[POWERPC] spufs: Add isolated-mode SPE recycling support
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / powerpc / platforms / cell / spufs / inode.c
blob9e457be140ef84cc778b26bf3eb29a00d9b6e278
1 /*
2 * SPU file system
4 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
6 * Author: Arnd Bergmann <arndb@de.ibm.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
11 * any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/backing-dev.h>
26 #include <linux/init.h>
27 #include <linux/ioctl.h>
28 #include <linux/module.h>
29 #include <linux/mount.h>
30 #include <linux/namei.h>
31 #include <linux/pagemap.h>
32 #include <linux/poll.h>
33 #include <linux/slab.h>
34 #include <linux/parser.h>
36 #include <asm/prom.h>
37 #include <asm/spu_priv1.h>
38 #include <asm/io.h>
39 #include <asm/semaphore.h>
40 #include <asm/spu.h>
41 #include <asm/uaccess.h>
43 #include "spufs.h"
45 static kmem_cache_t *spufs_inode_cache;
46 static char *isolated_loader;
48 static struct inode *
49 spufs_alloc_inode(struct super_block *sb)
51 struct spufs_inode_info *ei;
53 ei = kmem_cache_alloc(spufs_inode_cache, SLAB_KERNEL);
54 if (!ei)
55 return NULL;
57 ei->i_gang = NULL;
58 ei->i_ctx = NULL;
60 return &ei->vfs_inode;
63 static void
64 spufs_destroy_inode(struct inode *inode)
66 kmem_cache_free(spufs_inode_cache, SPUFS_I(inode));
69 static void
70 spufs_init_once(void *p, kmem_cache_t * cachep, unsigned long flags)
72 struct spufs_inode_info *ei = p;
74 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
75 SLAB_CTOR_CONSTRUCTOR) {
76 inode_init_once(&ei->vfs_inode);
80 static struct inode *
81 spufs_new_inode(struct super_block *sb, int mode)
83 struct inode *inode;
85 inode = new_inode(sb);
86 if (!inode)
87 goto out;
89 inode->i_mode = mode;
90 inode->i_uid = current->fsuid;
91 inode->i_gid = current->fsgid;
92 inode->i_blocks = 0;
93 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
94 out:
95 return inode;
98 static int
99 spufs_setattr(struct dentry *dentry, struct iattr *attr)
101 struct inode *inode = dentry->d_inode;
103 if ((attr->ia_valid & ATTR_SIZE) &&
104 (attr->ia_size != inode->i_size))
105 return -EINVAL;
106 return inode_setattr(inode, attr);
110 static int
111 spufs_new_file(struct super_block *sb, struct dentry *dentry,
112 const struct file_operations *fops, int mode,
113 struct spu_context *ctx)
115 static struct inode_operations spufs_file_iops = {
116 .setattr = spufs_setattr,
118 struct inode *inode;
119 int ret;
121 ret = -ENOSPC;
122 inode = spufs_new_inode(sb, S_IFREG | mode);
123 if (!inode)
124 goto out;
126 ret = 0;
127 inode->i_op = &spufs_file_iops;
128 inode->i_fop = fops;
129 inode->i_private = SPUFS_I(inode)->i_ctx = get_spu_context(ctx);
130 d_add(dentry, inode);
131 out:
132 return ret;
135 static void
136 spufs_delete_inode(struct inode *inode)
138 struct spufs_inode_info *ei = SPUFS_I(inode);
140 if (ei->i_ctx)
141 put_spu_context(ei->i_ctx);
142 if (ei->i_gang)
143 put_spu_gang(ei->i_gang);
144 clear_inode(inode);
147 static void spufs_prune_dir(struct dentry *dir)
149 struct dentry *dentry, *tmp;
151 mutex_lock(&dir->d_inode->i_mutex);
152 list_for_each_entry_safe(dentry, tmp, &dir->d_subdirs, d_u.d_child) {
153 spin_lock(&dcache_lock);
