4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/security.h>
28 #include <linux/backing-dev.h>
29 #include <linux/mutex.h>
30 #include <linux/capability.h>
31 #include <linux/syscalls.h>
32 #include <linux/memcontrol.h>
34 #include <asm/pgtable.h>
35 #include <asm/tlbflush.h>
36 #include <linux/swapops.h>
37 #include <linux/page_cgroup.h>
39 static bool swap_count_continued(struct swap_info_struct
*, pgoff_t
,
41 static void free_swap_count_continuations(struct swap_info_struct
*);
42 static sector_t
map_swap_entry(swp_entry_t
, struct block_device
**);
44 static DEFINE_SPINLOCK(swap_lock
);
45 static unsigned int nr_swapfiles
;
47 long total_swap_pages
;
48 static int least_priority
;
50 static const char Bad_file
[] = "Bad swap file entry ";
51 static const char Unused_file
[] = "Unused swap file entry ";
52 static const char Bad_offset
[] = "Bad swap offset entry ";
53 static const char Unused_offset
[] = "Unused swap offset entry ";
55 static struct swap_list_t swap_list
= {-1, -1};
57 static struct swap_info_struct
*swap_info
[MAX_SWAPFILES
];
59 static DEFINE_MUTEX(swapon_mutex
);
61 static inline unsigned char swap_count(unsigned char ent
)
63 return ent
& ~SWAP_HAS_CACHE
; /* may include SWAP_HAS_CONT flag */
66 /* returns 1 if swap entry is freed */
68 __try_to_reclaim_swap(struct swap_info_struct
*si
, unsigned long offset
)
70 swp_entry_t entry
= swp_entry(si
->type
, offset
);
74 page
= find_get_page(&swapper_space
, entry
.val
);
78 * This function is called from scan_swap_map() and it's called
79 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
80 * We have to use trylock for avoiding deadlock. This is a special
81 * case and you should use try_to_free_swap() with explicit lock_page()
82 * in usual operations.
84 if (trylock_page(page
)) {
85 ret
= try_to_free_swap(page
);
88 page_cache_release(page
);
93 * We need this because the bdev->unplug_fn can sleep and we cannot
94 * hold swap_lock while calling the unplug_fn. And swap_lock
95 * cannot be turned into a mutex.
97 static DECLARE_RWSEM(swap_unplug_sem
);
99 void swap_unplug_io_fn(struct backing_dev_info
*unused_bdi
, struct page
*page
)
103 down_read(&swap_unplug_sem
);
104 entry
.val
= page_private(page
);
105 if (PageSwapCache(page
)) {
106 struct block_device
*bdev
= swap_info
[swp_type(entry
)]->bdev
;
107 struct backing_dev_info
*bdi
;
110 * If the page is removed from swapcache from under us (with a
111 * racy try_to_unuse/swapoff) we need an additional reference
112 * count to avoid reading garbage from page_private(page) above.
113 * If the WARN_ON triggers during a swapoff it maybe the race
114 * condition and it's harmless. However if it triggers without
115 * swapoff it signals a problem.
117 WARN_ON(page_count(page
) <= 1);
119 bdi
= bdev
->bd_inode
->i_mapping
->backing_dev_info
;
120 blk_run_backing_dev(bdi
, page
);
122 up_read(&swap_unplug_sem
);
126 * swapon tell device that all the old swap contents can be discarded,
127 * to allow the swap device to optimize its wear-levelling.
129 static int discard_swap(struct swap_info_struct
*si
)
131 struct swap_extent
*se
;
132 sector_t start_block
;
136 /* Do not discard the swap header page! */
137 se
= &si
->first_swap_extent
;
138 start_block
= (se
->start_block
+ 1) << (PAGE_SHIFT
- 9);
139 nr_blocks
= ((sector_t
)se
->nr_pages
- 1) << (PAGE_SHIFT
- 9);
141 err
= blkdev_issue_discard(si
->bdev
, start_block
,
142 nr_blocks
, GFP_KERNEL
, DISCARD_FL_BARRIER
);
148 list_for_each_entry(se
, &si
->first_swap_extent
.list
, list
) {
149 start_block
= se
->start_block
<< (PAGE_SHIFT
- 9);
150 nr_blocks
= (sector_t
)se
->nr_pages
<< (PAGE_SHIFT
- 9);
152 err
= blkdev_issue_discard(si
->bdev
, start_block
,
153 nr_blocks
, GFP_KERNEL
, DISCARD_FL_BARRIER
);
159 return err
; /* That will often be -EOPNOTSUPP */
163 * swap allocation tell device that a cluster of swap can now be discarded,
164 * to allow the swap device to optimize its wear-levelling.
