;
2517 state->cft = cft;
2518 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2519 file->f_op = &cgroup_seqfile_operations;
2520 err = single_open(file, cgroup_seqfile_show, state);
2521 if (err < 0)
2522 kfree(state);
2523 } else if (cft->open)
2524 err = cft->open(inode, file);
2525 else
2526 err = 0;
2528 return err;
2531 static int cgroup_file_release(struct inode *inode, struct file *file)
2533 struct cftype *cft = __d_cft(file->f_dentry);
2534 if (cft->release)
2535 return cft->release(inode, file);
2536 return 0;
2540 * cgroup_rename - Only allow simple rename of directories in place.
2542 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2543 struct inode *new_dir, struct dentry *new_dentry)
2545 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2546 return -ENOTDIR;
2547 if (new_dentry->d_inode)
2548 return -EEXIST;
2549 if (old_dir != new_dir)
2550 return -EIO;
2551 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2554 static const struct file_operations cgroup_file_operations = {
2555 .read = cgroup_file_read,
2556 .write = cgroup_file_write,
2557 .llseek = generic_file_llseek,
2558 .open = cgroup_file_open,
2559 .release = cgroup_file_release,
2562 static const struct inode_operations cgroup_dir_inode_operations = {
2563 .lookup = cgroup_lookup,
2564 .mkdir = cgroup_mkdir,
2565 .rmdir = cgroup_rmdir,
2566 .rename = cgroup_rename,
2569 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
2571 if (dentry->d_name.len > NAME_MAX)
2572 return ERR_PTR(-ENAMETOOLONG);
2573 d_add(dentry, NULL);
2574 return NULL;
2578 * Check if a file is a control file
2580 static inline struct cftype *__file_cft(struct file *file)
2582 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2583 return ERR_PTR(-EINVAL);
2584 return __d_cft(file->f_dentry);
2587 static int cgroup_create_file(struct dentry *dentry, mode_t mode,
2588 struct super_block *sb)
2590 struct inode *inode;
2592 if (!dentry)
2593 return -ENOENT;
2594 if (dentry->d_inode)
2595 return -EEXIST;
2597 inode = cgroup_new_inode(mode, sb);
2598 if (!inode)
2599 return -ENOMEM;
2601 if (S_ISDIR(mode)) {
2602 inode->i_op = &cgroup_dir_inode_operations;
2603 inode->i_fop = &simple_dir_operations;
2605 /* start off with i_nlink == 2 (for "." entry) */
2606 inc_nlink(inode);
2608 /* start with the directory inode held, so that we can
2609 * populate it without racing with another mkdir */
2610 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2611 } else if (S_ISREG(mode)) {
2612 inode->i_size = 0;
2613 inode->i_fop = &cgroup_file_operations;
2615 d_instantiate(dentry, inode);
2616 dget(dentry); /* Extra count - pin the dentry in core */
2617 return 0;
2621 * cgroup_create_dir - create a directory for an object.
2622 * @cgrp: the cgroup we create the directory for. It must have a valid
2623 * ->parent field. And we are going to fill its ->dentry field.
2624 * @dentry: dentry of the new cgroup
2625 * @mode: mode to set on new directory.
2627 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2628 mode_t mode)
2630 struct dentry *parent;
2631 int error = 0;
2633 parent = cgrp->parent->dentry;
2634 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2635 if (!error) {
2636 dentry->d_fsdata = cgrp;
2637 inc_nlink(parent->d_inode);
2638 rcu_assign_pointer(cgrp->dentry, dentry);
2639 dget(dentry);
2641 dput(dentry);
2643 return error;
2647 * cgroup_file_mode - deduce file mode of a control file
2648 * @cft: the control file in question
2650 * returns cft->mode if ->mode is not 0
2651 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2652 * returns S_IRUGO if it has only a read handler
2653 * returns S_IWUSR if it has only a write hander
2655 static mode_t cgroup_file_mode(const struct cftype *cft)
2657 mode_t mode = 0;
2659 if (cft->mode)
2660 return cft->mode;
2662 if (cft->read || cft->read_u64 || cft->read_s64 ||
2663 cft->read_map || cft->read_seq_string)
2664 mode |= S_IRUGO;
2666 if (cft->write || cft->write_u64 || cft->write_s64 ||
2667 cft->write_string || cft->trigger)
2668 mode |= S_IWUSR;
2670 return mode;
2673 int cgroup_add_file(struct cgroup *cgrp,
2674 struct cgroup_subsys *subsys,
2675 const struct cftype *cft)
2677 struct dentry *dir = cgrp->dentry;
2678 struct dentry *dentry;
2679 int error;
2680 mode_t mode;
2682 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2683 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2684 strcpy(name, subsys->name);
2685 strcat(name, ".");
2687 strcat(name, cft->name);
2688 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2689 dentry = lookup_one_len(name, dir, strlen(name));
2690 if (!IS_ERR(dentry)) {
2691 mode = cgroup_file_mode(cft);
2692 error = cgroup_create_file(dentry, mode | S_IFREG,
2693 cgrp->root->sb);
2694 if (!error)
2695 dentry->d_fsdata = (void *)cft;
2696 dput(dentry);
2697 } else
2698 error = PTR_ERR(dentry);
2699 return error;
2701 EXPORT_SYMBOL_GPL(cgroup_add_file);
2703 int cgroup_add_files(struct cgroup *cgrp,
2704 struct cgroup_subsys *subsys,
2705 const struct cftype cft[],
2706 int count)
2708 int i, err;
2709 for (i = 0; i < count; i++) {
2710 err = cgroup_add_file(cgrp, subsys, &cft[i]);
2711 if (err)
2712 return err;
2714 return 0;
2716 EXPORT_SYMBOL_GPL(cgroup_add_files);
2719 * cgroup_task_count - count the number of tasks in a cgroup.
2720 * @cgrp: the cgroup in question
2722 * Return the number of tasks in the cgroup.
2724 int cgroup_task_count(const struct cgroup *cgrp)
2726 int count = 0;
2727 struct cg_cgroup_link *link;
2729 read_lock(&css_set_lock);
2730 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2731 count += atomic_read(&link->cg->refcount);
2733 read_unlock(&css_set_lock);
2734 return count;
2738 * Advance a list_head iterator. The iterator should be positioned at
2739 * the start of a css_set
2741 static void cgroup_advance_iter(struct cgroup *cgrp,
2742 struct cgroup_iter *it)
2744 struct list_head *l = it->cg_link;
2745 struct cg_cgroup_link *link;
2746 struct css_set *cg;
2748 /* Advance to the next non-empty css_set */
2749 do {
2750 l = l->next;
2751 if (l == &cgrp->css_sets) {
2752 it->cg_link = NULL;
2753 return;
2755 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2756 cg = link->cg;
2757 } while (list_empty(&cg->tasks));
2758 it->cg_link = l;
2759 it->task = cg->tasks.next;
2763 * To reduce the fork() overhead for systems that are not actually
2764 * using their cgroups capability, we don't maintain the lists running
2765 * through each css_set to its tasks until we see the list actually
2766 * used - in other words after the first call to cgroup_iter_start().
2768 * The tasklist_lock is not held here, as do_each_thread() and
2769 * while_each_thread() are protected by RCU.
2771 static void cgroup_enable_task_cg_lists(void)
2773 struct task_struct *p, *g;
2774 write_lock(&css_set_lock);
2775 use_task_css_set_links = 1;
2776 do_each_thread(g, p) {
2777 task_lock(p);
2779 * We should check if the process is exiting, otherwise
2780 * it will race with cgroup_exit() in that the list
2781 * entry won't be deleted though the process has exited.
2783 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2784 list_add(&p->cg_list, &p->cgroups->tasks);
2785 task_unlock(p);
2786 } while_each_thread(g, p);
2787 write_unlock(&css_set_lock);
2790 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2793 * The first time anyone tries to iterate across a cgroup,
2794 * we need to enable the list linking each css_set to its
2795 * tasks, and fix up all existing tasks.
2797 if (!use_task_css_set_links)
2798 cgroup_enable_task_cg_lists();
2800 read_lock(&css_set_lock);
2801 it->cg_link = &cgrp->css_sets;
2802 cgroup_advance_iter(cgrp, it);
2805 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2806 struct cgroup_iter *it)
2808 struct task_struct *res;
2809 struct list_head *l = it->task;
2810 struct cg_cgroup_link *link;
2812 /* If the iterator cg is NULL, we have no tasks */
2813 if (!it->cg_link)
2814 return NULL;
2815 res = list_entry(l, struct task_struct, cg_list);
2816 /* Advance iterator to find next entry */
2817 l = l->next;
2818 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2819 if (l == &link->cg->tasks) {
2820 /* We reached the end of this task list - move on to
2821 * the next cg_cgroup_link */
2822 cgroup_advance_iter(cgrp, it);
2823 } else {
2824 it->task = l;
2826 return res;
2829 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2831 read_unlock(&css_set_lock);
2834 static inline int started_after_time(struct task_struct *t1,
2835 struct timespec *time,
2836 struct task_struct *t2)
2838 int start_diff = timespec_compare(&t1->start_time, time);
2839 if (start_diff > 0) {
2840 return 1;
2841 } else if (start_diff < 0) {
2842 return 0;
2843 } else {
2845 * Arbitrarily, if two processes started at the same
2846 * time, we'll say that the lower pointer value
2847 * started first. Note that t2 may have exited by now
2848 * so this may not be a valid pointer any longer, but
2849 * that's fine - it still serves to distinguish
2850 * between two tasks started (effectively) simultaneously.
2852 return t1 > t2;
2857 * This function is a callback from heap_insert() and is used to order
2858 * the heap.
