2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
62 #define DRV_VERSION "2.20" /* must be exactly four chars */
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal
[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug
[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long
[] = { 100, 2000, 5000 };
70 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
71 u16 heads
, u16 sectors
);
72 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
);
73 static void ata_dev_xfermask(struct ata_device
*dev
);
75 static unsigned int ata_print_id
= 1;
76 static struct workqueue_struct
*ata_wq
;
78 struct workqueue_struct
*ata_aux_wq
;
80 int atapi_enabled
= 1;
81 module_param(atapi_enabled
, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled
, "Enable discovery of ATAPI devices (0=off, 1=on)");
85 module_param(atapi_dmadir
, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir
, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
89 module_param_named(fua
, libata_fua
, int, 0444);
90 MODULE_PARM_DESC(fua
, "FUA support (0=off, 1=on)");
92 static int ata_probe_timeout
= ATA_TMOUT_INTERNAL
/ HZ
;
93 module_param(ata_probe_timeout
, int, 0444);
94 MODULE_PARM_DESC(ata_probe_timeout
, "Set ATA probing timeout (seconds)");
97 module_param(noacpi
, int, 0444);
98 MODULE_PARM_DESC(noacpi
, "Disables the use of ACPI in suspend/resume when set");
100 MODULE_AUTHOR("Jeff Garzik");
101 MODULE_DESCRIPTION("Library module for ATA devices");
102 MODULE_LICENSE("GPL");
103 MODULE_VERSION(DRV_VERSION
);
107 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
108 * @tf: Taskfile to convert
109 * @fis: Buffer into which data will output
110 * @pmp: Port multiplier port
112 * Converts a standard ATA taskfile to a Serial ATA
113 * FIS structure (Register - Host to Device).
116 * Inherited from caller.
119 void ata_tf_to_fis(const struct ata_taskfile
*tf
, u8
*fis
, u8 pmp
)
121 fis
[0] = 0x27; /* Register - Host to Device FIS */
122 fis
[1] = (pmp
& 0xf) | (1 << 7); /* Port multiplier number,
123 bit 7 indicates Command FIS */
124 fis
[2] = tf
->command
;
125 fis
[3] = tf
->feature
;
132 fis
[8] = tf
->hob_lbal
;
133 fis
[9] = tf
->hob_lbam
;
134 fis
[10] = tf
->hob_lbah
;
135 fis
[11] = tf
->hob_feature
;
138 fis
[13] = tf
->hob_nsect
;
149 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
150 * @fis: Buffer from which data will be input
151 * @tf: Taskfile to output
153 * Converts a serial ATA FIS structure to a standard ATA taskfile.
156 * Inherited from caller.
159 void ata_tf_from_fis(const u8
*fis
, struct ata_taskfile
*tf
)
161 tf
->command
= fis
[2]; /* status */
162 tf
->feature
= fis
[3]; /* error */
169 tf
->hob_lbal
= fis
[8];
170 tf
->hob_lbam
= fis
[9];
171 tf
->hob_lbah
= fis
[10];
174 tf
->hob_nsect
= fis
[13];
177 static const u8 ata_rw_cmds
[] = {
181 ATA_CMD_READ_MULTI_EXT
,
182 ATA_CMD_WRITE_MULTI_EXT
,
186 ATA_CMD_WRITE_MULTI_FUA_EXT
,
190 ATA_CMD_PIO_READ_EXT
,
191 ATA_CMD_PIO_WRITE_EXT
,
204 ATA_CMD_WRITE_FUA_EXT
208 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
209 * @tf: command to examine and configure
210 * @dev: device tf belongs to
212 * Examine the device configuration and tf->flags to calculate
213 * the proper read/write commands and protocol to use.
218 static int ata_rwcmd_protocol(struct ata_taskfile
*tf
, struct ata_device
*dev
)
222 int index
, fua
, lba48
, write
;
224 fua
= (tf
->flags
& ATA_TFLAG_FUA
) ? 4 : 0;
225 lba48
= (tf
->flags
& ATA_TFLAG_LBA48
) ? 2 : 0;
226 write
= (tf
->flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
228 if (dev
->flags
& ATA_DFLAG_PIO
) {
229 tf
->protocol
= ATA_PROT_PIO
;
230 index
= dev
->multi_count
? 0 : 8;
231 } else if (lba48
&& (dev
->ap
->flags
& ATA_FLAG_PIO_LBA48
)) {
232 /* Unable to use DMA due to host limitation */
233 tf
->protocol
= ATA_PROT_PIO
;
234 index
= dev
->multi_count
? 0 : 8;
236 tf
->protocol
= ATA_PROT_DMA
;
240 cmd
= ata_rw_cmds
[index
+ fua
+ lba48
+ write
];
249 * ata_tf_read_block - Read block address from ATA taskfile
250 * @tf: ATA taskfile of interest
251 * @dev: ATA device @tf belongs to
256 * Read block address from @tf. This function can handle all
257 * three address formats - LBA, LBA48 and CHS. tf->protocol and
258 * flags select the address format to use.
261 * Block address read from @tf.
263 u64
ata_tf_read_block(struct ata_taskfile
*tf
, struct ata_device
*dev
)
267 if (tf
->flags
& ATA_TFLAG_LBA
) {
268 if (tf
->flags
& ATA_TFLAG_LBA48
) {
269 block
|= (u64
)tf
->hob_lbah
<< 40;
270 block
|= (u64
)tf
->hob_lbam
<< 32;
271 block
|= tf
->hob_lbal
<< 24;
273 block
|= (tf
->device
& 0xf) << 24;
275 block
|= tf
->lbah
<< 16;
276 block
|= tf
->lbam
<< 8;
281 cyl
= tf
->lbam
| (tf
->lbah
<< 8);
282 head
= tf
->device
& 0xf;
285 block
= (cyl
* dev
->heads
+ head
) * dev
->sectors
+ sect
;
292 * ata_build_rw_tf - Build ATA taskfile for given read/write request
293 * @tf: Target ATA taskfile
294 * @dev: ATA device @tf belongs to
295 * @block: Block address
296 * @n_block: Number of blocks
297 * @tf_flags: RW/FUA etc...
303 * Build ATA taskfile @tf for read/write request described by
304 * @block, @n_block, @tf_flags and @tag on @dev.
308 * 0 on success, -ERANGE if the request is too large for @dev,
309 * -EINVAL if the request is invalid.
311 int ata_build_rw_tf(struct ata_taskfile
*tf
, struct ata_device
*dev
,
312 u64 block
, u32 n_block
, unsigned int tf_flags
,
315 tf
->flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
316 tf
->flags
|= tf_flags
;
318 if (ata_ncq_enabled(dev
) && likely(tag
!= ATA_TAG_INTERNAL
)) {
320 if (!lba_48_ok(block
, n_block
))
323 tf
->protocol
= ATA_PROT_NCQ
;
324 tf
->flags
|= ATA_TFLAG_LBA
| ATA_TFLAG_LBA48
;
326 if (tf
->flags
& ATA_TFLAG_WRITE
)
327 tf
->command
= ATA_CMD_FPDMA_WRITE
;
329 tf
->command
= ATA_CMD_FPDMA_READ
;
331 tf
->nsect
= tag
<< 3;
332 tf
->hob_feature
= (n_block
>> 8) & 0xff;
333 tf
->feature
= n_block
& 0xff;
335 tf
->hob_lbah
= (block
>> 40) & 0xff;
336 tf
->hob_lbam
= (block
>> 32) & 0xff;
337 tf
->hob_lbal
= (block
>> 24) & 0xff;
338 tf
->lbah
= (block
>> 16) & 0xff;
339 tf
->lbam
= (block
>> 8) & 0xff;
340 tf
->lbal
= block
& 0xff;
343 if (tf
->flags
& ATA_TFLAG_FUA
)
344 tf
->device
|= 1 << 7;
345 } else if (dev
->flags
& ATA_DFLAG_LBA
) {
346 tf
->flags
|= ATA_TFLAG_LBA
;
348 if (lba_28_ok(block
, n_block
)) {
350 tf
->device
|= (block
>> 24) & 0xf;
351 } else if (lba_48_ok(block
, n_block
)) {
352 if (!(dev
->flags
& ATA_DFLAG_LBA48
))
356 tf
->flags
|= ATA_TFLAG_LBA48
;
358 tf
->hob_nsect
= (n_block
>> 8) & 0xff;
360 tf
->hob_lbah
= (block
>> 40) & 0xff;
361 tf
->hob_lbam
= (block
>> 32) & 0xff;
362 tf
->hob_lbal
= (block
>> 24) & 0xff;
364 /* request too large even for LBA48 */
367 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
370 tf
->nsect
= n_block
& 0xff;
372 tf
->lbah
= (block
>> 16) & 0xff;
373 tf
->lbam
= (block
>> 8) & 0xff;
374 tf
->lbal
= block
& 0xff;
376 tf
->device
|= ATA_LBA
;
379 u32 sect
, head
, cyl
, track
;
381 /* The request -may- be too large for CHS addressing. */
382 if (!lba_28_ok(block
, n_block
))
385 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
388 /* Convert LBA to CHS */
389 track
= (u32
)block
/ dev
->sectors
;
390 cyl
= track
/ dev
->heads
;
391 head
= track
% dev
->heads
;
392 sect
= (u32
)block
% dev
->sectors
+ 1;
394 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
395 (u32
)block
, track
, cyl
, head
, sect
);
397 /* Check whether the converted CHS can fit.
401 if ((cyl
>> 16) || (head
>> 4) || (sect
>> 8) || (!sect
))
404 tf
->nsect
= n_block
& 0xff; /* Sector count 0 means 256 sectors */
415 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
416 * @pio_mask: pio_mask
417 * @mwdma_mask: mwdma_mask
418 * @udma_mask: udma_mask
420 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
421 * unsigned int xfer_mask.
429 static unsigned int ata_pack_xfermask(unsigned int pio_mask
,
430 unsigned int mwdma_mask
,
431 unsigned int udma_mask
)
433 return ((pio_mask
<< ATA_SHIFT_PIO
) & ATA_MASK_PIO
) |
434 ((mwdma_mask
<< ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
) |
435 ((udma_mask
<< ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
);
439 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
440 * @xfer_mask: xfer_mask to unpack
441 * @pio_mask: resulting pio_mask
442 * @mwdma_mask: resulting mwdma_mask
443 * @udma_mask: resulting udma_mask
445 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
446 * Any NULL distination masks will be ignored.
448 static void ata_unpack_xfermask(unsigned int xfer_mask
,
449 unsigned int *pio_mask
,
450 unsigned int *mwdma_mask
,
451 unsigned int *udma_mask
)
454 *pio_mask
= (xfer_mask
& ATA_MASK_PIO
) >> ATA_SHIFT_PIO
;
456 *mwdma_mask
= (xfer_mask
& ATA_MASK_MWDMA
) >> ATA_SHIFT_MWDMA
;
458 *udma_mask
= (xfer_mask
& ATA_MASK_UDMA
) >> ATA_SHIFT_UDMA
;
461 static const struct ata_xfer_ent
{
465 { ATA_SHIFT_PIO
, ATA_BITS_PIO
, XFER_PIO_0
},
466 { ATA_SHIFT_MWDMA
, ATA_BITS_MWDMA
, XFER_MW_DMA_0
},
467 { ATA_SHIFT_UDMA
, ATA_BITS_UDMA
, XFER_UDMA_0
},
472 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
473 * @xfer_mask: xfer_mask of interest
475 * Return matching XFER_* value for @xfer_mask. Only the highest
476 * bit of @xfer_mask is considered.
482 * Matching XFER_* value, 0 if no match found.
484 static u8
ata_xfer_mask2mode(unsigned int xfer_mask
)
486 int highbit
= fls(xfer_mask
) - 1;
487 const struct ata_xfer_ent
*ent
;
489 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
490 if (highbit
>= ent
->shift
&& highbit
< ent
->shift
+ ent
->bits
)
491 return ent
->base
+ highbit
- ent
->shift
;
496 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
497 * @xfer_mode: XFER_* of interest
499 * Return matching xfer_mask for @xfer_mode.
505 * Matching xfer_mask, 0 if no match found.
507 static unsigned int ata_xfer_mode2mask(u8 xfer_mode
)
509 const struct ata_xfer_ent
*ent
;
511 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
512 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
513 return 1 << (ent
->shift
+ xfer_mode
- ent
->base
);
518 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
519 * @xfer_mode: XFER_* of interest
521 * Return matching xfer_shift for @xfer_mode.
527 * Matching xfer_shift, -1 if no match found.
529 static int ata_xfer_mode2shift(unsigned int xfer_mode
)
531 const struct ata_xfer_ent
*ent
;
533 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
534 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
540 * ata_mode_string - convert xfer_mask to string
541 * @xfer_mask: mask of bits supported; only highest bit counts.
543 * Determine string which represents the highest speed
544 * (highest bit in @modemask).
550 * Constant C string representing highest speed listed in
551 * @mode_mask, or the constant C string "<n/a>".
553 static const char *ata_mode_string(unsigned int xfer_mask
)
555 static const char * const xfer_mode_str
[] = {
579 highbit
= fls(xfer_mask
) - 1;
580 if (highbit
>= 0 && highbit
< ARRAY_SIZE(xfer_mode_str
))
581 return xfer_mode_str
[highbit
];
585 static const char *sata_spd_string(unsigned int spd
)
587 static const char * const spd_str
[] = {
592 if (spd
== 0 || (spd
- 1) >= ARRAY_SIZE(spd_str
))
594 return spd_str
[spd
- 1];
597 void ata_dev_disable(struct ata_device
*dev
)
599 if (ata_dev_enabled(dev
) && ata_msg_drv(dev
->ap
)) {
600 ata_dev_printk(dev
, KERN_WARNING
, "disabled\n");
601 ata_down_xfermask_limit(dev
, ATA_DNXFER_FORCE_PIO0
|
608 * ata_devchk - PATA device presence detection
609 * @ap: ATA channel to examine
610 * @device: Device to examine (starting at zero)
612 * This technique was originally described in
613 * Hale Landis's ATADRVR (www.ata-atapi.com), and
614 * later found its way into the ATA/ATAPI spec.
616 * Write a pattern to the ATA shadow registers,
617 * and if a device is present, it will respond by
618 * correctly storing and echoing back the
619 * ATA shadow register contents.
625 static unsigned int ata_devchk(struct ata_port
*ap
, unsigned int device
)
627 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
630 ap
->ops
->dev_select(ap
, device
);
632 iowrite8(0x55, ioaddr
->nsect_addr
);
633 iowrite8(0xaa, ioaddr
->lbal_addr
);
635 iowrite8(0xaa, ioaddr
->nsect_addr
);
636 iowrite8(0x55, ioaddr
->lbal_addr
);
638 iowrite8(0x55, ioaddr
->nsect_addr
);
639 iowrite8(0xaa, ioaddr
->lbal_addr
);
641 nsect
= ioread8(ioaddr
->nsect_addr
);
642 lbal
= ioread8(ioaddr
->lbal_addr
);
644 if ((nsect
== 0x55) && (lbal
== 0xaa))
645 return 1; /* we found a device */
647 return 0; /* nothing found */
651 * ata_dev_classify - determine device type based on ATA-spec signature
652 * @tf: ATA taskfile register set for device to be identified
654 * Determine from taskfile register contents whether a device is
655 * ATA or ATAPI, as per "Signature and persistence" section
656 * of ATA/PI spec (volume 1, sect 5.14).
662 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
663 * the event of failure.
666 unsigned int ata_dev_classify(const struct ata_taskfile
*tf
)
668 /* Apple's open source Darwin code hints that some devices only
669 * put a proper signature into the LBA mid/high registers,
670 * So, we only check those. It's sufficient for uniqueness.
673 if (((tf
->lbam
== 0) && (tf
->lbah
== 0)) ||
674 ((tf
->lbam
== 0x3c) && (tf
->lbah
== 0xc3))) {
675 DPRINTK("found ATA device by sig\n");
679 if (((tf
->lbam
== 0x14) && (tf
->lbah
== 0xeb)) ||
680 ((tf
->lbam
== 0x69) && (tf
->lbah
== 0x96))) {
681 DPRINTK("found ATAPI device by sig\n");
682 return ATA_DEV_ATAPI
;
685 DPRINTK("unknown device\n");
686 return ATA_DEV_UNKNOWN
;
690 * ata_dev_try_classify - Parse returned ATA device signature
691 * @ap: ATA channel to examine
692 * @device: Device to examine (starting at zero)
693 * @r_err: Value of error register on completion
695 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
696 * an ATA/ATAPI-defined set of values is placed in the ATA
697 * shadow registers, indicating the results of device detection
700 * Select the ATA device, and read the values from the ATA shadow
701 * registers. Then parse according to the Error register value,
702 * and the spec-defined values examined by ata_dev_classify().
708 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
712 ata_dev_try_classify(struct ata_port
*ap
, unsigned int device
, u8
*r_err
)
714 struct ata_taskfile tf
;
718 ap
->ops
->dev_select(ap
, device
);
720 memset(&tf
, 0, sizeof(tf
));
722 ap
->ops
->tf_read(ap
, &tf
);
727 /* see if device passed diags: if master then continue and warn later */
728 if (err
== 0 && device
== 0)
729 /* diagnostic fail : do nothing _YET_ */
730 ap
->device
[device
].horkage
|= ATA_HORKAGE_DIAGNOSTIC
;
733 else if ((device
== 0) && (err
== 0x81))
738 /* determine if device is ATA or ATAPI */
739 class = ata_dev_classify(&tf
);
741 if (class == ATA_DEV_UNKNOWN
)
743 if ((class == ATA_DEV_ATA
) && (ata_chk_status(ap
) == 0))
749 * ata_id_string - Convert IDENTIFY DEVICE page into string
750 * @id: IDENTIFY DEVICE results we will examine
751 * @s: string into which data is output
752 * @ofs: offset into identify device page
753 * @len: length of string to return. must be an even number.
755 * The strings in the IDENTIFY DEVICE page are broken up into
756 * 16-bit chunks. Run through the string, and output each
757 * 8-bit chunk linearly, regardless of platform.
763 void ata_id_string(const u16
*id
, unsigned char *s
,
764 unsigned int ofs
, unsigned int len
)
783 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
784 * @id: IDENTIFY DEVICE results we will examine
785 * @s: string into which data is output
786 * @ofs: offset into identify device page
787 * @len: length of string to return. must be an odd number.
789 * This function is identical to ata_id_string except that it
790 * trims trailing spaces and terminates the resulting string with
791 * null. @len must be actual maximum length (even number) + 1.
796 void ata_id_c_string(const u16
*id
, unsigned char *s
,
797 unsigned int ofs
, unsigned int len
)
803 ata_id_string(id
, s
, ofs
, len
- 1);
805 p
= s
+ strnlen(s
, len
- 1);
806 while (p
> s
&& p
[-1] == ' ')
811 static u64
ata_id_n_sectors(const u16
*id
)
813 if (ata_id_has_lba(id
)) {
814 if (ata_id_has_lba48(id
))
815 return ata_id_u64(id
, 100);
817 return ata_id_u32(id
, 60);
819 if (ata_id_current_chs_valid(id
))
820 return ata_id_u32(id
, 57);
822 return id
[1] * id
[3] * id
[6];
827 * ata_id_to_dma_mode - Identify DMA mode from id block
828 * @dev: device to identify
829 * @mode: mode to assume if we cannot tell
831 * Set up the timing values for the device based upon the identify
832 * reported values for the DMA mode. This function is used by drivers
833 * which rely upon firmware configured modes, but wish to report the
834 * mode correctly when possible.
836 * In addition we emit similarly formatted messages to the default
837 * ata_dev_set_mode handler, in order to provide consistency of
841 void ata_id_to_dma_mode(struct ata_device
*dev
, u8 unknown
)
846 /* Pack the DMA modes */
847 mask
= ((dev
->id
[63] >> 8) << ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
;
848 if (dev
->id
[53] & 0x04)
849 mask
|= ((dev
->id
[88] >> 8) << ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
;
851 /* Select the mode in use */
852 mode
= ata_xfer_mask2mode(mask
);
855 ata_dev_printk(dev
, KERN_INFO
, "configured for %s\n",
856 ata_mode_string(mask
));
858 /* SWDMA perhaps ? */
860 ata_dev_printk(dev
, KERN_INFO
, "configured for DMA\n");
863 /* Configure the device reporting */
864 dev
->xfer_mode
= mode
;
865 dev
->xfer_shift
= ata_xfer_mode2shift(mode
);
869 * ata_noop_dev_select - Select device 0/1 on ATA bus
870 * @ap: ATA channel to manipulate
871 * @device: ATA device (numbered from zero) to select
873 * This function performs no actual function.
875 * May be used as the dev_select() entry in ata_port_operations.
880 void ata_noop_dev_select (struct ata_port
*ap
, unsigned int device
)
886 * ata_std_dev_select - Select device 0/1 on ATA bus
887 * @ap: ATA channel to manipulate
888 * @device: ATA device (numbered from zero) to select
890 * Use the method defined in the ATA specification to
891 * make either device 0, or device 1, active on the
892 * ATA channel. Works with both PIO and MMIO.
894 * May be used as the dev_select() entry in ata_port_operations.
900 void ata_std_dev_select (struct ata_port
*ap
, unsigned int device
)
905 tmp
= ATA_DEVICE_OBS
;
907 tmp
= ATA_DEVICE_OBS
| ATA_DEV1
;
909 iowrite8(tmp
, ap
->ioaddr
.device_addr
);
910 ata_pause(ap
); /* needed; also flushes, for mmio */
914 * ata_dev_select - Select device 0/1 on ATA bus
915 * @ap: ATA channel to manipulate
916 * @device: ATA device (numbered from zero) to select
917 * @wait: non-zero to wait for Status register BSY bit to clear
918 * @can_sleep: non-zero if context allows sleeping
920 * Use the method defined in the ATA specification to
921 * make either device 0, or device 1, active on the
924 * This is a high-level version of ata_std_dev_select(),
925 * which additionally provides the services of inserting
926 * the proper pauses and status polling, where needed.
932 void ata_dev_select(struct ata_port
*ap
, unsigned int device
,
933 unsigned int wait
, unsigned int can_sleep
)
935 if (ata_msg_probe(ap
))
936 ata_port_printk(ap
, KERN_INFO
, "ata_dev_select: ENTER, "
937 "device %u, wait %u\n", device
, wait
);
942 ap
->ops
->dev_select(ap
, device
);
945 if (can_sleep
&& ap
->device
[device
].class == ATA_DEV_ATAPI
)
952 * ata_dump_id - IDENTIFY DEVICE info debugging output
953 * @id: IDENTIFY DEVICE page to dump
955 * Dump selected 16-bit words from the given IDENTIFY DEVICE
962 static inline void ata_dump_id(const u16
*id
)
964 DPRINTK("49==0x%04x "
974 DPRINTK("80==0x%04x "
984 DPRINTK("88==0x%04x "
991 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
992 * @id: IDENTIFY data to compute xfer mask from
994 * Compute the xfermask for this device. This is not as trivial
995 * as it seems if we must consider early devices correctly.
