2 * Kernel Probes (KProbes)
3 * arch/i386/kernel/kprobes.c
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * Copyright (C) IBM Corporation, 2002, 2004
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation ( includes contributions from
24 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
25 * interface to access function arguments.
26 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
27 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
28 * <prasanna@in.ibm.com> added function-return probes.
31 #include <linux/config.h>
32 #include <linux/kprobes.h>
33 #include <linux/ptrace.h>
34 #include <linux/spinlock.h>
35 #include <linux/preempt.h>
36 #include <asm/cacheflush.h>
37 #include <asm/kdebug.h>
40 static struct kprobe
*current_kprobe
;
41 static unsigned long kprobe_status
, kprobe_old_eflags
, kprobe_saved_eflags
;
42 static struct kprobe
*kprobe_prev
;
43 static unsigned long kprobe_status_prev
, kprobe_old_eflags_prev
, kprobe_saved_eflags_prev
;
44 static struct pt_regs jprobe_saved_regs
;
45 static long *jprobe_saved_esp
;
46 /* copy of the kernel stack at the probe fire time */
47 static kprobe_opcode_t jprobes_stack
[MAX_STACK_SIZE
];
48 void jprobe_return_end(void);
51 * returns non-zero if opcode modifies the interrupt flag.
53 static inline int is_IF_modifier(kprobe_opcode_t opcode
)
58 case 0xcf: /* iret/iretd */
59 case 0x9d: /* popf/popfd */
65 int arch_prepare_kprobe(struct kprobe
*p
)
70 void arch_copy_kprobe(struct kprobe
*p
)
72 memcpy(p
->ainsn
.insn
, p
->addr
, MAX_INSN_SIZE
* sizeof(kprobe_opcode_t
));
76 void arch_arm_kprobe(struct kprobe
*p
)
78 *p
->addr
= BREAKPOINT_INSTRUCTION
;
79 flush_icache_range((unsigned long) p
->addr
,
80 (unsigned long) p
->addr
+ sizeof(kprobe_opcode_t
));
83 void arch_disarm_kprobe(struct kprobe
*p
)
86 flush_icache_range((unsigned long) p
->addr
,
87 (unsigned long) p
->addr
+ sizeof(kprobe_opcode_t
));
90 void arch_remove_kprobe(struct kprobe
*p
)
94 static inline void save_previous_kprobe(void)
96 kprobe_prev
= current_kprobe
;
97 kprobe_status_prev
= kprobe_status
;
98 kprobe_old_eflags_prev
= kprobe_old_eflags
;
99 kprobe_saved_eflags_prev
= kprobe_saved_eflags
;
102 static inline void restore_previous_kprobe(void)
104 current_kprobe
= kprobe_prev
;
105 kprobe_status
= kprobe_status_prev
;
106 kprobe_old_eflags
= kprobe_old_eflags_prev
;
107 kprobe_saved_eflags
= kprobe_saved_eflags_prev
;
110 static inline void set_current_kprobe(struct kprobe
*p
, struct pt_regs
*regs
)
113 kprobe_saved_eflags
= kprobe_old_eflags
114 = (regs
->eflags
& (TF_MASK
| IF_MASK
));
115 if (is_IF_modifier(p
->opcode
))
116 kprobe_saved_eflags
&= ~IF_MASK
;
119 static inline void prepare_singlestep(struct kprobe
*p
, struct pt_regs
*regs
)
121 regs
->eflags
|= TF_MASK
;
122 regs
->eflags
&= ~IF_MASK
;
123 /*single step inline if the instruction is an int3*/
124 if (p
->opcode
== BREAKPOINT_INSTRUCTION
)
125 regs
->eip
= (unsigned long)p
->addr
;
127 regs
->eip
= (unsigned long)&p
->ainsn
.insn
;
130 void arch_prepare_kretprobe(struct kretprobe
*rp
, struct pt_regs
*regs
)
132 unsigned long *sara
= (unsigned long *)®s
->esp
;
133 struct kretprobe_instance
*ri
;
135 if ((ri
= get_free_rp_inst(rp
)) != NULL
) {
138 ri
->ret_addr
= (kprobe_opcode_t
*) *sara
;
140 /* Replace the return addr with trampoline addr */
141 *sara
= (unsigned long) &kretprobe_trampoline
;
150 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
151 * remain disabled thorough out this function.