2859 * In this case we order the heap in descending task start time.
2861 static inline int started_after(void *p1, void *p2)
2863 struct task_struct *t1 = p1;
2864 struct task_struct *t2 = p2;
2865 return started_after_time(t1, &t2->start_time, t2);
2869 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2870 * @scan: struct cgroup_scanner containing arguments for the scan
2872 * Arguments include pointers to callback functions test_task() and
2873 * process_task().
2874 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2875 * and if it returns true, call process_task() for it also.
2876 * The test_task pointer may be NULL, meaning always true (select all tasks).
2877 * Effectively duplicates cgroup_iter_{start,next,end}()
2878 * but does not lock css_set_lock for the call to process_task().
2879 * The struct cgroup_scanner may be embedded in any structure of the caller's
2880 * creation.
2881 * It is guaranteed that process_task() will act on every task that
2882 * is a member of the cgroup for the duration of this call. This
2883 * function may or may not call process_task() for tasks that exit
2884 * or move to a different cgroup during the call, or are forked or
2885 * move into the cgroup during the call.
2887 * Note that test_task() may be called with locks held, and may in some
2888 * situations be called multiple times for the same task, so it should
2889 * be cheap.
2890 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2891 * pre-allocated and will be used for heap operations (and its "gt" member will
2892 * be overwritten), else a temporary heap will be used (allocation of which
2893 * may cause this function to fail).
2895 int cgroup_scan_tasks(struct cgroup_scanner *scan)
2897 int retval, i;
2898 struct cgroup_iter it;
2899 struct task_struct *p, *dropped;
2900 /* Never dereference latest_task, since it's not refcounted */
2901 struct task_struct *latest_task = NULL;
2902 struct ptr_heap tmp_heap;
2903 struct ptr_heap *heap;
2904 struct timespec latest_time = { 0, 0 };
2906 if (scan->heap) {
2907 /* The caller supplied our heap and pre-allocated its memory */
2908 heap = scan->heap;
2909 heap->gt = &started_after;
2910 } else {
2911 /* We need to allocate our own heap memory */
2912 heap = &tmp_heap;
2913 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2914 if (retval)
2915 /* cannot allocate the heap */
2916 return retval;
2919 again:
2921 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2922 * to determine which are of interest, and using the scanner's
2923 * "process_task" callback to process any of them that need an update.
2924 * Since we don't want to hold any locks during the task updates,
2925 * gather tasks to be processed in a heap structure.
2926 * The heap is sorted by descending task start time.
2927 * If the statically-sized heap fills up, we overflow tasks that
2928 * started later, and in future iterations only consider tasks that
2929 * started after the latest task in the previous pass. This
2930 * guarantees forward progress and that we don't miss any tasks.
2932 heap->size = 0;
2933 cgroup_iter_start(scan->cg, &it);
2934 while ((p = cgroup_iter_next(scan->cg, &it))) {
2936 * Only affect tasks that qualify per the caller's callback,
2937 * if he provided one
2939 if (scan->test_task && !scan->test_task(p, scan))
2940 continue;
2942 * Only process tasks that started after the last task
2943 * we processed
2945 if (!started_after_time(p, &latest_time, latest_task))
2946 continue;
2947 dropped = heap_insert(heap, p);
2948 if (dropped == NULL) {
2950 * The new task was inserted; the heap wasn't
2951 * previously full
2953 get_task_struct(p);
2954 } else if (dropped != p) {
2956 * The new task was inserted, and pushed out a
2957 * different task
2959 get_task_struct(p);
2960 put_task_struct(dropped);
2963 * Else the new task was newer than anything already in
2964 * the heap and wasn't inserted
2967 cgroup_iter_end(scan->cg, &it);
2969 if (heap->size) {
2970 for (i = 0; i < heap->size; i++) {
2971 struct task_struct *q = heap->ptrs[i];
2972 if (i == 0) {
2973 latest_time = q->start_time;
2974 latest_task = q;
2976 /* Process the task per the caller's callback */
2977 scan->process_task(q, scan);
2978 put_task_struct(q);
2981 * If we had to process any tasks at all, scan again
2982 * in case some of them were in the middle of forking
2983 * children that didn't get processed.
2984 * Not the most efficient way to do it, but it avoids
2985 * having to take callback_mutex in the fork path
2987 goto again;
2989 if (heap == &tmp_heap)
2990 heap_free(&tmp_heap);
2991 return 0;
2995 * Stuff for reading the 'tasks'/'procs' files.
2997 * Reading this file can return large amounts of data if a cgroup has
2998 * *lots* of attached tasks. So it may need several calls to read(),
2999 * but we cannot guarantee that the information we produce is correct
3000 * unless we produce it entirely atomically.
3005 * The following two functions "fix" the issue where there are more pids
3006 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3007 * TODO: replace with a kernel-wide solution to this problem
3009 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3010 static void *pidlist_allocate(int count)
3012 if (PIDLIST_TOO_LARGE(count))
3013 return vmalloc(count * sizeof(pid_t));
3014 else
3015 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3017 static void pidlist_free(void *p)
3019 if (is_vmalloc_addr(p))
3020 vfree(p);
3021 else
3022 kfree(p);
3024 static void *pidlist_resize(void *p, int newcount)
3026 void *newlist;
3027 /* note: if new alloc fails, old p will still be valid either way */
3028 if (is_vmalloc_addr(p)) {
3029 newlist = vmalloc(newcount * sizeof(pid_t));
3030 if (!newlist)
3031 return NULL;
3032 memcpy(newlist, p, newcount * sizeof(pid_t));
3033 vfree(p);
3034 } else {
3035 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3037 return newlist;
3041 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3042 * If the new stripped list is sufficiently smaller and there's enough memory
3043 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3044 * number of unique elements.
3046 /* is the size difference enough that we should re-allocate the array? */
3047 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3048 static int pidlist_uniq(pid_t **p, int length)
3050 int src, dest = 1;
3051 pid_t *list = *p;
3052 pid_t *newlist;
3055 * we presume the 0th element is unique, so i starts at 1. trivial
3056 * edge cases first; no work needs to be done for either
3058 if (length == 0 || length == 1)
3059 return length;
3060 /* src and dest walk down the list; dest counts unique elements */
3061 for (src = 1; src < length; src++) {
3062 /* find next unique element */
3063 while (list[src] == list[src-1]) {
3064 src++;
3065 if (src == length)
3066 goto after;
3068 /* dest always points to where the next unique element goes */
3069 list[dest] = list[src];
3070 dest++;
3072 after:
3074 * if the length difference is large enough, we want to allocate a
3075 * smaller buffer to save memory. if this fails due to out of memory,
3076 * we'll just stay with what we've got.
3078 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3079 newlist = pidlist_resize(list, dest);
3080 if (newlist)
3081 *p = newlist;
3083 return dest;
3086 static int cmppid(const void *a, const void *b)
3088 return *(pid_t *)a - *(pid_t *)b;
3092 * find the appropriate pidlist for our purpose (given procs vs tasks)
3093 * returns with the lock on that pidlist already held, and takes care
3094 * of the use count, or returns NULL with no locks held if we're out of
3095 * memory.
3097 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3098 enum cgroup_filetype type)
3100 struct cgroup_pidlist *l;
3101 /* don't need task_nsproxy() if we're looking at ourself */
3102 struct pid_namespace *ns = current->nsproxy->pid_ns;
3105 * We can't drop the pidlist_mutex before taking the l->mutex in case
3106 * the last ref-holder is trying to remove l from the list at the same
3107 * time. Holding the pidlist_mutex precludes somebody taking whichever
3108 * list we find out from under us - compare release_pid_array().
3110 mutex_lock(&cgrp->pidlist_mutex);
3111 list_for_each_entry(l, &cgrp->pidlists, links) {
3112 if (l->key.type == type && l->key.ns == ns) {
3113 /* make sure l doesn't vanish out from under us */
3114 down_write(&l->mutex);
3115 mutex_unlock(&cgrp->pidlist_mutex);
3116 return l;
3119 /* entry not found; create a new one */
3120 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3121 if (!l) {
3122 mutex_unlock(&cgrp->pidlist_mutex);
3123 return l;
3125 init_rwsem(&l->mutex);
3126 down_write(&l->mutex);
3127 l->key.type = type;
3128 l->key.ns = get_pid_ns(ns);
3129 l->use_count = 0; /* don't increment here */
3130 l->list = NULL;
3131 l->owner = cgrp;
3132 list_add(&l->links, &cgrp->pidlists);
3133 mutex_unlock(&cgrp->pidlist_mutex);
3134 return l;
3138 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3140 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3141 struct cgroup_pidlist **lp)
3143 pid_t *array;
3144 int length;
3145 int pid, n = 0; /* used for populating the array */
3146 struct cgroup_iter it;
3147 struct task_struct *tsk;
3148 struct cgroup_pidlist *l;
3151 * If cgroup gets more users after we read count, we won't have
3152 * enough space - tough. This race is indistinguishable to the
3153 * caller from the case that the additional cgroup users didn't
3154 * show up until sometime later on.