997 * FIXME: pre IDE drive timing (do we care ?).
1005 static unsigned int ata_id_xfermask(const u16
*id
)
1007 unsigned int pio_mask
, mwdma_mask
, udma_mask
;
1009 /* Usual case. Word 53 indicates word 64 is valid */
1010 if (id
[ATA_ID_FIELD_VALID
] & (1 << 1)) {
1011 pio_mask
= id
[ATA_ID_PIO_MODES
] & 0x03;
1015 /* If word 64 isn't valid then Word 51 high byte holds
1016 * the PIO timing number for the maximum. Turn it into
1019 u8 mode
= (id
[ATA_ID_OLD_PIO_MODES
] >> 8) & 0xFF;
1020 if (mode
< 5) /* Valid PIO range */
1021 pio_mask
= (2 << mode
) - 1;
1025 /* But wait.. there's more. Design your standards by
1026 * committee and you too can get a free iordy field to
1027 * process. However its the speeds not the modes that
1028 * are supported... Note drivers using the timing API
1029 * will get this right anyway
1033 mwdma_mask
= id
[ATA_ID_MWDMA_MODES
] & 0x07;
1035 if (ata_id_is_cfa(id
)) {
1037 * Process compact flash extended modes
1039 int pio
= id
[163] & 0x7;
1040 int dma
= (id
[163] >> 3) & 7;
1043 pio_mask
|= (1 << 5);
1045 pio_mask
|= (1 << 6);
1047 mwdma_mask
|= (1 << 3);
1049 mwdma_mask
|= (1 << 4);
1053 if (id
[ATA_ID_FIELD_VALID
] & (1 << 2))
1054 udma_mask
= id
[ATA_ID_UDMA_MODES
] & 0xff;
1056 return ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
1060 * ata_port_queue_task - Queue port_task
1061 * @ap: The ata_port to queue port_task for
1062 * @fn: workqueue function to be scheduled
1063 * @data: data for @fn to use
1064 * @delay: delay time for workqueue function
1066 * Schedule @fn(@data) for execution after @delay jiffies using
1067 * port_task. There is one port_task per port and it's the
1068 * user(low level driver)'s responsibility to make sure that only
1069 * one task is active at any given time.
1071 * libata core layer takes care of synchronization between
1072 * port_task and EH. ata_port_queue_task() may be ignored for EH
1076 * Inherited from caller.
1078 void ata_port_queue_task(struct ata_port
*ap
, work_func_t fn
, void *data
,
1079 unsigned long delay
)
1083 if (ap
->pflags
& ATA_PFLAG_FLUSH_PORT_TASK
)
1086 PREPARE_DELAYED_WORK(&ap
->port_task
, fn
);
1087 ap
->port_task_data
= data
;
1089 rc
= queue_delayed_work(ata_wq
, &ap
->port_task
, delay
);
1091 /* rc == 0 means that another user is using port task */
1096 * ata_port_flush_task - Flush port_task
1097 * @ap: The ata_port to flush port_task for
1099 * After this function completes, port_task is guranteed not to
1100 * be running or scheduled.
1103 * Kernel thread context (may sleep)
1105 void ata_port_flush_task(struct ata_port
*ap
)
1107 unsigned long flags
;
1111 spin_lock_irqsave(ap
->lock
, flags
);
1112 ap
->pflags
|= ATA_PFLAG_FLUSH_PORT_TASK
;
1113 spin_unlock_irqrestore(ap
->lock
, flags
);
1115 DPRINTK("flush #1\n");
1116 flush_workqueue(ata_wq
);
1119 * At this point, if a task is running, it's guaranteed to see
1120 * the FLUSH flag; thus, it will never queue pio tasks again.
1123 if (!cancel_delayed_work(&ap
->port_task
)) {
1124 if (ata_msg_ctl(ap
))
1125 ata_port_printk(ap
, KERN_DEBUG
, "%s: flush #2\n",
1127 flush_workqueue(ata_wq
);
1130 spin_lock_irqsave(ap
->lock
, flags
);
1131 ap
->pflags
&= ~ATA_PFLAG_FLUSH_PORT_TASK
;
1132 spin_unlock_irqrestore(ap
->lock
, flags
);
1134 if (ata_msg_ctl(ap
))
1135 ata_port_printk(ap
, KERN_DEBUG
, "%s: EXIT\n", __FUNCTION__
);
1138 static void ata_qc_complete_internal(struct ata_queued_cmd
*qc
)
1140 struct completion
*waiting
= qc
->private_data
;
1146 * ata_exec_internal_sg - execute libata internal command
1147 * @dev: Device to which the command is sent
1148 * @tf: Taskfile registers for the command and the result
1149 * @cdb: CDB for packet command
1150 * @dma_dir: Data tranfer direction of the command
1151 * @sg: sg list for the data buffer of the command
1152 * @n_elem: Number of sg entries
1154 * Executes libata internal command with timeout. @tf contains
1155 * command on entry and result on return. Timeout and error
1156 * conditions are reported via return value. No recovery action
1157 * is taken after a command times out. It's caller's duty to
1158 * clean up after timeout.
1161 * None. Should be called with kernel context, might sleep.
1164 * Zero on success, AC_ERR_* mask on failure
1166 unsigned ata_exec_internal_sg(struct ata_device
*dev
,
1167 struct ata_taskfile
*tf
, const u8
*cdb
,
1168 int dma_dir
, struct scatterlist
*sg
,
1169 unsigned int n_elem
)
1171 struct ata_port
*ap
= dev
->ap
;
1172 u8 command
= tf
->command
;
1173 struct ata_queued_cmd
*qc
;
1174 unsigned int tag
, preempted_tag
;
1175 u32 preempted_sactive
, preempted_qc_active
;
1176 DECLARE_COMPLETION_ONSTACK(wait
);
1177 unsigned long flags
;
1178 unsigned int err_mask
;
1181 spin_lock_irqsave(ap
->lock
, flags
);
1183 /* no internal command while frozen */
1184 if (ap
->pflags
& ATA_PFLAG_FROZEN
) {
1185 spin_unlock_irqrestore(ap
->lock
, flags
);
1186 return AC_ERR_SYSTEM
;
1189 /* initialize internal qc */
1191 /* XXX: Tag 0 is used for drivers with legacy EH as some
1192 * drivers choke if any other tag is given. This breaks
1193 * ata_tag_internal() test for those drivers. Don't use new
1194 * EH stuff without converting to it.
1196 if (ap
->ops
->error_handler
)
1197 tag
= ATA_TAG_INTERNAL
;
1201 if (test_and_set_bit(tag
, &ap
->qc_allocated
))
1203 qc
= __ata_qc_from_tag(ap
, tag
);
1211 preempted_tag
= ap
->active_tag
;
1212 preempted_sactive
= ap
->sactive
;
1213 preempted_qc_active
= ap
->qc_active
;
1214 ap
->active_tag
= ATA_TAG_POISON
;
1218 /* prepare & issue qc */
1221 memcpy(qc
->cdb
, cdb
, ATAPI_CDB_LEN
);
1222 qc
->flags
|= ATA_QCFLAG_RESULT_TF
;
1223 qc
->dma_dir
= dma_dir
;
1224 if (dma_dir
!= DMA_NONE
) {
1225 unsigned int i
, buflen
= 0;
1227 for (i
= 0; i
< n_elem
; i
++)
1228 buflen
+= sg
[i
].length
;
1230 ata_sg_init(qc
, sg
, n_elem
);
1231 qc
->nbytes
= buflen
;
1234 qc
->private_data
= &wait
;
1235 qc
->complete_fn
= ata_qc_complete_internal
;
1239 spin_unlock_irqrestore(ap
->lock
, flags
);
1241 rc
= wait_for_completion_timeout(&wait
, ata_probe_timeout
);
1243 ata_port_flush_task(ap
);
1246 spin_lock_irqsave(ap
->lock
, flags
);
1248 /* We're racing with irq here. If we lose, the
1249 * following test prevents us from completing the qc
1250 * twice. If we win, the port is frozen and will be
1251 * cleaned up by ->post_internal_cmd().
1253 if (qc
->flags
& ATA_QCFLAG_ACTIVE
) {
1254 qc
->err_mask
|= AC_ERR_TIMEOUT
;
1256 if (ap
->ops
->error_handler
)
1257 ata_port_freeze(ap
);
1259 ata_qc_complete(qc
);
1261 if (ata_msg_warn(ap
))
1262 ata_dev_printk(dev
, KERN_WARNING
,
1263 "qc timeout (cmd 0x%x)\n", command
);
1266 spin_unlock_irqrestore(ap
->lock
, flags
);
1269 /* do post_internal_cmd */
1270 if (ap
->ops
->post_internal_cmd
)
1271 ap
->ops
->post_internal_cmd(qc
);
1273 if ((qc
->flags
& ATA_QCFLAG_FAILED
) && !qc
->err_mask
) {
1274 if (ata_msg_warn(ap
))
1275 ata_dev_printk(dev
, KERN_WARNING
,
1276 "zero err_mask for failed "
1277 "internal command, assuming AC_ERR_OTHER\n");
1278 qc
->err_mask
|= AC_ERR_OTHER
;
1282 spin_lock_irqsave(ap
->lock
, flags
);
1284 *tf
= qc
->result_tf
;
1285 err_mask
= qc
->err_mask
;
1288 ap
->active_tag
= preempted_tag
;
1289 ap
->sactive
= preempted_sactive
;
1290 ap
->qc_active
= preempted_qc_active
;
1292 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1293 * Until those drivers are fixed, we detect the condition
1294 * here, fail the command with AC_ERR_SYSTEM and reenable the
1297 * Note that this doesn't change any behavior as internal
1298 * command failure results in disabling the device in the
1299 * higher layer for LLDDs without new reset/EH callbacks.
1301 * Kill the following code as soon as those drivers are fixed.
1303 if (ap
->flags
& ATA_FLAG_DISABLED
) {
1304 err_mask
|= AC_ERR_SYSTEM
;
1308 spin_unlock_irqrestore(ap
->lock
, flags
);
1314 * ata_exec_internal - execute libata internal command
1315 * @dev: Device to which the command is sent
1316 * @tf: Taskfile registers for the command and the result
1317 * @cdb: CDB for packet command
1318 * @dma_dir: Data tranfer direction of the command
1319 * @buf: Data buffer of the command
1320 * @buflen: Length of data buffer
1322 * Wrapper around ata_exec_internal_sg() which takes simple
1323 * buffer instead of sg list.
1326 * None. Should be called with kernel context, might sleep.
1329 * Zero on success, AC_ERR_* mask on failure
1331 unsigned ata_exec_internal(struct ata_device
*dev
,
1332 struct ata_taskfile
*tf
, const u8
*cdb
,
1333 int dma_dir
, void *buf
, unsigned int buflen
)
1335 struct scatterlist
*psg
= NULL
, sg
;
1336 unsigned int n_elem
= 0;
1338 if (dma_dir
!= DMA_NONE
) {
1340 sg_init_one(&sg
, buf
, buflen
);
1345 return ata_exec_internal_sg(dev
, tf
, cdb
, dma_dir
, psg
, n_elem
);
1349 * ata_do_simple_cmd - execute simple internal command
1350 * @dev: Device to which the command is sent
1351 * @cmd: Opcode to execute
1353 * Execute a 'simple' command, that only consists of the opcode
1354 * 'cmd' itself, without filling any other registers
1357 * Kernel thread context (may sleep).
1360 * Zero on success, AC_ERR_* mask on failure
1362 unsigned int ata_do_simple_cmd(struct ata_device
*dev
, u8 cmd
)
1364 struct ata_taskfile tf
;
1366 ata_tf_init(dev
, &tf
);
1369 tf
.flags
|= ATA_TFLAG_DEVICE
;
1370 tf
.protocol
= ATA_PROT_NODATA
;
1372 return ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
1376 * ata_pio_need_iordy - check if iordy needed
1379 * Check if the current speed of the device requires IORDY. Used
1380 * by various controllers for chip configuration.
1383 unsigned int ata_pio_need_iordy(const struct ata_device
*adev
)
1386 int speed
= adev
->pio_mode
- XFER_PIO_0
;
1393 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1395 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE */
1396 pio
= adev
->id
[ATA_ID_EIDE_PIO
];
1397 /* Is the speed faster than the drive allows non IORDY ? */
1399 /* This is cycle times not frequency - watch the logic! */
1400 if (pio
> 240) /* PIO2 is 240nS per cycle */
1409 * ata_dev_read_id - Read ID data from the specified device
1410 * @dev: target device
1411 * @p_class: pointer to class of the target device (may be changed)
1412 * @flags: ATA_READID_* flags
1413 * @id: buffer to read IDENTIFY data into
1415 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1416 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1417 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1418 * for pre-ATA4 drives.
1421 * Kernel thread context (may sleep)
1424 * 0 on success, -errno otherwise.
1426 int ata_dev_read_id(struct ata_device
*dev
, unsigned int *p_class
,
1427 unsigned int flags
, u16
*id
)
1429 struct ata_port
*ap
= dev
->ap
;
1430 unsigned int class = *p_class
;
1431 struct ata_taskfile tf
;
1432 unsigned int err_mask
= 0;
1436 if (ata_msg_ctl(ap
))
1437 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __FUNCTION__
);
1439 ata_dev_select(ap
, dev
->devno
, 1, 1); /* select device 0/1 */
1442 ata_tf_init(dev
, &tf
);
1446 tf
.command
= ATA_CMD_ID_ATA
;
1449 tf
.command
= ATA_CMD_ID_ATAPI
;
1453 reason
= "unsupported class";
1457 tf
.protocol
= ATA_PROT_PIO
;
1459 /* Some devices choke if TF registers contain garbage. Make
1460 * sure those are properly initialized.
1462 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
1464 /* Device presence detection is unreliable on some
1465 * controllers. Always poll IDENTIFY if available.
1467 tf
.flags
|= ATA_TFLAG_POLLING
;
1469 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_FROM_DEVICE
,
1470 id
, sizeof(id
[0]) * ATA_ID_WORDS
);
1472 if (err_mask
& AC_ERR_NODEV_HINT
) {
1473 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1474 ap
->print_id
, dev
->devno
);
1479 reason
= "I/O error";
1483 swap_buf_le16(id
, ATA_ID_WORDS
);
1487 reason
= "device reports illegal type";
1489 if (class == ATA_DEV_ATA
) {
1490 if (!ata_id_is_ata(id
) && !ata_id_is_cfa(id
))
1493 if (ata_id_is_ata(id
))
1497 if ((flags
& ATA_READID_POSTRESET
) && class == ATA_DEV_ATA
) {
1499 * The exact sequence expected by certain pre-ATA4 drives is:
1502 * INITIALIZE DEVICE PARAMETERS
1504 * Some drives were very specific about that exact sequence.
1506 if (ata_id_major_version(id
) < 4 || !ata_id_has_lba(id
)) {
1507 err_mask
= ata_dev_init_params(dev
, id
[3], id
[6]);
1510 reason
= "INIT_DEV_PARAMS failed";
1514 /* current CHS translation info (id[53-58]) might be
1515 * changed. reread the identify device info.
1517 flags
&= ~ATA_READID_POSTRESET
;
1527 if (ata_msg_warn(ap
))
1528 ata_dev_printk(dev
, KERN_WARNING
, "failed to IDENTIFY "
1529 "(%s, err_mask=0x%x)\n", reason
, err_mask
);
1533 static inline u8
ata_dev_knobble(struct ata_device
*dev
)
1535 return ((dev
->ap
->cbl
== ATA_CBL_SATA
) && (!ata_id_is_sata(dev
->id
)));
1538 static void ata_dev_config_ncq(struct ata_device
*dev
,
1539 char *desc
, size_t desc_sz
)
1541 struct ata_port
*ap
= dev
->ap
;
1542 int hdepth
= 0, ddepth
= ata_id_queue_depth(dev
->id
);
1544 if (!ata_id_has_ncq(dev
->id
)) {
1548 if (ata_device_blacklisted(dev
) & ATA_HORKAGE_NONCQ
) {
1549 snprintf(desc
, desc_sz
, "NCQ (not used)");
1552 if (ap
->flags
& ATA_FLAG_NCQ
) {
1553 hdepth
= min(ap
->scsi_host
->can_queue
, ATA_MAX_QUEUE
- 1);
1554 dev
->flags
|= ATA_DFLAG_NCQ
;
1557 if (hdepth
>= ddepth
)
1558 snprintf(desc
, desc_sz
, "NCQ (depth %d)", ddepth
);
1560 snprintf(desc
, desc_sz
, "NCQ (depth %d/%d)", hdepth
, ddepth
);
1563 static void ata_set_port_max_cmd_len(struct ata_port
*ap
)
1567 if (ap
->scsi_host
) {
1568 unsigned int len
= 0;
1570 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
1571 len
= max(len
, ap
->device
[i
].cdb_len
);
1573 ap
->scsi_host
->max_cmd_len
= len
;
1578 * ata_dev_configure - Configure the specified ATA/ATAPI device
1579 * @dev: Target device to configure
1581 * Configure @dev according to @dev->id. Generic and low-level
1582 * driver specific fixups are also applied.
1585 * Kernel thread context (may sleep)
1588 * 0 on success, -errno otherwise
1590 int ata_dev_configure(struct ata_device
*dev
)
1592 struct ata_port
*ap
= dev
->ap
;
1593 int print_info
= ap
->eh_context
.i
.flags
& ATA_EHI_PRINTINFO
;
1594 const u16
*id
= dev
->id
;
1595 unsigned int xfer_mask
;
1596 char revbuf
[7]; /* XYZ-99\0 */
1597 char fwrevbuf
[ATA_ID_FW_REV_LEN
+1];
1598 char modelbuf
[ATA_ID_PROD_LEN
+1];
1601 if (!ata_dev_enabled(dev
) && ata_msg_info(ap
)) {
1602 ata_dev_printk(dev
, KERN_INFO
, "%s: ENTER/EXIT -- nodev\n",
1607 if (ata_msg_probe(ap
))
1608 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __FUNCTION__
);
1611 rc
= ata_acpi_push_id(ap
, dev
->devno
);
1613 ata_dev_printk(dev
, KERN_WARNING
, "failed to set _SDD(%d)\n",
1617 /* retrieve and execute the ATA task file of _GTF */
1618 ata_acpi_exec_tfs(ap
);
1620 /* print device capabilities */
1621 if (ata_msg_probe(ap
))
1622 ata_dev_printk(dev
, KERN_DEBUG
,
1623 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1624 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1626 id
[49], id
[82], id
[83], id
[84],
1627 id
[85], id
[86], id
[87], id
[88]);
1629 /* initialize to-be-configured parameters */
1630 dev
->flags
&= ~ATA_DFLAG_CFG_MASK
;
1631 dev
->max_sectors
= 0;
1639 * common ATA, ATAPI feature tests
1642 /* find max transfer mode; for printk only */
1643 xfer_mask
= ata_id_xfermask(id
);
1645 if (ata_msg_probe(ap
))
1648 /* ATA-specific feature tests */
1649 if (dev
->class == ATA_DEV_ATA
) {
1650 if (ata_id_is_cfa(id
)) {
1651 if (id
[162] & 1) /* CPRM may make this media unusable */
1652 ata_dev_printk(dev
, KERN_WARNING
,
1653 "supports DRM functions and may "
1654 "not be fully accessable.\n");
1655 snprintf(revbuf
, 7, "CFA");
1658 snprintf(revbuf
, 7, "ATA-%d", ata_id_major_version(id
));
1660 dev
->n_sectors
= ata_id_n_sectors(id
);
1662 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1663 ata_id_c_string(dev
->id
, fwrevbuf
, ATA_ID_FW_REV
,
1666 ata_id_c_string(dev
->id
, modelbuf
, ATA_ID_PROD
,
1669 if (dev
->id
[59] & 0x100)
1670 dev
->multi_count
= dev
->id
[59] & 0xff;
1672 if (ata_id_has_lba(id
)) {
1673 const char *lba_desc
;
1677 dev
->flags
|= ATA_DFLAG_LBA
;
1678 if (ata_id_has_lba48(id
)) {
1679 dev
->flags
|= ATA_DFLAG_LBA48
;
1682 if (dev
->n_sectors
>= (1UL << 28) &&
1683 ata_id_has_flush_ext(id
))
1684 dev
->flags
|= ATA_DFLAG_FLUSH_EXT
;
1688 ata_dev_config_ncq(dev
, ncq_desc
, sizeof(ncq_desc
));
1690 /* print device info to dmesg */
1691 if (ata_msg_drv(ap
) && print_info
) {
1692 ata_dev_printk(dev
, KERN_INFO
,
1693 "%s: %s, %s, max %s\n",
1694 revbuf
, modelbuf
, fwrevbuf
,
1695 ata_mode_string(xfer_mask
));
1696 ata_dev_printk(dev
, KERN_INFO
,
1697 "%Lu sectors, multi %u: %s %s\n",
1698 (unsigned long long)dev
->n_sectors
,
1699 dev
->multi_count
, lba_desc
, ncq_desc
);
1704 /* Default translation */
1705 dev
->cylinders
= id
[1];
1707 dev
->sectors
= id
[6];
1709 if (ata_id_current_chs_valid(id
)) {
1710 /* Current CHS translation is valid. */
1711 dev
->cylinders
= id
[54];
1712 dev
->heads
= id
[55];
1713 dev
->sectors
= id
[56];
1716 /* print device info to dmesg */
1717 if (ata_msg_drv(ap
) && print_info
) {
1718 ata_dev_printk(dev
, KERN_INFO
,
1719 "%s: %s, %s, max %s\n",
1720 revbuf
, modelbuf
, fwrevbuf
,
1721 ata_mode_string(xfer_mask
));
1722 ata_dev_printk(dev
, KERN_INFO
,
1723 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1724 (unsigned long long)dev
->n_sectors
,
1725 dev
->multi_count
, dev
->cylinders
,
1726 dev
->heads
, dev
->sectors
);
1733 /* ATAPI-specific feature tests */
1734 else if (dev
->class == ATA_DEV_ATAPI
) {
1735 char *cdb_intr_string
= "";
1737 rc
= atapi_cdb_len(id
);
1738 if ((rc
< 12) || (rc
> ATAPI_CDB_LEN
)) {
1739 if (ata_msg_warn(ap
))
1740 ata_dev_printk(dev
, KERN_WARNING
,
1741 "unsupported CDB len\n");
1745 dev
->cdb_len
= (unsigned int) rc
;
1747 if (ata_id_cdb_intr(dev
->id
)) {
1748 dev
->flags
|= ATA_DFLAG_CDB_INTR
;
1749 cdb_intr_string
= ", CDB intr";
1752 /* print device info to dmesg */
1753 if (ata_msg_drv(ap
) && print_info
)
1754 ata_dev_printk(dev
, KERN_INFO
, "ATAPI, max %s%s\n",
1755 ata_mode_string(xfer_mask
),
1759 /* determine max_sectors */
1760 dev
->max_sectors
= ATA_MAX_SECTORS
;
1761 if (dev
->flags
& ATA_DFLAG_LBA48
)
1762 dev
->max_sectors
= ATA_MAX_SECTORS_LBA48
;
1764 if (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
) {
1765 /* Let the user know. We don't want to disallow opens for
1766 rescue purposes, or in case the vendor is just a blithering
1769 ata_dev_printk(dev
, KERN_WARNING
,
1770 "Drive reports diagnostics failure. This may indicate a drive\n");
1771 ata_dev_printk(dev
, KERN_WARNING
,
1772 "fault or invalid emulation. Contact drive vendor for information.\n");
1776 ata_set_port_max_cmd_len(ap
);
1778 /* limit bridge transfers to udma5, 200 sectors */
1779 if (ata_dev_knobble(dev
)) {
1780 if (ata_msg_drv(ap
) && print_info
)
1781 ata_dev_printk(dev
, KERN_INFO
,
1782 "applying bridge limits\n");
1783 dev
->udma_mask
&= ATA_UDMA5
;
1784 dev
->max_sectors
= ATA_MAX_SECTORS
;
1787 if (ap
->ops
->dev_config
)
1788 ap
->ops
->dev_config(ap
, dev
);
1790 if (ata_msg_probe(ap
))
1791 ata_dev_printk(dev
, KERN_DEBUG
, "%s: EXIT, drv_stat = 0x%x\n",
1792 __FUNCTION__
, ata_chk_status(ap
));
1796 if (ata_msg_probe(ap
))
1797 ata_dev_printk(dev
, KERN_DEBUG
,
1798 "%s: EXIT, err\n", __FUNCTION__
);
1803 * ata_bus_probe - Reset and probe ATA bus
1806 * Master ATA bus probing function. Initiates a hardware-dependent
1807 * bus reset, then attempts to identify any devices found on
1811 * PCI/etc. bus probe sem.