153 static int kprobe_handler(struct pt_regs
*regs
)
157 kprobe_opcode_t
*addr
= NULL
;
160 /* We're in an interrupt, but this is clear and BUG()-safe. */
162 /* Check if the application is using LDT entry for its code segment and
163 * calculate the address by reading the base address from the LDT entry.
165 if ((regs
->xcs
& 4) && (current
->mm
)) {
166 lp
= (unsigned long *) ((unsigned long)((regs
->xcs
>> 3) * 8)
167 + (char *) current
->mm
->context
.ldt
);
168 addr
= (kprobe_opcode_t
*) (get_desc_base(lp
) + regs
->eip
-
169 sizeof(kprobe_opcode_t
));
171 addr
= (kprobe_opcode_t
*)(regs
->eip
- sizeof(kprobe_opcode_t
));
173 /* Check we're not actually recursing */
174 if (kprobe_running()) {
175 /* We *are* holding lock here, so this is safe.
176 Disarm the probe we just hit, and ignore it. */
177 p
= get_kprobe(addr
);
179 if (kprobe_status
== KPROBE_HIT_SS
) {
180 regs
->eflags
&= ~TF_MASK
;
181 regs
->eflags
|= kprobe_saved_eflags
;
185 /* We have reentered the kprobe_handler(), since
186 * another probe was hit while within the handler.
187 * We here save the original kprobes variables and
188 * just single step on the instruction of the new probe
189 * without calling any user handlers.
191 save_previous_kprobe();
192 set_current_kprobe(p
, regs
);
194 prepare_singlestep(p
, regs
);
195 kprobe_status
= KPROBE_REENTER
;
199 if (p
->break_handler
&& p
->break_handler(p
, regs
)) {
203 /* If it's not ours, can't be delete race, (we hold lock). */
208 p
= get_kprobe(addr
);
211 if (regs
->eflags
& VM_MASK
) {
212 /* We are in virtual-8086 mode. Return 0 */
216 if (*addr
!= BREAKPOINT_INSTRUCTION
) {
218 * The breakpoint instruction was removed right
219 * after we hit it. Another cpu has removed
220 * either a probepoint or a debugger breakpoint
221 * at this address. In either case, no further
222 * handling of this interrupt is appropriate.
226 /* Not one of ours: let kernel handle it */
230 kprobe_status
= KPROBE_HIT_ACTIVE
;
231 set_current_kprobe(p
, regs
);
233 if (p
->pre_handler
&& p
->pre_handler(p
, regs
))
234 /* handler has already set things up, so skip ss setup */
238 prepare_singlestep(p
, regs
);
239 kprobe_status
= KPROBE_HIT_SS
;
243 preempt_enable_no_resched();
248 * For function-return probes, init_kprobes() establishes a probepoint
249 * here. When a retprobed function returns, this probe is hit and
250 * trampoline_probe_handler() runs, calling the kretprobe's handler.
252 void kretprobe_trampoline_holder(void)
254 asm volatile ( ".global kretprobe_trampoline\n"
255 "kretprobe_trampoline: \n"
260 * Called when we hit the probe point at kretprobe_trampoline
262 int trampoline_probe_handler(struct kprobe
*p
, struct pt_regs
*regs
)
264 struct kretprobe_instance
*ri
= NULL
;
265 struct hlist_head
*head
;
266 struct hlist_node
*node
, *tmp
;
267 unsigned long orig_ret_address
= 0;
268 unsigned long trampoline_address
=(unsigned long)&kretprobe_trampoline
;
270 head
= kretprobe_inst_table_head(current
);
273 * It is possible to have multiple instances associated with a given
274 * task either because an multiple functions in the call path
275 * have a return probe installed on them, and/or more then one return
276 * return probe was registered for a target function.