154 spin_lock(&dentry->d_lock);
155 if (!(d_unhashed(dentry)) && dentry->d_inode) {
156 dget_locked(dentry);
157 __d_drop(dentry);
158 spin_unlock(&dentry->d_lock);
159 simple_unlink(dir->d_inode, dentry);
160 spin_unlock(&dcache_lock);
161 dput(dentry);
162 } else {
163 spin_unlock(&dentry->d_lock);
164 spin_unlock(&dcache_lock);
167 shrink_dcache_parent(dir);
168 mutex_unlock(&dir->d_inode->i_mutex);
171 /* Caller must hold parent->i_mutex */
172 static int spufs_rmdir(struct inode *parent, struct dentry *dir)
174 /* remove all entries */
175 spufs_prune_dir(dir);
177 return simple_rmdir(parent, dir);
180 static int spufs_fill_dir(struct dentry *dir, struct tree_descr *files,
181 int mode, struct spu_context *ctx)
183 struct dentry *dentry;
184 int ret;
186 while (files->name && files->name[0]) {
187 ret = -ENOMEM;
188 dentry = d_alloc_name(dir, files->name);
189 if (!dentry)
190 goto out;
191 ret = spufs_new_file(dir->d_sb, dentry, files->ops,
192 files->mode & mode, ctx);
193 if (ret)
194 goto out;
195 files++;
197 return 0;
198 out:
199 spufs_prune_dir(dir);
200 return ret;
203 static int spufs_dir_close(struct inode *inode, struct file *file)
205 struct spu_context *ctx;
206 struct inode *parent;
207 struct dentry *dir;
208 int ret;
210 dir = file->f_dentry;
211 parent = dir->d_parent->d_inode;
212 ctx = SPUFS_I(dir->d_inode)->i_ctx;
214 mutex_lock(&parent->i_mutex);
215 ret = spufs_rmdir(parent, dir);
216 mutex_unlock(&parent->i_mutex);
217 WARN_ON(ret);
219 /* We have to give up the mm_struct */
220 spu_forget(ctx);
222 return dcache_dir_close(inode, file);
225 struct inode_operations spufs_dir_inode_operations = {
226 .lookup = simple_lookup,
229 struct file_operations spufs_context_fops = {
230 .open = dcache_dir_open,
231 .release = spufs_dir_close,
232 .llseek = dcache_dir_lseek,
233 .read = generic_read_dir,
234 .readdir = dcache_readdir,
235 .fsync = simple_sync_file,
238 static int spu_setup_isolated(struct spu_context *ctx)
240 int ret;
241 u64 __iomem *mfc_cntl;
242 u64 sr1;
243 u32 status;
244 unsigned long timeout;
245 const u32 status_loading = SPU_STATUS_RUNNING
246 | SPU_STATUS_ISOLATED_STATE | SPU_STATUS_ISOLATED_LOAD_STATUS;
248 if (!isolated_loader)
249 return -ENODEV;
251 if ((ret = spu_acquire_exclusive(ctx)) != 0)
252 return ret;
254 mfc_cntl = &ctx->spu->priv2->mfc_control_RW;
256 /* purge the MFC DMA queue to ensure no spurious accesses before we
257 * enter kernel mode */
258 timeout = jiffies + HZ;
259 out_be64(mfc_cntl, MFC_CNTL_PURGE_DMA_REQUEST);
260 while ((in_be64(mfc_cntl) & MFC_CNTL_PURGE_DMA_STATUS_MASK)
261 != MFC_CNTL_PURGE_DMA_COMPLETE) {
262 if (time_after(jiffies, timeout)) {
263 printk(KERN_ERR "%s: timeout flushing MFC DMA queue\n",
264 __FUNCTION__);
265 ret = -EIO;
266 goto out_unlock;
268 cond_resched();
271 /* put the SPE in kernel mode to allow access to the loader */
272 sr1 = spu_mfc_sr1_get(ctx->spu);
273 sr1 &= ~MFC_STATE1_PROBLEM_STATE_MASK;
274 spu_mfc_sr1_set(ctx->spu, sr1);
276 /* start the loader */
277 ctx->ops->signal1_write(ctx, (unsigned long)isolated_loader >> 32);
278 ctx->ops->signal2_write(ctx,
279 (unsigned long)isolated_loader & 0xffffffff);
281 ctx->ops->runcntl_write(ctx,
282 SPU_RUNCNTL_RUNNABLE | SPU_RUNCNTL_ISOLATE);
284 ret = 0;