1814 * Zero on success, negative errno otherwise.
1817 int ata_bus_probe(struct ata_port
*ap
)
1819 unsigned int classes
[ATA_MAX_DEVICES
];
1820 int tries
[ATA_MAX_DEVICES
];
1822 struct ata_device
*dev
;
1826 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
1827 tries
[i
] = ATA_PROBE_MAX_TRIES
;
1830 /* reset and determine device classes */
1831 ap
->ops
->phy_reset(ap
);
1833 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
1834 dev
= &ap
->device
[i
];
1836 if (!(ap
->flags
& ATA_FLAG_DISABLED
) &&
1837 dev
->class != ATA_DEV_UNKNOWN
)
1838 classes
[dev
->devno
] = dev
->class;
1840 classes
[dev
->devno
] = ATA_DEV_NONE
;
1842 dev
->class = ATA_DEV_UNKNOWN
;
1847 /* after the reset the device state is PIO 0 and the controller
1848 state is undefined. Record the mode */
1850 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
1851 ap
->device
[i
].pio_mode
= XFER_PIO_0
;
1853 /* read IDENTIFY page and configure devices */
1854 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
1855 dev
= &ap
->device
[i
];
1858 dev
->class = classes
[i
];
1860 if (!ata_dev_enabled(dev
))
1863 rc
= ata_dev_read_id(dev
, &dev
->class, ATA_READID_POSTRESET
,
1868 ap
->eh_context
.i
.flags
|= ATA_EHI_PRINTINFO
;
1869 rc
= ata_dev_configure(dev
);
1870 ap
->eh_context
.i
.flags
&= ~ATA_EHI_PRINTINFO
;
1875 /* configure transfer mode */
1876 rc
= ata_set_mode(ap
, &dev
);
1880 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
1881 if (ata_dev_enabled(&ap
->device
[i
]))
1884 /* no device present, disable port */
1885 ata_port_disable(ap
);
1886 ap
->ops
->port_disable(ap
);
1890 tries
[dev
->devno
]--;
1894 /* eeek, something went very wrong, give up */
1895 tries
[dev
->devno
] = 0;
1899 /* give it just one more chance */
1900 tries
[dev
->devno
] = min(tries
[dev
->devno
], 1);
1902 if (tries
[dev
->devno
] == 1) {
1903 /* This is the last chance, better to slow
1904 * down than lose it.
1906 sata_down_spd_limit(ap
);
1907 ata_down_xfermask_limit(dev
, ATA_DNXFER_PIO
);
1911 if (!tries
[dev
->devno
])
1912 ata_dev_disable(dev
);
1918 * ata_port_probe - Mark port as enabled
1919 * @ap: Port for which we indicate enablement
1921 * Modify @ap data structure such that the system
1922 * thinks that the entire port is enabled.
1924 * LOCKING: host lock, or some other form of
1928 void ata_port_probe(struct ata_port
*ap
)
1930 ap
->flags
&= ~ATA_FLAG_DISABLED
;
1934 * sata_print_link_status - Print SATA link status
1935 * @ap: SATA port to printk link status about
1937 * This function prints link speed and status of a SATA link.
1942 static void sata_print_link_status(struct ata_port
*ap
)
1944 u32 sstatus
, scontrol
, tmp
;
1946 if (sata_scr_read(ap
, SCR_STATUS
, &sstatus
))
1948 sata_scr_read(ap
, SCR_CONTROL
, &scontrol
);
1950 if (ata_port_online(ap
)) {
1951 tmp
= (sstatus
>> 4) & 0xf;
1952 ata_port_printk(ap
, KERN_INFO
,
1953 "SATA link up %s (SStatus %X SControl %X)\n",
1954 sata_spd_string(tmp
), sstatus
, scontrol
);
1956 ata_port_printk(ap
, KERN_INFO
,
1957 "SATA link down (SStatus %X SControl %X)\n",
1963 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1964 * @ap: SATA port associated with target SATA PHY.
1966 * This function issues commands to standard SATA Sxxx
1967 * PHY registers, to wake up the phy (and device), and
1968 * clear any reset condition.
1971 * PCI/etc. bus probe sem.
1974 void __sata_phy_reset(struct ata_port
*ap
)
1977 unsigned long timeout
= jiffies
+ (HZ
* 5);
1979 if (ap
->flags
& ATA_FLAG_SATA_RESET
) {
1980 /* issue phy wake/reset */
1981 sata_scr_write_flush(ap
, SCR_CONTROL
, 0x301);
1982 /* Couldn't find anything in SATA I/II specs, but
1983 * AHCI-1.1 10.4.2 says at least 1 ms. */
1986 /* phy wake/clear reset */
1987 sata_scr_write_flush(ap
, SCR_CONTROL
, 0x300);
1989 /* wait for phy to become ready, if necessary */
1992 sata_scr_read(ap
, SCR_STATUS
, &sstatus
);
1993 if ((sstatus
& 0xf) != 1)
1995 } while (time_before(jiffies
, timeout
));
1997 /* print link status */
1998 sata_print_link_status(ap
);
2000 /* TODO: phy layer with polling, timeouts, etc. */
2001 if (!ata_port_offline(ap
))
2004 ata_port_disable(ap
);
2006 if (ap
->flags
& ATA_FLAG_DISABLED
)
2009 if (ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
)) {
2010 ata_port_disable(ap
);
2014 ap
->cbl
= ATA_CBL_SATA
;
2018 * sata_phy_reset - Reset SATA bus.
2019 * @ap: SATA port associated with target SATA PHY.
2021 * This function resets the SATA bus, and then probes
2022 * the bus for devices.
2025 * PCI/etc. bus probe sem.
2028 void sata_phy_reset(struct ata_port
*ap
)
2030 __sata_phy_reset(ap
);
2031 if (ap
->flags
& ATA_FLAG_DISABLED
)
2037 * ata_dev_pair - return other device on cable
2040 * Obtain the other device on the same cable, or if none is
2041 * present NULL is returned
2044 struct ata_device
*ata_dev_pair(struct ata_device
*adev
)
2046 struct ata_port
*ap
= adev
->ap
;
2047 struct ata_device
*pair
= &ap
->device
[1 - adev
->devno
];
2048 if (!ata_dev_enabled(pair
))
2054 * ata_port_disable - Disable port.
2055 * @ap: Port to be disabled.
2057 * Modify @ap data structure such that the system
2058 * thinks that the entire port is disabled, and should
2059 * never attempt to probe or communicate with devices
2062 * LOCKING: host lock, or some other form of
2066 void ata_port_disable(struct ata_port
*ap
)
2068 ap
->device
[0].class = ATA_DEV_NONE
;
2069 ap
->device
[1].class = ATA_DEV_NONE
;
2070 ap
->flags
|= ATA_FLAG_DISABLED
;
2074 * sata_down_spd_limit - adjust SATA spd limit downward
2075 * @ap: Port to adjust SATA spd limit for
2077 * Adjust SATA spd limit of @ap downward. Note that this
2078 * function only adjusts the limit. The change must be applied
2079 * using sata_set_spd().
2082 * Inherited from caller.
2085 * 0 on success, negative errno on failure
2087 int sata_down_spd_limit(struct ata_port
*ap
)
2089 u32 sstatus
, spd
, mask
;
2092 rc
= sata_scr_read(ap
, SCR_STATUS
, &sstatus
);
2096 mask
= ap
->sata_spd_limit
;
2099 highbit
= fls(mask
) - 1;
2100 mask
&= ~(1 << highbit
);
2102 spd
= (sstatus
>> 4) & 0xf;
2106 mask
&= (1 << spd
) - 1;
2110 ap
->sata_spd_limit
= mask
;
2112 ata_port_printk(ap
, KERN_WARNING
, "limiting SATA link speed to %s\n",
2113 sata_spd_string(fls(mask
)));
2118 static int __sata_set_spd_needed(struct ata_port
*ap
, u32
*scontrol
)
2122 if (ap
->sata_spd_limit
== UINT_MAX
)
2125 limit
= fls(ap
->sata_spd_limit
);
2127 spd
= (*scontrol
>> 4) & 0xf;
2128 *scontrol
= (*scontrol
& ~0xf0) | ((limit
& 0xf) << 4);
2130 return spd
!= limit
;
2134 * sata_set_spd_needed - is SATA spd configuration needed
2135 * @ap: Port in question
2137 * Test whether the spd limit in SControl matches
2138 * @ap->sata_spd_limit. This function is used to determine
2139 * whether hardreset is necessary to apply SATA spd
2143 * Inherited from caller.
2146 * 1 if SATA spd configuration is needed, 0 otherwise.
2148 int sata_set_spd_needed(struct ata_port
*ap
)
2152 if (sata_scr_read(ap
, SCR_CONTROL
, &scontrol
))
2155 return __sata_set_spd_needed(ap
, &scontrol
);
2159 * sata_set_spd - set SATA spd according to spd limit
2160 * @ap: Port to set SATA spd for
2162 * Set SATA spd of @ap according to sata_spd_limit.
2165 * Inherited from caller.
2168 * 0 if spd doesn't need to be changed, 1 if spd has been
2169 * changed. Negative errno if SCR registers are inaccessible.
2171 int sata_set_spd(struct ata_port
*ap
)
2176 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
2179 if (!__sata_set_spd_needed(ap
, &scontrol
))
2182 if ((rc
= sata_scr_write(ap
, SCR_CONTROL
, scontrol
)))
2189 * This mode timing computation functionality is ported over from
2190 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2193 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2194 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2195 * for UDMA6, which is currently supported only by Maxtor drives.
2197 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2200 static const struct ata_timing ata_timing
[] = {
2202 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 15 },
2203 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 20 },
2204 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 30 },
2205 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 45 },
2207 { XFER_MW_DMA_4
, 25, 0, 0, 0, 55, 20, 80, 0 },
2208 { XFER_MW_DMA_3
, 25, 0, 0, 0, 65, 25, 100, 0 },
2209 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 60 },
2210 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 80 },
2211 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 120 },
2213 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2215 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 120, 0 },
2216 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 150, 0 },
2217 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 480, 0 },
2219 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 240, 0 },
2220 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 480, 0 },
2221 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 960, 0 },
2223 { XFER_PIO_6
, 10, 55, 20, 80, 55, 20, 80, 0 },
2224 { XFER_PIO_5
, 15, 65, 25, 100, 65, 25, 100, 0 },
2225 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 120, 0 },
2226 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 180, 0 },
2228 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 240, 0 },
2229 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 383, 0 },
2230 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 600, 0 },
2232 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2237 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2238 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2240 static void ata_timing_quantize(const struct ata_timing
*t
, struct ata_timing
*q
, int T
, int UT
)
2242 q
->setup
= EZ(t
->setup
* 1000, T
);
2243 q
->act8b
= EZ(t
->act8b
* 1000, T
);
2244 q
->rec8b
= EZ(t
->rec8b
* 1000, T
);
2245 q
->cyc8b
= EZ(t
->cyc8b
* 1000, T
);
2246 q
->active
= EZ(t
->active
* 1000, T
);
2247 q
->recover
= EZ(t
->recover
* 1000, T
);
2248 q
->cycle
= EZ(t
->cycle
* 1000, T
);
2249 q
->udma
= EZ(t
->udma
* 1000, UT
);
2252 void ata_timing_merge(const struct ata_timing
*a
, const struct ata_timing
*b
,
2253 struct ata_timing
*m
, unsigned int what
)
2255 if (what
& ATA_TIMING_SETUP
) m
->setup
= max(a
->setup
, b
->setup
);
2256 if (what
& ATA_TIMING_ACT8B
) m
->act8b
= max(a
->act8b
, b
->act8b
);
2257 if (what
& ATA_TIMING_REC8B
) m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
2258 if (what
& ATA_TIMING_CYC8B
) m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
2259 if (what
& ATA_TIMING_ACTIVE
) m
->active
= max(a
->active
, b
->active
);
2260 if (what
& ATA_TIMING_RECOVER
) m
->recover
= max(a
->recover
, b
->recover
);
2261 if (what
& ATA_TIMING_CYCLE
) m
->cycle
= max(a
->cycle
, b
->cycle
);
2262 if (what
& ATA_TIMING_UDMA
) m
->udma
= max(a
->udma
, b
->udma
);
2265 static const struct ata_timing
* ata_timing_find_mode(unsigned short speed
)
2267 const struct ata_timing
*t
;
2269 for (t
= ata_timing
; t
->mode
!= speed
; t
++)
2270 if (t
->mode
== 0xFF)
2275 int ata_timing_compute(struct ata_device
*adev
, unsigned short speed
,
2276 struct ata_timing
*t
, int T
, int UT
)
2278 const struct ata_timing
*s
;
2279 struct ata_timing p
;
2285 if (!(s
= ata_timing_find_mode(speed
)))
2288 memcpy(t
, s
, sizeof(*s
));
2291 * If the drive is an EIDE drive, it can tell us it needs extended
2292 * PIO/MW_DMA cycle timing.
2295 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE drive */
2296 memset(&p
, 0, sizeof(p
));
2297 if(speed
>= XFER_PIO_0
&& speed
<= XFER_SW_DMA_0
) {
2298 if (speed
<= XFER_PIO_2
) p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO
];
2299 else p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO_IORDY
];
2300 } else if(speed
>= XFER_MW_DMA_0
&& speed
<= XFER_MW_DMA_2
) {
2301 p
.cycle
= adev
->id
[ATA_ID_EIDE_DMA_MIN
];
2303 ata_timing_merge(&p
, t
, t
, ATA_TIMING_CYCLE
| ATA_TIMING_CYC8B
);
2307 * Convert the timing to bus clock counts.
2310 ata_timing_quantize(t
, t
, T
, UT
);
2313 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2314 * S.M.A.R.T * and some other commands. We have to ensure that the
2315 * DMA cycle timing is slower/equal than the fastest PIO timing.
2318 if (speed
> XFER_PIO_6
) {
2319 ata_timing_compute(adev
, adev
->pio_mode
, &p
, T
, UT
);
2320 ata_timing_merge(&p
, t
, t
, ATA_TIMING_ALL
);
2324 * Lengthen active & recovery time so that cycle time is correct.
2327 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
2328 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
2329 t
->rec8b
= t
->cyc8b
- t
->act8b
;
2332 if (t
->active
+ t
->recover
< t
->cycle
) {
2333 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
2334 t
->recover
= t
->cycle
- t
->active
;
2341 * ata_down_xfermask_limit - adjust dev xfer masks downward
2342 * @dev: Device to adjust xfer masks
2343 * @sel: ATA_DNXFER_* selector
2345 * Adjust xfer masks of @dev downward. Note that this function
2346 * does not apply the change. Invoking ata_set_mode() afterwards
2347 * will apply the limit.
2350 * Inherited from caller.
2353 * 0 on success, negative errno on failure
2355 int ata_down_xfermask_limit(struct ata_device
*dev
, unsigned int sel
)
2358 unsigned int orig_mask
, xfer_mask
;
2359 unsigned int pio_mask
, mwdma_mask
, udma_mask
;
2362 quiet
= !!(sel
& ATA_DNXFER_QUIET
);
2363 sel
&= ~ATA_DNXFER_QUIET
;
2365 xfer_mask
= orig_mask
= ata_pack_xfermask(dev
->pio_mask
,
2368 ata_unpack_xfermask(xfer_mask
, &pio_mask
, &mwdma_mask
, &udma_mask
);
2371 case ATA_DNXFER_PIO
:
2372 highbit
= fls(pio_mask
) - 1;
2373 pio_mask
&= ~(1 << highbit
);
2376 case ATA_DNXFER_DMA
:
2378 highbit
= fls(udma_mask
) - 1;
2379 udma_mask
&= ~(1 << highbit
);
2382 } else if (mwdma_mask
) {
2383 highbit
= fls(mwdma_mask
) - 1;
2384 mwdma_mask
&= ~(1 << highbit
);
2390 case ATA_DNXFER_40C
:
2391 udma_mask
&= ATA_UDMA_MASK_40C
;
2394 case ATA_DNXFER_FORCE_PIO0
:
2396 case ATA_DNXFER_FORCE_PIO
:
2405 xfer_mask
&= ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
2407 if (!(xfer_mask
& ATA_MASK_PIO
) || xfer_mask
== orig_mask
)
2411 if (xfer_mask
& (ATA_MASK_MWDMA
| ATA_MASK_UDMA
))
2412 snprintf(buf
, sizeof(buf
), "%s:%s",
2413 ata_mode_string(xfer_mask
),
2414 ata_mode_string(xfer_mask
& ATA_MASK_PIO
));
2416 snprintf(buf
, sizeof(buf
), "%s",
2417 ata_mode_string(xfer_mask
));
2419 ata_dev_printk(dev
, KERN_WARNING
,
2420 "limiting speed to %s\n", buf
);
2423 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
, &dev
->mwdma_mask
,
2429 static int ata_dev_set_mode(struct ata_device
*dev
)
2431 struct ata_eh_context
*ehc
= &dev
->ap
->eh_context
;
2432 unsigned int err_mask
;
2435 dev
->flags
&= ~ATA_DFLAG_PIO
;
2436 if (dev
->xfer_shift
== ATA_SHIFT_PIO
)
2437 dev
->flags
|= ATA_DFLAG_PIO
;
2439 err_mask
= ata_dev_set_xfermode(dev
);
2440 /* Old CFA may refuse this command, which is just fine */
2441 if (dev
->xfer_shift
== ATA_SHIFT_PIO
&& ata_id_is_cfa(dev
->id
))
2442 err_mask
&= ~AC_ERR_DEV
;
2445 ata_dev_printk(dev
, KERN_ERR
, "failed to set xfermode "
2446 "(err_mask=0x%x)\n", err_mask
);
2450 ehc
->i
.flags
|= ATA_EHI_POST_SETMODE
;
2451 rc
= ata_dev_revalidate(dev
, 0);
2452 ehc
->i
.flags
&= ~ATA_EHI_POST_SETMODE
;
2456 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2457 dev
->xfer_shift
, (int)dev
->xfer_mode
);
2459 ata_dev_printk(dev
, KERN_INFO
, "configured for %s\n",
2460 ata_mode_string(ata_xfer_mode2mask(dev
->xfer_mode
)));
2465 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2466 * @ap: port on which timings will be programmed
2467 * @r_failed_dev: out paramter for failed device
2469 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2470 * ata_set_mode() fails, pointer to the failing device is
2471 * returned in @r_failed_dev.
2474 * PCI/etc. bus probe sem.
2477 * 0 on success, negative errno otherwise
2479 int ata_set_mode(struct ata_port
*ap
, struct ata_device
**r_failed_dev
)
2481 struct ata_device
*dev
;
2482 int i
, rc
= 0, used_dma
= 0, found
= 0;
2484 /* has private set_mode? */
2485 if (ap
->ops
->set_mode
)
2486 return ap
->ops
->set_mode(ap
, r_failed_dev
);
2488 /* step 1: calculate xfer_mask */
2489 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2490 unsigned int pio_mask
, dma_mask
;
2492 dev
= &ap
->device
[i
];
2494 if (!ata_dev_enabled(dev
))
2497 ata_dev_xfermask(dev
);
2499 pio_mask
= ata_pack_xfermask(dev
->pio_mask
, 0, 0);
2500 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
2501 dev
->pio_mode
= ata_xfer_mask2mode(pio_mask
);
2502 dev
->dma_mode
= ata_xfer_mask2mode(dma_mask
);
2511 /* step 2: always set host PIO timings */
2512 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2513 dev
= &ap
->device
[i
];
2514 if (!ata_dev_enabled(dev
))
2517 if (!dev
->pio_mode
) {
2518 ata_dev_printk(dev
, KERN_WARNING
, "no PIO support\n");
2523 dev
->xfer_mode
= dev
->pio_mode
;
2524 dev
->xfer_shift
= ATA_SHIFT_PIO
;
2525 if (ap
->ops
->set_piomode
)
2526 ap
->ops
->set_piomode(ap
, dev
);
2529 /* step 3: set host DMA timings */
2530 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2531 dev
= &ap
->device
[i
];
2533 if (!ata_dev_enabled(dev
) || !dev
->dma_mode
)
2536 dev
->xfer_mode
= dev
->dma_mode
;
2537 dev
->xfer_shift
= ata_xfer_mode2shift(dev
->dma_mode
);
2538 if (ap
->ops
->set_dmamode
)
2539 ap
->ops
->set_dmamode(ap
, dev
);
2542 /* step 4: update devices' xfer mode */
2543 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2544 dev
= &ap
->device
[i
];
2546 /* don't update suspended devices' xfer mode */
2547 if (!ata_dev_ready(dev
))
2550 rc
= ata_dev_set_mode(dev
);
2555 /* Record simplex status. If we selected DMA then the other
2556 * host channels are not permitted to do so.