3156 length = cgroup_task_count(cgrp);
3157 array = pidlist_allocate(length);
3158 if (!array)
3159 return -ENOMEM;
3160 /* now, populate the array */
3161 cgroup_iter_start(cgrp, &it);
3162 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3163 if (unlikely(n == length))
3164 break;
3165 /* get tgid or pid for procs or tasks file respectively */
3166 if (type == CGROUP_FILE_PROCS)
3167 pid = task_tgid_vnr(tsk);
3168 else
3169 pid = task_pid_vnr(tsk);
3170 if (pid > 0) /* make sure to only use valid results */
3171 array[n++] = pid;
3173 cgroup_iter_end(cgrp, &it);
3174 length = n;
3175 /* now sort & (if procs) strip out duplicates */
3176 sort(array, length, sizeof(pid_t), cmppid, NULL);
3177 if (type == CGROUP_FILE_PROCS)
3178 length = pidlist_uniq(&array, length);
3179 l = cgroup_pidlist_find(cgrp, type);
3180 if (!l) {
3181 pidlist_free(array);
3182 return -ENOMEM;
3184 /* store array, freeing old if necessary - lock already held */
3185 pidlist_free(l->list);
3186 l->list = array;
3187 l->length = length;
3188 l->use_count++;
3189 up_write(&l->mutex);
3190 *lp = l;
3191 return 0;
3195 * cgroupstats_build - build and fill cgroupstats
3196 * @stats: cgroupstats to fill information into
3197 * @dentry: A dentry entry belonging to the cgroup for which stats have
3198 * been requested.
3200 * Build and fill cgroupstats so that taskstats can export it to user
3201 * space.
3203 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3205 int ret = -EINVAL;
3206 struct cgroup *cgrp;
3207 struct cgroup_iter it;
3208 struct task_struct *tsk;
3211 * Validate dentry by checking the superblock operations,
3212 * and make sure it's a directory.
3214 if (dentry->d_sb->s_op != &cgroup_ops ||
3215 !S_ISDIR(dentry->d_inode->i_mode))
3216 goto err;
3218 ret = 0;
3219 cgrp = dentry->d_fsdata;
3221 cgroup_iter_start(cgrp, &it);
3222 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3223 switch (tsk->state) {
3224 case TASK_RUNNING:
3225 stats->nr_running++;
3226 break;
3227 case TASK_INTERRUPTIBLE:
3228 stats->nr_sleeping++;
3229 break;
3230 case TASK_UNINTERRUPTIBLE:
3231 stats->nr_uninterruptible++;
3232 break;
3233 case TASK_STOPPED:
3234 stats->nr_stopped++;
3235 break;
3236 default:
3237 if (delayacct_is_task_waiting_on_io(tsk))
3238 stats->nr_io_wait++;
3239 break;
3242 cgroup_iter_end(cgrp, &it);
3244 err:
3245 return ret;
3250 * seq_file methods for the tasks/procs files. The seq_file position is the
3251 * next pid to display; the seq_file iterator is a pointer to the pid
3252 * in the cgroup->l->list array.
3255 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3258 * Initially we receive a position value that corresponds to
3259 * one more than the last pid shown (or 0 on the first call or
3260 * after a seek to the start). Use a binary-search to find the
3261 * next pid to display, if any
3263 struct cgroup_pidlist *l = s->private;
3264 int index = 0, pid = *pos;
3265 int *iter;
3267 down_read(&l->mutex);
3268 if (pid) {
3269 int end = l->length;
3271 while (index < end) {
3272 int mid = (index + end) / 2;
3273 if (l->list[mid] == pid) {
3274 index = mid;
3275 break;
3276 } else if (l->list[mid] <= pid)
3277 index = mid + 1;
3278 else
3279 end = mid;
3282 /* If we're off the end of the array, we're done */
3283 if (index >= l->length)
3284 return NULL;
3285 /* Update the abstract position to be the actual pid that we found */
3286 iter = l->list + index;
3287 *pos = *iter;
3288 return iter;
3291 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3293 struct cgroup_pidlist *l = s->private;
3294 up_read(&l->mutex);
3297 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3299 struct cgroup_pidlist *l = s->private;
3300 pid_t *p = v;
3301 pid_t *end = l->list + l->length;
3303 * Advance to the next pid in the array. If this goes off the
3304 * end, we're done
3306 p++;
3307 if (p >= end) {
3308 return NULL;
3309 } else {
3310 *pos = *p;
3311 return p;
3315 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3317 return seq_printf(s, "%d\n", *(int *)v);
3321 * seq_operations functions for iterating on pidlists through seq_file -
3322 * independent of whether it's tasks or procs
3324 static const struct seq_operations cgroup_pidlist_seq_operations = {
3325 .start = cgroup_pidlist_start,
3326 .stop = cgroup_pidlist_stop,
3327 .next = cgroup_pidlist_next,
3328 .show = cgroup_pidlist_show,
3331 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3334 * the case where we're the last user of this particular pidlist will
3335 * have us remove it from the cgroup's list, which entails taking the
3336 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3337 * pidlist_mutex, we have to take pidlist_mutex first.
3339 mutex_lock(&l->owner->pidlist_mutex);
3340 down_write(&l->mutex);
3341 BUG_ON(!l->use_count);
3342 if (!--l->use_count) {
3343 /* we're the last user if refcount is 0; remove and free */
3344 list_del(&l->links);
3345 mutex_unlock(&l->owner->pidlist_mutex);
3346 pidlist_free(l->list);
3347 put_pid_ns(l->key.ns);
3348 up_write(&l->mutex);
3349 kfree(l);
3350 return;
3352 mutex_unlock(&l->owner->pidlist_mutex);
3353 up_write(&l->mutex);
3356 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3358 struct cgroup_pidlist *l;
3359 if (!(file->f_mode & FMODE_READ))
3360 return 0;
3362 * the seq_file will only be initialized if the file was opened for
3363 * reading; hence we check if it's not null only in that case.
3365 l = ((struct seq_file *)file->private_data)->private;
3366 cgroup_release_pid_array(l);
3367 return seq_release(inode, file);
3370 static const struct file_operations cgroup_pidlist_operations = {
3371 .read = seq_read,
3372 .llseek = seq_lseek,
3373 .write = cgroup_file_write,
3374 .release = cgroup_pidlist_release,
3378 * The following functions handle opens on a file that displays a pidlist
3379 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3380 * in the cgroup.
3382 /* helper function for the two below it */
3383 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3385 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3386 struct cgroup_pidlist *l;
3387 int retval;
3389 /* Nothing to do for write-only files */
3390 if (!(file->f_mode & FMODE_READ))
3391 return 0;
3393 /* have the array populated */
3394 retval = pidlist_array_load(cgrp, type, &l);
3395 if (retval)
3396 return retval;
3397 /* configure file information */
3398 file->f_op = &cgroup_pidlist_operations;
3400 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3401 if (retval) {
3402 cgroup_release_pid_array(l);
3403 return retval;
3405 ((struct seq_file *)file->private_data)->private = l;
3406 return 0;
3408 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3410 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3412 static int cgroup_procs_open(struct inode *unused, struct file *file)
3414 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3417 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3418 struct cftype *cft)
3420 return notify_on_release(cgrp);
3423 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3424 struct cftype *cft,
3425 u64 val)
3427 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3428 if (val)
3429 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3430 else
3431 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3432 return 0;
3436 * Unregister event and free resources.
3438 * Gets called from workqueue.
3440 static void cgroup_event_remove(struct work_struct *work)
3442 struct cgroup_event *event = container_of(work, struct cgroup_event,
3443 remove);
3444 struct cgroup *cgrp = event->cgrp;
3446 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3448 eventfd_ctx_put(event->eventfd);
3449 kfree(event);
3450 dput(cgrp->dentry);
3454 * Gets called on POLLHUP on eventfd when user closes it.
3456 * Called with wqh->lock held and interrupts disabled.
3458 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3459 int sync, void *key)
3461 struct cgroup_event *event = container_of(wait,
3462 struct cgroup_event, wait);
3463 struct cgroup *cgrp = event->cgrp;
3464 unsigned long flags = (unsigned long)key;
3466 if (flags & POLLHUP) {
3467 __remove_wait_queue(event->wqh, &event->wait);
3468 spin_lock(&cgrp->event_list_lock);
3469 list_del(&event->list);
3470 spin_unlock(&cgrp->event_list_lock);
3472 * We are in atomic context, but cgroup_event_remove() may
3473 * sleep, so we have to call it in workqueue.
3475 schedule_work(&event->remove);
3478 return 0;
3481 static void cgroup_event_ptable_queue_proc(struct file *file,
3482 wait_queue_head_t *wqh, poll_table *pt)
3484 struct cgroup_event *event = container_of(pt,
3485 struct cgroup_event, pt);
3487 event->wqh = wqh;
3488 add_wait_queue(wqh, &event->wait);
3492 * Parse input and register new cgroup event handler.
3494 * Input must be in format '<event_fd> <control_fd> <args>'.
3495 * Interpretation of args is defined by control file implementation.
3497 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3498 const char *buffer)
3500 struct cgroup_event *event = NULL;
3501 unsigned int efd, cfd;
3502 struct file *efile = NULL;
3503 struct file *cfile = NULL;
3504 char *endp;
3505 int ret;
3507 efd = simple_strtoul(buffer, &endp, 10);
3508 if (*endp != ' ')
3509 return -EINVAL;
3510 buffer = endp + 1;
3512 cfd = simple_strtoul(buffer, &endp, 10);
3513 if ((*endp != ' ') && (*endp != '\0'))
3514 return -EINVAL;
3515 buffer = endp + 1;
3517 event = kzalloc(sizeof(*event), GFP_KERNEL);
3518 if (!event)
3519 return -ENOMEM;
3520 event->cgrp = cgrp;
3521 INIT_LIST_HEAD(&event->list);
3522 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3523 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3524 INIT_WORK(&event->remove, cgroup_event_remove);
3526 efile = eventfd_fget(efd);
3527 if (IS_ERR(efile)) {
3528 ret = PTR_ERR(efile);
3529 goto fail;
3532 event->eventfd = eventfd_ctx_fileget(efile);
3533 if (IS_ERR(event->eventfd)) {
3534 ret = PTR_ERR(event->eventfd);
3535 goto fail;
3538 cfile = fget(cfd);
3539 if (!cfile) {
3540 ret = -EBADF;
3541 goto fail;
3544 /* the process need read permission on control file */
3545 ret = file_permission(cfile, MAY_READ);
3546 if (ret < 0)
3547 goto fail;
3549 event->cft = __file_cft(cfile);
3550 if (IS_ERR(event->cft)) {
3551 ret = PTR_ERR(event->cft);
3552 goto fail;
3555 if (!event->cft->register_event || !event->cft->unregister_event) {
3556 ret = -EINVAL;
3557 goto fail;
3560 ret = event->cft->register_event(cgrp, event->cft,
3561 event->eventfd, buffer);
3562 if (ret)
3563 goto fail;
3565 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3566 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3567 ret = 0;
3568 goto fail;
3572 * Events should be removed after rmdir of cgroup directory, but before
3573 * destroying subsystem state objects. Let's take reference to cgroup
3574 * directory dentry to do that.
