arch/i386/kernel/cpu/cpufreq/powernow-k8.c: In function `powernow_k8_cpu_init_acpi':
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / i386 / kernel / traps.c
bloba61f33d06ea34313b9a36a271d9fd69f2b2034db
1 /*
2 * linux/arch/i386/traps.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
11 * 'Traps.c' handles hardware traps and faults after we have saved some
12 * state in 'asm.s'.
14 #include <linux/config.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/string.h>
18 #include <linux/errno.h>
19 #include <linux/timer.h>
20 #include <linux/mm.h>
21 #include <linux/init.h>
22 #include <linux/delay.h>
23 #include <linux/spinlock.h>
24 #include <linux/interrupt.h>
25 #include <linux/highmem.h>
26 #include <linux/kallsyms.h>
27 #include <linux/ptrace.h>
28 #include <linux/utsname.h>
29 #include <linux/kprobes.h>
30 #include <linux/kexec.h>
32 #ifdef CONFIG_EISA
33 #include <linux/ioport.h>
34 #include <linux/eisa.h>
35 #endif
37 #ifdef CONFIG_MCA
38 #include <linux/mca.h>
39 #endif
41 #include <asm/processor.h>
42 #include <asm/system.h>
43 #include <asm/uaccess.h>
44 #include <asm/io.h>
45 #include <asm/atomic.h>
46 #include <asm/debugreg.h>
47 #include <asm/desc.h>
48 #include <asm/i387.h>
49 #include <asm/nmi.h>
51 #include <asm/smp.h>
52 #include <asm/arch_hooks.h>
53 #include <asm/kdebug.h>
55 #include <linux/irq.h>
56 #include <linux/module.h>
58 #include "mach_traps.h"
60 asmlinkage int system_call(void);
62 struct desc_struct default_ldt[] = { { 0, 0 }, { 0, 0 }, { 0, 0 },
63 { 0, 0 }, { 0, 0 } };
65 /* Do we ignore FPU interrupts ? */
66 char ignore_fpu_irq = 0;
69 * The IDT has to be page-aligned to simplify the Pentium
70 * F0 0F bug workaround.. We have a special link segment
71 * for this.
73 struct desc_struct idt_table[256] __attribute__((__section__(".data.idt"))) = { {0, 0}, };
75 asmlinkage void divide_error(void);
76 asmlinkage void debug(void);
77 asmlinkage void nmi(void);
78 asmlinkage void int3(void);
79 asmlinkage void overflow(void);
80 asmlinkage void bounds(void);
81 asmlinkage void invalid_op(void);
82 asmlinkage void device_not_available(void);
83 asmlinkage void coprocessor_segment_overrun(void);
84 asmlinkage void invalid_TSS(void);
85 asmlinkage void segment_not_present(void);
86 asmlinkage void stack_segment(void);
87 asmlinkage void general_protection(void);
88 asmlinkage void page_fault(void);
89 asmlinkage void coprocessor_error(void);
90 asmlinkage void simd_coprocessor_error(void);
91 asmlinkage void alignment_check(void);
92 asmlinkage void spurious_interrupt_bug(void);
93 asmlinkage void machine_check(void);
95 static int kstack_depth_to_print = 24;
96 struct notifier_block *i386die_chain;
97 static DEFINE_SPINLOCK(die_notifier_lock);
99 int register_die_notifier(struct notifier_block *nb)
101 int err = 0;
102 unsigned long flags;
103 spin_lock_irqsave(&die_notifier_lock, flags);
104 err = notifier_chain_register(&i386die_chain, nb);
105 spin_unlock_irqrestore(&die_notifier_lock, flags);
106 return err;
108 EXPORT_SYMBOL(register_die_notifier);
110 static inline int valid_stack_ptr(struct thread_info *tinfo, void *p)
112 return p > (void *)tinfo &&
113 p < (void *)tinfo + THREAD_SIZE - 3;
116 static inline unsigned long print_context_stack(struct thread_info *tinfo,
117 unsigned long *stack, unsigned long ebp)
119 unsigned long addr;
121 #ifdef CONFIG_FRAME_POINTER
122 while (valid_stack_ptr(tinfo, (void *)ebp)) {
123 addr = *(unsigned long *)(ebp + 4);
124 printk(" [<%08lx>] ", addr);
125 print_symbol("%s", addr);
126 printk("\n");
127 ebp = *(unsigned long *)ebp;
129 #else
130 while (valid_stack_ptr(tinfo, stack)) {
131 addr = *stack++;
132 if (__kernel_text_address(addr)) {
133 printk(" [<%08lx>]", addr);
134 print_symbol(" %s", addr);
135 printk("\n");
138 #endif
139 return ebp;
