2 * Copyright (c) 1999-2001 Vojtech Pavlik
3 * Copyright (c) 2007-2008 Bartlomiej Zolnierkiewicz
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * Should you need to contact me, the author, you can do so either by
20 * e-mail - mail your message to <vojtech@ucw.cz>, or by paper mail:
21 * Vojtech Pavlik, Simunkova 1594, Prague 8, 182 00 Czech Republic
24 #include <linux/kernel.h>
25 #include <linux/hdreg.h>
26 #include <linux/ide.h>
27 #include <linux/module.h>
30 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
31 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
32 * for PIO 5, which is a nonstandard extension and UDMA6, which
33 * is currently supported only by Maxtor drives.
36 static struct ide_timing ide_timing
[] = {
38 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 15 },
39 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 20 },
40 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 30 },
41 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 45 },
43 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 60 },
44 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 80 },
45 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 120 },
47 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 120, 0 },
48 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 150, 0 },
49 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 480, 0 },
51 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 240, 0 },
52 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 480, 0 },
53 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 960, 0 },
55 { XFER_PIO_5
, 20, 50, 30, 100, 50, 30, 100, 0 },
56 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 120, 0 },
57 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 180, 0 },
59 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 240, 0 },
60 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 383, 0 },
61 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 600, 0 },
63 { XFER_PIO_SLOW
, 120, 290, 240, 960, 290, 240, 960, 0 },
68 struct ide_timing
*ide_timing_find_mode(u8 speed
)
72 for (t
= ide_timing
; t
->mode
!= speed
; t
++)
77 EXPORT_SYMBOL_GPL(ide_timing_find_mode
);
79 u16
ide_pio_cycle_time(ide_drive_t
*drive
, u8 pio
)
81 struct hd_driveid
*id
= drive
->id
;
82 struct ide_timing
*t
= ide_timing_find_mode(XFER_PIO_0
+ pio
);
85 if (id
->field_valid
& 2) {
86 if (id
->capability
& 8)
87 cycle
= id
->eide_pio_iordy
;
91 /* conservative "downgrade" for all pre-ATA2 drives */
92 if (pio
< 3 && cycle
< t
->cycle
)
93 cycle
= 0; /* use standard timing */
96 return cycle
? cycle
: t
->cycle
;
98 EXPORT_SYMBOL_GPL(ide_pio_cycle_time
);
100 #define ENOUGH(v, unit) (((v) - 1) / (unit) + 1)
101 #define EZ(v, unit) ((v) ? ENOUGH(v, unit) : 0)
103 static void ide_timing_quantize(struct ide_timing
*t
, struct ide_timing
*q
,
106 q
->setup
= EZ(t
->setup
* 1000, T
);
107 q
->act8b
= EZ(t
->act8b
* 1000, T
);
108 q
->rec8b
= EZ(t
->rec8b
* 1000, T
);
109 q
->cyc8b
= EZ(t
->cyc8b
* 1000, T
);
110 q
->active
= EZ(t
->active
* 1000, T
);
111 q
->recover
= EZ(t
->recover
* 1000, T
);
112 q
->cycle
= EZ(t
->cycle
* 1000, T
);
113 q
->udma
= EZ(t
->udma
* 1000, UT
);
116 void ide_timing_merge(struct ide_timing
*a
, struct ide_timing
*b
,
117 struct ide_timing
*m
, unsigned int what
)
119 if (what
& IDE_TIMING_SETUP
)
120 m
->setup
= max(a
->setup
, b
->setup
);
121 if (what
& IDE_TIMING_ACT8B
)
122 m
->act8b
= max(a
->act8b
, b
->act8b
);
123 if (what
& IDE_TIMING_REC8B
)
124 m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
125 if (what
& IDE_TIMING_CYC8B
)
126 m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
127 if (what
& IDE_TIMING_ACTIVE
)
128 m
->active
= max(a
->active
, b
->active
);
129 if (what
& IDE_TIMING_RECOVER
)
130 m
->recover
= max(a
->recover
, b
->recover
);
131 if (what
& IDE_TIMING_CYCLE
)
132 m
->cycle
= max(a
->cycle
, b
->cycle
);
133 if (what
& IDE_TIMING_UDMA
)
134 m
->udma
= max(a
->udma
, b
->udma
);
136 EXPORT_SYMBOL_GPL(ide_timing_merge
);
138 int ide_timing_compute(ide_drive_t
*drive
, u8 speed
,
139 struct ide_timing
*t
, int T
, int UT
)
141 struct hd_driveid
*id
= drive
->id
;
142 struct ide_timing
*s
, p
;
147 s
= ide_timing_find_mode(speed
);
152 * Copy the timing from the table.
157 * If the drive is an EIDE drive, it can tell us it needs extended
158 * PIO/MWDMA cycle timing.
160 if (id
&& id
->field_valid
& 2) { /* EIDE drive */
162 memset(&p
, 0, sizeof(p
));
164 if (speed
<= XFER_PIO_2
)
165 p
.cycle
= p
.cyc8b
= id
->eide_pio
;
166 else if (speed
<= XFER_PIO_5
)
167 p
.cycle
= p
.cyc8b
= id
->eide_pio_iordy
;
168 else if (speed
>= XFER_MW_DMA_0
&& speed
<= XFER_MW_DMA_2
)
169 p
.cycle
= id
->eide_dma_min
;
171 ide_timing_merge(&p
, t
, t
, IDE_TIMING_CYCLE
| IDE_TIMING_CYC8B
);
175 * Convert the timing to bus clock counts.
177 ide_timing_quantize(t
, t
, T
, UT
);
180 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
181 * S.M.A.R.T and some other commands. We have to ensure that the
182 * DMA cycle timing is slower/equal than the fastest PIO timing.
184 if (speed
>= XFER_SW_DMA_0
) {
185 u8 pio
= ide_get_best_pio_mode(drive
, 255, 5);
186 ide_timing_compute(drive
, XFER_PIO_0
+ pio
, &p
, T
, UT
);
187 ide_timing_merge(&p
, t
, t
, IDE_TIMING_ALL
);
191 * Lengthen active & recovery time so that cycle time is correct.
193 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
194 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
195 t
->rec8b
= t
->cyc8b
- t
->act8b
;
198 if (t
->active
+ t
->recover
< t
->cycle
) {
199 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
200 t
->recover
= t
->cycle
- t
->active
;
205 EXPORT_SYMBOL_GPL(ide_timing_compute
);