3576 dget(cgrp->dentry);
3578 spin_lock(&cgrp->event_list_lock);
3579 list_add(&event->list, &cgrp->event_list);
3580 spin_unlock(&cgrp->event_list_lock);
3582 fput(cfile);
3583 fput(efile);
3585 return 0;
3587 fail:
3588 if (cfile)
3589 fput(cfile);
3591 if (event && event->eventfd && !IS_ERR(event->eventfd))
3592 eventfd_ctx_put(event->eventfd);
3594 if (!IS_ERR_OR_NULL(efile))
3595 fput(efile);
3597 kfree(event);
3599 return ret;
3602 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3603 struct cftype *cft)
3605 return clone_children(cgrp);
3608 static int cgroup_clone_children_write(struct cgroup *cgrp,
3609 struct cftype *cft,
3610 u64 val)
3612 if (val)
3613 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3614 else
3615 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3616 return 0;
3620 * for the common functions, 'private' gives the type of file
3622 /* for hysterical raisins, we can't put this on the older files */
3623 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3624 static struct cftype files[] = {
3626 .name = "tasks",
3627 .open = cgroup_tasks_open,
3628 .write_u64 = cgroup_tasks_write,
3629 .release = cgroup_pidlist_release,
3630 .mode = S_IRUGO | S_IWUSR,
3633 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3634 .open = cgroup_procs_open,
3635 .write_u64 = cgroup_procs_write,
3636 .release = cgroup_pidlist_release,
3637 .mode = S_IRUGO | S_IWUSR,
3640 .name = "notify_on_release",
3641 .read_u64 = cgroup_read_notify_on_release,
3642 .write_u64 = cgroup_write_notify_on_release,
3645 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3646 .write_string = cgroup_write_event_control,
3647 .mode = S_IWUGO,
3650 .name = "cgroup.clone_children",
3651 .read_u64 = cgroup_clone_children_read,
3652 .write_u64 = cgroup_clone_children_write,
3656 static struct cftype cft_release_agent = {
3657 .name = "release_agent",
3658 .read_seq_string = cgroup_release_agent_show,
3659 .write_string = cgroup_release_agent_write,
3660 .max_write_len = PATH_MAX,
3663 static int cgroup_populate_dir(struct cgroup *cgrp)
3665 int err;
3666 struct cgroup_subsys *ss;
3668 /* First clear out any existing files */
3669 cgroup_clear_directory(cgrp->dentry);
3671 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
3672 if (err < 0)
3673 return err;
3675 if (cgrp == cgrp->top_cgroup) {
3676 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
3677 return err;
3680 for_each_subsys(cgrp->root, ss) {
3681 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
3682 return err;
3684 /* This cgroup is ready now */
3685 for_each_subsys(cgrp->root, ss) {
3686 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3688 * Update id->css pointer and make this css visible from
3689 * CSS ID functions. This pointer will be dereferened
3690 * from RCU-read-side without locks.
3692 if (css->id)
3693 rcu_assign_pointer(css->id->css, css);
3696 return 0;
3699 static void init_cgroup_css(struct cgroup_subsys_state *css,
3700 struct cgroup_subsys *ss,
3701 struct cgroup *cgrp)
3703 css->cgroup = cgrp;
3704 atomic_set(&css->refcnt, 1);
3705 css->flags = 0;
3706 css->id = NULL;
3707 if (cgrp == dummytop)
3708 set_bit(CSS_ROOT, &css->flags);
3709 BUG_ON(cgrp->subsys[ss->subsys_id]);
3710 cgrp->subsys[ss->subsys_id] = css;
3713 static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3715 /* We need to take each hierarchy_mutex in a consistent order */
3716 int i;
3719 * No worry about a race with rebind_subsystems that might mess up the
3720 * locking order, since both parties are under cgroup_mutex.
3722 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3723 struct cgroup_subsys *ss = subsys[i];
3724 if (ss == NULL)
3725 continue;
3726 if (ss->root == root)
3727 mutex_lock(&ss->hierarchy_mutex);
3731 static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3733 int i;
3735 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3736 struct cgroup_subsys *ss = subsys[i];
3737 if (ss == NULL)
3738 continue;
3739 if (ss->root == root)
3740 mutex_unlock(&ss->hierarchy_mutex);
3745 * cgroup_create - create a cgroup
3746 * @parent: cgroup that will be parent of the new cgroup
3747 * @dentry: dentry of the new cgroup
3748 * @mode: mode to set on new inode
3750 * Must be called with the mutex on the parent inode held
3752 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
3753 mode_t mode)
3755 struct cgroup *cgrp;
3756 struct cgroupfs_root *root = parent->root;
3757 int err = 0;
3758 struct cgroup_subsys *ss;
3759 struct super_block *sb = root->sb;
3761 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3762 if (!cgrp)
3763 return -ENOMEM;
3765 /* Grab a reference on the superblock so the hierarchy doesn't
3766 * get deleted on unmount if there are child cgroups. This
3767 * can be done outside cgroup_mutex, since the sb can't
3768 * disappear while someone has an open control file on the
3769 * fs */
3770 atomic_inc(&sb->s_active);
3772 mutex_lock(&cgroup_mutex);
3774 init_cgroup_housekeeping(cgrp);
3776 cgrp->parent = parent;
3777 cgrp->root = parent->root;
3778 cgrp->top_cgroup = parent->top_cgroup;
3780 if (notify_on_release(parent))
3781 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3783 if (clone_children(parent))
3784 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3786 for_each_subsys(root, ss) {
3787 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
3789 if (IS_ERR(css)) {
3790 err = PTR_ERR(css);
3791 goto err_destroy;
3793 init_cgroup_css(css, ss, cgrp);
3794 if (ss->use_id) {
3795 err = alloc_css_id(ss, parent, cgrp);
3796 if (err)
3797 goto err_destroy;
3799 /* At error, ->destroy() callback has to free assigned ID. */
3800 if (clone_children(parent) && ss->post_clone)
3801 ss->post_clone(ss, cgrp);
3804 cgroup_lock_hierarchy(root);
3805 list_add(&cgrp->sibling, &cgrp->parent->children);
3806 cgroup_unlock_hierarchy(root);
3807 root->number_of_cgroups++;
3809 err = cgroup_create_dir(cgrp, dentry, mode);
3810 if (err < 0)
3811 goto err_remove;
3813 /* The cgroup directory was pre-locked for us */
3814 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3816 err = cgroup_populate_dir(cgrp);
3817 /* If err < 0, we have a half-filled directory - oh well ;) */
3819 mutex_unlock(&cgroup_mutex);
3820 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3822 return 0;
3824 err_remove:
3826 cgroup_lock_hierarchy(root);
3827 list_del(&cgrp->sibling);
3828 cgroup_unlock_hierarchy(root);
3829 root->number_of_cgroups--;
3831 err_destroy:
3833 for_each_subsys(root, ss) {
3834 if (cgrp->subsys[ss->subsys_id])
3835 ss->destroy(ss, cgrp);
3838 mutex_unlock(&cgroup_mutex);
3840 /* Release the reference count that we took on the superblock */
3841 deactivate_super(sb);
3843 kfree(cgrp);
3844 return err;
3847 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3849 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3851 /* the vfs holds inode->i_mutex already */
3852 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3855 static int cgroup_has_css_refs(struct cgroup *cgrp)
3857 /* Check the reference count on each subsystem. Since we
3858 * already established that there are no tasks in the
3859 * cgroup, if the css refcount is also 1, then there should
3860 * be no outstanding references, so the subsystem is safe to
3861 * destroy. We scan across all subsystems rather than using
3862 * the per-hierarchy linked list of mounted subsystems since
3863 * we can be called via check_for_release() with no
3864 * synchronization other than RCU, and the subsystem linked
3865 * list isn't RCU-safe */
3866 int i;
3868 * We won't need to lock the subsys array, because the subsystems
3869 * we're concerned about aren't going anywhere since our cgroup root
3870 * has a reference on them.