142 void show_trace(struct task_struct *task, unsigned long * stack)
144 unsigned long ebp;
146 if (!task)
147 task = current;
149 if (task == current) {
150 /* Grab ebp right from our regs */
151 asm ("movl %%ebp, %0" : "=r" (ebp) : );
152 } else {
153 /* ebp is the last reg pushed by switch_to */
154 ebp = *(unsigned long *) task->thread.esp;
157 while (1) {
158 struct thread_info *context;
159 context = (struct thread_info *)
160 ((unsigned long)stack & (~(THREAD_SIZE - 1)));
161 ebp = print_context_stack(context, stack, ebp);
162 stack = (unsigned long*)context->previous_esp;
163 if (!stack)
164 break;
165 printk(" =======================\n");
169 void show_stack(struct task_struct *task, unsigned long *esp)
171 unsigned long *stack;
172 int i;
174 if (esp == NULL) {
175 if (task)
176 esp = (unsigned long*)task->thread.esp;
177 else
178 esp = (unsigned long *)&esp;
181 stack = esp;
182 for(i = 0; i < kstack_depth_to_print; i++) {
183 if (kstack_end(stack))
184 break;
185 if (i && ((i % 8) == 0))
186 printk("\n ");
187 printk("%08lx ", *stack++);
189 printk("\nCall Trace:\n");
190 show_trace(task, esp);
194 * The architecture-independent dump_stack generator
196 void dump_stack(void)
198 unsigned long stack;
200 show_trace(current, &stack);
203 EXPORT_SYMBOL(dump_stack);
205 void show_registers(struct pt_regs *regs)
207 int i;
208 int in_kernel = 1;
209 unsigned long esp;
210 unsigned short ss;
212 esp = (unsigned long) (&regs->esp);
213 ss = __KERNEL_DS;
214 if (user_mode(regs)) {
215 in_kernel = 0;
216 esp = regs->esp;
217 ss = regs->xss & 0xffff;
219 print_modules();
220 printk("CPU: %d\nEIP: %04x:[<%08lx>] %s VLI\nEFLAGS: %08lx"
221 " (%s) \n",
222 smp_processor_id(), 0xffff & regs->xcs, regs->eip,
223 print_tainted(), regs->eflags, system_utsname.release);
224 print_symbol("EIP is at %s\n", regs->eip);
225 printk("eax: %08lx ebx: %08lx ecx: %08lx edx: %08lx\n",
226 regs->eax, regs->ebx, regs->ecx, regs->edx);
227 printk("esi: %08lx edi: %08lx ebp: %08lx esp: %08lx\n",
228 regs->esi, regs->edi, regs->ebp, esp);
229 printk("ds: %04x es: %04x ss: %04x\n",
230 regs->xds & 0xffff, regs->xes & 0xffff, ss);
231 printk("Process %s (pid: %d, threadinfo=%p task=%p)",
232 current->comm, current->pid, current_thread_info(), current);
234 * When in-kernel, we also print out the stack and code at the
235 * time of the fault..
237 if (in_kernel) {
238 u8 __user *eip;
240 printk("\nStack: ");
241 show_stack(NULL, (unsigned long*)esp);
243 printk("Code: ");
245 eip = (u8 __user *)regs->eip - 43;
246 for (i = 0; i < 64; i++, eip++) {
247 unsigned char c;
249 if (eip < (u8 __user *)PAGE_OFFSET || __get_user(c, eip)) {
250 printk(" Bad EIP value.");
251 break;
253 if (eip == (u8 __user *)regs->eip)
254 printk("<%02x> ", c);
255 else
256 printk("%02x ", c);
259 printk("\n");
262 static void handle_BUG(struct pt_regs *regs)
264 unsigned short ud2;
265 unsigned short line;
266 char *file;
267 char c;
268 unsigned long eip;
270 if (user_mode(regs))
271 goto no_bug; /* Not in kernel */
273 eip = regs->eip;
275 if (eip < PAGE_OFFSET)
276 goto no_bug;
277 if (__get_user(ud2, (unsigned short __user *)eip))
278 goto no_bug;
279 if (ud2 != 0x0b0f)
280 goto no_bug;
281 if (__get_user(line, (unsigned short __user *)(eip + 2)))
282 goto bug;
283 if (__get_user(file, (char * __user *)(eip + 4)) ||
284 (unsigned long)file < PAGE_OFFSET || __get_user(c, file))
285 file = "<bad filename>";
287 printk("------------[ cut here ]------------\n");
288 printk(KERN_ALERT "kernel BUG at %s:%d!\n", file, line);
290 no_bug:
291 return;
293 /* Here we know it was a BUG but file-n-line is unavailable */
294 bug:
295 printk("Kernel BUG\n");
298 /* This is gone through when something in the kernel
299 * has done something bad and is about to be terminated.