2558 if (used_dma
&& (ap
->host
->flags
& ATA_HOST_SIMPLEX
))
2559 ap
->host
->simplex_claimed
= 1;
2561 /* step5: chip specific finalisation */
2562 if (ap
->ops
->post_set_mode
)
2563 ap
->ops
->post_set_mode(ap
);
2567 *r_failed_dev
= dev
;
2572 * ata_tf_to_host - issue ATA taskfile to host controller
2573 * @ap: port to which command is being issued
2574 * @tf: ATA taskfile register set
2576 * Issues ATA taskfile register set to ATA host controller,
2577 * with proper synchronization with interrupt handler and
2581 * spin_lock_irqsave(host lock)
2584 static inline void ata_tf_to_host(struct ata_port
*ap
,
2585 const struct ata_taskfile
*tf
)
2587 ap
->ops
->tf_load(ap
, tf
);
2588 ap
->ops
->exec_command(ap
, tf
);
2592 * ata_busy_sleep - sleep until BSY clears, or timeout
2593 * @ap: port containing status register to be polled
2594 * @tmout_pat: impatience timeout
2595 * @tmout: overall timeout
2597 * Sleep until ATA Status register bit BSY clears,
2598 * or a timeout occurs.
2601 * Kernel thread context (may sleep).
2604 * 0 on success, -errno otherwise.
2606 int ata_busy_sleep(struct ata_port
*ap
,
2607 unsigned long tmout_pat
, unsigned long tmout
)
2609 unsigned long timer_start
, timeout
;
2612 status
= ata_busy_wait(ap
, ATA_BUSY
, 300);
2613 timer_start
= jiffies
;
2614 timeout
= timer_start
+ tmout_pat
;
2615 while (status
!= 0xff && (status
& ATA_BUSY
) &&
2616 time_before(jiffies
, timeout
)) {
2618 status
= ata_busy_wait(ap
, ATA_BUSY
, 3);
2621 if (status
!= 0xff && (status
& ATA_BUSY
))
2622 ata_port_printk(ap
, KERN_WARNING
,
2623 "port is slow to respond, please be patient "
2624 "(Status 0x%x)\n", status
);
2626 timeout
= timer_start
+ tmout
;
2627 while (status
!= 0xff && (status
& ATA_BUSY
) &&
2628 time_before(jiffies
, timeout
)) {
2630 status
= ata_chk_status(ap
);
2636 if (status
& ATA_BUSY
) {
2637 ata_port_printk(ap
, KERN_ERR
, "port failed to respond "
2638 "(%lu secs, Status 0x%x)\n",
2639 tmout
/ HZ
, status
);
2646 static void ata_bus_post_reset(struct ata_port
*ap
, unsigned int devmask
)
2648 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
2649 unsigned int dev0
= devmask
& (1 << 0);
2650 unsigned int dev1
= devmask
& (1 << 1);
2651 unsigned long timeout
;
2653 /* if device 0 was found in ata_devchk, wait for its
2657 ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
);
2659 /* if device 1 was found in ata_devchk, wait for
2660 * register access, then wait for BSY to clear
2662 timeout
= jiffies
+ ATA_TMOUT_BOOT
;
2666 ap
->ops
->dev_select(ap
, 1);
2667 nsect
= ioread8(ioaddr
->nsect_addr
);
2668 lbal
= ioread8(ioaddr
->lbal_addr
);
2669 if ((nsect
== 1) && (lbal
== 1))
2671 if (time_after(jiffies
, timeout
)) {
2675 msleep(50); /* give drive a breather */
2678 ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
);
2680 /* is all this really necessary? */
2681 ap
->ops
->dev_select(ap
, 0);
2683 ap
->ops
->dev_select(ap
, 1);
2685 ap
->ops
->dev_select(ap
, 0);
2688 static unsigned int ata_bus_softreset(struct ata_port
*ap
,
2689 unsigned int devmask
)
2691 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
2693 DPRINTK("ata%u: bus reset via SRST\n", ap
->print_id
);
2695 /* software reset. causes dev0 to be selected */
2696 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
2697 udelay(20); /* FIXME: flush */
2698 iowrite8(ap
->ctl
| ATA_SRST
, ioaddr
->ctl_addr
);
2699 udelay(20); /* FIXME: flush */
2700 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
2702 /* spec mandates ">= 2ms" before checking status.
2703 * We wait 150ms, because that was the magic delay used for
2704 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2705 * between when the ATA command register is written, and then
2706 * status is checked. Because waiting for "a while" before
2707 * checking status is fine, post SRST, we perform this magic
2708 * delay here as well.
2710 * Old drivers/ide uses the 2mS rule and then waits for ready
2714 /* Before we perform post reset processing we want to see if
2715 * the bus shows 0xFF because the odd clown forgets the D7
2716 * pulldown resistor.
2718 if (ata_check_status(ap
) == 0xFF)
2721 ata_bus_post_reset(ap
, devmask
);
2727 * ata_bus_reset - reset host port and associated ATA channel
2728 * @ap: port to reset
2730 * This is typically the first time we actually start issuing
2731 * commands to the ATA channel. We wait for BSY to clear, then
2732 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2733 * result. Determine what devices, if any, are on the channel
2734 * by looking at the device 0/1 error register. Look at the signature
2735 * stored in each device's taskfile registers, to determine if
2736 * the device is ATA or ATAPI.
2739 * PCI/etc. bus probe sem.
2740 * Obtains host lock.
2743 * Sets ATA_FLAG_DISABLED if bus reset fails.
2746 void ata_bus_reset(struct ata_port
*ap
)
2748 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
2749 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
2751 unsigned int dev0
, dev1
= 0, devmask
= 0;
2753 DPRINTK("ENTER, host %u, port %u\n", ap
->print_id
, ap
->port_no
);
2755 /* determine if device 0/1 are present */
2756 if (ap
->flags
& ATA_FLAG_SATA_RESET
)
2759 dev0
= ata_devchk(ap
, 0);
2761 dev1
= ata_devchk(ap
, 1);
2765 devmask
|= (1 << 0);
2767 devmask
|= (1 << 1);
2769 /* select device 0 again */
2770 ap
->ops
->dev_select(ap
, 0);
2772 /* issue bus reset */
2773 if (ap
->flags
& ATA_FLAG_SRST
)
2774 if (ata_bus_softreset(ap
, devmask
))
2778 * determine by signature whether we have ATA or ATAPI devices
2780 ap
->device
[0].class = ata_dev_try_classify(ap
, 0, &err
);
2781 if ((slave_possible
) && (err
!= 0x81))
2782 ap
->device
[1].class = ata_dev_try_classify(ap
, 1, &err
);
2784 /* re-enable interrupts */
2785 ap
->ops
->irq_on(ap
);
2787 /* is double-select really necessary? */
2788 if (ap
->device
[1].class != ATA_DEV_NONE
)
2789 ap
->ops
->dev_select(ap
, 1);
2790 if (ap
->device
[0].class != ATA_DEV_NONE
)
2791 ap
->ops
->dev_select(ap
, 0);
2793 /* if no devices were detected, disable this port */
2794 if ((ap
->device
[0].class == ATA_DEV_NONE
) &&
2795 (ap
->device
[1].class == ATA_DEV_NONE
))
2798 if (ap
->flags
& (ATA_FLAG_SATA_RESET
| ATA_FLAG_SRST
)) {
2799 /* set up device control for ATA_FLAG_SATA_RESET */
2800 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
2807 ata_port_printk(ap
, KERN_ERR
, "disabling port\n");
2808 ap
->ops
->port_disable(ap
);
2814 * sata_phy_debounce - debounce SATA phy status
2815 * @ap: ATA port to debounce SATA phy status for
2816 * @params: timing parameters { interval, duratinon, timeout } in msec
2818 * Make sure SStatus of @ap reaches stable state, determined by
2819 * holding the same value where DET is not 1 for @duration polled
2820 * every @interval, before @timeout. Timeout constraints the
2821 * beginning of the stable state. Because, after hot unplugging,
2822 * DET gets stuck at 1 on some controllers, this functions waits
2823 * until timeout then returns 0 if DET is stable at 1.
2826 * Kernel thread context (may sleep)
2829 * 0 on success, -errno on failure.
2831 int sata_phy_debounce(struct ata_port
*ap
, const unsigned long *params
)
2833 unsigned long interval_msec
= params
[0];
2834 unsigned long duration
= params
[1] * HZ
/ 1000;
2835 unsigned long timeout
= jiffies
+ params
[2] * HZ
/ 1000;
2836 unsigned long last_jiffies
;
2840 if ((rc
= sata_scr_read(ap
, SCR_STATUS
, &cur
)))
2845 last_jiffies
= jiffies
;
2848 msleep(interval_msec
);
2849 if ((rc
= sata_scr_read(ap
, SCR_STATUS
, &cur
)))
2855 if (cur
== 1 && time_before(jiffies
, timeout
))
2857 if (time_after(jiffies
, last_jiffies
+ duration
))
2862 /* unstable, start over */
2864 last_jiffies
= jiffies
;
2867 if (time_after(jiffies
, timeout
))
2873 * sata_phy_resume - resume SATA phy
2874 * @ap: ATA port to resume SATA phy for
2875 * @params: timing parameters { interval, duratinon, timeout } in msec
2877 * Resume SATA phy of @ap and debounce it.
2880 * Kernel thread context (may sleep)
2883 * 0 on success, -errno on failure.
2885 int sata_phy_resume(struct ata_port
*ap
, const unsigned long *params
)
2890 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
2893 scontrol
= (scontrol
& 0x0f0) | 0x300;
2895 if ((rc
= sata_scr_write(ap
, SCR_CONTROL
, scontrol
)))
2898 /* Some PHYs react badly if SStatus is pounded immediately
2899 * after resuming. Delay 200ms before debouncing.
2903 return sata_phy_debounce(ap
, params
);
2906 static void ata_wait_spinup(struct ata_port
*ap
)
2908 struct ata_eh_context
*ehc
= &ap
->eh_context
;
2909 unsigned long end
, secs
;
2912 /* first, debounce phy if SATA */
2913 if (ap
->cbl
== ATA_CBL_SATA
) {
2914 rc
= sata_phy_debounce(ap
, sata_deb_timing_hotplug
);
2916 /* if debounced successfully and offline, no need to wait */
2917 if ((rc
== 0 || rc
== -EOPNOTSUPP
) && ata_port_offline(ap
))
2921 /* okay, let's give the drive time to spin up */
2922 end
= ehc
->i
.hotplug_timestamp
+ ATA_SPINUP_WAIT
* HZ
/ 1000;
2923 secs
= ((end
- jiffies
) + HZ
- 1) / HZ
;
2925 if (time_after(jiffies
, end
))
2929 ata_port_printk(ap
, KERN_INFO
, "waiting for device to spin up "
2930 "(%lu secs)\n", secs
);
2932 schedule_timeout_uninterruptible(end
- jiffies
);
2936 * ata_std_prereset - prepare for reset
2937 * @ap: ATA port to be reset
2939 * @ap is about to be reset. Initialize it.
2942 * Kernel thread context (may sleep)
2945 * 0 on success, -errno otherwise.
2947 int ata_std_prereset(struct ata_port
*ap
)
2949 struct ata_eh_context
*ehc
= &ap
->eh_context
;
2950 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
2953 /* handle link resume & hotplug spinup */
2954 if ((ehc
->i
.flags
& ATA_EHI_RESUME_LINK
) &&
2955 (ap
->flags
& ATA_FLAG_HRST_TO_RESUME
))
2956 ehc
->i
.action
|= ATA_EH_HARDRESET
;
2958 if ((ehc
->i
.flags
& ATA_EHI_HOTPLUGGED
) &&
2959 (ap
->flags
& ATA_FLAG_SKIP_D2H_BSY
))
2960 ata_wait_spinup(ap
);
2962 /* if we're about to do hardreset, nothing more to do */
2963 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
2966 /* if SATA, resume phy */
2967 if (ap
->cbl
== ATA_CBL_SATA
) {
2968 rc
= sata_phy_resume(ap
, timing
);
2969 if (rc
&& rc
!= -EOPNOTSUPP
) {
2970 /* phy resume failed */
2971 ata_port_printk(ap
, KERN_WARNING
, "failed to resume "
2972 "link for reset (errno=%d)\n", rc
);
2977 /* Wait for !BSY if the controller can wait for the first D2H
2978 * Reg FIS and we don't know that no device is attached.
2980 if (!(ap
->flags
& ATA_FLAG_SKIP_D2H_BSY
) && !ata_port_offline(ap
))
2981 ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
);
2987 * ata_std_softreset - reset host port via ATA SRST
2988 * @ap: port to reset
2989 * @classes: resulting classes of attached devices
2991 * Reset host port using ATA SRST.
2994 * Kernel thread context (may sleep)
2997 * 0 on success, -errno otherwise.
2999 int ata_std_softreset(struct ata_port
*ap
, unsigned int *classes
)
3001 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
3002 unsigned int devmask
= 0, err_mask
;
3007 if (ata_port_offline(ap
)) {
3008 classes
[0] = ATA_DEV_NONE
;
3012 /* determine if device 0/1 are present */
3013 if (ata_devchk(ap
, 0))
3014 devmask
|= (1 << 0);
3015 if (slave_possible
&& ata_devchk(ap
, 1))
3016 devmask
|= (1 << 1);
3018 /* select device 0 again */
3019 ap
->ops
->dev_select(ap
, 0);
3021 /* issue bus reset */
3022 DPRINTK("about to softreset, devmask=%x\n", devmask
);
3023 err_mask
= ata_bus_softreset(ap
, devmask
);
3025 ata_port_printk(ap
, KERN_ERR
, "SRST failed (err_mask=0x%x)\n",
3030 /* determine by signature whether we have ATA or ATAPI devices */
3031 classes
[0] = ata_dev_try_classify(ap
, 0, &err
);
3032 if (slave_possible
&& err
!= 0x81)
3033 classes
[1] = ata_dev_try_classify(ap
, 1, &err
);
3036 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes
[0], classes
[1]);
3041 * sata_port_hardreset - reset port via SATA phy reset
3042 * @ap: port to reset
3043 * @timing: timing parameters { interval, duratinon, timeout } in msec
3045 * SATA phy-reset host port using DET bits of SControl register.
3048 * Kernel thread context (may sleep)
3051 * 0 on success, -errno otherwise.
3053 int sata_port_hardreset(struct ata_port
*ap
, const unsigned long *timing
)
3060 if (sata_set_spd_needed(ap
)) {
3061 /* SATA spec says nothing about how to reconfigure
3062 * spd. To be on the safe side, turn off phy during
3063 * reconfiguration. This works for at least ICH7 AHCI
3066 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
3069 scontrol
= (scontrol
& 0x0f0) | 0x304;
3071 if ((rc
= sata_scr_write(ap
, SCR_CONTROL
, scontrol
)))
3077 /* issue phy wake/reset */
3078 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
3081 scontrol
= (scontrol
& 0x0f0) | 0x301;
3083 if ((rc
= sata_scr_write_flush(ap
, SCR_CONTROL
, scontrol
)))
3086 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3087 * 10.4.2 says at least 1 ms.
3091 /* bring phy back */
3092 rc
= sata_phy_resume(ap
, timing
);
3094 DPRINTK("EXIT, rc=%d\n", rc
);
3099 * sata_std_hardreset - reset host port via SATA phy reset
3100 * @ap: port to reset
3101 * @class: resulting class of attached device
3103 * SATA phy-reset host port using DET bits of SControl register,
3104 * wait for !BSY and classify the attached device.
3107 * Kernel thread context (may sleep)
3110 * 0 on success, -errno otherwise.
3112 int sata_std_hardreset(struct ata_port
*ap
, unsigned int *class)
3114 const unsigned long *timing
= sata_ehc_deb_timing(&ap
->eh_context
);
3120 rc
= sata_port_hardreset(ap
, timing
);
3122 ata_port_printk(ap
, KERN_ERR
,
3123 "COMRESET failed (errno=%d)\n", rc
);
3127 /* TODO: phy layer with polling, timeouts, etc. */
3128 if (ata_port_offline(ap
)) {
3129 *class = ATA_DEV_NONE
;
3130 DPRINTK("EXIT, link offline\n");
3134 /* wait a while before checking status, see SRST for more info */
3137 if (ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
)) {
3138 ata_port_printk(ap
, KERN_ERR
,
3139 "COMRESET failed (device not ready)\n");
3143 ap
->ops
->dev_select(ap
, 0); /* probably unnecessary */
3145 *class = ata_dev_try_classify(ap
, 0, NULL
);
3147 DPRINTK("EXIT, class=%u\n", *class);
3152 * ata_std_postreset - standard postreset callback
3153 * @ap: the target ata_port
3154 * @classes: classes of attached devices
3156 * This function is invoked after a successful reset. Note that
3157 * the device might have been reset more than once using
3158 * different reset methods before postreset is invoked.
3161 * Kernel thread context (may sleep)
3163 void ata_std_postreset(struct ata_port
*ap
, unsigned int *classes
)
3169 /* print link status */
3170 sata_print_link_status(ap
);
3173 if (sata_scr_read(ap
, SCR_ERROR
, &serror
) == 0)
3174 sata_scr_write(ap
, SCR_ERROR
, serror
);
3176 /* re-enable interrupts */
3177 if (!ap
->ops
->error_handler
)
3178 ap
->ops
->irq_on(ap
);
3180 /* is double-select really necessary? */
3181 if (classes
[0] != ATA_DEV_NONE
)
3182 ap
->ops
->dev_select(ap
, 1);
3183 if (classes
[1] != ATA_DEV_NONE
)
3184 ap
->ops
->dev_select(ap
, 0);
3186 /* bail out if no device is present */
3187 if (classes
[0] == ATA_DEV_NONE
&& classes
[1] == ATA_DEV_NONE
) {
3188 DPRINTK("EXIT, no device\n");
3192 /* set up device control */
3193 if (ap
->ioaddr
.ctl_addr
)
3194 iowrite8(ap
->ctl
, ap
->ioaddr
.ctl_addr
);
3200 * ata_dev_same_device - Determine whether new ID matches configured device
3201 * @dev: device to compare against
3202 * @new_class: class of the new device
3203 * @new_id: IDENTIFY page of the new device
3205 * Compare @new_class and @new_id against @dev and determine
3206 * whether @dev is the device indicated by @new_class and
3213 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3215 static int ata_dev_same_device(struct ata_device
*dev
, unsigned int new_class
,
3218 const u16
*old_id
= dev
->id
;
3219 unsigned char model
[2][ATA_ID_PROD_LEN
+ 1];
3220 unsigned char serial
[2][ATA_ID_SERNO_LEN
+ 1];
3223 if (dev
->class != new_class
) {
3224 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %d != %d\n",
3225 dev
->class, new_class
);
3229 ata_id_c_string(old_id
, model
[0], ATA_ID_PROD
, sizeof(model
[0]));
3230 ata_id_c_string(new_id
, model
[1], ATA_ID_PROD
, sizeof(model
[1]));
3231 ata_id_c_string(old_id
, serial
[0], ATA_ID_SERNO
, sizeof(serial
[0]));
3232 ata_id_c_string(new_id
, serial
[1], ATA_ID_SERNO
, sizeof(serial
[1]));
3233 new_n_sectors
= ata_id_n_sectors(new_id
);
3235 if (strcmp(model
[0], model
[1])) {
3236 ata_dev_printk(dev
, KERN_INFO
, "model number mismatch "
3237 "'%s' != '%s'\n", model
[0], model
[1]);
3241 if (strcmp(serial
[0], serial
[1])) {
3242 ata_dev_printk(dev
, KERN_INFO
, "serial number mismatch "
3243 "'%s' != '%s'\n", serial
[0], serial
[1]);
3247 if (dev
->class == ATA_DEV_ATA
&& dev
->n_sectors
!= new_n_sectors
) {
3248 ata_dev_printk(dev
, KERN_INFO
, "n_sectors mismatch "
3250 (unsigned long long)dev
->n_sectors
,
3251 (unsigned long long)new_n_sectors
);
3259 * ata_dev_revalidate - Revalidate ATA device
3260 * @dev: device to revalidate
3261 * @readid_flags: read ID flags
3263 * Re-read IDENTIFY page and make sure @dev is still attached to
3267 * Kernel thread context (may sleep)
3270 * 0 on success, negative errno otherwise
3272 int ata_dev_revalidate(struct ata_device
*dev
, unsigned int readid_flags
)
3274 unsigned int class = dev
->class;
3275 u16
*id
= (void *)dev
->ap
->sector_buf
;
3278 if (!ata_dev_enabled(dev
)) {
3284 rc
= ata_dev_read_id(dev
, &class, readid_flags
, id
);
3288 /* is the device still there? */
3289 if (!ata_dev_same_device(dev
, class, id
)) {
3294 memcpy(dev
->id
, id
, sizeof(id
[0]) * ATA_ID_WORDS
);
3296 /* configure device according to the new ID */
3297 rc
= ata_dev_configure(dev
);
3302 ata_dev_printk(dev
, KERN_ERR
, "revalidation failed (errno=%d)\n", rc
);
3306 struct ata_blacklist_entry
{
3307 const char *model_num
;
3308 const char *model_rev
;
3309 unsigned long horkage
;
3312 static const struct ata_blacklist_entry ata_device_blacklist
[] = {
3313 /* Devices with DMA related problems under Linux */
3314 { "WDC AC11000H", NULL
, ATA_HORKAGE_NODMA
},
3315 { "WDC AC22100H", NULL
, ATA_HORKAGE_NODMA
},
3316 { "WDC AC32500H", NULL
, ATA_HORKAGE_NODMA
},
3317 { "WDC AC33100H", NULL
, ATA_HORKAGE_NODMA
},
3318 { "WDC AC31600H", NULL
, ATA_HORKAGE_NODMA
},
3319 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA
},
3320 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA
},
3321 { "Compaq CRD-8241B", NULL
, ATA_HORKAGE_NODMA
},
3322 { "CRD-8400B", NULL
, ATA_HORKAGE_NODMA
},
3323 { "CRD-8480B", NULL
, ATA_HORKAGE_NODMA
},
3324 { "CRD-8482B", NULL
, ATA_HORKAGE_NODMA
},
3325 { "CRD-84", NULL
, ATA_HORKAGE_NODMA
},
3326 { "SanDisk SDP3B", NULL
, ATA_HORKAGE_NODMA
},
3327 { "SanDisk SDP3B-64", NULL
, ATA_HORKAGE_NODMA
},
3328 { "SANYO CD-ROM CRD", NULL
, ATA_HORKAGE_NODMA
},
3329 { "HITACHI CDR-8", NULL
, ATA_HORKAGE_NODMA
},
3330 { "HITACHI CDR-8335", NULL
, ATA_HORKAGE_NODMA
},
3331 { "HITACHI CDR-8435", NULL
, ATA_HORKAGE_NODMA
},
3332 { "Toshiba CD-ROM XM-6202B", NULL
, ATA_HORKAGE_NODMA
},
3333 { "TOSHIBA CD-ROM XM-1702BC", NULL
, ATA_HORKAGE_NODMA
},
3334 { "CD-532E-A", NULL
, ATA_HORKAGE_NODMA
},
3335 { "E-IDE CD-ROM CR-840",NULL
, ATA_HORKAGE_NODMA
},
3336 { "CD-ROM Drive/F5A", NULL
, ATA_HORKAGE_NODMA
},
3337 { "WPI CDD-820", NULL
, ATA_HORKAGE_NODMA
},
3338 { "SAMSUNG CD-ROM SC-148C", NULL
, ATA_HORKAGE_NODMA
},
3339 { "SAMSUNG CD-ROM SC", NULL
, ATA_HORKAGE_NODMA
},
3340 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL
,ATA_HORKAGE_NODMA
},
3341 { "_NEC DV5800A", NULL
, ATA_HORKAGE_NODMA
},
3342 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA
},
3344 /* Devices we expect to fail diagnostics */
3346 /* Devices where NCQ should be avoided */
3348 { "WDC WD740ADFD-00", NULL
, ATA_HORKAGE_NONCQ
},
3349 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3350 { "FUJITSU MHT2060BH", NULL
, ATA_HORKAGE_NONCQ
},
3352 /* Devices with NCQ limits */
3358 unsigned long ata_device_blacklisted(const struct ata_device
*dev
)
3360 unsigned char model_num
[ATA_ID_PROD_LEN
+ 1];
3361 unsigned char model_rev
[ATA_ID_FW_REV_LEN
+ 1];
3362 const struct ata_blacklist_entry
*ad
= ata_device_blacklist
;
3364 ata_id_c_string(dev
->id
, model_num
, ATA_ID_PROD
, sizeof(model_num
));
3365 ata_id_c_string(dev
->id
, model_rev
, ATA_ID_FW_REV
, sizeof(model_rev
));
3367 while (ad
->model_num
) {
3368 if (!strcmp(ad
->model_num
, model_num
)) {
3369 if (ad
->model_rev
== NULL
)
3371 if (!strcmp(ad
->model_rev
, model_rev
))
3379 static int ata_dma_blacklisted(const struct ata_device
*dev
)
3381 /* We don't support polling DMA.