166 static void discard_swap_cluster(struct swap_info_struct
*si
,
167 pgoff_t start_page
, pgoff_t nr_pages
)
169 struct swap_extent
*se
= si
->curr_swap_extent
;
170 int found_extent
= 0;
173 struct list_head
*lh
;
175 if (se
->start_page
<= start_page
&&
176 start_page
< se
->start_page
+ se
->nr_pages
) {
177 pgoff_t offset
= start_page
- se
->start_page
;
178 sector_t start_block
= se
->start_block
+ offset
;
179 sector_t nr_blocks
= se
->nr_pages
- offset
;
181 if (nr_blocks
> nr_pages
)
182 nr_blocks
= nr_pages
;
183 start_page
+= nr_blocks
;
184 nr_pages
-= nr_blocks
;
187 si
->curr_swap_extent
= se
;
189 start_block
<<= PAGE_SHIFT
- 9;
190 nr_blocks
<<= PAGE_SHIFT
- 9;
191 if (blkdev_issue_discard(si
->bdev
, start_block
,
192 nr_blocks
, GFP_NOIO
, DISCARD_FL_BARRIER
))
197 se
= list_entry(lh
, struct swap_extent
, list
);
201 static int wait_for_discard(void *word
)
207 #define SWAPFILE_CLUSTER 256
208 #define LATENCY_LIMIT 256
210 static inline unsigned long scan_swap_map(struct swap_info_struct
*si
,
213 unsigned long offset
;
214 unsigned long scan_base
;
215 unsigned long last_in_cluster
= 0;
216 int latency_ration
= LATENCY_LIMIT
;
217 int found_free_cluster
= 0;
220 * We try to cluster swap pages by allocating them sequentially
221 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
222 * way, however, we resort to first-free allocation, starting
223 * a new cluster. This prevents us from scattering swap pages
224 * all over the entire swap partition, so that we reduce
225 * overall disk seek times between swap pages. -- sct
226 * But we do now try to find an empty cluster. -Andrea
227 * And we let swap pages go all over an SSD partition. Hugh
230 si
->flags
+= SWP_SCANNING
;
231 scan_base
= offset
= si
->cluster_next
;
233 if (unlikely(!si
->cluster_nr
--)) {
234 if (si
->pages
- si
->inuse_pages
< SWAPFILE_CLUSTER
) {
235 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
238 if (si
->flags
& SWP_DISCARDABLE
) {
240 * Start range check on racing allocations, in case
241 * they overlap the cluster we eventually decide on
242 * (we scan without swap_lock to allow preemption).
243 * It's hardly conceivable that cluster_nr could be
244 * wrapped during our scan, but don't depend on it.
246 if (si
->lowest_alloc
)
248 si
->lowest_alloc
= si
->max
;
249 si
->highest_alloc
= 0;
251 spin_unlock(&swap_lock
);
254 * If seek is expensive, start searching for new cluster from
255 * start of partition, to minimize the span of allocated swap.
256 * But if seek is cheap, search from our current position, so
257 * that swap is allocated from all over the partition: if the
258 * Flash Translation Layer only remaps within limited zones,
259 * we don't want to wear out the first zone too quickly.