301 void die(const char * str, struct pt_regs * regs, long err)
303 static struct {
304 spinlock_t lock;
305 u32 lock_owner;
306 int lock_owner_depth;
307 } die = {
308 .lock = SPIN_LOCK_UNLOCKED,
309 .lock_owner = -1,
310 .lock_owner_depth = 0
312 static int die_counter;
314 if (die.lock_owner != raw_smp_processor_id()) {
315 console_verbose();
316 spin_lock_irq(&die.lock);
317 die.lock_owner = smp_processor_id();
318 die.lock_owner_depth = 0;
319 bust_spinlocks(1);
322 if (++die.lock_owner_depth < 3) {
323 int nl = 0;
324 handle_BUG(regs);
325 printk(KERN_ALERT "%s: %04lx [#%d]\n", str, err & 0xffff, ++die_counter);
326 #ifdef CONFIG_PREEMPT
327 printk("PREEMPT ");
328 nl = 1;
329 #endif
330 #ifdef CONFIG_SMP
331 printk("SMP ");
332 nl = 1;
333 #endif
334 #ifdef CONFIG_DEBUG_PAGEALLOC
335 printk("DEBUG_PAGEALLOC");
336 nl = 1;
337 #endif
338 if (nl)
339 printk("\n");
340 notify_die(DIE_OOPS, (char *)str, regs, err, 255, SIGSEGV);
341 show_registers(regs);
342 } else
343 printk(KERN_ERR "Recursive die() failure, output suppressed\n");
345 bust_spinlocks(0);
346 die.lock_owner = -1;
347 spin_unlock_irq(&die.lock);
349 if (kexec_should_crash(current))
350 crash_kexec(regs);
352 if (in_interrupt())
353 panic("Fatal exception in interrupt");
355 if (panic_on_oops) {
356 printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
357 ssleep(5);
358 panic("Fatal exception");
360 do_exit(SIGSEGV);
363 static inline void die_if_kernel(const char * str, struct pt_regs * regs, long err)
365 if (!user_mode_vm(regs))
366 die(str, regs, err);
369 static void do_trap(int trapnr, int signr, char *str, int vm86,
370 struct pt_regs * regs, long error_code, siginfo_t *info)
372 struct task_struct *tsk = current;
373 tsk->thread.error_code = error_code;
374 tsk->thread.trap_no = trapnr;
376 if (regs->eflags & VM_MASK) {
377 if (vm86)
378 goto vm86_trap;
379 goto trap_signal;
382 if (!user_mode(regs))
383 goto kernel_trap;
385 trap_signal: {
386 if (info)
387 force_sig_info(signr, info, tsk);
388 else
389 force_sig(signr, tsk);
390 return;
393 kernel_trap: {
394 if (!fixup_exception(regs))
395 die(str, regs, error_code);
396 return;
399 vm86_trap: {
400 int ret = handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, trapnr);
401 if (ret) goto trap_signal;
402 return;
406 #define DO_ERROR(trapnr, signr, str, name) \
407 fastcall void do_##name(struct pt_regs * regs, long error_code) \
409 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
410 == NOTIFY_STOP) \
411 return; \
412 do_trap(trapnr, signr, str, 0, regs, error_code, NULL); \
415 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
416 fastcall void do_##name(struct pt_regs * regs, long error_code) \
418 siginfo_t info; \
419 info.si_signo = signr; \
420 info.si_errno = 0; \
421 info.si_code = sicode; \
422 info.si_addr = (void __user *)siaddr; \
423 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
424 == NOTIFY_STOP) \
425 return; \
426 do_trap(trapnr, signr, str, 0, regs, error_code, &info); \
429 #define DO_VM86_ERROR(trapnr, signr, str, name) \
430 fastcall void do_##name(struct pt_regs * regs, long error_code) \
432 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
433 == NOTIFY_STOP) \
434 return; \
435 do_trap(trapnr, signr, str, 1, regs, error_code, NULL); \
438 #define DO_VM86_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
439 fastcall void do_##name(struct pt_regs * regs, long error_code) \
441 siginfo_t info; \
442 info.si_signo = signr; \
443 info.si_errno = 0; \
444 info.si_code = sicode; \
445 info.si_addr = (void __user *)siaddr; \
446 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
447 == NOTIFY_STOP) \
448 return; \
449 do_trap(trapnr, signr, str, 1, regs, error_code, &info); \
452 DO_VM86_ERROR_INFO( 0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->eip)