3872 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3873 struct cgroup_subsys *ss = subsys[i];
3874 struct cgroup_subsys_state *css;
3875 /* Skip subsystems not present or not in this hierarchy */
3876 if (ss == NULL || ss->root != cgrp->root)
3877 continue;
3878 css = cgrp->subsys[ss->subsys_id];
3879 /* When called from check_for_release() it's possible
3880 * that by this point the cgroup has been removed
3881 * and the css deleted. But a false-positive doesn't
3882 * matter, since it can only happen if the cgroup
3883 * has been deleted and hence no longer needs the
3884 * release agent to be called anyway. */
3885 if (css && (atomic_read(&css->refcnt) > 1))
3886 return 1;
3888 return 0;
3892 * Atomically mark all (or else none) of the cgroup's CSS objects as
3893 * CSS_REMOVED. Return true on success, or false if the cgroup has
3894 * busy subsystems. Call with cgroup_mutex held
3897 static int cgroup_clear_css_refs(struct cgroup *cgrp)
3899 struct cgroup_subsys *ss;
3900 unsigned long flags;
3901 bool failed = false;
3902 local_irq_save(flags);
3903 for_each_subsys(cgrp->root, ss) {
3904 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3905 int refcnt;
3906 while (1) {
3907 /* We can only remove a CSS with a refcnt==1 */
3908 refcnt = atomic_read(&css->refcnt);
3909 if (refcnt > 1) {
3910 failed = true;
3911 goto done;
3913 BUG_ON(!refcnt);
3915 * Drop the refcnt to 0 while we check other
3916 * subsystems. This will cause any racing
3917 * css_tryget() to spin until we set the
3918 * CSS_REMOVED bits or abort
3920 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
3921 break;
3922 cpu_relax();
3925 done:
3926 for_each_subsys(cgrp->root, ss) {
3927 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3928 if (failed) {
3930 * Restore old refcnt if we previously managed
3931 * to clear it from 1 to 0
3933 if (!atomic_read(&css->refcnt))
3934 atomic_set(&css->refcnt, 1);
3935 } else {
3936 /* Commit the fact that the CSS is removed */
3937 set_bit(CSS_REMOVED, &css->flags);
3940 local_irq_restore(flags);
3941 return !failed;
3944 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
3946 struct cgroup *cgrp = dentry->d_fsdata;
3947 struct dentry *d;
3948 struct cgroup *parent;
3949 DEFINE_WAIT(wait);
3950 struct cgroup_event *event, *tmp;
3951 int ret;
3953 /* the vfs holds both inode->i_mutex already */
3954 again:
3955 mutex_lock(&cgroup_mutex);
3956 if (atomic_read(&cgrp->count) != 0) {
3957 mutex_unlock(&cgroup_mutex);
3958 return -EBUSY;
3960 if (!list_empty(&cgrp->children)) {
3961 mutex_unlock(&cgroup_mutex);
3962 return -EBUSY;
3964 mutex_unlock(&cgroup_mutex);
3967 * In general, subsystem has no css->refcnt after pre_destroy(). But
3968 * in racy cases, subsystem may have to get css->refcnt after
3969 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3970 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3971 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3972 * and subsystem's reference count handling. Please see css_get/put
3973 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
3975 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3978 * Call pre_destroy handlers of subsys. Notify subsystems
3979 * that rmdir() request comes.
3981 ret = cgroup_call_pre_destroy(cgrp);
3982 if (ret) {
3983 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3984 return ret;
3987 mutex_lock(&cgroup_mutex);
3988 parent = cgrp->parent;
3989 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
3990 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3991 mutex_unlock(&cgroup_mutex);
3992 return -EBUSY;
3994 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
3995 if (!cgroup_clear_css_refs(cgrp)) {
3996 mutex_unlock(&cgroup_mutex);
3998 * Because someone may call cgroup_wakeup_rmdir_waiter() before
3999 * prepare_to_wait(), we need to check this flag.
4001 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
4002 schedule();
4003 finish_wait(&cgroup_rmdir_waitq, &wait);
4004 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4005 if (signal_pending(current))
4006 return -EINTR;
4007 goto again;
4009 /* NO css_tryget() can success after here. */
4010 finish_wait(&cgroup_rmdir_waitq, &wait);
4011 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4013 spin_lock(&release_list_lock);
4014 set_bit(CGRP_REMOVED, &cgrp->flags);
4015 if (!list_empty(&cgrp->release_list))
4016 list_del_init(&cgrp->release_list);
4017 spin_unlock(&release_list_lock);
4019 cgroup_lock_hierarchy(cgrp->root);
4020 /* delete this cgroup from parent->children */
4021 list_del_init(&cgrp->sibling);
4022 cgroup_unlock_hierarchy(cgrp->root);
4024 d = dget(cgrp->dentry);
4026 cgroup_d_remove_dir(d);
4027 dput(d);
4029 set_bit(CGRP_RELEASABLE, &parent->flags);
4030 check_for_release(parent);
4033 * Unregister events and notify userspace.
4034 * Notify userspace about cgroup removing only after rmdir of cgroup
4035 * directory to avoid race between userspace and kernelspace
4037 spin_lock(&cgrp->event_list_lock);
4038 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4039 list_del(&event->list);
4040 remove_wait_queue(event->wqh, &event->wait);
4041 eventfd_signal(event->eventfd, 1);
4042 schedule_work(&event->remove);
4044 spin_unlock(&cgrp->event_list_lock);
4046 mutex_unlock(&cgroup_mutex);
4047 return 0;
4050 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4052 struct cgroup_subsys_state *css;
4054 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4056 /* Create the top cgroup state for this subsystem */
4057 list_add(&ss->sibling, &rootnode.subsys_list);
4058 ss->root = &rootnode;
4059 css = ss->create(ss, dummytop);
4060 /* We don't handle early failures gracefully */
4061 BUG_ON(IS_ERR(css));
4062 init_cgroup_css(css, ss, dummytop);
4064 /* Update the init_css_set to contain a subsys
4065 * pointer to this state - since the subsystem is
4066 * newly registered, all tasks and hence the
4067 * init_css_set is in the subsystem's top cgroup. */
4068 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
4070 need_forkexit_callback |= ss->fork || ss->exit;
4072 /* At system boot, before all subsystems have been
4073 * registered, no tasks have been forked, so we don't
4074 * need to invoke fork callbacks here. */
4075 BUG_ON(!list_empty(&init_task.tasks));
4077 mutex_init(&ss->hierarchy_mutex);
4078 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4079 ss->active = 1;
4081 /* this function shouldn't be used with modular subsystems, since they
4082 * need to register a subsys_id, among other things */
4083 BUG_ON(ss->module);
4087 * cgroup_load_subsys: load and register a modular subsystem at runtime
4088 * @ss: the subsystem to load
4090 * This function should be called in a modular subsystem's initcall. If the
4091 * subsystem is built as a module, it will be assigned a new subsys_id and set
4092 * up for use. If the subsystem is built-in anyway, work is delegated to the
4093 * simpler cgroup_init_subsys.
4095 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4097 int i;
4098 struct cgroup_subsys_state *css;
4100 /* check name and function validity */
4101 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4102 ss->create == NULL || ss->destroy == NULL)
4103 return -EINVAL;
4106 * we don't support callbacks in modular subsystems. this check is
4107 * before the ss->module check for consistency; a subsystem that could
4108 * be a module should still have no callbacks even if the user isn't
4109 * compiling it as one.
4111 if (ss->fork || ss->exit)
4112 return -EINVAL;
4115 * an optionally modular subsystem is built-in: we want to do nothing,
4116 * since cgroup_init_subsys will have already taken care of it.
4118 if (ss->module == NULL) {
4119 /* a few sanity checks */
4120 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
4121 BUG_ON(subsys[ss->subsys_id] != ss);
4122 return 0;
4126 * need to register a subsys id before anything else - for example,
4127 * init_cgroup_css needs it.
4129 mutex_lock(&cgroup_mutex);
4130 /* find the first empty slot in the array */
4131 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
4132 if (subsys[i] == NULL)
4133 break;
4135 if (i == CGROUP_SUBSYS_COUNT) {
4136 /* maximum number of subsystems already registered! */
4137 mutex_unlock(&cgroup_mutex);
4138 return -EBUSY;
4140 /* assign ourselves the subsys_id */
4141 ss->subsys_id = i;
4142 subsys[i] = ss;
4145 * no ss->create seems to need anything important in the ss struct, so
4146 * this can happen first (i.e. before the rootnode attachment).
4148 css = ss->create(ss, dummytop);
4149 if (IS_ERR(css)) {
4150 /* failure case - need to deassign the subsys[] slot. */
4151 subsys[i] = NULL;
4152 mutex_unlock(&cgroup_mutex);
4153 return PTR_ERR(css);
4156 list_add(&ss->sibling, &rootnode.subsys_list);
4157 ss->root = &rootnode;
4159 /* our new subsystem will be attached to the dummy hierarchy. */
4160 init_cgroup_css(css, ss, dummytop);
4161 /* init_idr must be after init_cgroup_css because it sets css->id. */
4162 if (ss->use_id) {
4163 int ret = cgroup_init_idr(ss, css);
4164 if (ret) {
4165 dummytop->subsys[ss->subsys_id] = NULL;
4166 ss->destroy(ss, dummytop);
4167 subsys[i] = NULL;
4168 mutex_unlock(&cgroup_mutex);
4169 return ret;
4174 * Now we need to entangle the css into the existing css_sets. unlike
4175 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4176 * will need a new pointer to it; done by iterating the css_set_table.
4177 * furthermore, modifying the existing css_sets will corrupt the hash
4178 * table state, so each changed css_set will need its hash recomputed.
4179 * this is all done under the css_set_lock.
4181 write_lock(&css_set_lock);
4182 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4183 struct css_set *cg;
4184 struct hlist_node *node, *tmp;
4185 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4187 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4188 /* skip entries that we already rehashed */
4189 if (cg->subsys[ss->subsys_id])
4190 continue;
4191 /* remove existing entry */
4192 hlist_del(&cg->hlist);
4193 /* set new value */
4194 cg->subsys[ss->subsys_id] = css;
4195 /* recompute hash and restore entry */
4196 new_bucket = css_set_hash(cg->subsys);
4197 hlist_add_head(&cg->hlist, new_bucket);
4200 write_unlock(&css_set_lock);
4202 mutex_init(&ss->hierarchy_mutex);
4203 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4204 ss->active = 1;
4206 /* success! */
4207 mutex_unlock(&cgroup_mutex);
4208 return 0;
4210 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4213 * cgroup_unload_subsys: unload a modular subsystem
4214 * @ss: the subsystem to unload
4216 * This function should be called in a modular subsystem's exitcall. When this
4217 * function is invoked, the refcount on the subsystem's module will be 0, so
4218 * the subsystem will not be attached to any hierarchy.
