netfilter: xtables: idletimer target implementation
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / notify / inode_mark.c
blob0399bcbe09c83f02bdf1627b1dcfc6b12c316d5f
1 /*
2 * Copyright (C) 2008 Red Hat, Inc., Eric Paris <eparis@redhat.com>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2, or (at your option)
7 * any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; see the file COPYING. If not, write to
16 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
20 * fsnotify inode mark locking/lifetime/and refcnting
22 * REFCNT:
23 * The mark->refcnt tells how many "things" in the kernel currently are
24 * referencing this object. The object typically will live inside the kernel
25 * with a refcnt of 2, one for each list it is on (i_list, g_list). Any task
26 * which can find this object holding the appropriete locks, can take a reference
27 * and the object itself is guarenteed to survive until the reference is dropped.
29 * LOCKING:
30 * There are 3 spinlocks involved with fsnotify inode marks and they MUST
31 * be taken in order as follows:
33 * entry->lock
34 * group->mark_lock
35 * inode->i_lock
37 * entry->lock protects 2 things, entry->group and entry->inode. You must hold
38 * that lock to dereference either of these things (they could be NULL even with
39 * the lock)
41 * group->mark_lock protects the mark_entries list anchored inside a given group
42 * and each entry is hooked via the g_list. It also sorta protects the
43 * free_g_list, which when used is anchored by a private list on the stack of the
44 * task which held the group->mark_lock.
46 * inode->i_lock protects the i_fsnotify_mark_entries list anchored inside a
47 * given inode and each entry is hooked via the i_list. (and sorta the
48 * free_i_list)
51 * LIFETIME:
52 * Inode marks survive between when they are added to an inode and when their
53 * refcnt==0.
55 * The inode mark can be cleared for a number of different reasons including:
56 * - The inode is unlinked for the last time. (fsnotify_inode_remove)
57 * - The inode is being evicted from cache. (fsnotify_inode_delete)
58 * - The fs the inode is on is unmounted. (fsnotify_inode_delete/fsnotify_unmount_inodes)
59 * - Something explicitly requests that it be removed. (fsnotify_destroy_mark_by_entry)
60 * - The fsnotify_group associated with the mark is going away and all such marks
61 * need to be cleaned up. (fsnotify_clear_marks_by_group)
63 * Worst case we are given an inode and need to clean up all the marks on that
64 * inode. We take i_lock and walk the i_fsnotify_mark_entries safely. For each
65 * mark on the list we take a reference (so the mark can't disappear under us).
66 * We remove that mark form the inode's list of marks and we add this mark to a
67 * private list anchored on the stack using i_free_list; At this point we no
68 * longer fear anything finding the mark using the inode's list of marks.
70 * We can safely and locklessly run the private list on the stack of everything
71 * we just unattached from the original inode. For each mark on the private list
72 * we grab the mark-> and can thus dereference mark->group and mark->inode. If
73 * we see the group and inode are not NULL we take those locks. Now holding all
74 * 3 locks we can completely remove the mark from other tasks finding it in the
75 * future. Remember, 10 things might already be referencing this mark, but they
76 * better be holding a ref. We drop our reference we took before we unhooked it
77 * from the inode. When the ref hits 0 we can free the mark.
79 * Very similarly for freeing by group, except we use free_g_list.
81 * This has the very interesting property of being able to run concurrently with
82 * any (or all) other directions.
85 #include <linux/fs.h>
86 #include <linux/init.h>
87 #include <linux/kernel.h>
88 #include <linux/module.h>
89 #include <linux/mutex.h>
90 #include <linux/spinlock.h>
91 #include <linux/writeback.h> /* for inode_lock */
93 #include <asm/atomic.h>
95 #include <linux/fsnotify_backend.h>
96 #include "fsnotify.h"
98 void fsnotify_get_mark(struct fsnotify_mark_entry *entry)
100 atomic_inc(&entry->refcnt);
103 void fsnotify_put_mark(struct fsnotify_mark_entry *entry)
105 if (atomic_dec_and_test(&entry->refcnt))
106 entry->free_mark(entry);
110 * Recalculate the mask of events relevant to a given inode locked.
112 static void fsnotify_recalc_inode_mask_locked(struct inode *inode)
114 struct fsnotify_mark_entry *entry;
115 struct hlist_node *pos;
116 __u32 new_mask = 0;
118 assert_spin_locked(&inode->i_lock);
120 hlist_for_each_entry(entry, pos, &inode->i_fsnotify_mark_entries, i_list)
121 new_mask |= entry->mask;
122 inode->i_fsnotify_mask = new_mask;
126 * Recalculate the inode->i_fsnotify_mask, or the mask of all FS_* event types
127 * any notifier is interested in hearing for this inode.