453 #ifndef CONFIG_KPROBES
454 DO_VM86_ERROR( 3, SIGTRAP, "int3", int3)
455 #endif
456 DO_VM86_ERROR( 4, SIGSEGV, "overflow", overflow)
457 DO_VM86_ERROR( 5, SIGSEGV, "bounds", bounds)
458 DO_ERROR_INFO( 6, SIGILL, "invalid operand", invalid_op, ILL_ILLOPN, regs->eip)
459 DO_ERROR( 9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
460 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
461 DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
462 DO_ERROR(12, SIGBUS, "stack segment", stack_segment)
463 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)
464 DO_ERROR_INFO(32, SIGSEGV, "iret exception", iret_error, ILL_BADSTK, 0)
466 fastcall void do_general_protection(struct pt_regs * regs, long error_code)
468 int cpu = get_cpu();
469 struct tss_struct *tss = &per_cpu(init_tss, cpu);
470 struct thread_struct *thread = &current->thread;
473 * Perform the lazy TSS's I/O bitmap copy. If the TSS has an
474 * invalid offset set (the LAZY one) and the faulting thread has
475 * a valid I/O bitmap pointer, we copy the I/O bitmap in the TSS
476 * and we set the offset field correctly. Then we let the CPU to
477 * restart the faulting instruction.
479 if (tss->io_bitmap_base == INVALID_IO_BITMAP_OFFSET_LAZY &&
480 thread->io_bitmap_ptr) {
481 memcpy(tss->io_bitmap, thread->io_bitmap_ptr,
482 thread->io_bitmap_max);
484 * If the previously set map was extending to higher ports
485 * than the current one, pad extra space with 0xff (no access).
487 if (thread->io_bitmap_max < tss->io_bitmap_max)
488 memset((char *) tss->io_bitmap +
489 thread->io_bitmap_max, 0xff,
490 tss->io_bitmap_max - thread->io_bitmap_max);
491 tss->io_bitmap_max = thread->io_bitmap_max;
492 tss->io_bitmap_base = IO_BITMAP_OFFSET;
493 put_cpu();
494 return;
496 put_cpu();
498 current->thread.error_code = error_code;
499 current->thread.trap_no = 13;
501 if (regs->eflags & VM_MASK)
502 goto gp_in_vm86;
504 if (!user_mode(regs))
505 goto gp_in_kernel;
507 current->thread.error_code = error_code;
508 current->thread.trap_no = 13;
509 force_sig(SIGSEGV, current);
510 return;
512 gp_in_vm86:
513 local_irq_enable();
514 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
515 return;
517 gp_in_kernel:
518 if (!fixup_exception(regs)) {
519 if (notify_die(DIE_GPF, "general protection fault", regs,
520 error_code, 13, SIGSEGV) == NOTIFY_STOP)
521 return;
522 die("general protection fault", regs, error_code);
526 static void mem_parity_error(unsigned char reason, struct pt_regs * regs)
528 printk("Uhhuh. NMI received. Dazed and confused, but trying to continue\n");
529 printk("You probably have a hardware problem with your RAM chips\n");
531 /* Clear and disable the memory parity error line. */
532 clear_mem_error(reason);
535 static void io_check_error(unsigned char reason, struct pt_regs * regs)
537 unsigned long i;
539 printk("NMI: IOCK error (debug interrupt?)\n");
540 show_registers(regs);
542 /* Re-enable the IOCK line, wait for a few seconds */
543 reason = (reason & 0xf) | 8;
544 outb(reason, 0x61);
545 i = 2000;
546 while (--i) udelay(1000);
547 reason &= ~8;
548 outb(reason, 0x61);
551 static void unknown_nmi_error(unsigned char reason, struct pt_regs * regs)
553 #ifdef CONFIG_MCA
554 /* Might actually be able to figure out what the guilty party
555 * is. */
556 if( MCA_bus ) {
557 mca_handle_nmi();
558 return;
560 #endif
561 printk("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
562 reason, smp_processor_id());
563 printk("Dazed and confused, but trying to continue\n");
564 printk("Do you have a strange power saving mode enabled?\n");
567 static DEFINE_SPINLOCK(nmi_print_lock);
569 void die_nmi (struct pt_regs *regs, const char *msg)
571 spin_lock(&nmi_print_lock);
573 * We are in trouble anyway, lets at least try
574 * to get a message out.