4220 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4222 struct cg_cgroup_link *link;
4223 struct hlist_head *hhead;
4225 BUG_ON(ss->module == NULL);
4228 * we shouldn't be called if the subsystem is in use, and the use of
4229 * try_module_get in parse_cgroupfs_options should ensure that it
4230 * doesn't start being used while we're killing it off.
4232 BUG_ON(ss->root != &rootnode);
4234 mutex_lock(&cgroup_mutex);
4235 /* deassign the subsys_id */
4236 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
4237 subsys[ss->subsys_id] = NULL;
4239 /* remove subsystem from rootnode's list of subsystems */
4240 list_del_init(&ss->sibling);
4243 * disentangle the css from all css_sets attached to the dummytop. as
4244 * in loading, we need to pay our respects to the hashtable gods.
4246 write_lock(&css_set_lock);
4247 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4248 struct css_set *cg = link->cg;
4250 hlist_del(&cg->hlist);
4251 BUG_ON(!cg->subsys[ss->subsys_id]);
4252 cg->subsys[ss->subsys_id] = NULL;
4253 hhead = css_set_hash(cg->subsys);
4254 hlist_add_head(&cg->hlist, hhead);
4256 write_unlock(&css_set_lock);
4259 * remove subsystem's css from the dummytop and free it - need to free
4260 * before marking as null because ss->destroy needs the cgrp->subsys
4261 * pointer to find their state. note that this also takes care of
4262 * freeing the css_id.
4264 ss->destroy(ss, dummytop);
4265 dummytop->subsys[ss->subsys_id] = NULL;
4267 mutex_unlock(&cgroup_mutex);
4269 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4272 * cgroup_init_early - cgroup initialization at system boot
4274 * Initialize cgroups at system boot, and initialize any
4275 * subsystems that request early init.
4277 int __init cgroup_init_early(void)
4279 int i;
4280 atomic_set(&init_css_set.refcount, 1);
4281 INIT_LIST_HEAD(&init_css_set.cg_links);
4282 INIT_LIST_HEAD(&init_css_set.tasks);
4283 INIT_HLIST_NODE(&init_css_set.hlist);
4284 css_set_count = 1;
4285 init_cgroup_root(&rootnode);
4286 root_count = 1;
4287 init_task.cgroups = &init_css_set;
4289 init_css_set_link.cg = &init_css_set;
4290 init_css_set_link.cgrp = dummytop;
4291 list_add(&init_css_set_link.cgrp_link_list,
4292 &rootnode.top_cgroup.css_sets);
4293 list_add(&init_css_set_link.cg_link_list,
4294 &init_css_set.cg_links);
4296 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4297 INIT_HLIST_HEAD(&css_set_table[i]);
4299 /* at bootup time, we don't worry about modular subsystems */
4300 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4301 struct cgroup_subsys *ss = subsys[i];
4303 BUG_ON(!ss->name);
4304 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4305 BUG_ON(!ss->create);
4306 BUG_ON(!ss->destroy);
4307 if (ss->subsys_id != i) {
4308 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4309 ss->name, ss->subsys_id);
4310 BUG();
4313 if (ss->early_init)
4314 cgroup_init_subsys(ss);
4316 return 0;
4320 * cgroup_init - cgroup initialization
4322 * Register cgroup filesystem and /proc file, and initialize
4323 * any subsystems that didn't request early init.
4325 int __init cgroup_init(void)
4327 int err;
4328 int i;
4329 struct hlist_head *hhead;
4331 err = bdi_init(&cgroup_backing_dev_info);
4332 if (err)
4333 return err;
4335 /* at bootup time, we don't worry about modular subsystems */
4336 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4337 struct cgroup_subsys *ss = subsys[i];
4338 if (!ss->early_init)
4339 cgroup_init_subsys(ss);
4340 if (ss->use_id)
4341 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4344 /* Add init_css_set to the hash table */
4345 hhead = css_set_hash(init_css_set.subsys);
4346 hlist_add_head(&init_css_set.hlist, hhead);
4347 BUG_ON(!init_root_id(&rootnode));
4349 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4350 if (!cgroup_kobj) {
4351 err = -ENOMEM;
4352 goto out;
4355 err = register_filesystem(&cgroup_fs_type);
4356 if (err < 0) {
4357 kobject_put(cgroup_kobj);
4358 goto out;
4361 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4363 out:
4364 if (err)
4365 bdi_destroy(&cgroup_backing_dev_info);
4367 return err;
4371 * proc_cgroup_show()
4372 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4373 * - Used for /proc/<pid>/cgroup.
4374 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4375 * doesn't really matter if tsk->cgroup changes after we read it,
4376 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4377 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4378 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4379 * cgroup to top_cgroup.
4382 /* TODO: Use a proper seq_file iterator */
4383 static int proc_cgroup_show(struct seq_file *m, void *v)
4385 struct pid *pid;
4386 struct task_struct *tsk;
4387 char *buf;
4388 int retval;
4389 struct cgroupfs_root *root;
4391 retval = -ENOMEM;
4392 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4393 if (!buf)
4394 goto out;
4396 retval = -ESRCH;
4397 pid = m->private;
4398 tsk = get_pid_task(pid, PIDTYPE_PID);
4399 if (!tsk)
4400 goto out_free;
4402 retval = 0;
4404 mutex_lock(&cgroup_mutex);
4406 for_each_active_root(root) {
4407 struct cgroup_subsys *ss;
4408 struct cgroup *cgrp;
4409 int count = 0;
4411 seq_printf(m, "%d:", root->hierarchy_id);
4412 for_each_subsys(root, ss)
4413 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4414 if (strlen(root->name))
4415 seq_printf(m, "%sname=%s", count ? "," : "",
4416 root->name);
4417 seq_putc(m, ':');
4418 cgrp = task_cgroup_from_root(tsk, root);
4419 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4420 if (retval < 0)
4421 goto out_unlock;
4422 seq_puts(m, buf);
4423 seq_putc(m, '\n');
4426 out_unlock:
4427 mutex_unlock(&cgroup_mutex);
4428 put_task_struct(tsk);
4429 out_free:
4430 kfree(buf);
4431 out:
4432 return retval;
4435 static int cgroup_open(struct inode *inode, struct file *file)
4437 struct pid *pid = PROC_I(inode)->pid;
4438 return single_open(file, proc_cgroup_show, pid);
4441 const struct file_operations proc_cgroup_operations = {
4442 .open = cgroup_open,
4443 .read = seq_read,
4444 .llseek = seq_lseek,
4445 .release = single_release,
4448 /* Display information about each subsystem and each hierarchy */
4449 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4451 int i;
4453 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4455 * ideally we don't want subsystems moving around while we do this.
4456 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4457 * subsys/hierarchy state.
4459 mutex_lock(&cgroup_mutex);
4460 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4461 struct cgroup_subsys *ss = subsys[i];
4462 if (ss == NULL)
4463 continue;
4464 seq_printf(m, "%s\t%d\t%d\t%d\n",
4465 ss->name, ss->root->hierarchy_id,
4466 ss->root->number_of_cgroups, !ss->disabled);
4468 mutex_unlock(&cgroup_mutex);
4469 return 0;
4472 static int cgroupstats_open(struct inode *inode, struct file *file)
4474 return single_open(file, proc_cgroupstats_show, NULL);
4477 static const struct file_operations proc_cgroupstats_operations = {
4478 .open = cgroupstats_open,
4479 .read = seq_read,
4480 .llseek = seq_lseek,
4481 .release = single_release,
4485 * cgroup_fork - attach newly forked task to its parents cgroup.
4486 * @child: pointer to task_struct of forking parent process.
4488 * Description: A task inherits its parent's cgroup at fork().
4490 * A pointer to the shared css_set was automatically copied in
4491 * fork.c by dup_task_struct(). However, we ignore that copy, since
4492 * it was not made under the protection of RCU or cgroup_mutex, so
4493 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4494 * have already changed current->cgroups, allowing the previously
4495 * referenced cgroup group to be removed and freed.
4497 * At the point that cgroup_fork() is called, 'current' is the parent
4498 * task, and the passed argument 'child' points to the child task.
4500 void cgroup_fork(struct task_struct *child)
4502 task_lock(current);
4503 child->cgroups = current->cgroups;
4504 get_css_set(child->cgroups);
4505 task_unlock(current);
4506 INIT_LIST_HEAD(&child->cg_list);
4510 * cgroup_fork_callbacks - run fork callbacks
4511 * @child: the new task
4513 * Called on a new task very soon before adding it to the
4514 * tasklist. No need to take any locks since no-one can
4515 * be operating on this task.
4517 void cgroup_fork_callbacks(struct task_struct *child)
4519 if (need_forkexit_callback) {
4520 int i;
4522 * forkexit callbacks are only supported for builtin
4523 * subsystems, and the builtin section of the subsys array is
4524 * immutable, so we don't need to lock the subsys array here.
4526 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4527 struct cgroup_subsys *ss = subsys[i];
4528 if (ss->fork)
4529 ss->fork(ss, child);
4535 * cgroup_post_fork - called on a new task after adding it to the task list
4536 * @child: the task in question
4538 * Adds the task to the list running through its css_set if necessary.