129 void fsnotify_recalc_inode_mask(struct inode *inode)
131 spin_lock(&inode->i_lock);
132 fsnotify_recalc_inode_mask_locked(inode);
133 spin_unlock(&inode->i_lock);
135 __fsnotify_update_child_dentry_flags(inode);
139 * Any time a mark is getting freed we end up here.
140 * The caller had better be holding a reference to this mark so we don't actually
141 * do the final put under the entry->lock
143 void fsnotify_destroy_mark_by_entry(struct fsnotify_mark_entry *entry)
145 struct fsnotify_group *group;
146 struct inode *inode;
148 spin_lock(&entry->lock);
150 group = entry->group;
151 inode = entry->inode;
153 BUG_ON(group && !inode);
154 BUG_ON(!group && inode);
156 /* if !group something else already marked this to die */
157 if (!group) {
158 spin_unlock(&entry->lock);
159 return;
162 /* 1 from caller and 1 for being on i_list/g_list */
163 BUG_ON(atomic_read(&entry->refcnt) < 2);
165 spin_lock(&group->mark_lock);
166 spin_lock(&inode->i_lock);
168 hlist_del_init(&entry->i_list);
169 entry->inode = NULL;
171 list_del_init(&entry->g_list);
172 entry->group = NULL;
174 fsnotify_put_mark(entry); /* for i_list and g_list */
177 * this mark is now off the inode->i_fsnotify_mark_entries list and we
178 * hold the inode->i_lock, so this is the perfect time to update the
179 * inode->i_fsnotify_mask
181 fsnotify_recalc_inode_mask_locked(inode);
183 spin_unlock(&inode->i_lock);
184 spin_unlock(&group->mark_lock);
185 spin_unlock(&entry->lock);
188 * Some groups like to know that marks are being freed. This is a
189 * callback to the group function to let it know that this entry
190 * is being freed.
192 if (group->ops->freeing_mark)
193 group->ops->freeing_mark(entry, group);
196 * __fsnotify_update_child_dentry_flags(inode);
198 * I really want to call that, but we can't, we have no idea if the inode
199 * still exists the second we drop the entry->lock.
201 * The next time an event arrive to this inode from one of it's children
202 * __fsnotify_parent will see that the inode doesn't care about it's
203 * children and will update all of these flags then. So really this
204 * is just a lazy update (and could be a perf win...)
208 iput(inode);
211 * it's possible that this group tried to destroy itself, but this
212 * this mark was simultaneously being freed by inode. If that's the
213 * case, we finish freeing the group here.
215 if (unlikely(atomic_dec_and_test(&group->num_marks)))
216 fsnotify_final_destroy_group(group);
220 * Given a group, destroy all of the marks associated with that group.
222 void fsnotify_clear_marks_by_group(struct fsnotify_group *group)
224 struct fsnotify_mark_entry *lentry, *entry;
225 LIST_HEAD(free_list);
227 spin_lock(&group->mark_lock);
228 list_for_each_entry_safe(entry, lentry, &group->mark_entries, g_list) {
229 list_add(&entry->free_g_list, &free_list);
230 list_del_init(&entry->g_list);
231 fsnotify_get_mark(entry);
233 spin_unlock(&group->mark_lock);
235 list_for_each_entry_safe(entry, lentry, &free_list, free_g_list) {
236 fsnotify_destroy_mark_by_entry(entry);
237 fsnotify_put_mark(entry);
242 * Given an inode, destroy all of the marks associated with that inode.
244 void fsnotify_clear_marks_by_inode(struct inode *inode)
246 struct fsnotify_mark_entry *entry, *lentry;
247 struct hlist_node *pos, *n;
248 LIST_HEAD(free_list);
250 spin_lock(&inode->i_lock);
251 hlist_for_each_entry_safe(entry, pos, n, &inode->i_fsnotify_mark_entries, i_list) {
252 list_add(&entry->free_i_list, &free_list);
253 hlist_del_init(&entry->i_list);
254 fsnotify_get_mark(entry);
256 spin_unlock(&inode->i_lock);
258 list_for_each_entry_safe(entry, lentry, &free_list, free_i_list) {
259 fsnotify_destroy_mark_by_entry(entry);
260 fsnotify_put_mark(entry);
265 * given a group and inode, find the mark associated with that combination.
266 * if found take a reference to that mark and return it, else return NULL
268 struct fsnotify_mark_entry *fsnotify_find_mark_entry(struct fsnotify_group *group,
269 struct inode *inode)
271 struct fsnotify_mark_entry *entry;
272 struct hlist_node *pos;
274 assert_spin_locked(&inode->i_lock);
276 hlist_for_each_entry(entry, pos, &inode->i_fsnotify_mark_entries, i_list) {
277 if (entry->group == group) {
278 fsnotify_get_mark(entry);
279 return entry;
282 return NULL;
286 * Nothing fancy, just initialize lists and locks and counters.