261 if (!(si
->flags
& SWP_SOLIDSTATE
))
262 scan_base
= offset
= si
->lowest_bit
;
263 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
265 /* Locate the first empty (unaligned) cluster */
266 for (; last_in_cluster
<= si
->highest_bit
; offset
++) {
267 if (si
->swap_map
[offset
])
268 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
269 else if (offset
== last_in_cluster
) {
270 spin_lock(&swap_lock
);
271 offset
-= SWAPFILE_CLUSTER
- 1;
272 si
->cluster_next
= offset
;
273 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
274 found_free_cluster
= 1;
277 if (unlikely(--latency_ration
< 0)) {
279 latency_ration
= LATENCY_LIMIT
;
283 offset
= si
->lowest_bit
;
284 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
286 /* Locate the first empty (unaligned) cluster */
287 for (; last_in_cluster
< scan_base
; offset
++) {
288 if (si
->swap_map
[offset
])
289 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
290 else if (offset
== last_in_cluster
) {
291 spin_lock(&swap_lock
);
292 offset
-= SWAPFILE_CLUSTER
- 1;
293 si
->cluster_next
= offset
;
294 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
295 found_free_cluster
= 1;
298 if (unlikely(--latency_ration
< 0)) {
300 latency_ration
= LATENCY_LIMIT
;
305 spin_lock(&swap_lock
);
306 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
307 si
->lowest_alloc
= 0;
311 if (!(si
->flags
& SWP_WRITEOK
))
313 if (!si
->highest_bit
)
315 if (offset
> si
->highest_bit
)
316 scan_base
= offset
= si
->lowest_bit
;
318 /* reuse swap entry of cache-only swap if not hibernation. */
320 && usage
== SWAP_HAS_CACHE
321 && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
323 spin_unlock(&swap_lock
);
324 swap_was_freed
= __try_to_reclaim_swap(si
, offset
);
325 spin_lock(&swap_lock
);
326 /* entry was freed successfully, try to use this again */
329 goto scan
; /* check next one */
332 if (si
->swap_map
[offset
])
335 if (offset
== si
->lowest_bit
)
337 if (offset
== si
->highest_bit
)
340 if (si
->inuse_pages
== si
->pages
) {
341 si
->lowest_bit
= si
->max
;
344 si
->swap_map
[offset
] = usage
;
345 si
->cluster_next
= offset
+ 1;
346 si
->flags
-= SWP_SCANNING
;
348 if (si
->lowest_alloc
) {
350 * Only set when SWP_DISCARDABLE, and there's a scan
351 * for a free cluster in progress or just completed.
353 if (found_free_cluster
) {
355 * To optimize wear-levelling, discard the
356 * old data of the cluster, taking care not to
357 * discard any of its pages that have already
358 * been allocated by racing tasks (offset has
359 * already stepped over any at the beginning).
361 if (offset
< si
->highest_alloc
&&
362 si
->lowest_alloc
<= last_in_cluster
)
363 last_in_cluster
= si
->lowest_alloc
- 1;
364 si
->flags
|= SWP_DISCARDING
;
365 spin_unlock(&swap_lock
);
367 if (offset
< last_in_cluster
)
368 discard_swap_cluster(si
, offset
,
369 last_in_cluster
- offset
+ 1);
371 spin_lock(&swap_lock
);
372 si
->lowest_alloc
= 0;
373 si
->flags
&= ~SWP_DISCARDING
;
375 smp_mb(); /* wake_up_bit advises this */
376 wake_up_bit(&si
->flags
, ilog2(SWP_DISCARDING
));
378 } else if (si
->flags
& SWP_DISCARDING
) {
380 * Delay using pages allocated by racing tasks
381 * until the whole discard has been issued. We
382 * could defer that delay until swap_writepage,
383 * but it's easier to keep this self-contained.
385 spin_unlock(&swap_lock
);
386 wait_on_bit(&si
->flags
, ilog2(SWP_DISCARDING
),
387 wait_for_discard
, TASK_UNINTERRUPTIBLE
);
388 spin_lock(&swap_lock
);
391 * Note pages allocated by racing tasks while
392 * scan for a free cluster is in progress, so
393 * that its final discard can exclude them.