3382 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3383 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3385 if ((dev
->ap
->flags
& ATA_FLAG_PIO_POLLING
) &&
3386 (dev
->flags
& ATA_DFLAG_CDB_INTR
))
3388 return (ata_device_blacklisted(dev
) & ATA_HORKAGE_NODMA
) ? 1 : 0;
3392 * ata_dev_xfermask - Compute supported xfermask of the given device
3393 * @dev: Device to compute xfermask for
3395 * Compute supported xfermask of @dev and store it in
3396 * dev->*_mask. This function is responsible for applying all
3397 * known limits including host controller limits, device
3403 static void ata_dev_xfermask(struct ata_device
*dev
)
3405 struct ata_port
*ap
= dev
->ap
;
3406 struct ata_host
*host
= ap
->host
;
3407 unsigned long xfer_mask
;
3409 /* controller modes available */
3410 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
,
3411 ap
->mwdma_mask
, ap
->udma_mask
);
3413 /* Apply cable rule here. Don't apply it early because when
3414 * we handle hot plug the cable type can itself change.
3416 if (ap
->cbl
== ATA_CBL_PATA40
)
3417 xfer_mask
&= ~(0xF8 << ATA_SHIFT_UDMA
);
3418 /* Apply drive side cable rule. Unknown or 80 pin cables reported
3419 * host side are checked drive side as well. Cases where we know a
3420 * 40wire cable is used safely for 80 are not checked here.
3422 if (ata_drive_40wire(dev
->id
) && (ap
->cbl
== ATA_CBL_PATA_UNK
|| ap
->cbl
== ATA_CBL_PATA80
))
3423 xfer_mask
&= ~(0xF8 << ATA_SHIFT_UDMA
);
3426 xfer_mask
&= ata_pack_xfermask(dev
->pio_mask
,
3427 dev
->mwdma_mask
, dev
->udma_mask
);
3428 xfer_mask
&= ata_id_xfermask(dev
->id
);
3431 * CFA Advanced TrueIDE timings are not allowed on a shared
3434 if (ata_dev_pair(dev
)) {
3435 /* No PIO5 or PIO6 */
3436 xfer_mask
&= ~(0x03 << (ATA_SHIFT_PIO
+ 5));
3437 /* No MWDMA3 or MWDMA 4 */
3438 xfer_mask
&= ~(0x03 << (ATA_SHIFT_MWDMA
+ 3));
3441 if (ata_dma_blacklisted(dev
)) {
3442 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
3443 ata_dev_printk(dev
, KERN_WARNING
,
3444 "device is on DMA blacklist, disabling DMA\n");
3447 if ((host
->flags
& ATA_HOST_SIMPLEX
) && host
->simplex_claimed
) {
3448 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
3449 ata_dev_printk(dev
, KERN_WARNING
, "simplex DMA is claimed by "
3450 "other device, disabling DMA\n");
3453 if (ap
->ops
->mode_filter
)
3454 xfer_mask
= ap
->ops
->mode_filter(ap
, dev
, xfer_mask
);
3456 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
,
3457 &dev
->mwdma_mask
, &dev
->udma_mask
);
3461 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3462 * @dev: Device to which command will be sent
3464 * Issue SET FEATURES - XFER MODE command to device @dev
3468 * PCI/etc. bus probe sem.
3471 * 0 on success, AC_ERR_* mask otherwise.
3474 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
)
3476 struct ata_taskfile tf
;
3477 unsigned int err_mask
;
3479 /* set up set-features taskfile */
3480 DPRINTK("set features - xfer mode\n");
3482 ata_tf_init(dev
, &tf
);
3483 tf
.command
= ATA_CMD_SET_FEATURES
;
3484 tf
.feature
= SETFEATURES_XFER
;
3485 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
3486 tf
.protocol
= ATA_PROT_NODATA
;
3487 tf
.nsect
= dev
->xfer_mode
;
3489 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
3491 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
3496 * ata_dev_init_params - Issue INIT DEV PARAMS command
3497 * @dev: Device to which command will be sent
3498 * @heads: Number of heads (taskfile parameter)
3499 * @sectors: Number of sectors (taskfile parameter)
3502 * Kernel thread context (may sleep)
3505 * 0 on success, AC_ERR_* mask otherwise.
3507 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
3508 u16 heads
, u16 sectors
)
3510 struct ata_taskfile tf
;
3511 unsigned int err_mask
;
3513 /* Number of sectors per track 1-255. Number of heads 1-16 */
3514 if (sectors
< 1 || sectors
> 255 || heads
< 1 || heads
> 16)
3515 return AC_ERR_INVALID
;
3517 /* set up init dev params taskfile */
3518 DPRINTK("init dev params \n");
3520 ata_tf_init(dev
, &tf
);
3521 tf
.command
= ATA_CMD_INIT_DEV_PARAMS
;
3522 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
3523 tf
.protocol
= ATA_PROT_NODATA
;
3525 tf
.device
|= (heads
- 1) & 0x0f; /* max head = num. of heads - 1 */
3527 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
3529 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
3534 * ata_sg_clean - Unmap DMA memory associated with command
3535 * @qc: Command containing DMA memory to be released
3537 * Unmap all mapped DMA memory associated with this command.
3540 * spin_lock_irqsave(host lock)
3542 void ata_sg_clean(struct ata_queued_cmd
*qc
)
3544 struct ata_port
*ap
= qc
->ap
;
3545 struct scatterlist
*sg
= qc
->__sg
;
3546 int dir
= qc
->dma_dir
;
3547 void *pad_buf
= NULL
;
3549 WARN_ON(!(qc
->flags
& ATA_QCFLAG_DMAMAP
));
3550 WARN_ON(sg
== NULL
);
3552 if (qc
->flags
& ATA_QCFLAG_SINGLE
)
3553 WARN_ON(qc
->n_elem
> 1);
3555 VPRINTK("unmapping %u sg elements\n", qc
->n_elem
);
3557 /* if we padded the buffer out to 32-bit bound, and data
3558 * xfer direction is from-device, we must copy from the
3559 * pad buffer back into the supplied buffer
3561 if (qc
->pad_len
&& !(qc
->tf
.flags
& ATA_TFLAG_WRITE
))
3562 pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
3564 if (qc
->flags
& ATA_QCFLAG_SG
) {
3566 dma_unmap_sg(ap
->dev
, sg
, qc
->n_elem
, dir
);
3567 /* restore last sg */
3568 sg
[qc
->orig_n_elem
- 1].length
+= qc
->pad_len
;
3570 struct scatterlist
*psg
= &qc
->pad_sgent
;
3571 void *addr
= kmap_atomic(psg
->page
, KM_IRQ0
);
3572 memcpy(addr
+ psg
->offset
, pad_buf
, qc
->pad_len
);
3573 kunmap_atomic(addr
, KM_IRQ0
);
3577 dma_unmap_single(ap
->dev
,
3578 sg_dma_address(&sg
[0]), sg_dma_len(&sg
[0]),
3581 sg
->length
+= qc
->pad_len
;
3583 memcpy(qc
->buf_virt
+ sg
->length
- qc
->pad_len
,
3584 pad_buf
, qc
->pad_len
);
3587 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
3592 * ata_fill_sg - Fill PCI IDE PRD table
3593 * @qc: Metadata associated with taskfile to be transferred
3595 * Fill PCI IDE PRD (scatter-gather) table with segments
3596 * associated with the current disk command.
3599 * spin_lock_irqsave(host lock)
3602 static void ata_fill_sg(struct ata_queued_cmd
*qc
)
3604 struct ata_port
*ap
= qc
->ap
;
3605 struct scatterlist
*sg
;
3608 WARN_ON(qc
->__sg
== NULL
);
3609 WARN_ON(qc
->n_elem
== 0 && qc
->pad_len
== 0);
3612 ata_for_each_sg(sg
, qc
) {
3616 /* determine if physical DMA addr spans 64K boundary.
3617 * Note h/w doesn't support 64-bit, so we unconditionally
3618 * truncate dma_addr_t to u32.
3620 addr
= (u32
) sg_dma_address(sg
);
3621 sg_len
= sg_dma_len(sg
);
3624 offset
= addr
& 0xffff;
3626 if ((offset
+ sg_len
) > 0x10000)
3627 len
= 0x10000 - offset
;
3629 ap
->prd
[idx
].addr
= cpu_to_le32(addr
);
3630 ap
->prd
[idx
].flags_len
= cpu_to_le32(len
& 0xffff);
3631 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx
, addr
, len
);
3640 ap
->prd
[idx
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
3643 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3644 * @qc: Metadata associated with taskfile to check
3646 * Allow low-level driver to filter ATA PACKET commands, returning
3647 * a status indicating whether or not it is OK to use DMA for the
3648 * supplied PACKET command.
3651 * spin_lock_irqsave(host lock)
3653 * RETURNS: 0 when ATAPI DMA can be used
3656 int ata_check_atapi_dma(struct ata_queued_cmd
*qc
)
3658 struct ata_port
*ap
= qc
->ap
;
3659 int rc
= 0; /* Assume ATAPI DMA is OK by default */
3661 if (ap
->ops
->check_atapi_dma
)
3662 rc
= ap
->ops
->check_atapi_dma(qc
);
3667 * ata_qc_prep - Prepare taskfile for submission
3668 * @qc: Metadata associated with taskfile to be prepared
3670 * Prepare ATA taskfile for submission.
3673 * spin_lock_irqsave(host lock)
3675 void ata_qc_prep(struct ata_queued_cmd
*qc
)
3677 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
3683 void ata_noop_qc_prep(struct ata_queued_cmd
*qc
) { }
3686 * ata_sg_init_one - Associate command with memory buffer
3687 * @qc: Command to be associated
3688 * @buf: Memory buffer
3689 * @buflen: Length of memory buffer, in bytes.
3691 * Initialize the data-related elements of queued_cmd @qc
3692 * to point to a single memory buffer, @buf of byte length @buflen.
3695 * spin_lock_irqsave(host lock)
3698 void ata_sg_init_one(struct ata_queued_cmd
*qc
, void *buf
, unsigned int buflen
)
3700 qc
->flags
|= ATA_QCFLAG_SINGLE
;
3702 qc
->__sg
= &qc
->sgent
;
3704 qc
->orig_n_elem
= 1;
3706 qc
->nbytes
= buflen
;
3708 sg_init_one(&qc
->sgent
, buf
, buflen
);
3712 * ata_sg_init - Associate command with scatter-gather table.
3713 * @qc: Command to be associated
3714 * @sg: Scatter-gather table.
3715 * @n_elem: Number of elements in s/g table.
3717 * Initialize the data-related elements of queued_cmd @qc
3718 * to point to a scatter-gather table @sg, containing @n_elem
3722 * spin_lock_irqsave(host lock)
3725 void ata_sg_init(struct ata_queued_cmd
*qc
, struct scatterlist
*sg
,
3726 unsigned int n_elem
)
3728 qc
->flags
|= ATA_QCFLAG_SG
;
3730 qc
->n_elem
= n_elem
;
3731 qc
->orig_n_elem
= n_elem
;
3735 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3736 * @qc: Command with memory buffer to be mapped.
3738 * DMA-map the memory buffer associated with queued_cmd @qc.
3741 * spin_lock_irqsave(host lock)
3744 * Zero on success, negative on error.
3747 static int ata_sg_setup_one(struct ata_queued_cmd
*qc
)
3749 struct ata_port
*ap
= qc
->ap
;
3750 int dir
= qc
->dma_dir
;
3751 struct scatterlist
*sg
= qc
->__sg
;
3752 dma_addr_t dma_address
;
3755 /* we must lengthen transfers to end on a 32-bit boundary */
3756 qc
->pad_len
= sg
->length
& 3;
3758 void *pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
3759 struct scatterlist
*psg
= &qc
->pad_sgent
;
3761 WARN_ON(qc
->dev
->class != ATA_DEV_ATAPI
);
3763 memset(pad_buf
, 0, ATA_DMA_PAD_SZ
);
3765 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
)
3766 memcpy(pad_buf
, qc
->buf_virt
+ sg
->length
- qc
->pad_len
,
3769 sg_dma_address(psg
) = ap
->pad_dma
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
3770 sg_dma_len(psg
) = ATA_DMA_PAD_SZ
;
3772 sg
->length
-= qc
->pad_len
;
3773 if (sg
->length
== 0)
3776 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3777 sg
->length
, qc
->pad_len
);
3785 dma_address
= dma_map_single(ap
->dev
, qc
->buf_virt
,
3787 if (dma_mapping_error(dma_address
)) {
3789 sg
->length
+= qc
->pad_len
;
3793 sg_dma_address(sg
) = dma_address
;
3794 sg_dma_len(sg
) = sg
->length
;
3797 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg
),
3798 qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
3804 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3805 * @qc: Command with scatter-gather table to be mapped.
3807 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3810 * spin_lock_irqsave(host lock)
3813 * Zero on success, negative on error.
3817 static int ata_sg_setup(struct ata_queued_cmd
*qc
)
3819 struct ata_port
*ap
= qc
->ap
;
3820 struct scatterlist
*sg
= qc
->__sg
;
3821 struct scatterlist
*lsg
= &sg
[qc
->n_elem
- 1];
3822 int n_elem
, pre_n_elem
, dir
, trim_sg
= 0;
3824 VPRINTK("ENTER, ata%u\n", ap
->print_id
);
3825 WARN_ON(!(qc
->flags
& ATA_QCFLAG_SG
));
3827 /* we must lengthen transfers to end on a 32-bit boundary */
3828 qc
->pad_len
= lsg
->length
& 3;
3830 void *pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
3831 struct scatterlist
*psg
= &qc
->pad_sgent
;
3832 unsigned int offset
;
3834 WARN_ON(qc
->dev
->class != ATA_DEV_ATAPI
);
3836 memset(pad_buf
, 0, ATA_DMA_PAD_SZ
);
3839 * psg->page/offset are used to copy to-be-written
3840 * data in this function or read data in ata_sg_clean.
3842 offset
= lsg
->offset
+ lsg
->length
- qc
->pad_len
;
3843 psg
->page
= nth_page(lsg
->page
, offset
>> PAGE_SHIFT
);
3844 psg
->offset
= offset_in_page(offset
);
3846 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
3847 void *addr
= kmap_atomic(psg
->page
, KM_IRQ0
);
3848 memcpy(pad_buf
, addr
+ psg
->offset
, qc
->pad_len
);
3849 kunmap_atomic(addr
, KM_IRQ0
);
3852 sg_dma_address(psg
) = ap
->pad_dma
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
3853 sg_dma_len(psg
) = ATA_DMA_PAD_SZ
;
3855 lsg
->length
-= qc
->pad_len
;
3856 if (lsg
->length
== 0)
3859 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3860 qc
->n_elem
- 1, lsg
->length
, qc
->pad_len
);
3863 pre_n_elem
= qc
->n_elem
;
3864 if (trim_sg
&& pre_n_elem
)
3873 n_elem
= dma_map_sg(ap
->dev
, sg
, pre_n_elem
, dir
);
3875 /* restore last sg */
3876 lsg
->length
+= qc
->pad_len
;
3880 DPRINTK("%d sg elements mapped\n", n_elem
);
3883 qc
->n_elem
= n_elem
;
3889 * swap_buf_le16 - swap halves of 16-bit words in place
3890 * @buf: Buffer to swap
3891 * @buf_words: Number of 16-bit words in buffer.
3893 * Swap halves of 16-bit words if needed to convert from
3894 * little-endian byte order to native cpu byte order, or
3898 * Inherited from caller.
3900 void swap_buf_le16(u16
*buf
, unsigned int buf_words
)
3905 for (i
= 0; i
< buf_words
; i
++)
3906 buf
[i
] = le16_to_cpu(buf
[i
]);
3907 #endif /* __BIG_ENDIAN */
3911 * ata_data_xfer - Transfer data by PIO
3912 * @adev: device to target
3914 * @buflen: buffer length
3915 * @write_data: read/write
3917 * Transfer data from/to the device data register by PIO.
3920 * Inherited from caller.
3922 void ata_data_xfer(struct ata_device
*adev
, unsigned char *buf
,
3923 unsigned int buflen
, int write_data
)
3925 struct ata_port
*ap
= adev
->ap
;
3926 unsigned int words
= buflen
>> 1;
3928 /* Transfer multiple of 2 bytes */
3930 iowrite16_rep(ap
->ioaddr
.data_addr
, buf
, words
);
3932 ioread16_rep(ap
->ioaddr
.data_addr
, buf
, words
);
3934 /* Transfer trailing 1 byte, if any. */
3935 if (unlikely(buflen
& 0x01)) {
3936 u16 align_buf
[1] = { 0 };
3937 unsigned char *trailing_buf
= buf
+ buflen
- 1;
3940 memcpy(align_buf
, trailing_buf
, 1);
3941 iowrite16(le16_to_cpu(align_buf
[0]), ap
->ioaddr
.data_addr
);
3943 align_buf
[0] = cpu_to_le16(ioread16(ap
->ioaddr
.data_addr
));
3944 memcpy(trailing_buf
, align_buf
, 1);
3950 * ata_data_xfer_noirq - Transfer data by PIO
3951 * @adev: device to target
3953 * @buflen: buffer length
3954 * @write_data: read/write
3956 * Transfer data from/to the device data register by PIO. Do the
3957 * transfer with interrupts disabled.
3960 * Inherited from caller.
3962 void ata_data_xfer_noirq(struct ata_device
*adev
, unsigned char *buf
,
3963 unsigned int buflen
, int write_data
)
3965 unsigned long flags
;
3966 local_irq_save(flags
);
3967 ata_data_xfer(adev
, buf
, buflen
, write_data
);
3968 local_irq_restore(flags
);
3973 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3974 * @qc: Command on going
3976 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3979 * Inherited from caller.
3982 static void ata_pio_sector(struct ata_queued_cmd
*qc
)
3984 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
3985 struct scatterlist
*sg
= qc
->__sg
;
3986 struct ata_port
*ap
= qc
->ap
;
3988 unsigned int offset
;
3991 if (qc
->curbytes
== qc
->nbytes
- ATA_SECT_SIZE
)
3992 ap
->hsm_task_state
= HSM_ST_LAST
;
3994 page
= sg
[qc
->cursg
].page
;
3995 offset
= sg
[qc
->cursg
].offset
+ qc
->cursg_ofs
;
3997 /* get the current page and offset */
3998 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
3999 offset
%= PAGE_SIZE
;
4001 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
4003 if (PageHighMem(page
)) {
4004 unsigned long flags
;
4006 /* FIXME: use a bounce buffer */
4007 local_irq_save(flags
);
4008 buf
= kmap_atomic(page
, KM_IRQ0
);
4010 /* do the actual data transfer */
4011 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, ATA_SECT_SIZE
, do_write
);
4013 kunmap_atomic(buf
, KM_IRQ0
);
4014 local_irq_restore(flags
);
4016 buf
= page_address(page
);
4017 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, ATA_SECT_SIZE
, do_write
);
4020 qc
->curbytes
+= ATA_SECT_SIZE
;
4021 qc
->cursg_ofs
+= ATA_SECT_SIZE
;
4023 if (qc
->cursg_ofs
== (&sg
[qc
->cursg
])->length
) {
4030 * ata_pio_sectors - Transfer one or many 512-byte sectors.
4031 * @qc: Command on going
4033 * Transfer one or many ATA_SECT_SIZE of data from/to the
4034 * ATA device for the DRQ request.
4037 * Inherited from caller.
4040 static void ata_pio_sectors(struct ata_queued_cmd
*qc
)
4042 if (is_multi_taskfile(&qc
->tf
)) {
4043 /* READ/WRITE MULTIPLE */
4046 WARN_ON(qc
->dev
->multi_count
== 0);
4048 nsect
= min((qc
->nbytes
- qc
->curbytes
) / ATA_SECT_SIZE
,
4049 qc
->dev
->multi_count
);
4057 * atapi_send_cdb - Write CDB bytes to hardware
4058 * @ap: Port to which ATAPI device is attached.
4059 * @qc: Taskfile currently active
4061 * When device has indicated its readiness to accept
4062 * a CDB, this function is called. Send the CDB.
4068 static void atapi_send_cdb(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
4071 DPRINTK("send cdb\n");
4072 WARN_ON(qc
->dev
->cdb_len
< 12);
4074 ap
->ops
->data_xfer(qc
->dev
, qc
->cdb
, qc
->dev
->cdb_len
, 1);
4075 ata_altstatus(ap
); /* flush */
4077 switch (qc
->tf
.protocol
) {
4078 case ATA_PROT_ATAPI
:
4079 ap
->hsm_task_state
= HSM_ST
;
4081 case ATA_PROT_ATAPI_NODATA
:
4082 ap
->hsm_task_state
= HSM_ST_LAST
;
4084 case ATA_PROT_ATAPI_DMA
:
4085 ap
->hsm_task_state
= HSM_ST_LAST
;
4086 /* initiate bmdma */
4087 ap
->ops
->bmdma_start(qc
);
4093 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4094 * @qc: Command on going
4095 * @bytes: number of bytes
4097 * Transfer Transfer data from/to the ATAPI device.
4100 * Inherited from caller.