4539 * Has to be after the task is visible on the task list in case we race
4540 * with the first call to cgroup_iter_start() - to guarantee that the
4541 * new task ends up on its list.
4543 void cgroup_post_fork(struct task_struct *child)
4545 if (use_task_css_set_links) {
4546 write_lock(&css_set_lock);
4547 task_lock(child);
4548 if (list_empty(&child->cg_list))
4549 list_add(&child->cg_list, &child->cgroups->tasks);
4550 task_unlock(child);
4551 write_unlock(&css_set_lock);
4555 * cgroup_exit - detach cgroup from exiting task
4556 * @tsk: pointer to task_struct of exiting process
4557 * @run_callback: run exit callbacks?
4559 * Description: Detach cgroup from @tsk and release it.
4561 * Note that cgroups marked notify_on_release force every task in
4562 * them to take the global cgroup_mutex mutex when exiting.
4563 * This could impact scaling on very large systems. Be reluctant to
4564 * use notify_on_release cgroups where very high task exit scaling
4565 * is required on large systems.
4567 * the_top_cgroup_hack:
4569 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4571 * We call cgroup_exit() while the task is still competent to
4572 * handle notify_on_release(), then leave the task attached to the
4573 * root cgroup in each hierarchy for the remainder of its exit.
4575 * To do this properly, we would increment the reference count on
4576 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4577 * code we would add a second cgroup function call, to drop that
4578 * reference. This would just create an unnecessary hot spot on
4579 * the top_cgroup reference count, to no avail.
4581 * Normally, holding a reference to a cgroup without bumping its
4582 * count is unsafe. The cgroup could go away, or someone could
4583 * attach us to a different cgroup, decrementing the count on
4584 * the first cgroup that we never incremented. But in this case,
4585 * top_cgroup isn't going away, and either task has PF_EXITING set,
4586 * which wards off any cgroup_attach_task() attempts, or task is a failed
4587 * fork, never visible to cgroup_attach_task.
4589 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4591 struct css_set *cg;
4592 int i;
4595 * Unlink from the css_set task list if necessary.
4596 * Optimistically check cg_list before taking
4597 * css_set_lock
4599 if (!list_empty(&tsk->cg_list)) {
4600 write_lock(&css_set_lock);
4601 if (!list_empty(&tsk->cg_list))
4602 list_del_init(&tsk->cg_list);
4603 write_unlock(&css_set_lock);
4606 /* Reassign the task to the init_css_set. */
4607 task_lock(tsk);
4608 cg = tsk->cgroups;
4609 tsk->cgroups = &init_css_set;
4611 if (run_callbacks && need_forkexit_callback) {
4613 * modular subsystems can't use callbacks, so no need to lock
4614 * the subsys array
4616 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4617 struct cgroup_subsys *ss = subsys[i];
4618 if (ss->exit) {
4619 struct cgroup *old_cgrp =
4620 rcu_dereference_raw(cg->subsys[i])->cgroup;
4621 struct cgroup *cgrp = task_cgroup(tsk, i);
4622 ss->exit(ss, cgrp, old_cgrp, tsk);
4626 task_unlock(tsk);
4628 if (cg)
4629 put_css_set_taskexit(cg);
4633 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4634 * @cgrp: the cgroup in question
4635 * @task: the task in question
4637 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4638 * hierarchy.
4640 * If we are sending in dummytop, then presumably we are creating
4641 * the top cgroup in the subsystem.
4643 * Called only by the ns (nsproxy) cgroup.
4645 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4647 int ret;
4648 struct cgroup *target;
4650 if (cgrp == dummytop)
4651 return 1;
4653 target = task_cgroup_from_root(task, cgrp->root);
4654 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4655 cgrp = cgrp->parent;
4656 ret = (cgrp == target);
4657 return ret;
4660 static void check_for_release(struct cgroup *cgrp)
4662 /* All of these checks rely on RCU to keep the cgroup
4663 * structure alive */
4664 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4665 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4666 /* Control Group is currently removeable. If it's not
4667 * already queued for a userspace notification, queue
4668 * it now */
4669 int need_schedule_work = 0;
4670 spin_lock(&release_list_lock);
4671 if (!cgroup_is_removed(cgrp) &&
4672 list_empty(&cgrp->release_list)) {
4673 list_add(&cgrp->release_list, &release_list);
4674 need_schedule_work = 1;
4676 spin_unlock(&release_list_lock);
4677 if (need_schedule_work)
4678 schedule_work(&release_agent_work);
4682 /* Caller must verify that the css is not for root cgroup */
4683 void __css_put(struct cgroup_subsys_state *css, int count)
4685 struct cgroup *cgrp = css->cgroup;
4686 int val;
4687 rcu_read_lock();
4688 val = atomic_sub_return(count, &css->refcnt);
4689 if (val == 1) {
4690 if (notify_on_release(cgrp)) {
4691 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4692 check_for_release(cgrp);
4694 cgroup_wakeup_rmdir_waiter(cgrp);
4696 rcu_read_unlock();
4697 WARN_ON_ONCE(val < 1);
4699 EXPORT_SYMBOL_GPL(__css_put);
4702 * Notify userspace when a cgroup is released, by running the
4703 * configured release agent with the name of the cgroup (path
4704 * relative to the root of cgroup file system) as the argument.
4706 * Most likely, this user command will try to rmdir this cgroup.
4708 * This races with the possibility that some other task will be
4709 * attached to this cgroup before it is removed, or that some other
4710 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4711 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4712 * unused, and this cgroup will be reprieved from its death sentence,
4713 * to continue to serve a useful existence. Next time it's released,
4714 * we will get notified again, if it still has 'notify_on_release' set.
4716 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4717 * means only wait until the task is successfully execve()'d. The
4718 * separate release agent task is forked by call_usermodehelper(),
4719 * then control in this thread returns here, without waiting for the
4720 * release agent task. We don't bother to wait because the caller of
4721 * this routine has no use for the exit status of the release agent
4722 * task, so no sense holding our caller up for that.
4724 static void cgroup_release_agent(struct work_struct *work)
4726 BUG_ON(work != &release_agent_work);
4727 mutex_lock(&cgroup_mutex);
4728 spin_lock(&release_list_lock);
4729 while (!list_empty(&release_list)) {
4730 char *argv[3], *envp[3];
4731 int i;
4732 char *pathbuf = NULL, *agentbuf = NULL;
4733 struct cgroup *cgrp = list_entry(release_list.next,
4734 struct cgroup,
4735 release_list);
4736 list_del_init(&cgrp->release_list);
4737 spin_unlock(&release_list_lock);
4738 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4739 if (!pathbuf)
4740 goto continue_free;
4741 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4742 goto continue_free;
4743 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4744 if (!agentbuf)
4745 goto continue_free;
4747 i = 0;
4748 argv[i++] = agentbuf;
4749 argv[i++] = pathbuf;
4750 argv[i] = NULL;
4752 i = 0;
4753 /* minimal command environment */
4754 envp[i++] = "HOME=/";
4755 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4756 envp[i] = NULL;
4758 /* Drop the lock while we invoke the usermode helper,
4759 * since the exec could involve hitting disk and hence
4760 * be a slow process */
4761 mutex_unlock(&cgroup_mutex);
4762 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
4763 mutex_lock(&cgroup_mutex);
4764 continue_free:
4765 kfree(pathbuf);
4766 kfree(agentbuf);
4767 spin_lock(&release_list_lock);
4769 spin_unlock(&release_list_lock);
4770 mutex_unlock(&cgroup_mutex);
4773 static int __init cgroup_disable(char *str)
4775 int i;
4776 char *token;
4778 while ((token = strsep(&str, ",")) != NULL) {
4779 if (!*token)
4780 continue;
4782 * cgroup_disable, being at boot time, can't know about module
4783 * subsystems, so we don't worry about them.
4785 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4786 struct cgroup_subsys *ss = subsys[i];
4788 if (!strcmp(token, ss->name)) {
4789 ss->disabled = 1;
4790 printk(KERN_INFO "Disabling %s control group"
4791 " subsystem\n", ss->name);
4792 break;
4796 return 1;
4798 __setup("cgroup_disable=", cgroup_disable);
4801 * Functons for CSS ID.
4805 *To get ID other than 0, this should be called when !cgroup_is_removed().
4807 unsigned short css_id(struct cgroup_subsys_state *css)
4809 struct css_id *cssid;
4812 * This css_id() can return correct value when somone has refcnt
4813 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4814 * it's unchanged until freed.
4816 cssid = rcu_dereference_check(css->id,
4817 rcu_read_lock_held() || atomic_read(&css->refcnt));
4819 if (cssid)
4820 return cssid->id;
4821 return 0;
4823 EXPORT_SYMBOL_GPL(css_id);
4825 unsigned short css_depth(struct cgroup_subsys_state *css)
4827 struct css_id *cssid;
4829 cssid = rcu_dereference_check(css->id,
4830 rcu_read_lock_held() || atomic_read(&css->refcnt));
4832 if (cssid)
4833 return cssid->depth;
4834 return 0;
4836 EXPORT_SYMBOL_GPL(css_depth);
4839 * css_is_ancestor - test "root" css is an ancestor of "child"
4840 * @child: the css to be tested.
4841 * @root: the css supporsed to be an ancestor of the child.
4843 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4844 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4845 * But, considering usual usage, the csses should be valid objects after test.
4846 * Assuming that the caller will do some action to the child if this returns
4847 * returns true, the caller must take "child";s reference count.
4848 * If "child" is valid object and this returns true, "root" is valid, too.