285 timeout = jiffies + HZ;
286 while (((status = ctx->ops->status_read(ctx)) & status_loading) ==
287 status_loading) {
288 if (time_after(jiffies, timeout)) {
289 printk(KERN_ERR "%s: timeout waiting for loader\n",
290 __FUNCTION__);
291 ret = -EIO;
292 goto out_drop_priv;
294 cond_resched();
297 if (!(status & SPU_STATUS_RUNNING)) {
298 /* If isolated LOAD has failed: run SPU, we will get a stop-and
299 * signal later. */
300 pr_debug("%s: isolated LOAD failed\n", __FUNCTION__);
301 ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE);
302 ret = -EACCES;
304 } else if (!(status & SPU_STATUS_ISOLATED_STATE)) {
305 /* This isn't allowed by the CBEA, but check anyway */
306 pr_debug("%s: SPU fell out of isolated mode?\n", __FUNCTION__);
307 ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_STOP);
308 ret = -EINVAL;
311 out_drop_priv:
312 /* Finished accessing the loader. Drop kernel mode */
313 sr1 |= MFC_STATE1_PROBLEM_STATE_MASK;
314 spu_mfc_sr1_set(ctx->spu, sr1);
316 out_unlock:
317 spu_release_exclusive(ctx);
318 return ret;
321 int spu_recycle_isolated(struct spu_context *ctx)
323 ctx->ops->runcntl_stop(ctx);
324 return spu_setup_isolated(ctx);
327 static int
328 spufs_mkdir(struct inode *dir, struct dentry *dentry, unsigned int flags,
329 int mode)
331 int ret;
332 struct inode *inode;
333 struct spu_context *ctx;
335 ret = -ENOSPC;
336 inode = spufs_new_inode(dir->i_sb, mode | S_IFDIR);
337 if (!inode)
338 goto out;
340 if (dir->i_mode & S_ISGID) {
341 inode->i_gid = dir->i_gid;
342 inode->i_mode &= S_ISGID;
344 ctx = alloc_spu_context(SPUFS_I(dir)->i_gang); /* XXX gang */
345 SPUFS_I(inode)->i_ctx = ctx;
346 if (!ctx)
347 goto out_iput;
349 ctx->flags = flags;
350 inode->i_op = &spufs_dir_inode_operations;
351 inode->i_fop = &simple_dir_operations;
352 if (flags & SPU_CREATE_NOSCHED)
353 ret = spufs_fill_dir(dentry, spufs_dir_nosched_contents,
354 mode, ctx);
355 else
356 ret = spufs_fill_dir(dentry, spufs_dir_contents, mode, ctx);
358 if (ret)
359 goto out_free_ctx;
361 d_instantiate(dentry, inode);
362 dget(dentry);
363 dir->i_nlink++;
364 dentry->d_inode->i_nlink++;
365 goto out;
367 out_free_ctx:
368 put_spu_context(ctx);
369 out_iput:
370 iput(inode);
371 out:
372 return ret;
375 static int spufs_context_open(struct dentry *dentry, struct vfsmount *mnt)
377 int ret;
378 struct file *filp;
380 ret = get_unused_fd();
381 if (ret < 0) {
382 dput(dentry);
383 mntput(mnt);
384 goto out;
387 filp = dentry_open(dentry, mnt, O_RDONLY);
388 if (IS_ERR(filp)) {
389 put_unused_fd(ret);
390 ret = PTR_ERR(filp);
391 goto out;
394 filp->f_op = &spufs_context_fops;
395 fd_install(ret, filp);
396 out:
397 return ret;
400 static int spufs_create_context(struct inode *inode,
401 struct dentry *dentry,
402 struct vfsmount *mnt, int flags, int mode)
404 int ret;
406 ret = -EPERM;
407 if ((flags & SPU_CREATE_NOSCHED) &&
408 !capable(CAP_SYS_NICE))
409 goto out_unlock;
411 ret = -EINVAL;
412 if ((flags & (SPU_CREATE_NOSCHED | SPU_CREATE_ISOLATE))
413 == SPU_CREATE_ISOLATE)
414 goto out_unlock;
416 ret = spufs_mkdir(inode, dentry, flags, mode & S_IRWXUGO);
417 if (ret)
418 goto out_unlock;
421 * get references for dget and mntget, will be released
422 * in error path of *_open().