576 bust_spinlocks(1);
577 printk(msg);
578 printk(" on CPU%d, eip %08lx, registers:\n",
579 smp_processor_id(), regs->eip);
580 show_registers(regs);
581 printk("console shuts up ...\n");
582 console_silent();
583 spin_unlock(&nmi_print_lock);
584 bust_spinlocks(0);
586 /* If we are in kernel we are probably nested up pretty bad
587 * and might aswell get out now while we still can.
589 if (!user_mode(regs)) {
590 current->thread.trap_no = 2;
591 crash_kexec(regs);
594 do_exit(SIGSEGV);
597 static void default_do_nmi(struct pt_regs * regs)
599 unsigned char reason = 0;
601 /* Only the BSP gets external NMIs from the system. */
602 if (!smp_processor_id())
603 reason = get_nmi_reason();
605 if (!(reason & 0xc0)) {
606 if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 0, SIGINT)
607 == NOTIFY_STOP)
608 return;
609 #ifdef CONFIG_X86_LOCAL_APIC
611 * Ok, so this is none of the documented NMI sources,
612 * so it must be the NMI watchdog.
614 if (nmi_watchdog) {
615 nmi_watchdog_tick(regs);
616 return;
618 #endif
619 unknown_nmi_error(reason, regs);
620 return;
622 if (notify_die(DIE_NMI, "nmi", regs, reason, 0, SIGINT) == NOTIFY_STOP)
623 return;
624 if (reason & 0x80)
625 mem_parity_error(reason, regs);
626 if (reason & 0x40)
627 io_check_error(reason, regs);
629 * Reassert NMI in case it became active meanwhile
630 * as it's edge-triggered.
632 reassert_nmi();
635 static int dummy_nmi_callback(struct pt_regs * regs, int cpu)
637 return 0;
640 static nmi_callback_t nmi_callback = dummy_nmi_callback;
642 fastcall void do_nmi(struct pt_regs * regs, long error_code)
644 int cpu;
646 nmi_enter();
648 cpu = smp_processor_id();
650 #ifdef CONFIG_HOTPLUG_CPU
651 if (!cpu_online(cpu)) {
652 nmi_exit();
653 return;
655 #endif
657 ++nmi_count(cpu);
659 if (!nmi_callback(regs, cpu))
660 default_do_nmi(regs);
662 nmi_exit();
665 void set_nmi_callback(nmi_callback_t callback)
667 nmi_callback = callback;
669 EXPORT_SYMBOL_GPL(set_nmi_callback);
671 void unset_nmi_callback(void)
673 nmi_callback = dummy_nmi_callback;
675 EXPORT_SYMBOL_GPL(unset_nmi_callback);
677 #ifdef CONFIG_KPROBES
678 fastcall void do_int3(struct pt_regs *regs, long error_code)
680 if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
681 == NOTIFY_STOP)
682 return;
683 /* This is an interrupt gate, because kprobes wants interrupts
684 disabled. Normal trap handlers don't. */
685 restore_interrupts(regs);
686 do_trap(3, SIGTRAP, "int3", 1, regs, error_code, NULL);
688 #endif
691 * Our handling of the processor debug registers is non-trivial.
692 * We do not clear them on entry and exit from the kernel. Therefore
693 * it is possible to get a watchpoint trap here from inside the kernel.
694 * However, the code in ./ptrace.c has ensured that the user can
695 * only set watchpoints on userspace addresses. Therefore the in-kernel
696 * watchpoint trap can only occur in code which is reading/writing
697 * from user space. Such code must not hold kernel locks (since it
698 * can equally take a page fault), therefore it is safe to call
699 * force_sig_info even though that claims and releases locks.
701 * Code in ./signal.c ensures that the debug control register
702 * is restored before we deliver any signal, and therefore that
703 * user code runs with the correct debug control register even though
704 * we clear it here.
706 * Being careful here means that we don't have to be as careful in a
707 * lot of more complicated places (task switching can be a bit lazy
708 * about restoring all the debug state, and ptrace doesn't have to
709 * find every occurrence of the TF bit that could be saved away even
710 * by user code)
712 fastcall void do_debug(struct pt_regs * regs, long error_code)
714 unsigned int condition;
715 struct task_struct *tsk = current;
717 get_debugreg(condition, 6);
719 if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
720 SIGTRAP) == NOTIFY_STOP)
721 return;
722 /* It's safe to allow irq's after DR6 has been saved */
723 if (regs->eflags & X86_EFLAGS_IF)
724 local_irq_enable();
726 /* Mask out spurious debug traps due to lazy DR7 setting */
727 if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
728 if (!tsk->thread.debugreg[7])
729 goto clear_dr7;
732 if (regs->eflags & VM_MASK)
733 goto debug_vm86;
735 /* Save debug status register where ptrace can see it */
736 tsk->thread.debugreg[6] = condition;
739 * Single-stepping through TF: make sure we ignore any events in
740 * kernel space (but re-enable TF when returning to user mode).