278 * We can handle this because:
279 * - instances are always inserted at the head of the list
280 * - when multiple return probes are registered for the same
281 * function, the first instance's ret_addr will point to the
282 * real return address, and all the rest will point to
283 * kretprobe_trampoline
285 hlist_for_each_entry_safe(ri
, node
, tmp
, head
, hlist
) {
286 if (ri
->task
!= current
)
287 /* another task is sharing our hash bucket */
290 if (ri
->rp
&& ri
->rp
->handler
)
291 ri
->rp
->handler(ri
, regs
);
293 orig_ret_address
= (unsigned long)ri
->ret_addr
;
296 if (orig_ret_address
!= trampoline_address
)
298 * This is the real return address. Any other
299 * instances associated with this task are for
300 * other calls deeper on the call stack
305 BUG_ON(!orig_ret_address
|| (orig_ret_address
== trampoline_address
));
306 regs
->eip
= orig_ret_address
;
309 preempt_enable_no_resched();
312 * By returning a non-zero value, we are telling
313 * kprobe_handler() that we have handled unlocking
314 * and re-enabling preemption.
320 * Called after single-stepping. p->addr is the address of the
321 * instruction whose first byte has been replaced by the "int 3"
322 * instruction. To avoid the SMP problems that can occur when we
323 * temporarily put back the original opcode to single-step, we
324 * single-stepped a copy of the instruction. The address of this
325 * copy is p->ainsn.insn.
327 * This function prepares to return from the post-single-step
328 * interrupt. We have to fix up the stack as follows:
330 * 0) Except in the case of absolute or indirect jump or call instructions,
331 * the new eip is relative to the copied instruction. We need to make
332 * it relative to the original instruction.
334 * 1) If the single-stepped instruction was pushfl, then the TF and IF
335 * flags are set in the just-pushed eflags, and may need to be cleared.
337 * 2) If the single-stepped instruction was a call, the return address
338 * that is atop the stack is the address following the copied instruction.
339 * We need to make it the address following the original instruction.
341 static void resume_execution(struct kprobe
*p
, struct pt_regs
*regs
)
343 unsigned long *tos
= (unsigned long *)®s
->esp
;
344 unsigned long next_eip
= 0;
345 unsigned long copy_eip
= (unsigned long)&p
->ainsn
.insn
;
346 unsigned long orig_eip
= (unsigned long)p
->addr
;
348 switch (p
->ainsn
.insn
[0]) {
349 case 0x9c: /* pushfl */
350 *tos
&= ~(TF_MASK
| IF_MASK
);
351 *tos
|= kprobe_old_eflags
;
353 case 0xc3: /* ret/lret */
357 regs
->eflags
&= ~TF_MASK
;
358 /* eip is already adjusted, no more changes required*/
360 case 0xe8: /* call relative - Fix return addr */
361 *tos
= orig_eip
+ (*tos
- copy_eip
);
364 if ((p
->ainsn
.insn
[1] & 0x30) == 0x10) {
365 /* call absolute, indirect */
366 /* Fix return addr; eip is correct. */
367 next_eip
= regs
->eip
;
368 *tos
= orig_eip
+ (*tos
- copy_eip
);
369 } else if (((p
->ainsn
.insn
[1] & 0x31) == 0x20) || /* jmp near, absolute indirect */
370 ((p
->ainsn
.insn
[1] & 0x31) == 0x21)) { /* jmp far, absolute indirect */
371 /* eip is correct. */
372 next_eip
= regs
->eip
;
375 case 0xea: /* jmp absolute -- eip is correct */
376 next_eip
= regs
->eip
;
382 regs
->eflags
&= ~TF_MASK
;
384 regs
->eip
= next_eip
;
386 regs
->eip
= orig_eip
+ (regs
->eip
- copy_eip
);
391 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
392 * remain disabled thoroughout this function. And we hold kprobe lock.