424 ret = spufs_context_open(dget(dentry), mntget(mnt));
425 if (ret < 0) {
426 WARN_ON(spufs_rmdir(inode, dentry));
427 mutex_unlock(&inode->i_mutex);
428 spu_forget(SPUFS_I(dentry->d_inode)->i_ctx);
429 goto out;
432 out_unlock:
433 mutex_unlock(&inode->i_mutex);
434 out:
435 if (ret >= 0 && (flags & SPU_CREATE_ISOLATE)) {
436 int setup_err = spu_setup_isolated(
437 SPUFS_I(dentry->d_inode)->i_ctx);
438 if (setup_err)
439 ret = setup_err;
442 dput(dentry);
443 return ret;
446 static int spufs_rmgang(struct inode *root, struct dentry *dir)
448 /* FIXME: this fails if the dir is not empty,
449 which causes a leak of gangs. */
450 return simple_rmdir(root, dir);
453 static int spufs_gang_close(struct inode *inode, struct file *file)
455 struct inode *parent;
456 struct dentry *dir;
457 int ret;
459 dir = file->f_dentry;
460 parent = dir->d_parent->d_inode;
462 ret = spufs_rmgang(parent, dir);
463 WARN_ON(ret);
465 return dcache_dir_close(inode, file);
468 struct file_operations spufs_gang_fops = {
469 .open = dcache_dir_open,
470 .release = spufs_gang_close,
471 .llseek = dcache_dir_lseek,
472 .read = generic_read_dir,
473 .readdir = dcache_readdir,
474 .fsync = simple_sync_file,
477 static int
478 spufs_mkgang(struct inode *dir, struct dentry *dentry, int mode)
480 int ret;
481 struct inode *inode;
482 struct spu_gang *gang;
484 ret = -ENOSPC;
485 inode = spufs_new_inode(dir->i_sb, mode | S_IFDIR);
486 if (!inode)
487 goto out;
489 ret = 0;
490 if (dir->i_mode & S_ISGID) {
491 inode->i_gid = dir->i_gid;
492 inode->i_mode &= S_ISGID;
494 gang = alloc_spu_gang();
495 SPUFS_I(inode)->i_ctx = NULL;
496 SPUFS_I(inode)->i_gang = gang;
497 if (!gang)
498 goto out_iput;
500 inode->i_op = &spufs_dir_inode_operations;
501 inode->i_fop = &simple_dir_operations;
503 d_instantiate(dentry, inode);
504 dget(dentry);
505 dir->i_nlink++;
506 dentry->d_inode->i_nlink++;
507 return ret;
509 out_iput:
510 iput(inode);
511 out:
512 return ret;
515 static int spufs_gang_open(struct dentry *dentry, struct vfsmount *mnt)
517 int ret;
518 struct file *filp;
520 ret = get_unused_fd();
521 if (ret < 0) {
522 dput(dentry);
523 mntput(mnt);
524 goto out;
527 filp = dentry_open(dentry, mnt, O_RDONLY);
528 if (IS_ERR(filp)) {
529 put_unused_fd(ret);
530 ret = PTR_ERR(filp);
531 goto out;
534 filp->f_op = &spufs_gang_fops;
535 fd_install(ret, filp);
536 out:
537 return ret;
540 static int spufs_create_gang(struct inode *inode,
541 struct dentry *dentry,
542 struct vfsmount *mnt, int mode)
544 int ret;
546 ret = spufs_mkgang(inode, dentry, mode & S_IRWXUGO);
547 if (ret)
548 goto out;
551 * get references for dget and mntget, will be released
552 * in error path of *_open().
554 ret = spufs_gang_open(dget(dentry), mntget(mnt));
555 if (ret < 0)
556 WARN_ON(spufs_rmgang(inode, dentry));
558 out:
559 mutex_unlock(&inode->i_mutex);
560 dput(dentry);
561 return ret;
565 static struct file_system_type spufs_type;
567 long spufs_create(struct nameidata *nd, unsigned int flags, mode_t mode)
569 struct dentry *dentry;
570 int ret;
572 ret = -EINVAL;
573 /* check if we are on spufs */
574 if (nd->dentry->d_sb->s_type != &spufs_type)
575 goto out;
577 /* don't accept undefined flags */
578 if (flags & (~SPU_CREATE_FLAG_ALL))
579 goto out;
581 /* only threads can be underneath a gang */
582 if (nd->dentry != nd->dentry->d_sb->s_root) {
583 if ((flags & SPU_CREATE_GANG) ||
584 !SPUFS_I(nd->dentry->d_inode)->i_gang)
585 goto out;
588 dentry = lookup_create(nd, 1);
589 ret = PTR_ERR(dentry);
590 if (IS_ERR(dentry))
591 goto out_dir;
593 ret = -EEXIST;
594 if (dentry->d_inode)
595 goto out_dput;
597 mode &= ~current->fs->umask;
599 if (flags & SPU_CREATE_GANG)
600 return spufs_create_gang(nd->dentry->d_inode,
601 dentry, nd->mnt, mode);
602 else
603 return spufs_create_context(nd->dentry->d_inode,
604 dentry, nd->mnt, flags, mode);
606 out_dput:
607 dput(dentry);
608 out_dir:
609 mutex_unlock(&nd->dentry->d_inode->i_mutex);
610 out:
611 return ret;
614 /* File system initialization */
615 enum {
616 Opt_uid, Opt_gid, Opt_err,
619 static match_table_t spufs_tokens = {
620 { Opt_uid, "uid=%d" },
621 { Opt_gid, "gid=%d" },
622 { Opt_err, NULL },
625 static int
626 spufs_parse_options(char *options, struct inode *root)
628 char *p;
629 substring_t args[MAX_OPT_ARGS];
631 while ((p = strsep(&options, ",")) != NULL) {
632 int token, option;
634 if (!*p)
635 continue;
637 token = match_token(p, spufs_tokens, args);
638 switch (token) {
639 case Opt_uid:
640 if (match_int(&args[0], &option))
641 return 0;
642 root->i_uid = option;
643 break;
644 case Opt_gid:
645 if (match_int(&args[0], &option))
646 return 0;
647 root->i_gid = option;
648 break;
649 default:
650 return 0;
653 return 1;
656 static void
657 spufs_init_isolated_loader(void)
659 struct device_node *dn;
660 const char *loader;
661 int size;
663 dn = of_find_node_by_path("/spu-isolation");
664 if (!dn)
665 return;
667 loader = get_property(dn, "loader", &size);
668 if (!loader)
669 return;
671 /* kmalloc should align on a 16 byte boundary..* */
672 isolated_loader = kmalloc(size, GFP_KERNEL);
673 if (!isolated_loader)
674 return;
676 memcpy(isolated_loader, loader, size);
677 printk(KERN_INFO "spufs: SPU isolation mode enabled\n");
680 static int
681 spufs_create_root(struct super_block *sb, void *data)
683 struct inode *inode;
684 int ret;
686 ret = -ENOMEM;
687 inode = spufs_new_inode(sb, S_IFDIR | 0775);
688 if (!inode)
689 goto out;
691 inode->i_op = &spufs_dir_inode_operations;
692 inode->i_fop = &simple_dir_operations;
693 SPUFS_I(inode)->i_ctx = NULL;
695 ret = -EINVAL;
696 if (!spufs_parse_options(data, inode))
697 goto out_iput;
699 ret = -ENOMEM;
700 sb->s_root = d_alloc_root(inode);
701 if (!sb->s_root)
702 goto out_iput;
704 return 0;
705 out_iput:
706 iput(inode);
707 out:
708 return ret;
711 static int
712 spufs_fill_super(struct super_block *sb, void *data, int silent)
714 static struct super_operations s_ops = {
715 .alloc_inode = spufs_alloc_inode,
716 .destroy_inode = spufs_destroy_inode,
717 .statfs = simple_statfs,
718 .delete_inode = spufs_delete_inode,
719 .drop_inode = generic_delete_inode,
722 sb->s_maxbytes = MAX_LFS_FILESIZE;
723 sb->s_blocksize = PAGE_CACHE_SIZE;
724 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
725 sb->s_magic = SPUFS_MAGIC;
726 sb->s_op = &s_ops;
728 return spufs_create_root(sb, data);
731 static int
732 spufs_get_sb(struct file_system_type *fstype, int flags,
733 const char *name, void *data, struct vfsmount *mnt)
735 return get_sb_single(fstype, flags, data, spufs_fill_super, mnt);
738 static struct file_system_type spufs_type = {
739 .owner = THIS_MODULE,
740 .name = "spufs",
741 .get_sb = spufs_get_sb,
742 .kill_sb = kill_litter_super,
745 static int __init spufs_init(void)
747 int ret;
748 ret = -ENOMEM;
749 spufs_inode_cache = kmem_cache_create("spufs_inode_cache",
750 sizeof(struct spufs_inode_info), 0,
751 SLAB_HWCACHE_ALIGN, spufs_init_once, NULL);
753 if (!spufs_inode_cache)
754 goto out;
755 if (spu_sched_init() != 0) {
756 kmem_cache_destroy(spufs_inode_cache);
757 goto out;
759 ret = register_filesystem(&spufs_type);
760 if (ret)
761 goto out_cache;
762 ret = register_spu_syscalls(&spufs_calls);
763 if (ret)
764 goto out_fs;
766 spufs_init_isolated_loader();
767 return 0;
768 out_fs:
769 unregister_filesystem(&spufs_type);
770 out_cache:
771 kmem_cache_destroy(spufs_inode_cache);
772 out:
773 return ret;
775 module_init(spufs_init);
777 static void __exit spufs_exit(void)
779 spu_sched_exit();
780 unregister_spu_syscalls(&spufs_calls);
781 unregister_filesystem(&spufs_type);
782 kmem_cache_destroy(spufs_inode_cache);
784 module_exit(spufs_exit);
786 MODULE_LICENSE("GPL");
787 MODULE_AUTHOR("Arnd Bergmann <arndb@de.ibm.com>");