742 if (condition & DR_STEP) {
744 * We already checked v86 mode above, so we can
745 * check for kernel mode by just checking the CPL
746 * of CS.
748 if (!user_mode(regs))
749 goto clear_TF_reenable;
752 /* Ok, finally something we can handle */
753 send_sigtrap(tsk, regs, error_code);
755 /* Disable additional traps. They'll be re-enabled when
756 * the signal is delivered.
758 clear_dr7:
759 set_debugreg(0, 7);
760 return;
762 debug_vm86:
763 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 1);
764 return;
766 clear_TF_reenable:
767 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
768 regs->eflags &= ~TF_MASK;
769 return;
773 * Note that we play around with the 'TS' bit in an attempt to get
774 * the correct behaviour even in the presence of the asynchronous
775 * IRQ13 behaviour
777 void math_error(void __user *eip)
779 struct task_struct * task;
780 siginfo_t info;
781 unsigned short cwd, swd;
784 * Save the info for the exception handler and clear the error.
786 task = current;
787 save_init_fpu(task);
788 task->thread.trap_no = 16;
789 task->thread.error_code = 0;
790 info.si_signo = SIGFPE;
791 info.si_errno = 0;
792 info.si_code = __SI_FAULT;
793 info.si_addr = eip;
795 * (~cwd & swd) will mask out exceptions that are not set to unmasked
796 * status. 0x3f is the exception bits in these regs, 0x200 is the
797 * C1 reg you need in case of a stack fault, 0x040 is the stack
798 * fault bit. We should only be taking one exception at a time,
799 * so if this combination doesn't produce any single exception,
800 * then we have a bad program that isn't syncronizing its FPU usage
801 * and it will suffer the consequences since we won't be able to
802 * fully reproduce the context of the exception
804 cwd = get_fpu_cwd(task);
805 swd = get_fpu_swd(task);
806 switch (((~cwd) & swd & 0x3f) | (swd & 0x240)) {
807 case 0x000:
808 default:
809 break;
810 case 0x001: /* Invalid Op */
811 case 0x041: /* Stack Fault */
812 case 0x241: /* Stack Fault | Direction */
813 info.si_code = FPE_FLTINV;
814 /* Should we clear the SF or let user space do it ???? */
815 break;
816 case 0x002: /* Denormalize */
817 case 0x010: /* Underflow */
818 info.si_code = FPE_FLTUND;
819 break;
820 case 0x004: /* Zero Divide */
821 info.si_code = FPE_FLTDIV;
822 break;
823 case 0x008: /* Overflow */
824 info.si_code = FPE_FLTOVF;
825 break;
826 case 0x020: /* Precision */
827 info.si_code = FPE_FLTRES;
828 break;
830 force_sig_info(SIGFPE, &info, task);
833 fastcall void do_coprocessor_error(struct pt_regs * regs, long error_code)
835 ignore_fpu_irq = 1;
836 math_error((void __user *)regs->eip);
839 static void simd_math_error(void __user *eip)
841 struct task_struct * task;
842 siginfo_t info;
843 unsigned short mxcsr;
846 * Save the info for the exception handler and clear the error.
848 task = current;
849 save_init_fpu(task);
850 task->thread.trap_no = 19;
851 task->thread.error_code = 0;
852 info.si_signo = SIGFPE;
853 info.si_errno = 0;
854 info.si_code = __SI_FAULT;
855 info.si_addr = eip;
857 * The SIMD FPU exceptions are handled a little differently, as there
858 * is only a single status/control register. Thus, to determine which
859 * unmasked exception was caught we must mask the exception mask bits
860 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
862 mxcsr = get_fpu_mxcsr(task);
863 switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
864 case 0x000:
865 default:
866 break;
867 case 0x001: /* Invalid Op */
868 info.si_code = FPE_FLTINV;
869 break;
870 case 0x002: /* Denormalize */
871 case 0x010: /* Underflow */
872 info.si_code = FPE_FLTUND;
873 break;
874 case 0x004: /* Zero Divide */
875 info.si_code = FPE_FLTDIV;
876 break;
877 case 0x008: /* Overflow */
878 info.si_code = FPE_FLTOVF;
879 break;
880 case 0x020: /* Precision */
881 info.si_code = FPE_FLTRES;
882 break;
884 force_sig_info(SIGFPE, &info, task);
887 fastcall void do_simd_coprocessor_error(struct pt_regs * regs,
888 long error_code)
890 if (cpu_has_xmm) {
891 /* Handle SIMD FPU exceptions on PIII+ processors. */
892 ignore_fpu_irq = 1;
893 simd_math_error((void __user *)regs->eip);
894 } else {
896 * Handle strange cache flush from user space exception
897 * in all other cases. This is undocumented behaviour.