4104 static void __atapi_pio_bytes(struct ata_queued_cmd
*qc
, unsigned int bytes
)
4106 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
4107 struct scatterlist
*sg
= qc
->__sg
;
4108 struct ata_port
*ap
= qc
->ap
;
4111 unsigned int offset
, count
;
4113 if (qc
->curbytes
+ bytes
>= qc
->nbytes
)
4114 ap
->hsm_task_state
= HSM_ST_LAST
;
4117 if (unlikely(qc
->cursg
>= qc
->n_elem
)) {
4119 * The end of qc->sg is reached and the device expects
4120 * more data to transfer. In order not to overrun qc->sg
4121 * and fulfill length specified in the byte count register,
4122 * - for read case, discard trailing data from the device
4123 * - for write case, padding zero data to the device
4125 u16 pad_buf
[1] = { 0 };
4126 unsigned int words
= bytes
>> 1;
4129 if (words
) /* warning if bytes > 1 */
4130 ata_dev_printk(qc
->dev
, KERN_WARNING
,
4131 "%u bytes trailing data\n", bytes
);
4133 for (i
= 0; i
< words
; i
++)
4134 ap
->ops
->data_xfer(qc
->dev
, (unsigned char*)pad_buf
, 2, do_write
);
4136 ap
->hsm_task_state
= HSM_ST_LAST
;
4140 sg
= &qc
->__sg
[qc
->cursg
];
4143 offset
= sg
->offset
+ qc
->cursg_ofs
;
4145 /* get the current page and offset */
4146 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
4147 offset
%= PAGE_SIZE
;
4149 /* don't overrun current sg */
4150 count
= min(sg
->length
- qc
->cursg_ofs
, bytes
);
4152 /* don't cross page boundaries */
4153 count
= min(count
, (unsigned int)PAGE_SIZE
- offset
);
4155 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
4157 if (PageHighMem(page
)) {
4158 unsigned long flags
;
4160 /* FIXME: use bounce buffer */
4161 local_irq_save(flags
);
4162 buf
= kmap_atomic(page
, KM_IRQ0
);
4164 /* do the actual data transfer */
4165 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, count
, do_write
);
4167 kunmap_atomic(buf
, KM_IRQ0
);
4168 local_irq_restore(flags
);
4170 buf
= page_address(page
);
4171 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, count
, do_write
);
4175 qc
->curbytes
+= count
;
4176 qc
->cursg_ofs
+= count
;
4178 if (qc
->cursg_ofs
== sg
->length
) {
4188 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4189 * @qc: Command on going
4191 * Transfer Transfer data from/to the ATAPI device.
4194 * Inherited from caller.
4197 static void atapi_pio_bytes(struct ata_queued_cmd
*qc
)
4199 struct ata_port
*ap
= qc
->ap
;
4200 struct ata_device
*dev
= qc
->dev
;
4201 unsigned int ireason
, bc_lo
, bc_hi
, bytes
;
4202 int i_write
, do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
4204 /* Abuse qc->result_tf for temp storage of intermediate TF
4205 * here to save some kernel stack usage.
4206 * For normal completion, qc->result_tf is not relevant. For
4207 * error, qc->result_tf is later overwritten by ata_qc_complete().
4208 * So, the correctness of qc->result_tf is not affected.
4210 ap
->ops
->tf_read(ap
, &qc
->result_tf
);
4211 ireason
= qc
->result_tf
.nsect
;
4212 bc_lo
= qc
->result_tf
.lbam
;
4213 bc_hi
= qc
->result_tf
.lbah
;
4214 bytes
= (bc_hi
<< 8) | bc_lo
;
4216 /* shall be cleared to zero, indicating xfer of data */
4217 if (ireason
& (1 << 0))
4220 /* make sure transfer direction matches expected */
4221 i_write
= ((ireason
& (1 << 1)) == 0) ? 1 : 0;
4222 if (do_write
!= i_write
)
4225 VPRINTK("ata%u: xfering %d bytes\n", ap
->print_id
, bytes
);
4227 __atapi_pio_bytes(qc
, bytes
);
4232 ata_dev_printk(dev
, KERN_INFO
, "ATAPI check failed\n");
4233 qc
->err_mask
|= AC_ERR_HSM
;
4234 ap
->hsm_task_state
= HSM_ST_ERR
;
4238 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4239 * @ap: the target ata_port
4243 * 1 if ok in workqueue, 0 otherwise.
4246 static inline int ata_hsm_ok_in_wq(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
4248 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
4251 if (ap
->hsm_task_state
== HSM_ST_FIRST
) {
4252 if (qc
->tf
.protocol
== ATA_PROT_PIO
&&
4253 (qc
->tf
.flags
& ATA_TFLAG_WRITE
))
4256 if (is_atapi_taskfile(&qc
->tf
) &&
4257 !(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
4265 * ata_hsm_qc_complete - finish a qc running on standard HSM
4266 * @qc: Command to complete
4267 * @in_wq: 1 if called from workqueue, 0 otherwise
4269 * Finish @qc which is running on standard HSM.
4272 * If @in_wq is zero, spin_lock_irqsave(host lock).
4273 * Otherwise, none on entry and grabs host lock.
4275 static void ata_hsm_qc_complete(struct ata_queued_cmd
*qc
, int in_wq
)
4277 struct ata_port
*ap
= qc
->ap
;
4278 unsigned long flags
;
4280 if (ap
->ops
->error_handler
) {
4282 spin_lock_irqsave(ap
->lock
, flags
);
4284 /* EH might have kicked in while host lock is
4287 qc
= ata_qc_from_tag(ap
, qc
->tag
);
4289 if (likely(!(qc
->err_mask
& AC_ERR_HSM
))) {
4290 ap
->ops
->irq_on(ap
);
4291 ata_qc_complete(qc
);
4293 ata_port_freeze(ap
);
4296 spin_unlock_irqrestore(ap
->lock
, flags
);
4298 if (likely(!(qc
->err_mask
& AC_ERR_HSM
)))
4299 ata_qc_complete(qc
);
4301 ata_port_freeze(ap
);
4305 spin_lock_irqsave(ap
->lock
, flags
);
4306 ap
->ops
->irq_on(ap
);
4307 ata_qc_complete(qc
);
4308 spin_unlock_irqrestore(ap
->lock
, flags
);
4310 ata_qc_complete(qc
);
4313 ata_altstatus(ap
); /* flush */
4317 * ata_hsm_move - move the HSM to the next state.
4318 * @ap: the target ata_port
4320 * @status: current device status
4321 * @in_wq: 1 if called from workqueue, 0 otherwise
4324 * 1 when poll next status needed, 0 otherwise.
4326 int ata_hsm_move(struct ata_port
*ap
, struct ata_queued_cmd
*qc
,
4327 u8 status
, int in_wq
)
4329 unsigned long flags
= 0;
4332 WARN_ON((qc
->flags
& ATA_QCFLAG_ACTIVE
) == 0);
4334 /* Make sure ata_qc_issue_prot() does not throw things
4335 * like DMA polling into the workqueue. Notice that
4336 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4338 WARN_ON(in_wq
!= ata_hsm_ok_in_wq(ap
, qc
));
4341 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4342 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
, status
);
4344 switch (ap
->hsm_task_state
) {
4346 /* Send first data block or PACKET CDB */
4348 /* If polling, we will stay in the work queue after
4349 * sending the data. Otherwise, interrupt handler
4350 * takes over after sending the data.
4352 poll_next
= (qc
->tf
.flags
& ATA_TFLAG_POLLING
);
4354 /* check device status */
4355 if (unlikely((status
& ATA_DRQ
) == 0)) {
4356 /* handle BSY=0, DRQ=0 as error */
4357 if (likely(status
& (ATA_ERR
| ATA_DF
)))
4358 /* device stops HSM for abort/error */
4359 qc
->err_mask
|= AC_ERR_DEV
;
4361 /* HSM violation. Let EH handle this */
4362 qc
->err_mask
|= AC_ERR_HSM
;
4364 ap
->hsm_task_state
= HSM_ST_ERR
;
4368 /* Device should not ask for data transfer (DRQ=1)
4369 * when it finds something wrong.
4370 * We ignore DRQ here and stop the HSM by
4371 * changing hsm_task_state to HSM_ST_ERR and
4372 * let the EH abort the command or reset the device.
4374 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
4375 ata_port_printk(ap
, KERN_WARNING
, "DRQ=1 with device "
4376 "error, dev_stat 0x%X\n", status
);
4377 qc
->err_mask
|= AC_ERR_HSM
;
4378 ap
->hsm_task_state
= HSM_ST_ERR
;
4382 /* Send the CDB (atapi) or the first data block (ata pio out).
4383 * During the state transition, interrupt handler shouldn't
4384 * be invoked before the data transfer is complete and
4385 * hsm_task_state is changed. Hence, the following locking.
4388 spin_lock_irqsave(ap
->lock
, flags
);
4390 if (qc
->tf
.protocol
== ATA_PROT_PIO
) {
4391 /* PIO data out protocol.
4392 * send first data block.
4395 /* ata_pio_sectors() might change the state
4396 * to HSM_ST_LAST. so, the state is changed here
4397 * before ata_pio_sectors().
4399 ap
->hsm_task_state
= HSM_ST
;
4400 ata_pio_sectors(qc
);
4401 ata_altstatus(ap
); /* flush */
4404 atapi_send_cdb(ap
, qc
);
4407 spin_unlock_irqrestore(ap
->lock
, flags
);
4409 /* if polling, ata_pio_task() handles the rest.
4410 * otherwise, interrupt handler takes over from here.
4415 /* complete command or read/write the data register */
4416 if (qc
->tf
.protocol
== ATA_PROT_ATAPI
) {
4417 /* ATAPI PIO protocol */
4418 if ((status
& ATA_DRQ
) == 0) {
4419 /* No more data to transfer or device error.
4420 * Device error will be tagged in HSM_ST_LAST.
4422 ap
->hsm_task_state
= HSM_ST_LAST
;
4426 /* Device should not ask for data transfer (DRQ=1)
4427 * when it finds something wrong.
4428 * We ignore DRQ here and stop the HSM by
4429 * changing hsm_task_state to HSM_ST_ERR and
4430 * let the EH abort the command or reset the device.
4432 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
4433 ata_port_printk(ap
, KERN_WARNING
, "DRQ=1 with "
4434 "device error, dev_stat 0x%X\n",
4436 qc
->err_mask
|= AC_ERR_HSM
;
4437 ap
->hsm_task_state
= HSM_ST_ERR
;
4441 atapi_pio_bytes(qc
);
4443 if (unlikely(ap
->hsm_task_state
== HSM_ST_ERR
))
4444 /* bad ireason reported by device */
4448 /* ATA PIO protocol */
4449 if (unlikely((status
& ATA_DRQ
) == 0)) {
4450 /* handle BSY=0, DRQ=0 as error */
4451 if (likely(status
& (ATA_ERR
| ATA_DF
)))
4452 /* device stops HSM for abort/error */
4453 qc
->err_mask
|= AC_ERR_DEV
;
4455 /* HSM violation. Let EH handle this.
4456 * Phantom devices also trigger this
4457 * condition. Mark hint.
4459 qc
->err_mask
|= AC_ERR_HSM
|
4462 ap
->hsm_task_state
= HSM_ST_ERR
;
4466 /* For PIO reads, some devices may ask for
4467 * data transfer (DRQ=1) alone with ERR=1.
4468 * We respect DRQ here and transfer one
4469 * block of junk data before changing the
4470 * hsm_task_state to HSM_ST_ERR.
4472 * For PIO writes, ERR=1 DRQ=1 doesn't make
4473 * sense since the data block has been
4474 * transferred to the device.
4476 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
4477 /* data might be corrputed */
4478 qc
->err_mask
|= AC_ERR_DEV
;
4480 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
)) {
4481 ata_pio_sectors(qc
);
4483 status
= ata_wait_idle(ap
);
4486 if (status
& (ATA_BUSY
| ATA_DRQ
))
4487 qc
->err_mask
|= AC_ERR_HSM
;
4489 /* ata_pio_sectors() might change the
4490 * state to HSM_ST_LAST. so, the state
4491 * is changed after ata_pio_sectors().
4493 ap
->hsm_task_state
= HSM_ST_ERR
;
4497 ata_pio_sectors(qc
);
4499 if (ap
->hsm_task_state
== HSM_ST_LAST
&&
4500 (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))) {
4503 status
= ata_wait_idle(ap
);
4508 ata_altstatus(ap
); /* flush */
4513 if (unlikely(!ata_ok(status
))) {
4514 qc
->err_mask
|= __ac_err_mask(status
);
4515 ap
->hsm_task_state
= HSM_ST_ERR
;
4519 /* no more data to transfer */
4520 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4521 ap
->print_id
, qc
->dev
->devno
, status
);
4523 WARN_ON(qc
->err_mask
);
4525 ap
->hsm_task_state
= HSM_ST_IDLE
;
4527 /* complete taskfile transaction */
4528 ata_hsm_qc_complete(qc
, in_wq
);
4534 /* make sure qc->err_mask is available to
4535 * know what's wrong and recover
4537 WARN_ON(qc
->err_mask
== 0);
4539 ap
->hsm_task_state
= HSM_ST_IDLE
;
4541 /* complete taskfile transaction */
4542 ata_hsm_qc_complete(qc
, in_wq
);
4554 static void ata_pio_task(struct work_struct
*work
)
4556 struct ata_port
*ap
=
4557 container_of(work
, struct ata_port
, port_task
.work
);
4558 struct ata_queued_cmd
*qc
= ap
->port_task_data
;
4563 WARN_ON(ap
->hsm_task_state
== HSM_ST_IDLE
);
4566 * This is purely heuristic. This is a fast path.
4567 * Sometimes when we enter, BSY will be cleared in
4568 * a chk-status or two. If not, the drive is probably seeking
4569 * or something. Snooze for a couple msecs, then
4570 * chk-status again. If still busy, queue delayed work.
4572 status
= ata_busy_wait(ap
, ATA_BUSY
, 5);
4573 if (status
& ATA_BUSY
) {
4575 status
= ata_busy_wait(ap
, ATA_BUSY
, 10);
4576 if (status
& ATA_BUSY
) {
4577 ata_port_queue_task(ap
, ata_pio_task
, qc
, ATA_SHORT_PAUSE
);
4583 poll_next
= ata_hsm_move(ap
, qc
, status
, 1);
4585 /* another command or interrupt handler
4586 * may be running at this point.
4593 * ata_qc_new - Request an available ATA command, for queueing
4594 * @ap: Port associated with device @dev
4595 * @dev: Device from whom we request an available command structure
4601 static struct ata_queued_cmd
*ata_qc_new(struct ata_port
*ap
)
4603 struct ata_queued_cmd
*qc
= NULL
;
4606 /* no command while frozen */
4607 if (unlikely(ap
->pflags
& ATA_PFLAG_FROZEN
))
4610 /* the last tag is reserved for internal command. */
4611 for (i
= 0; i
< ATA_MAX_QUEUE
- 1; i
++)
4612 if (!test_and_set_bit(i
, &ap
->qc_allocated
)) {
4613 qc
= __ata_qc_from_tag(ap
, i
);
4624 * ata_qc_new_init - Request an available ATA command, and initialize it
4625 * @dev: Device from whom we request an available command structure
4631 struct ata_queued_cmd
*ata_qc_new_init(struct ata_device
*dev
)
4633 struct ata_port
*ap
= dev
->ap
;
4634 struct ata_queued_cmd
*qc
;
4636 qc
= ata_qc_new(ap
);
4649 * ata_qc_free - free unused ata_queued_cmd
4650 * @qc: Command to complete
4652 * Designed to free unused ata_queued_cmd object
4653 * in case something prevents using it.
4656 * spin_lock_irqsave(host lock)
4658 void ata_qc_free(struct ata_queued_cmd
*qc
)
4660 struct ata_port
*ap
= qc
->ap
;
4663 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4667 if (likely(ata_tag_valid(tag
))) {
4668 qc
->tag
= ATA_TAG_POISON
;
4669 clear_bit(tag
, &ap
->qc_allocated
);
4673 void __ata_qc_complete(struct ata_queued_cmd
*qc
)
4675 struct ata_port
*ap
= qc
->ap
;
4677 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4678 WARN_ON(!(qc
->flags
& ATA_QCFLAG_ACTIVE
));
4680 if (likely(qc
->flags
& ATA_QCFLAG_DMAMAP
))
4683 /* command should be marked inactive atomically with qc completion */
4684 if (qc
->tf
.protocol
== ATA_PROT_NCQ
)
4685 ap
->sactive
&= ~(1 << qc
->tag
);
4687 ap
->active_tag
= ATA_TAG_POISON
;
4689 /* atapi: mark qc as inactive to prevent the interrupt handler
4690 * from completing the command twice later, before the error handler
4691 * is called. (when rc != 0 and atapi request sense is needed)
4693 qc
->flags
&= ~ATA_QCFLAG_ACTIVE
;
4694 ap
->qc_active
&= ~(1 << qc
->tag
);
4696 /* call completion callback */
4697 qc
->complete_fn(qc
);
4700 static void fill_result_tf(struct ata_queued_cmd
*qc
)
4702 struct ata_port
*ap
= qc
->ap
;
4704 ap
->ops
->tf_read(ap
, &qc
->result_tf
);
4705 qc
->result_tf
.flags
= qc
->tf
.flags
;
4709 * ata_qc_complete - Complete an active ATA command
4710 * @qc: Command to complete
4711 * @err_mask: ATA Status register contents
4713 * Indicate to the mid and upper layers that an ATA
4714 * command has completed, with either an ok or not-ok status.
4717 * spin_lock_irqsave(host lock)
4719 void ata_qc_complete(struct ata_queued_cmd
*qc
)
4721 struct ata_port
*ap
= qc
->ap
;
4723 /* XXX: New EH and old EH use different mechanisms to
4724 * synchronize EH with regular execution path.
4726 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4727 * Normal execution path is responsible for not accessing a
4728 * failed qc. libata core enforces the rule by returning NULL
4729 * from ata_qc_from_tag() for failed qcs.
4731 * Old EH depends on ata_qc_complete() nullifying completion
4732 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4733 * not synchronize with interrupt handler. Only PIO task is
4736 if (ap
->ops
->error_handler
) {
4737 WARN_ON(ap
->pflags
& ATA_PFLAG_FROZEN
);
4739 if (unlikely(qc
->err_mask
))
4740 qc
->flags
|= ATA_QCFLAG_FAILED
;
4742 if (unlikely(qc
->flags
& ATA_QCFLAG_FAILED
)) {
4743 if (!ata_tag_internal(qc
->tag
)) {
4744 /* always fill result TF for failed qc */
4746 ata_qc_schedule_eh(qc
);
4751 /* read result TF if requested */
4752 if (qc
->flags
& ATA_QCFLAG_RESULT_TF
)
4755 __ata_qc_complete(qc
);
4757 if (qc
->flags
& ATA_QCFLAG_EH_SCHEDULED
)
4760 /* read result TF if failed or requested */
4761 if (qc
->err_mask
|| qc
->flags
& ATA_QCFLAG_RESULT_TF
)
4764 __ata_qc_complete(qc
);
4769 * ata_qc_complete_multiple - Complete multiple qcs successfully
4770 * @ap: port in question
4771 * @qc_active: new qc_active mask
4772 * @finish_qc: LLDD callback invoked before completing a qc
4774 * Complete in-flight commands. This functions is meant to be
4775 * called from low-level driver's interrupt routine to complete
4776 * requests normally. ap->qc_active and @qc_active is compared
4777 * and commands are completed accordingly.
4780 * spin_lock_irqsave(host lock)
4783 * Number of completed commands on success, -errno otherwise.
4785 int ata_qc_complete_multiple(struct ata_port
*ap
, u32 qc_active
,
4786 void (*finish_qc
)(struct ata_queued_cmd
*))
4792 done_mask
= ap
->qc_active
^ qc_active
;
4794 if (unlikely(done_mask
& qc_active
)) {
4795 ata_port_printk(ap
, KERN_ERR
, "illegal qc_active transition "
4796 "(%08x->%08x)\n", ap
->qc_active
, qc_active
);
4800 for (i
= 0; i
< ATA_MAX_QUEUE
; i
++) {
4801 struct ata_queued_cmd
*qc
;
4803 if (!(done_mask
& (1 << i
)))
4806 if ((qc
= ata_qc_from_tag(ap
, i
))) {
4809 ata_qc_complete(qc
);
4817 static inline int ata_should_dma_map(struct ata_queued_cmd
*qc
)
4819 struct ata_port
*ap
= qc
->ap
;
4821 switch (qc
->tf
.protocol
) {
4824 case ATA_PROT_ATAPI_DMA
:
4827 case ATA_PROT_ATAPI
:
4829 if (ap
->flags
& ATA_FLAG_PIO_DMA
)
4842 * ata_qc_issue - issue taskfile to device
4843 * @qc: command to issue to device
4845 * Prepare an ATA command to submission to device.
4846 * This includes mapping the data into a DMA-able
4847 * area, filling in the S/G table, and finally
4848 * writing the taskfile to hardware, starting the command.
4851 * spin_lock_irqsave(host lock)
4853 void ata_qc_issue(struct ata_queued_cmd
*qc
)
4855 struct ata_port
*ap
= qc
->ap
;
4857 /* Make sure only one non-NCQ command is outstanding. The
4858 * check is skipped for old EH because it reuses active qc to
4859 * request ATAPI sense.
4861 WARN_ON(ap
->ops
->error_handler
&& ata_tag_valid(ap
->active_tag
));
4863 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
4864 WARN_ON(ap
->sactive
& (1 << qc
->tag
));
4865 ap
->sactive
|= 1 << qc
->tag
;
4867 WARN_ON(ap
->sactive
);
4868 ap
->active_tag
= qc
->tag
;
4871 qc
->flags
|= ATA_QCFLAG_ACTIVE
;
4872 ap
->qc_active
|= 1 << qc
->tag
;
4874 if (ata_should_dma_map(qc
)) {
4875 if (qc
->flags
& ATA_QCFLAG_SG
) {
4876 if (ata_sg_setup(qc
))
4878 } else if (qc
->flags
& ATA_QCFLAG_SINGLE
) {
4879 if (ata_sg_setup_one(qc
))
4883 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
4886 ap
->ops
->qc_prep(qc
);
4888 qc
->err_mask
|= ap
->ops
->qc_issue(qc
);
4889 if (unlikely(qc
->err_mask
))
4894 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
4895 qc
->err_mask
|= AC_ERR_SYSTEM
;
4897 ata_qc_complete(qc
);
4901 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4902 * @qc: command to issue to device
4904 * Using various libata functions and hooks, this function
4905 * starts an ATA command. ATA commands are grouped into
4906 * classes called "protocols", and issuing each type of protocol
4907 * is slightly different.
4909 * May be used as the qc_issue() entry in ata_port_operations.
4912 * spin_lock_irqsave(host lock)
4915 * Zero on success, AC_ERR_* mask on failure
4918 unsigned int ata_qc_issue_prot(struct ata_queued_cmd
*qc
)
4920 struct ata_port
*ap
= qc
->ap
;
4922 /* Use polling pio if the LLD doesn't handle
4923 * interrupt driven pio and atapi CDB interrupt.