288 void fsnotify_init_mark(struct fsnotify_mark_entry *entry,
289 void (*free_mark)(struct fsnotify_mark_entry *entry))
292 spin_lock_init(&entry->lock);
293 atomic_set(&entry->refcnt, 1);
294 INIT_HLIST_NODE(&entry->i_list);
295 entry->group = NULL;
296 entry->mask = 0;
297 entry->inode = NULL;
298 entry->free_mark = free_mark;
302 * Attach an initialized mark entry to a given group and inode.
303 * These marks may be used for the fsnotify backend to determine which
304 * event types should be delivered to which group and for which inodes.
306 int fsnotify_add_mark(struct fsnotify_mark_entry *entry,
307 struct fsnotify_group *group, struct inode *inode)
309 struct fsnotify_mark_entry *lentry;
310 int ret = 0;
312 inode = igrab(inode);
313 if (unlikely(!inode))
314 return -EINVAL;
317 * LOCKING ORDER!!!!
318 * entry->lock
319 * group->mark_lock
320 * inode->i_lock
322 spin_lock(&entry->lock);
323 spin_lock(&group->mark_lock);
324 spin_lock(&inode->i_lock);
326 lentry = fsnotify_find_mark_entry(group, inode);
327 if (!lentry) {
328 entry->group = group;
329 entry->inode = inode;
331 hlist_add_head(&entry->i_list, &inode->i_fsnotify_mark_entries);
332 list_add(&entry->g_list, &group->mark_entries);
334 fsnotify_get_mark(entry); /* for i_list and g_list */
336 atomic_inc(&group->num_marks);
338 fsnotify_recalc_inode_mask_locked(inode);
341 spin_unlock(&inode->i_lock);
342 spin_unlock(&group->mark_lock);
343 spin_unlock(&entry->lock);
345 if (lentry) {
346 ret = -EEXIST;
347 iput(inode);
348 fsnotify_put_mark(lentry);
349 } else {
350 __fsnotify_update_child_dentry_flags(inode);
353 return ret;
357 * fsnotify_unmount_inodes - an sb is unmounting. handle any watched inodes.
358 * @list: list of inodes being unmounted (sb->s_inodes)
360 * Called with inode_lock held, protecting the unmounting super block's list
361 * of inodes, and with iprune_mutex held, keeping shrink_icache_memory() at bay.
362 * We temporarily drop inode_lock, however, and CAN block.
364 void fsnotify_unmount_inodes(struct list_head *list)
366 struct inode *inode, *next_i, *need_iput = NULL;
368 list_for_each_entry_safe(inode, next_i, list, i_sb_list) {
369 struct inode *need_iput_tmp;
372 * We cannot __iget() an inode in state I_CLEAR, I_FREEING,
373 * I_WILL_FREE, or I_NEW which is fine because by that point
374 * the inode cannot have any associated watches.
376 if (inode->i_state & (I_CLEAR|I_FREEING|I_WILL_FREE|I_NEW))
377 continue;
380 * If i_count is zero, the inode cannot have any watches and
381 * doing an __iget/iput with MS_ACTIVE clear would actually
382 * evict all inodes with zero i_count from icache which is
383 * unnecessarily violent and may in fact be illegal to do.
385 if (!atomic_read(&inode->i_count))
386 continue;
388 need_iput_tmp = need_iput;
389 need_iput = NULL;
391 /* In case fsnotify_inode_delete() drops a reference. */
392 if (inode != need_iput_tmp)
393 __iget(inode);
394 else
395 need_iput_tmp = NULL;
397 /* In case the dropping of a reference would nuke next_i. */
398 if ((&next_i->i_sb_list != list) &&
399 atomic_read(&next_i->i_count) &&
400 !(next_i->i_state & (I_CLEAR | I_FREEING | I_WILL_FREE))) {
401 __iget(next_i);
402 need_iput = next_i;
406 * We can safely drop inode_lock here because we hold
407 * references on both inode and next_i. Also no new inodes
408 * will be added since the umount has begun. Finally,
409 * iprune_mutex keeps shrink_icache_memory() away.
411 spin_unlock(&inode_lock);
413 if (need_iput_tmp)
414 iput(need_iput_tmp);
416 /* for each watch, send FS_UNMOUNT and then remove it */
417 fsnotify(inode, FS_UNMOUNT, inode, FSNOTIFY_EVENT_INODE, NULL, 0);
419 fsnotify_inode_delete(inode);
421 iput(inode);
423 spin_lock(&inode_lock);