899 if (regs->eflags & VM_MASK) {
900 handle_vm86_fault((struct kernel_vm86_regs *)regs,
901 error_code);
902 return;
904 current->thread.trap_no = 19;
905 current->thread.error_code = error_code;
906 die_if_kernel("cache flush denied", regs, error_code);
907 force_sig(SIGSEGV, current);
911 fastcall void do_spurious_interrupt_bug(struct pt_regs * regs,
912 long error_code)
914 #if 0
915 /* No need to warn about this any longer. */
916 printk("Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
917 #endif
920 fastcall void setup_x86_bogus_stack(unsigned char * stk)
922 unsigned long *switch16_ptr, *switch32_ptr;
923 struct pt_regs *regs;
924 unsigned long stack_top, stack_bot;
925 unsigned short iret_frame16_off;
926 int cpu = smp_processor_id();
927 /* reserve the space on 32bit stack for the magic switch16 pointer */
928 memmove(stk, stk + 8, sizeof(struct pt_regs));
929 switch16_ptr = (unsigned long *)(stk + sizeof(struct pt_regs));
930 regs = (struct pt_regs *)stk;
931 /* now the switch32 on 16bit stack */
932 stack_bot = (unsigned long)&per_cpu(cpu_16bit_stack, cpu);
933 stack_top = stack_bot + CPU_16BIT_STACK_SIZE;
934 switch32_ptr = (unsigned long *)(stack_top - 8);
935 iret_frame16_off = CPU_16BIT_STACK_SIZE - 8 - 20;
936 /* copy iret frame on 16bit stack */
937 memcpy((void *)(stack_bot + iret_frame16_off), &regs->eip, 20);
938 /* fill in the switch pointers */
939 switch16_ptr[0] = (regs->esp & 0xffff0000) | iret_frame16_off;
940 switch16_ptr[1] = __ESPFIX_SS;
941 switch32_ptr[0] = (unsigned long)stk + sizeof(struct pt_regs) +
942 8 - CPU_16BIT_STACK_SIZE;
943 switch32_ptr[1] = __KERNEL_DS;
946 fastcall unsigned char * fixup_x86_bogus_stack(unsigned short sp)
948 unsigned long *switch32_ptr;
949 unsigned char *stack16, *stack32;
950 unsigned long stack_top, stack_bot;
951 int len;
952 int cpu = smp_processor_id();
953 stack_bot = (unsigned long)&per_cpu(cpu_16bit_stack, cpu);
954 stack_top = stack_bot + CPU_16BIT_STACK_SIZE;
955 switch32_ptr = (unsigned long *)(stack_top - 8);
956 /* copy the data from 16bit stack to 32bit stack */
957 len = CPU_16BIT_STACK_SIZE - 8 - sp;
958 stack16 = (unsigned char *)(stack_bot + sp);
959 stack32 = (unsigned char *)
960 (switch32_ptr[0] + CPU_16BIT_STACK_SIZE - 8 - len);
961 memcpy(stack32, stack16, len);
962 return stack32;
966 * 'math_state_restore()' saves the current math information in the
967 * old math state array, and gets the new ones from the current task
969 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
970 * Don't touch unless you *really* know how it works.
972 * Must be called with kernel preemption disabled (in this case,
973 * local interrupts are disabled at the call-site in entry.S).
975 asmlinkage void math_state_restore(struct pt_regs regs)
977 struct thread_info *thread = current_thread_info();
978 struct task_struct *tsk = thread->task;
980 clts(); /* Allow maths ops (or we recurse) */
981 if (!tsk_used_math(tsk))
982 init_fpu(tsk);
983 restore_fpu(tsk);
984 thread->status |= TS_USEDFPU; /* So we fnsave on switch_to() */
987 #ifndef CONFIG_MATH_EMULATION
989 asmlinkage void math_emulate(long arg)
991 printk("math-emulation not enabled and no coprocessor found.\n");
992 printk("killing %s.\n",current->comm);
993 force_sig(SIGFPE,current);
994 schedule();
997 #endif /* CONFIG_MATH_EMULATION */
999 #ifdef CONFIG_X86_F00F_BUG
1000 void __init trap_init_f00f_bug(void)
1002 __set_fixmap(FIX_F00F_IDT, __pa(&idt_table), PAGE_KERNEL_RO);
1005 * Update the IDT descriptor and reload the IDT so that
1006 * it uses the read-only mapped virtual address.