4925 if (ap
->flags
& ATA_FLAG_PIO_POLLING
) {
4926 switch (qc
->tf
.protocol
) {
4928 case ATA_PROT_NODATA
:
4929 case ATA_PROT_ATAPI
:
4930 case ATA_PROT_ATAPI_NODATA
:
4931 qc
->tf
.flags
|= ATA_TFLAG_POLLING
;
4933 case ATA_PROT_ATAPI_DMA
:
4934 if (qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)
4935 /* see ata_dma_blacklisted() */
4943 /* Some controllers show flaky interrupt behavior after
4944 * setting xfer mode. Use polling instead.
4946 if (unlikely(qc
->tf
.command
== ATA_CMD_SET_FEATURES
&&
4947 qc
->tf
.feature
== SETFEATURES_XFER
) &&
4948 (ap
->flags
& ATA_FLAG_SETXFER_POLLING
))
4949 qc
->tf
.flags
|= ATA_TFLAG_POLLING
;
4951 /* select the device */
4952 ata_dev_select(ap
, qc
->dev
->devno
, 1, 0);
4954 /* start the command */
4955 switch (qc
->tf
.protocol
) {
4956 case ATA_PROT_NODATA
:
4957 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
4958 ata_qc_set_polling(qc
);
4960 ata_tf_to_host(ap
, &qc
->tf
);
4961 ap
->hsm_task_state
= HSM_ST_LAST
;
4963 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
4964 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
4969 WARN_ON(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
4971 ap
->ops
->tf_load(ap
, &qc
->tf
); /* load tf registers */
4972 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
4973 ap
->ops
->bmdma_start(qc
); /* initiate bmdma */
4974 ap
->hsm_task_state
= HSM_ST_LAST
;
4978 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
4979 ata_qc_set_polling(qc
);
4981 ata_tf_to_host(ap
, &qc
->tf
);
4983 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
4984 /* PIO data out protocol */
4985 ap
->hsm_task_state
= HSM_ST_FIRST
;
4986 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
4988 /* always send first data block using
4989 * the ata_pio_task() codepath.
4992 /* PIO data in protocol */
4993 ap
->hsm_task_state
= HSM_ST
;
4995 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
4996 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
4998 /* if polling, ata_pio_task() handles the rest.
4999 * otherwise, interrupt handler takes over from here.
5005 case ATA_PROT_ATAPI
:
5006 case ATA_PROT_ATAPI_NODATA
:
5007 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
5008 ata_qc_set_polling(qc
);
5010 ata_tf_to_host(ap
, &qc
->tf
);
5012 ap
->hsm_task_state
= HSM_ST_FIRST
;
5014 /* send cdb by polling if no cdb interrupt */
5015 if ((!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)) ||
5016 (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
5017 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
5020 case ATA_PROT_ATAPI_DMA
:
5021 WARN_ON(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
5023 ap
->ops
->tf_load(ap
, &qc
->tf
); /* load tf registers */
5024 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
5025 ap
->hsm_task_state
= HSM_ST_FIRST
;
5027 /* send cdb by polling if no cdb interrupt */
5028 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
5029 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
5034 return AC_ERR_SYSTEM
;
5041 * ata_host_intr - Handle host interrupt for given (port, task)
5042 * @ap: Port on which interrupt arrived (possibly...)
5043 * @qc: Taskfile currently active in engine
5045 * Handle host interrupt for given queued command. Currently,
5046 * only DMA interrupts are handled. All other commands are
5047 * handled via polling with interrupts disabled (nIEN bit).
5050 * spin_lock_irqsave(host lock)
5053 * One if interrupt was handled, zero if not (shared irq).
5056 inline unsigned int ata_host_intr (struct ata_port
*ap
,
5057 struct ata_queued_cmd
*qc
)
5059 struct ata_eh_info
*ehi
= &ap
->eh_info
;
5060 u8 status
, host_stat
= 0;
5062 VPRINTK("ata%u: protocol %d task_state %d\n",
5063 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
);
5065 /* Check whether we are expecting interrupt in this state */
5066 switch (ap
->hsm_task_state
) {
5068 /* Some pre-ATAPI-4 devices assert INTRQ
5069 * at this state when ready to receive CDB.
5072 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5073 * The flag was turned on only for atapi devices.
5074 * No need to check is_atapi_taskfile(&qc->tf) again.
5076 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
5080 if (qc
->tf
.protocol
== ATA_PROT_DMA
||
5081 qc
->tf
.protocol
== ATA_PROT_ATAPI_DMA
) {
5082 /* check status of DMA engine */
5083 host_stat
= ap
->ops
->bmdma_status(ap
);
5084 VPRINTK("ata%u: host_stat 0x%X\n",
5085 ap
->print_id
, host_stat
);
5087 /* if it's not our irq... */
5088 if (!(host_stat
& ATA_DMA_INTR
))
5091 /* before we do anything else, clear DMA-Start bit */
5092 ap
->ops
->bmdma_stop(qc
);
5094 if (unlikely(host_stat
& ATA_DMA_ERR
)) {
5095 /* error when transfering data to/from memory */
5096 qc
->err_mask
|= AC_ERR_HOST_BUS
;
5097 ap
->hsm_task_state
= HSM_ST_ERR
;
5107 /* check altstatus */
5108 status
= ata_altstatus(ap
);
5109 if (status
& ATA_BUSY
)
5112 /* check main status, clearing INTRQ */
5113 status
= ata_chk_status(ap
);
5114 if (unlikely(status
& ATA_BUSY
))
5117 /* ack bmdma irq events */
5118 ap
->ops
->irq_clear(ap
);
5120 ata_hsm_move(ap
, qc
, status
, 0);
5122 if (unlikely(qc
->err_mask
) && (qc
->tf
.protocol
== ATA_PROT_DMA
||
5123 qc
->tf
.protocol
== ATA_PROT_ATAPI_DMA
))
5124 ata_ehi_push_desc(ehi
, "BMDMA stat 0x%x", host_stat
);
5126 return 1; /* irq handled */
5129 ap
->stats
.idle_irq
++;
5132 if ((ap
->stats
.idle_irq
% 1000) == 0) {
5133 ap
->ops
->irq_ack(ap
, 0); /* debug trap */
5134 ata_port_printk(ap
, KERN_WARNING
, "irq trap\n");
5138 return 0; /* irq not handled */
5142 * ata_interrupt - Default ATA host interrupt handler
5143 * @irq: irq line (unused)
5144 * @dev_instance: pointer to our ata_host information structure
5146 * Default interrupt handler for PCI IDE devices. Calls
5147 * ata_host_intr() for each port that is not disabled.
5150 * Obtains host lock during operation.
5153 * IRQ_NONE or IRQ_HANDLED.
5156 irqreturn_t
ata_interrupt (int irq
, void *dev_instance
)
5158 struct ata_host
*host
= dev_instance
;
5160 unsigned int handled
= 0;
5161 unsigned long flags
;
5163 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5164 spin_lock_irqsave(&host
->lock
, flags
);
5166 for (i
= 0; i
< host
->n_ports
; i
++) {
5167 struct ata_port
*ap
;
5169 ap
= host
->ports
[i
];
5171 !(ap
->flags
& ATA_FLAG_DISABLED
)) {
5172 struct ata_queued_cmd
*qc
;
5174 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
5175 if (qc
&& (!(qc
->tf
.flags
& ATA_TFLAG_POLLING
)) &&
5176 (qc
->flags
& ATA_QCFLAG_ACTIVE
))
5177 handled
|= ata_host_intr(ap
, qc
);
5181 spin_unlock_irqrestore(&host
->lock
, flags
);
5183 return IRQ_RETVAL(handled
);
5187 * sata_scr_valid - test whether SCRs are accessible
5188 * @ap: ATA port to test SCR accessibility for
5190 * Test whether SCRs are accessible for @ap.
5196 * 1 if SCRs are accessible, 0 otherwise.
5198 int sata_scr_valid(struct ata_port
*ap
)
5200 return ap
->cbl
== ATA_CBL_SATA
&& ap
->ops
->scr_read
;
5204 * sata_scr_read - read SCR register of the specified port
5205 * @ap: ATA port to read SCR for
5207 * @val: Place to store read value
5209 * Read SCR register @reg of @ap into *@val. This function is
5210 * guaranteed to succeed if the cable type of the port is SATA
5211 * and the port implements ->scr_read.
5217 * 0 on success, negative errno on failure.
5219 int sata_scr_read(struct ata_port
*ap
, int reg
, u32
*val
)
5221 if (sata_scr_valid(ap
)) {
5222 *val
= ap
->ops
->scr_read(ap
, reg
);
5229 * sata_scr_write - write SCR register of the specified port
5230 * @ap: ATA port to write SCR for
5231 * @reg: SCR to write
5232 * @val: value to write
5234 * Write @val to SCR register @reg of @ap. This function is
5235 * guaranteed to succeed if the cable type of the port is SATA
5236 * and the port implements ->scr_read.
5242 * 0 on success, negative errno on failure.
5244 int sata_scr_write(struct ata_port
*ap
, int reg
, u32 val
)
5246 if (sata_scr_valid(ap
)) {
5247 ap
->ops
->scr_write(ap
, reg
, val
);
5254 * sata_scr_write_flush - write SCR register of the specified port and flush
5255 * @ap: ATA port to write SCR for
5256 * @reg: SCR to write
5257 * @val: value to write
5259 * This function is identical to sata_scr_write() except that this
5260 * function performs flush after writing to the register.
5266 * 0 on success, negative errno on failure.
5268 int sata_scr_write_flush(struct ata_port
*ap
, int reg
, u32 val
)
5270 if (sata_scr_valid(ap
)) {
5271 ap
->ops
->scr_write(ap
, reg
, val
);
5272 ap
->ops
->scr_read(ap
, reg
);
5279 * ata_port_online - test whether the given port is online
5280 * @ap: ATA port to test
5282 * Test whether @ap is online. Note that this function returns 0
5283 * if online status of @ap cannot be obtained, so
5284 * ata_port_online(ap) != !ata_port_offline(ap).
5290 * 1 if the port online status is available and online.
5292 int ata_port_online(struct ata_port
*ap
)
5296 if (!sata_scr_read(ap
, SCR_STATUS
, &sstatus
) && (sstatus
& 0xf) == 0x3)
5302 * ata_port_offline - test whether the given port is offline
5303 * @ap: ATA port to test
5305 * Test whether @ap is offline. Note that this function returns
5306 * 0 if offline status of @ap cannot be obtained, so
5307 * ata_port_online(ap) != !ata_port_offline(ap).
5313 * 1 if the port offline status is available and offline.
5315 int ata_port_offline(struct ata_port
*ap
)
5319 if (!sata_scr_read(ap
, SCR_STATUS
, &sstatus
) && (sstatus
& 0xf) != 0x3)
5324 int ata_flush_cache(struct ata_device
*dev
)
5326 unsigned int err_mask
;
5329 if (!ata_try_flush_cache(dev
))
5332 if (dev
->flags
& ATA_DFLAG_FLUSH_EXT
)
5333 cmd
= ATA_CMD_FLUSH_EXT
;
5335 cmd
= ATA_CMD_FLUSH
;
5337 err_mask
= ata_do_simple_cmd(dev
, cmd
);
5339 ata_dev_printk(dev
, KERN_ERR
, "failed to flush cache\n");
5346 static int ata_host_request_pm(struct ata_host
*host
, pm_message_t mesg
,
5347 unsigned int action
, unsigned int ehi_flags
,
5350 unsigned long flags
;
5353 for (i
= 0; i
< host
->n_ports
; i
++) {
5354 struct ata_port
*ap
= host
->ports
[i
];
5356 /* Previous resume operation might still be in
5357 * progress. Wait for PM_PENDING to clear.
5359 if (ap
->pflags
& ATA_PFLAG_PM_PENDING
) {
5360 ata_port_wait_eh(ap
);
5361 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5364 /* request PM ops to EH */
5365 spin_lock_irqsave(ap
->lock
, flags
);
5370 ap
->pm_result
= &rc
;
5373 ap
->pflags
|= ATA_PFLAG_PM_PENDING
;
5374 ap
->eh_info
.action
|= action
;
5375 ap
->eh_info
.flags
|= ehi_flags
;
5377 ata_port_schedule_eh(ap
);
5379 spin_unlock_irqrestore(ap
->lock
, flags
);
5381 /* wait and check result */
5383 ata_port_wait_eh(ap
);
5384 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5394 * ata_host_suspend - suspend host
5395 * @host: host to suspend
5398 * Suspend @host. Actual operation is performed by EH. This
5399 * function requests EH to perform PM operations and waits for EH
5403 * Kernel thread context (may sleep).
5406 * 0 on success, -errno on failure.
5408 int ata_host_suspend(struct ata_host
*host
, pm_message_t mesg
)
5412 rc
= ata_host_request_pm(host
, mesg
, 0, ATA_EHI_QUIET
, 1);
5416 /* EH is quiescent now. Fail if we have any ready device.
5417 * This happens if hotplug occurs between completion of device
5418 * suspension and here.
5420 for (i
= 0; i
< host
->n_ports
; i
++) {
5421 struct ata_port
*ap
= host
->ports
[i
];
5423 for (j
= 0; j
< ATA_MAX_DEVICES
; j
++) {
5424 struct ata_device
*dev
= &ap
->device
[j
];
5426 if (ata_dev_ready(dev
)) {
5427 ata_port_printk(ap
, KERN_WARNING
,
5428 "suspend failed, device %d "
5429 "still active\n", dev
->devno
);
5436 host
->dev
->power
.power_state
= mesg
;
5440 ata_host_resume(host
);
5445 * ata_host_resume - resume host
5446 * @host: host to resume
5448 * Resume @host. Actual operation is performed by EH. This
5449 * function requests EH to perform PM operations and returns.
5450 * Note that all resume operations are performed parallely.
5453 * Kernel thread context (may sleep).
5455 void ata_host_resume(struct ata_host
*host
)
5457 ata_host_request_pm(host
, PMSG_ON
, ATA_EH_SOFTRESET
,
5458 ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
, 0);
5459 host
->dev
->power
.power_state
= PMSG_ON
;
5463 * ata_port_start - Set port up for dma.
5464 * @ap: Port to initialize
5466 * Called just after data structures for each port are
5467 * initialized. Allocates space for PRD table.
5469 * May be used as the port_start() entry in ata_port_operations.
5472 * Inherited from caller.
5474 int ata_port_start(struct ata_port
*ap
)
5476 struct device
*dev
= ap
->dev
;
5479 ap
->prd
= dmam_alloc_coherent(dev
, ATA_PRD_TBL_SZ
, &ap
->prd_dma
,
5484 rc
= ata_pad_alloc(ap
, dev
);
5488 DPRINTK("prd alloc, virt %p, dma %llx\n", ap
->prd
,
5489 (unsigned long long)ap
->prd_dma
);
5494 * ata_dev_init - Initialize an ata_device structure
5495 * @dev: Device structure to initialize
5497 * Initialize @dev in preparation for probing.
5500 * Inherited from caller.
5502 void ata_dev_init(struct ata_device
*dev
)
5504 struct ata_port
*ap
= dev
->ap
;
5505 unsigned long flags
;
5507 /* SATA spd limit is bound to the first device */
5508 ap
->sata_spd_limit
= ap
->hw_sata_spd_limit
;
5510 /* High bits of dev->flags are used to record warm plug
5511 * requests which occur asynchronously. Synchronize using
5514 spin_lock_irqsave(ap
->lock
, flags
);
5515 dev
->flags
&= ~ATA_DFLAG_INIT_MASK
;
5516 spin_unlock_irqrestore(ap
->lock
, flags
);
5518 memset((void *)dev
+ ATA_DEVICE_CLEAR_OFFSET
, 0,
5519 sizeof(*dev
) - ATA_DEVICE_CLEAR_OFFSET
);
5520 dev
->pio_mask
= UINT_MAX
;
5521 dev
->mwdma_mask
= UINT_MAX
;
5522 dev
->udma_mask
= UINT_MAX
;
5526 * ata_port_init - Initialize an ata_port structure
5527 * @ap: Structure to initialize
5528 * @host: Collection of hosts to which @ap belongs
5529 * @ent: Probe information provided by low-level driver
5530 * @port_no: Port number associated with this ata_port
5532 * Initialize a new ata_port structure.
5535 * Inherited from caller.
5537 void ata_port_init(struct ata_port
*ap
, struct ata_host
*host
,
5538 const struct ata_probe_ent
*ent
, unsigned int port_no
)
5542 ap
->lock
= &host
->lock
;
5543 ap
->flags
= ATA_FLAG_DISABLED
;
5544 ap
->print_id
= ata_print_id
++;
5545 ap
->ctl
= ATA_DEVCTL_OBS
;
5548 ap
->port_no
= port_no
;
5549 if (port_no
== 1 && ent
->pinfo2
) {
5550 ap
->pio_mask
= ent
->pinfo2
->pio_mask
;
5551 ap
->mwdma_mask
= ent
->pinfo2
->mwdma_mask
;
5552 ap
->udma_mask
= ent
->pinfo2
->udma_mask
;
5553 ap
->flags
|= ent
->pinfo2
->flags
;
5554 ap
->ops
= ent
->pinfo2
->port_ops
;
5556 ap
->pio_mask
= ent
->pio_mask
;
5557 ap
->mwdma_mask
= ent
->mwdma_mask
;
5558 ap
->udma_mask
= ent
->udma_mask
;
5559 ap
->flags
|= ent
->port_flags
;
5560 ap
->ops
= ent
->port_ops
;
5562 ap
->hw_sata_spd_limit
= UINT_MAX
;
5563 ap
->active_tag
= ATA_TAG_POISON
;
5564 ap
->last_ctl
= 0xFF;
5566 #if defined(ATA_VERBOSE_DEBUG)
5567 /* turn on all debugging levels */
5568 ap
->msg_enable
= 0x00FF;
5569 #elif defined(ATA_DEBUG)
5570 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_INFO
| ATA_MSG_CTL
| ATA_MSG_WARN
| ATA_MSG_ERR
;
5572 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_ERR
| ATA_MSG_WARN
;
5575 INIT_DELAYED_WORK(&ap
->port_task
, NULL
);
5576 INIT_DELAYED_WORK(&ap
->hotplug_task
, ata_scsi_hotplug
);
5577 INIT_WORK(&ap
->scsi_rescan_task
, ata_scsi_dev_rescan
);
5578 INIT_LIST_HEAD(&ap
->eh_done_q
);
5579 init_waitqueue_head(&ap
->eh_wait_q
);
5581 /* set cable type */
5582 ap
->cbl
= ATA_CBL_NONE
;
5583 if (ap
->flags
& ATA_FLAG_SATA
)
5584 ap
->cbl
= ATA_CBL_SATA
;
5586 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
5587 struct ata_device
*dev
= &ap
->device
[i
];
5594 ap
->stats
.unhandled_irq
= 1;
5595 ap
->stats
.idle_irq
= 1;
5598 memcpy(&ap
->ioaddr
, &ent
->port
[port_no
], sizeof(struct ata_ioports
));
5602 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5603 * @ap: ATA port to initialize SCSI host for
5604 * @shost: SCSI host associated with @ap
5606 * Initialize SCSI host @shost associated with ATA port @ap.
5609 * Inherited from caller.
5611 static void ata_port_init_shost(struct ata_port
*ap
, struct Scsi_Host
*shost
)
5613 ap
->scsi_host
= shost
;
5615 shost
->unique_id
= ap
->print_id
;
5618 shost
->max_channel
= 1;
5619 shost
->max_cmd_len
= 12;
5623 * ata_port_add - Attach low-level ATA driver to system
5624 * @ent: Information provided by low-level driver
5625 * @host: Collections of ports to which we add
5626 * @port_no: Port number associated with this host
5628 * Attach low-level ATA driver to system.
5631 * PCI/etc. bus probe sem.
5634 * New ata_port on success, for NULL on error.
5636 static struct ata_port
* ata_port_add(const struct ata_probe_ent
*ent
,
5637 struct ata_host
*host
,
5638 unsigned int port_no
)
5640 struct Scsi_Host
*shost
;
5641 struct ata_port
*ap
;
5645 if (!ent
->port_ops
->error_handler
&&
5646 !(ent
->port_flags
& (ATA_FLAG_SATA_RESET
| ATA_FLAG_SRST
))) {
5647 printk(KERN_ERR
"ata%u: no reset mechanism available\n",
5652 shost
= scsi_host_alloc(ent
->sht
, sizeof(struct ata_port
));
5656 shost
->transportt
= &ata_scsi_transport_template
;
5658 ap
= ata_shost_to_port(shost
);
5660 ata_port_init(ap
, host
, ent
, port_no
);
5661 ata_port_init_shost(ap
, shost
);
5666 static void ata_host_release(struct device
*gendev
, void *res
)
5668 struct ata_host
*host
= dev_get_drvdata(gendev
);
5671 for (i
= 0; i
< host
->n_ports
; i
++) {
5672 struct ata_port
*ap
= host
->ports
[i
];
5677 if (ap
->ops
->port_stop
)
5678 ap
->ops
->port_stop(ap
);
5680 scsi_host_put(ap
->scsi_host
);
5683 if (host
->ops
->host_stop
)
5684 host
->ops
->host_stop(host
);
5686 dev_set_drvdata(gendev
, NULL
);
5690 * ata_sas_host_init - Initialize a host struct
5691 * @host: host to initialize
5692 * @dev: device host is attached to
5693 * @flags: host flags
5697 * PCI/etc. bus probe sem.
5701 void ata_host_init(struct ata_host
*host
, struct device
*dev
,
5702 unsigned long flags
, const struct ata_port_operations
*ops
)
5704 spin_lock_init(&host
->lock
);
5706 host
->flags
= flags
;
5711 * ata_device_add - Register hardware device with ATA and SCSI layers
5712 * @ent: Probe information describing hardware device to be registered
5714 * This function processes the information provided in the probe
5715 * information struct @ent, allocates the necessary ATA and SCSI
5716 * host information structures, initializes them, and registers
5717 * everything with requisite kernel subsystems.
5719 * This function requests irqs, probes the ATA bus, and probes
5723 * PCI/etc. bus probe sem.
5726 * Number of ports registered. Zero on error (no ports registered).