394 static inline int post_kprobe_handler(struct pt_regs
*regs
)
396 if (!kprobe_running())
399 if ((kprobe_status
!= KPROBE_REENTER
) && current_kprobe
->post_handler
) {
400 kprobe_status
= KPROBE_HIT_SSDONE
;
401 current_kprobe
->post_handler(current_kprobe
, regs
, 0);
404 resume_execution(current_kprobe
, regs
);
405 regs
->eflags
|= kprobe_saved_eflags
;
407 /*Restore back the original saved kprobes variables and continue. */
408 if (kprobe_status
== KPROBE_REENTER
) {
409 restore_previous_kprobe();
414 preempt_enable_no_resched();
417 * if somebody else is singlestepping across a probe point, eflags
418 * will have TF set, in which case, continue the remaining processing
419 * of do_debug, as if this is not a probe hit.
421 if (regs
->eflags
& TF_MASK
)
427 /* Interrupts disabled, kprobe_lock held. */
428 static inline int kprobe_fault_handler(struct pt_regs
*regs
, int trapnr
)
430 if (current_kprobe
->fault_handler
431 && current_kprobe
->fault_handler(current_kprobe
, regs
, trapnr
))
434 if (kprobe_status
& KPROBE_HIT_SS
) {
435 resume_execution(current_kprobe
, regs
);
436 regs
->eflags
|= kprobe_old_eflags
;
439 preempt_enable_no_resched();
445 * Wrapper routine to for handling exceptions.
447 int kprobe_exceptions_notify(struct notifier_block
*self
, unsigned long val
,
450 struct die_args
*args
= (struct die_args
*)data
;
453 if (kprobe_handler(args
->regs
))
457 if (post_kprobe_handler(args
->regs
))
461 if (kprobe_running() &&
462 kprobe_fault_handler(args
->regs
, args
->trapnr
))
466 if (kprobe_running() &&
467 kprobe_fault_handler(args
->regs
, args
->trapnr
))
476 int setjmp_pre_handler(struct kprobe
*p
, struct pt_regs
*regs
)
478 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
481 jprobe_saved_regs
= *regs
;
482 jprobe_saved_esp
= ®s
->esp
;
483 addr
= (unsigned long)jprobe_saved_esp
;
486 * TBD: As Linus pointed out, gcc assumes that the callee
487 * owns the argument space and could overwrite it, e.g.
488 * tailcall optimization. So, to be absolutely safe
489 * we also save and restore enough stack bytes to cover
492 memcpy(jprobes_stack
, (kprobe_opcode_t
*) addr
, MIN_STACK_SIZE(addr
));
493 regs
->eflags
&= ~IF_MASK
;
494 regs
->eip
= (unsigned long)(jp
->entry
);
498 void jprobe_return(void)
500 preempt_enable_no_resched();
501 asm volatile (" xchgl %%ebx,%%esp \n"
503 " .globl jprobe_return_end \n"
504 " jprobe_return_end: \n"
506 (jprobe_saved_esp
):"memory");
509 int longjmp_break_handler(struct kprobe
*p
, struct pt_regs
*regs
)
511 u8
*addr
= (u8
*) (regs
->eip
- 1);
512 unsigned long stack_addr
= (unsigned long)jprobe_saved_esp
;
513 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
515 if ((addr
> (u8
*) jprobe_return
) && (addr
< (u8
*) jprobe_return_end
)) {
516 if (®s
->esp
!= jprobe_saved_esp
) {
517 struct pt_regs
*saved_regs
=
518 container_of(jprobe_saved_esp
, struct pt_regs
, esp
);
519 printk("current esp %p does not match saved esp %p\n",
520 ®s
->esp
, jprobe_saved_esp
);
521 printk("Saved registers for jprobe %p\n", jp
);
522 show_registers(saved_regs
);
523 printk("Current registers\n");
524 show_registers(regs
);
527 *regs
= jprobe_saved_regs
;
528 memcpy((kprobe_opcode_t
*) stack_addr
, jprobes_stack
,
529 MIN_STACK_SIZE(stack_addr
));
535 static struct kprobe trampoline_p
= {
536 .addr
= (kprobe_opcode_t
*) &kretprobe_trampoline
,
537 .pre_handler
= trampoline_probe_handler
540 int __init
arch_init_kprobes(void)
542 return register_kprobe(&trampoline_p
);