4851 bool css_is_ancestor(struct cgroup_subsys_state *child,
4852 const struct cgroup_subsys_state *root)
4854 struct css_id *child_id;
4855 struct css_id *root_id;
4856 bool ret = true;
4858 rcu_read_lock();
4859 child_id = rcu_dereference(child->id);
4860 root_id = rcu_dereference(root->id);
4861 if (!child_id
4862 || !root_id
4863 || (child_id->depth < root_id->depth)
4864 || (child_id->stack[root_id->depth] != root_id->id))
4865 ret = false;
4866 rcu_read_unlock();
4867 return ret;
4870 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
4872 struct css_id *id = css->id;
4873 /* When this is called before css_id initialization, id can be NULL */
4874 if (!id)
4875 return;
4877 BUG_ON(!ss->use_id);
4879 rcu_assign_pointer(id->css, NULL);
4880 rcu_assign_pointer(css->id, NULL);
4881 spin_lock(&ss->id_lock);
4882 idr_remove(&ss->idr, id->id);
4883 spin_unlock(&ss->id_lock);
4884 kfree_rcu(id, rcu_head);
4886 EXPORT_SYMBOL_GPL(free_css_id);
4889 * This is called by init or create(). Then, calls to this function are
4890 * always serialized (By cgroup_mutex() at create()).
4893 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
4895 struct css_id *newid;
4896 int myid, error, size;
4898 BUG_ON(!ss->use_id);
4900 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
4901 newid = kzalloc(size, GFP_KERNEL);
4902 if (!newid)
4903 return ERR_PTR(-ENOMEM);
4904 /* get id */
4905 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
4906 error = -ENOMEM;
4907 goto err_out;
4909 spin_lock(&ss->id_lock);
4910 /* Don't use 0. allocates an ID of 1-65535 */
4911 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
4912 spin_unlock(&ss->id_lock);
4914 /* Returns error when there are no free spaces for new ID.*/
4915 if (error) {
4916 error = -ENOSPC;
4917 goto err_out;
4919 if (myid > CSS_ID_MAX)
4920 goto remove_idr;
4922 newid->id = myid;
4923 newid->depth = depth;
4924 return newid;
4925 remove_idr:
4926 error = -ENOSPC;
4927 spin_lock(&ss->id_lock);
4928 idr_remove(&ss->idr, myid);
4929 spin_unlock(&ss->id_lock);
4930 err_out:
4931 kfree(newid);
4932 return ERR_PTR(error);
4936 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
4937 struct cgroup_subsys_state *rootcss)
4939 struct css_id *newid;
4941 spin_lock_init(&ss->id_lock);
4942 idr_init(&ss->idr);
4944 newid = get_new_cssid(ss, 0);
4945 if (IS_ERR(newid))
4946 return PTR_ERR(newid);
4948 newid->stack[0] = newid->id;
4949 newid->css = rootcss;
4950 rootcss->id = newid;
4951 return 0;
4954 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
4955 struct cgroup *child)
4957 int subsys_id, i, depth = 0;
4958 struct cgroup_subsys_state *parent_css, *child_css;
4959 struct css_id *child_id, *parent_id;
4961 subsys_id = ss->subsys_id;
4962 parent_css = parent->subsys[subsys_id];
4963 child_css = child->subsys[subsys_id];
4964 parent_id = parent_css->id;
4965 depth = parent_id->depth + 1;
4967 child_id = get_new_cssid(ss, depth);
4968 if (IS_ERR(child_id))
4969 return PTR_ERR(child_id);
4971 for (i = 0; i < depth; i++)
4972 child_id->stack[i] = parent_id->stack[i];
4973 child_id->stack[depth] = child_id->id;
4975 * child_id->css pointer will be set after this cgroup is available
4976 * see cgroup_populate_dir()
4978 rcu_assign_pointer(child_css->id, child_id);
4980 return 0;
4984 * css_lookup - lookup css by id
4985 * @ss: cgroup subsys to be looked into.
4986 * @id: the id
4988 * Returns pointer to cgroup_subsys_state if there is valid one with id.
4989 * NULL if not. Should be called under rcu_read_lock()
4991 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
4993 struct css_id *cssid = NULL;
4995 BUG_ON(!ss->use_id);
4996 cssid = idr_find(&ss->idr, id);
4998 if (unlikely(!cssid))
4999 return NULL;
5001 return rcu_dereference(cssid->css);
5003 EXPORT_SYMBOL_GPL(css_lookup);
5006 * css_get_next - lookup next cgroup under specified hierarchy.
5007 * @ss: pointer to subsystem
5008 * @id: current position of iteration.
5009 * @root: pointer to css. search tree under this.
5010 * @foundid: position of found object.
5012 * Search next css under the specified hierarchy of rootid. Calling under
5013 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5015 struct cgroup_subsys_state *
5016 css_get_next(struct cgroup_subsys *ss, int id,
5017 struct cgroup_subsys_state *root, int *foundid)
5019 struct cgroup_subsys_state *ret = NULL;
5020 struct css_id *tmp;
5021 int tmpid;
5022 int rootid = css_id(root);
5023 int depth = css_depth(root);
5025 if (!rootid)
5026 return NULL;
5028 BUG_ON(!ss->use_id);
5029 /* fill start point for scan */
5030 tmpid = id;
5031 while (1) {
5033 * scan next entry from bitmap(tree), tmpid is updated after
5034 * idr_get_next().
5036 spin_lock(&ss->id_lock);
5037 tmp = idr_get_next(&ss->idr, &tmpid);
5038 spin_unlock(&ss->id_lock);
5040 if (!tmp)
5041 break;
5042 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5043 ret = rcu_dereference(tmp->css);
5044 if (ret) {
5045 *foundid = tmpid;
5046 break;
5049 /* continue to scan from next id */
5050 tmpid = tmpid + 1;
5052 return ret;
5056 * get corresponding css from file open on cgroupfs directory
5058 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5060 struct cgroup *cgrp;
5061 struct inode *inode;
5062 struct cgroup_subsys_state *css;
5064 inode = f->f_dentry->d_inode;
5065 /* check in cgroup filesystem dir */
5066 if (inode->i_op != &cgroup_dir_inode_operations)
5067 return ERR_PTR(-EBADF);
5069 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5070 return ERR_PTR(-EINVAL);
5072 /* get cgroup */
5073 cgrp = __d_cgrp(f->f_dentry);
5074 css = cgrp->subsys[id];
5075 return css ? css : ERR_PTR(-ENOENT);
5078 #ifdef CONFIG_CGROUP_DEBUG
5079 static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
5080 struct cgroup *cont)
5082 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5084 if (!css)
5085 return ERR_PTR(-ENOMEM);
5087 return css;
5090 static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
5092 kfree(cont->subsys[debug_subsys_id]);
5095 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5097 return atomic_read(&cont->count);
5100 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5102 return cgroup_task_count(cont);
5105 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5107 return (u64)(unsigned long)current->cgroups;
5110 static u64 current_css_set_refcount_read(struct cgroup *cont,
5111 struct cftype *cft)
5113 u64 count;
5115 rcu_read_lock();
5116 count = atomic_read(&current->cgroups->refcount);
5117 rcu_read_unlock();
5118 return count;
5121 static int current_css_set_cg_links_read(struct cgroup *cont,
5122 struct cftype *cft,
5123 struct seq_file *seq)
5125 struct cg_cgroup_link *link;
5126 struct css_set *cg;
5128 read_lock(&css_set_lock);
5129 rcu_read_lock();
5130 cg = rcu_dereference(current->cgroups);
5131 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5132 struct cgroup *c = link->cgrp;
5133 const char *name;
5135 if (c->dentry)
5136 name = c->dentry->d_name.name;
5137 else
5138 name = "?";
5139 seq_printf(seq, "Root %d group %s\n",
5140 c->root->hierarchy_id, name);
5142 rcu_read_unlock();
5143 read_unlock(&css_set_lock);
5144 return 0;
5147 #define MAX_TASKS_SHOWN_PER_CSS 25
5148 static int cgroup_css_links_read(struct cgroup *cont,
5149 struct cftype *cft,
5150 struct seq_file *seq)
5152 struct cg_cgroup_link *link;
5154 read_lock(&css_set_lock);
5155 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5156 struct css_set *cg = link->cg;
5157 struct task_struct *task;
5158 int count = 0;
5159 seq_printf(seq, "css_set %p\n", cg);
5160 list_for_each_entry(task, &cg->tasks, cg_list) {
5161 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5162 seq_puts(seq, " ...\n");
5163 break;
5164 } else {
5165 seq_printf(seq, " task %d\n",
5166 task_pid_vnr(task));
5170 read_unlock(&css_set_lock);
5171 return 0;
5174 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5176 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5179 static struct cftype debug_files[] = {
5181 .name = "cgroup_refcount",
5182 .read_u64 = cgroup_refcount_read,
5185 .name = "taskcount",
5186 .read_u64 = debug_taskcount_read,
5190 .name = "current_css_set",
5191 .read_u64 = current_css_set_read,
5195 .name = "current_css_set_refcount",
5196 .read_u64 = current_css_set_refcount_read,
5200 .name = "current_css_set_cg_links",
5201 .read_seq_string = current_css_set_cg_links_read,
5205 .name = "cgroup_css_links",
5206 .read_seq_string = cgroup_css_links_read,
5210 .name = "releasable",
5211 .read_u64 = releasable_read,
5215 static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
5217 return cgroup_add_files(cont, ss, debug_files,
5218 ARRAY_SIZE(debug_files));
5221 struct cgroup_subsys debug_subsys = {
5222 .name = "debug",
5223 .create = debug_create,
5224 .destroy = debug_destroy,
5225 .populate = debug_populate,
5226 .subsys_id = debug_subsys_id,
5228 #endif /* CONFIG_CGROUP_DEBUG */