5728 int ata_device_add(const struct ata_probe_ent
*ent
)
5731 struct device
*dev
= ent
->dev
;
5732 struct ata_host
*host
;
5737 if (ent
->irq
== 0) {
5738 dev_printk(KERN_ERR
, dev
, "is not available: No interrupt assigned.\n");
5742 if (!devres_open_group(dev
, ata_device_add
, GFP_KERNEL
))
5745 /* alloc a container for our list of ATA ports (buses) */
5746 host
= devres_alloc(ata_host_release
, sizeof(struct ata_host
) +
5747 (ent
->n_ports
* sizeof(void *)), GFP_KERNEL
);
5750 devres_add(dev
, host
);
5751 dev_set_drvdata(dev
, host
);
5753 ata_host_init(host
, dev
, ent
->_host_flags
, ent
->port_ops
);
5754 host
->n_ports
= ent
->n_ports
;
5755 host
->irq
= ent
->irq
;
5756 host
->irq2
= ent
->irq2
;
5757 host
->iomap
= ent
->iomap
;
5758 host
->private_data
= ent
->private_data
;
5760 /* register each port bound to this device */
5761 for (i
= 0; i
< host
->n_ports
; i
++) {
5762 struct ata_port
*ap
;
5763 unsigned long xfer_mode_mask
;
5764 int irq_line
= ent
->irq
;
5766 ap
= ata_port_add(ent
, host
, i
);
5767 host
->ports
[i
] = ap
;
5772 if (ent
->dummy_port_mask
& (1 << i
)) {
5773 ata_port_printk(ap
, KERN_INFO
, "DUMMY\n");
5774 ap
->ops
= &ata_dummy_port_ops
;
5779 rc
= ap
->ops
->port_start(ap
);
5781 host
->ports
[i
] = NULL
;
5782 scsi_host_put(ap
->scsi_host
);
5786 /* Report the secondary IRQ for second channel legacy */
5787 if (i
== 1 && ent
->irq2
)
5788 irq_line
= ent
->irq2
;
5790 xfer_mode_mask
=(ap
->udma_mask
<< ATA_SHIFT_UDMA
) |
5791 (ap
->mwdma_mask
<< ATA_SHIFT_MWDMA
) |
5792 (ap
->pio_mask
<< ATA_SHIFT_PIO
);
5794 /* print per-port info to dmesg */
5795 ata_port_printk(ap
, KERN_INFO
, "%cATA max %s cmd 0x%p "
5796 "ctl 0x%p bmdma 0x%p irq %d\n",
5797 ap
->flags
& ATA_FLAG_SATA
? 'S' : 'P',
5798 ata_mode_string(xfer_mode_mask
),
5799 ap
->ioaddr
.cmd_addr
,
5800 ap
->ioaddr
.ctl_addr
,
5801 ap
->ioaddr
.bmdma_addr
,
5804 /* freeze port before requesting IRQ */
5805 ata_eh_freeze_port(ap
);
5808 /* obtain irq, that may be shared between channels */
5809 rc
= devm_request_irq(dev
, ent
->irq
, ent
->port_ops
->irq_handler
,
5810 ent
->irq_flags
, DRV_NAME
, host
);
5812 dev_printk(KERN_ERR
, dev
, "irq %lu request failed: %d\n",
5817 /* do we have a second IRQ for the other channel, eg legacy mode */
5819 /* We will get weird core code crashes later if this is true
5821 BUG_ON(ent
->irq
== ent
->irq2
);
5823 rc
= devm_request_irq(dev
, ent
->irq2
,
5824 ent
->port_ops
->irq_handler
, ent
->irq_flags
,
5827 dev_printk(KERN_ERR
, dev
, "irq %lu request failed: %d\n",
5833 /* resource acquisition complete */
5834 devres_remove_group(dev
, ata_device_add
);
5836 /* perform each probe synchronously */
5837 DPRINTK("probe begin\n");
5838 for (i
= 0; i
< host
->n_ports
; i
++) {
5839 struct ata_port
*ap
= host
->ports
[i
];
5843 /* init sata_spd_limit to the current value */
5844 if (sata_scr_read(ap
, SCR_CONTROL
, &scontrol
) == 0) {
5845 int spd
= (scontrol
>> 4) & 0xf;
5846 ap
->hw_sata_spd_limit
&= (1 << spd
) - 1;
5848 ap
->sata_spd_limit
= ap
->hw_sata_spd_limit
;
5850 rc
= scsi_add_host(ap
->scsi_host
, dev
);
5852 ata_port_printk(ap
, KERN_ERR
, "scsi_add_host failed\n");
5853 /* FIXME: do something useful here */
5854 /* FIXME: handle unconditional calls to
5855 * scsi_scan_host and ata_host_remove, below,
5860 if (ap
->ops
->error_handler
) {
5861 struct ata_eh_info
*ehi
= &ap
->eh_info
;
5862 unsigned long flags
;
5866 /* kick EH for boot probing */
5867 spin_lock_irqsave(ap
->lock
, flags
);
5869 ehi
->probe_mask
= (1 << ATA_MAX_DEVICES
) - 1;
5870 ehi
->action
|= ATA_EH_SOFTRESET
;
5871 ehi
->flags
|= ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
;
5873 ap
->pflags
|= ATA_PFLAG_LOADING
;
5874 ata_port_schedule_eh(ap
);
5876 spin_unlock_irqrestore(ap
->lock
, flags
);
5878 /* wait for EH to finish */
5879 ata_port_wait_eh(ap
);
5881 DPRINTK("ata%u: bus probe begin\n", ap
->print_id
);
5882 rc
= ata_bus_probe(ap
);
5883 DPRINTK("ata%u: bus probe end\n", ap
->print_id
);
5886 /* FIXME: do something useful here?
5887 * Current libata behavior will
5888 * tear down everything when
5889 * the module is removed
5890 * or the h/w is unplugged.
5896 /* probes are done, now scan each port's disk(s) */
5897 DPRINTK("host probe begin\n");
5898 for (i
= 0; i
< host
->n_ports
; i
++) {
5899 struct ata_port
*ap
= host
->ports
[i
];
5901 ata_scsi_scan_host(ap
);
5904 VPRINTK("EXIT, returning %u\n", ent
->n_ports
);
5905 return ent
->n_ports
; /* success */
5908 devres_release_group(dev
, ata_device_add
);
5909 VPRINTK("EXIT, returning %d\n", rc
);
5914 * ata_port_detach - Detach ATA port in prepration of device removal
5915 * @ap: ATA port to be detached
5917 * Detach all ATA devices and the associated SCSI devices of @ap;
5918 * then, remove the associated SCSI host. @ap is guaranteed to
5919 * be quiescent on return from this function.
5922 * Kernel thread context (may sleep).
5924 void ata_port_detach(struct ata_port
*ap
)
5926 unsigned long flags
;
5929 if (!ap
->ops
->error_handler
)
5932 /* tell EH we're leaving & flush EH */
5933 spin_lock_irqsave(ap
->lock
, flags
);
5934 ap
->pflags
|= ATA_PFLAG_UNLOADING
;
5935 spin_unlock_irqrestore(ap
->lock
, flags
);
5937 ata_port_wait_eh(ap
);
5939 /* EH is now guaranteed to see UNLOADING, so no new device
5940 * will be attached. Disable all existing devices.
5942 spin_lock_irqsave(ap
->lock
, flags
);
5944 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
5945 ata_dev_disable(&ap
->device
[i
]);
5947 spin_unlock_irqrestore(ap
->lock
, flags
);
5949 /* Final freeze & EH. All in-flight commands are aborted. EH
5950 * will be skipped and retrials will be terminated with bad
5953 spin_lock_irqsave(ap
->lock
, flags
);
5954 ata_port_freeze(ap
); /* won't be thawed */
5955 spin_unlock_irqrestore(ap
->lock
, flags
);
5957 ata_port_wait_eh(ap
);
5959 /* Flush hotplug task. The sequence is similar to
5960 * ata_port_flush_task().
5962 flush_workqueue(ata_aux_wq
);
5963 cancel_delayed_work(&ap
->hotplug_task
);
5964 flush_workqueue(ata_aux_wq
);
5967 /* remove the associated SCSI host */
5968 scsi_remove_host(ap
->scsi_host
);
5972 * ata_host_detach - Detach all ports of an ATA host
5973 * @host: Host to detach
5975 * Detach all ports of @host.
5978 * Kernel thread context (may sleep).
5980 void ata_host_detach(struct ata_host
*host
)
5984 for (i
= 0; i
< host
->n_ports
; i
++)
5985 ata_port_detach(host
->ports
[i
]);
5988 struct ata_probe_ent
*
5989 ata_probe_ent_alloc(struct device
*dev
, const struct ata_port_info
*port
)
5991 struct ata_probe_ent
*probe_ent
;
5993 probe_ent
= devm_kzalloc(dev
, sizeof(*probe_ent
), GFP_KERNEL
);
5995 printk(KERN_ERR DRV_NAME
"(%s): out of memory\n",
5996 kobject_name(&(dev
->kobj
)));
6000 INIT_LIST_HEAD(&probe_ent
->node
);
6001 probe_ent
->dev
= dev
;
6003 probe_ent
->sht
= port
->sht
;
6004 probe_ent
->port_flags
= port
->flags
;
6005 probe_ent
->pio_mask
= port
->pio_mask
;
6006 probe_ent
->mwdma_mask
= port
->mwdma_mask
;
6007 probe_ent
->udma_mask
= port
->udma_mask
;
6008 probe_ent
->port_ops
= port
->port_ops
;
6009 probe_ent
->private_data
= port
->private_data
;
6015 * ata_std_ports - initialize ioaddr with standard port offsets.
6016 * @ioaddr: IO address structure to be initialized
6018 * Utility function which initializes data_addr, error_addr,
6019 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6020 * device_addr, status_addr, and command_addr to standard offsets
6021 * relative to cmd_addr.
6023 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6026 void ata_std_ports(struct ata_ioports
*ioaddr
)
6028 ioaddr
->data_addr
= ioaddr
->cmd_addr
+ ATA_REG_DATA
;
6029 ioaddr
->error_addr
= ioaddr
->cmd_addr
+ ATA_REG_ERR
;
6030 ioaddr
->feature_addr
= ioaddr
->cmd_addr
+ ATA_REG_FEATURE
;
6031 ioaddr
->nsect_addr
= ioaddr
->cmd_addr
+ ATA_REG_NSECT
;
6032 ioaddr
->lbal_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAL
;
6033 ioaddr
->lbam_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAM
;
6034 ioaddr
->lbah_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAH
;
6035 ioaddr
->device_addr
= ioaddr
->cmd_addr
+ ATA_REG_DEVICE
;
6036 ioaddr
->status_addr
= ioaddr
->cmd_addr
+ ATA_REG_STATUS
;
6037 ioaddr
->command_addr
= ioaddr
->cmd_addr
+ ATA_REG_CMD
;
6044 * ata_pci_remove_one - PCI layer callback for device removal
6045 * @pdev: PCI device that was removed
6047 * PCI layer indicates to libata via this hook that hot-unplug or
6048 * module unload event has occurred. Detach all ports. Resource
6049 * release is handled via devres.
6052 * Inherited from PCI layer (may sleep).
6054 void ata_pci_remove_one(struct pci_dev
*pdev
)
6056 struct device
*dev
= pci_dev_to_dev(pdev
);
6057 struct ata_host
*host
= dev_get_drvdata(dev
);
6059 ata_host_detach(host
);
6062 /* move to PCI subsystem */
6063 int pci_test_config_bits(struct pci_dev
*pdev
, const struct pci_bits
*bits
)
6065 unsigned long tmp
= 0;
6067 switch (bits
->width
) {
6070 pci_read_config_byte(pdev
, bits
->reg
, &tmp8
);
6076 pci_read_config_word(pdev
, bits
->reg
, &tmp16
);
6082 pci_read_config_dword(pdev
, bits
->reg
, &tmp32
);
6093 return (tmp
== bits
->val
) ? 1 : 0;
6096 void ata_pci_device_do_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6098 pci_save_state(pdev
);
6099 pci_disable_device(pdev
);
6101 if (mesg
.event
== PM_EVENT_SUSPEND
)
6102 pci_set_power_state(pdev
, PCI_D3hot
);
6105 int ata_pci_device_do_resume(struct pci_dev
*pdev
)
6109 pci_set_power_state(pdev
, PCI_D0
);
6110 pci_restore_state(pdev
);
6112 rc
= pcim_enable_device(pdev
);
6114 dev_printk(KERN_ERR
, &pdev
->dev
,
6115 "failed to enable device after resume (%d)\n", rc
);
6119 pci_set_master(pdev
);
6123 int ata_pci_device_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6125 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
6128 rc
= ata_host_suspend(host
, mesg
);
6132 ata_pci_device_do_suspend(pdev
, mesg
);
6137 int ata_pci_device_resume(struct pci_dev
*pdev
)
6139 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
6142 rc
= ata_pci_device_do_resume(pdev
);
6144 ata_host_resume(host
);
6147 #endif /* CONFIG_PCI */
6150 static int __init
ata_init(void)
6152 ata_probe_timeout
*= HZ
;
6153 ata_wq
= create_workqueue("ata");
6157 ata_aux_wq
= create_singlethread_workqueue("ata_aux");
6159 destroy_workqueue(ata_wq
);
6163 printk(KERN_DEBUG
"libata version " DRV_VERSION
" loaded.\n");
6167 static void __exit
ata_exit(void)
6169 destroy_workqueue(ata_wq
);
6170 destroy_workqueue(ata_aux_wq
);
6173 subsys_initcall(ata_init
);
6174 module_exit(ata_exit
);
6176 static unsigned long ratelimit_time
;
6177 static DEFINE_SPINLOCK(ata_ratelimit_lock
);
6179 int ata_ratelimit(void)
6182 unsigned long flags
;
6184 spin_lock_irqsave(&ata_ratelimit_lock
, flags
);
6186 if (time_after(jiffies
, ratelimit_time
)) {
6188 ratelimit_time
= jiffies
+ (HZ
/5);
6192 spin_unlock_irqrestore(&ata_ratelimit_lock
, flags
);
6198 * ata_wait_register - wait until register value changes
6199 * @reg: IO-mapped register
6200 * @mask: Mask to apply to read register value
6201 * @val: Wait condition
6202 * @interval_msec: polling interval in milliseconds
6203 * @timeout_msec: timeout in milliseconds
6205 * Waiting for some bits of register to change is a common
6206 * operation for ATA controllers. This function reads 32bit LE
6207 * IO-mapped register @reg and tests for the following condition.
6209 * (*@reg & mask) != val
6211 * If the condition is met, it returns; otherwise, the process is
6212 * repeated after @interval_msec until timeout.
6215 * Kernel thread context (may sleep)
6218 * The final register value.
6220 u32
ata_wait_register(void __iomem
*reg
, u32 mask
, u32 val
,
6221 unsigned long interval_msec
,
6222 unsigned long timeout_msec
)
6224 unsigned long timeout
;
6227 tmp
= ioread32(reg
);
6229 /* Calculate timeout _after_ the first read to make sure
6230 * preceding writes reach the controller before starting to
6231 * eat away the timeout.
6233 timeout
= jiffies
+ (timeout_msec
* HZ
) / 1000;
6235 while ((tmp
& mask
) == val
&& time_before(jiffies
, timeout
)) {
6236 msleep(interval_msec
);
6237 tmp
= ioread32(reg
);
6246 static void ata_dummy_noret(struct ata_port
*ap
) { }
6247 static int ata_dummy_ret0(struct ata_port
*ap
) { return 0; }
6248 static void ata_dummy_qc_noret(struct ata_queued_cmd
*qc
) { }
6250 static u8
ata_dummy_check_status(struct ata_port
*ap
)
6255 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd
*qc
)
6257 return AC_ERR_SYSTEM
;
6260 const struct ata_port_operations ata_dummy_port_ops
= {
6261 .port_disable
= ata_port_disable
,
6262 .check_status
= ata_dummy_check_status
,
6263 .check_altstatus
= ata_dummy_check_status
,
6264 .dev_select
= ata_noop_dev_select
,
6265 .qc_prep
= ata_noop_qc_prep
,
6266 .qc_issue
= ata_dummy_qc_issue
,
6267 .freeze
= ata_dummy_noret
,
6268 .thaw
= ata_dummy_noret
,
6269 .error_handler
= ata_dummy_noret
,
6270 .post_internal_cmd
= ata_dummy_qc_noret
,
6271 .irq_clear
= ata_dummy_noret
,
6272 .port_start
= ata_dummy_ret0
,
6273 .port_stop
= ata_dummy_noret
,
6277 * libata is essentially a library of internal helper functions for
6278 * low-level ATA host controller drivers. As such, the API/ABI is
6279 * likely to change as new drivers are added and updated.
6280 * Do not depend on ABI/API stability.
6283 EXPORT_SYMBOL_GPL(sata_deb_timing_normal
);
6284 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug
);
6285 EXPORT_SYMBOL_GPL(sata_deb_timing_long
);
6286 EXPORT_SYMBOL_GPL(ata_dummy_port_ops
);
6287 EXPORT_SYMBOL_GPL(ata_std_bios_param
);
6288 EXPORT_SYMBOL_GPL(ata_std_ports
);
6289 EXPORT_SYMBOL_GPL(ata_host_init
);
6290 EXPORT_SYMBOL_GPL(ata_device_add
);
6291 EXPORT_SYMBOL_GPL(ata_host_detach
);
6292 EXPORT_SYMBOL_GPL(ata_sg_init
);
6293 EXPORT_SYMBOL_GPL(ata_sg_init_one
);
6294 EXPORT_SYMBOL_GPL(ata_hsm_move
);
6295 EXPORT_SYMBOL_GPL(ata_qc_complete
);
6296 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple
);
6297 EXPORT_SYMBOL_GPL(ata_qc_issue_prot
);
6298 EXPORT_SYMBOL_GPL(ata_tf_load
);
6299 EXPORT_SYMBOL_GPL(ata_tf_read
);
6300 EXPORT_SYMBOL_GPL(ata_noop_dev_select
);
6301 EXPORT_SYMBOL_GPL(ata_std_dev_select
);
6302 EXPORT_SYMBOL_GPL(ata_tf_to_fis
);
6303 EXPORT_SYMBOL_GPL(ata_tf_from_fis
);
6304 EXPORT_SYMBOL_GPL(ata_check_status
);
6305 EXPORT_SYMBOL_GPL(ata_altstatus
);
6306 EXPORT_SYMBOL_GPL(ata_exec_command
);
6307 EXPORT_SYMBOL_GPL(ata_port_start
);
6308 EXPORT_SYMBOL_GPL(ata_interrupt
);
6309 EXPORT_SYMBOL_GPL(ata_data_xfer
);
6310 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq
);
6311 EXPORT_SYMBOL_GPL(ata_qc_prep
);
6312 EXPORT_SYMBOL_GPL(ata_noop_qc_prep
);
6313 EXPORT_SYMBOL_GPL(ata_bmdma_setup
);
6314 EXPORT_SYMBOL_GPL(ata_bmdma_start
);
6315 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear
);
6316 EXPORT_SYMBOL_GPL(ata_bmdma_status
);
6317 EXPORT_SYMBOL_GPL(ata_bmdma_stop
);
6318 EXPORT_SYMBOL_GPL(ata_bmdma_freeze
);
6319 EXPORT_SYMBOL_GPL(ata_bmdma_thaw
);
6320 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh
);
6321 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler
);
6322 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd
);
6323 EXPORT_SYMBOL_GPL(ata_port_probe
);
6324 EXPORT_SYMBOL_GPL(ata_dev_disable
);
6325 EXPORT_SYMBOL_GPL(sata_set_spd
);
6326 EXPORT_SYMBOL_GPL(sata_phy_debounce
);
6327 EXPORT_SYMBOL_GPL(sata_phy_resume
);
6328 EXPORT_SYMBOL_GPL(sata_phy_reset
);
6329 EXPORT_SYMBOL_GPL(__sata_phy_reset
);
6330 EXPORT_SYMBOL_GPL(ata_bus_reset
);
6331 EXPORT_SYMBOL_GPL(ata_std_prereset
);
6332 EXPORT_SYMBOL_GPL(ata_std_softreset
);
6333 EXPORT_SYMBOL_GPL(sata_port_hardreset
);
6334 EXPORT_SYMBOL_GPL(sata_std_hardreset
);
6335 EXPORT_SYMBOL_GPL(ata_std_postreset
);
6336 EXPORT_SYMBOL_GPL(ata_dev_classify
);
6337 EXPORT_SYMBOL_GPL(ata_dev_pair
);
6338 EXPORT_SYMBOL_GPL(ata_port_disable
);
6339 EXPORT_SYMBOL_GPL(ata_ratelimit
);
6340 EXPORT_SYMBOL_GPL(ata_wait_register
);
6341 EXPORT_SYMBOL_GPL(ata_busy_sleep
);
6342 EXPORT_SYMBOL_GPL(ata_port_queue_task
);
6343 EXPORT_SYMBOL_GPL(ata_scsi_ioctl
);
6344 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd
);
6345 EXPORT_SYMBOL_GPL(ata_scsi_slave_config
);
6346 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy
);
6347 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth
);
6348 EXPORT_SYMBOL_GPL(ata_host_intr
);
6349 EXPORT_SYMBOL_GPL(sata_scr_valid
);
6350 EXPORT_SYMBOL_GPL(sata_scr_read
);
6351 EXPORT_SYMBOL_GPL(sata_scr_write
);
6352 EXPORT_SYMBOL_GPL(sata_scr_write_flush
);
6353 EXPORT_SYMBOL_GPL(ata_port_online
);
6354 EXPORT_SYMBOL_GPL(ata_port_offline
);
6355 EXPORT_SYMBOL_GPL(ata_host_suspend
);
6356 EXPORT_SYMBOL_GPL(ata_host_resume
);
6357 EXPORT_SYMBOL_GPL(ata_id_string
);
6358 EXPORT_SYMBOL_GPL(ata_id_c_string
);
6359 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode
);
6360 EXPORT_SYMBOL_GPL(ata_device_blacklisted
);
6361 EXPORT_SYMBOL_GPL(ata_scsi_simulate
);
6363 EXPORT_SYMBOL_GPL(ata_pio_need_iordy
);
6364 EXPORT_SYMBOL_GPL(ata_timing_compute
);
6365 EXPORT_SYMBOL_GPL(ata_timing_merge
);
6368 EXPORT_SYMBOL_GPL(pci_test_config_bits
);
6369 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode
);
6370 EXPORT_SYMBOL_GPL(ata_pci_init_one
);
6371 EXPORT_SYMBOL_GPL(ata_pci_remove_one
);
6372 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend
);
6373 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume
);
6374 EXPORT_SYMBOL_GPL(ata_pci_device_suspend
);
6375 EXPORT_SYMBOL_GPL(ata_pci_device_resume
);
6376 EXPORT_SYMBOL_GPL(ata_pci_default_filter
);
6377 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex
);
6378 #endif /* CONFIG_PCI */
6380 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend
);
6381 EXPORT_SYMBOL_GPL(ata_scsi_device_resume
);
6383 EXPORT_SYMBOL_GPL(ata_eng_timeout
);
6384 EXPORT_SYMBOL_GPL(ata_port_schedule_eh
);
6385 EXPORT_SYMBOL_GPL(ata_port_abort
);
6386 EXPORT_SYMBOL_GPL(ata_port_freeze
);
6387 EXPORT_SYMBOL_GPL(ata_eh_freeze_port
);
6388 EXPORT_SYMBOL_GPL(ata_eh_thaw_port
);
6389 EXPORT_SYMBOL_GPL(ata_eh_qc_complete
);
6390 EXPORT_SYMBOL_GPL(ata_eh_qc_retry
);
6391 EXPORT_SYMBOL_GPL(ata_do_eh
);
6392 EXPORT_SYMBOL_GPL(ata_irq_on
);
6393 EXPORT_SYMBOL_GPL(ata_dummy_irq_on
);
6394 EXPORT_SYMBOL_GPL(ata_irq_ack
);
6395 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack
);
6396 EXPORT_SYMBOL_GPL(ata_dev_try_classify
);