1008 idt_descr.address = fix_to_virt(FIX_F00F_IDT);
1009 __asm__ __volatile__("lidt %0" : : "m" (idt_descr));
1011 #endif
1013 #define _set_gate(gate_addr,type,dpl,addr,seg) \
1014 do { \
1015 int __d0, __d1; \
1016 __asm__ __volatile__ ("movw %%dx,%%ax\n\t" \
1017 "movw %4,%%dx\n\t" \
1018 "movl %%eax,%0\n\t" \
1019 "movl %%edx,%1" \
1020 :"=m" (*((long *) (gate_addr))), \
1021 "=m" (*(1+(long *) (gate_addr))), "=&a" (__d0), "=&d" (__d1) \
1022 :"i" ((short) (0x8000+(dpl<<13)+(type<<8))), \
1023 "3" ((char *) (addr)),"2" ((seg) << 16)); \
1024 } while (0)
1028 * This needs to use 'idt_table' rather than 'idt', and
1029 * thus use the _nonmapped_ version of the IDT, as the
1030 * Pentium F0 0F bugfix can have resulted in the mapped
1031 * IDT being write-protected.
1033 void set_intr_gate(unsigned int n, void *addr)
1035 _set_gate(idt_table+n,14,0,addr,__KERNEL_CS);
1039 * This routine sets up an interrupt gate at directory privilege level 3.
1041 static inline void set_system_intr_gate(unsigned int n, void *addr)
1043 _set_gate(idt_table+n, 14, 3, addr, __KERNEL_CS);
1046 static void __init set_trap_gate(unsigned int n, void *addr)
1048 _set_gate(idt_table+n,15,0,addr,__KERNEL_CS);
1051 static void __init set_system_gate(unsigned int n, void *addr)
1053 _set_gate(idt_table+n,15,3,addr,__KERNEL_CS);
1056 static void __init set_task_gate(unsigned int n, unsigned int gdt_entry)
1058 _set_gate(idt_table+n,5,0,0,(gdt_entry<<3));
1062 void __init trap_init(void)
1064 #ifdef CONFIG_EISA
1065 void __iomem *p = ioremap(0x0FFFD9, 4);
1066 if (readl(p) == 'E'+('I'<<8)+('S'<<16)+('A'<<24)) {
1067 EISA_bus = 1;
1069 iounmap(p);
1070 #endif
1072 #ifdef CONFIG_X86_LOCAL_APIC
1073 init_apic_mappings();
1074 #endif
1076 set_trap_gate(0,&divide_error);
1077 set_intr_gate(1,&debug);
1078 set_intr_gate(2,&nmi);
1079 set_system_intr_gate(3, &int3); /* int3-5 can be called from all */
1080 set_system_gate(4,&overflow);
1081 set_system_gate(5,&bounds);
1082 set_trap_gate(6,&invalid_op);
1083 set_trap_gate(7,&device_not_available);
1084 set_task_gate(8,GDT_ENTRY_DOUBLEFAULT_TSS);
1085 set_trap_gate(9,&coprocessor_segment_overrun);
1086 set_trap_gate(10,&invalid_TSS);
1087 set_trap_gate(11,&segment_not_present);
1088 set_trap_gate(12,&stack_segment);
1089 set_trap_gate(13,&general_protection);
1090 set_intr_gate(14,&page_fault);
1091 set_trap_gate(15,&spurious_interrupt_bug);
1092 set_trap_gate(16,&coprocessor_error);
1093 set_trap_gate(17,&alignment_check);
1094 #ifdef CONFIG_X86_MCE
1095 set_trap_gate(18,&machine_check);
1096 #endif
1097 set_trap_gate(19,&simd_coprocessor_error);
1099 set_system_gate(SYSCALL_VECTOR,&system_call);
1102 * Should be a barrier for any external CPU state.
1104 cpu_init();
1106 trap_init_hook();
1109 static int __init kstack_setup(char *s)
1111 kstack_depth_to_print = simple_strtoul(s, NULL, 0);
1112 return 0;
1114 __setup("kstack=", kstack_setup);