395 if (offset
< si
->lowest_alloc
)
396 si
->lowest_alloc
= offset
;
397 if (offset
> si
->highest_alloc
)
398 si
->highest_alloc
= offset
;
404 spin_unlock(&swap_lock
);
405 while (++offset
<= si
->highest_bit
) {
406 if (!si
->swap_map
[offset
]) {
407 spin_lock(&swap_lock
);
410 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
411 spin_lock(&swap_lock
);
414 if (unlikely(--latency_ration
< 0)) {
416 latency_ration
= LATENCY_LIMIT
;
419 offset
= si
->lowest_bit
;
420 while (++offset
< scan_base
) {
421 if (!si
->swap_map
[offset
]) {
422 spin_lock(&swap_lock
);
425 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
426 spin_lock(&swap_lock
);
429 if (unlikely(--latency_ration
< 0)) {
431 latency_ration
= LATENCY_LIMIT
;
434 spin_lock(&swap_lock
);
437 si
->flags
-= SWP_SCANNING
;
441 swp_entry_t
get_swap_page(void)
443 struct swap_info_struct
*si
;
448 spin_lock(&swap_lock
);
449 if (nr_swap_pages
<= 0)
453 for (type
= swap_list
.next
; type
>= 0 && wrapped
< 2; type
= next
) {
454 si
= swap_info
[type
];
457 (!wrapped
&& si
->prio
!= swap_info
[next
]->prio
)) {
458 next
= swap_list
.head
;
462 if (!si
->highest_bit
)
464 if (!(si
->flags
& SWP_WRITEOK
))
467 swap_list
.next
= next
;
468 /* This is called for allocating swap entry for cache */
469 offset
= scan_swap_map(si
, SWAP_HAS_CACHE
);
471 spin_unlock(&swap_lock
);
472 return swp_entry(type
, offset
);
474 next
= swap_list
.next
;
479 spin_unlock(&swap_lock
);
480 return (swp_entry_t
) {0};
483 /* The only caller of this function is now susupend routine */
484 swp_entry_t
get_swap_page_of_type(int type
)
486 struct swap_info_struct
*si
;
489 spin_lock(&swap_lock
);
490 si
= swap_info
[type
];
491 if (si
&& (si
->flags
& SWP_WRITEOK
)) {
493 /* This is called for allocating swap entry, not cache */
494 offset
= scan_swap_map(si
, 1);
496 spin_unlock(&swap_lock
);
497 return swp_entry(type
, offset
);
501 spin_unlock(&swap_lock
);
502 return (swp_entry_t
) {0};
505 static struct swap_info_struct
*swap_info_get(swp_entry_t entry
)
507 struct swap_info_struct
*p
;
508 unsigned long offset
, type
;
512 type
= swp_type(entry
);
513 if (type
>= nr_swapfiles
)
516 if (!(p
->flags
& SWP_USED
))
518 offset
= swp_offset(entry
);
519 if (offset
>= p
->max
)
521 if (!p
->swap_map
[offset
])
523 spin_lock(&swap_lock
);
527 printk(KERN_ERR
"swap_free: %s%08lx\n", Unused_offset
, entry
.val
);
530 printk(KERN_ERR
"swap_free: %s%08lx\n", Bad_offset
, entry
.val
);
533 printk(KERN_ERR
"swap_free: %s%08lx\n", Unused_file
, entry
.val
);
536 printk(KERN_ERR
"swap_free: %s%08lx\n", Bad_file
, entry
.val
);
541 static unsigned char swap_entry_free(struct swap_info_struct
*p
,
542 swp_entry_t entry
, unsigned char usage
)
544 unsigned long offset
= swp_offset(entry
);
546 unsigned char has_cache
;
548 count
= p
->swap_map
[offset
];
549 has_cache
= count
& SWAP_HAS_CACHE
;
550 count
&= ~SWAP_HAS_CACHE
;
552 if (usage
== SWAP_HAS_CACHE
) {
553 VM_BUG_ON(!has_cache
);
555 } else if (count
== SWAP_MAP_SHMEM
) {
557 * Or we could insist on shmem.c using a special
558 * swap_shmem_free() and free_shmem_swap_and_cache()...
561 } else if ((count
& ~COUNT_CONTINUED
) <= SWAP_MAP_MAX
) {
562 if (count
== COUNT_CONTINUED
) {
563 if (swap_count_continued(p
, offset
, count
))
564 count
= SWAP_MAP_MAX
| COUNT_CONTINUED
;
566 count
= SWAP_MAP_MAX
;
572 mem_cgroup_uncharge_swap(entry
);
574 usage
= count
| has_cache
;
575 p
->swap_map
[offset
] = usage
;
577 /* free if no reference */
579 if (offset
< p
->lowest_bit
)
580 p
->lowest_bit
= offset
;
581 if (offset
> p
->highest_bit
)
582 p
->highest_bit
= offset
;
583 if (swap_list
.next
>= 0 &&
584 p
->prio
> swap_info
[swap_list
.next
]->prio
)
585 swap_list
.next
= p
->type
;
594 * Caller has made sure that the swapdevice corresponding to entry
595 * is still around or has not been recycled.
597 void swap_free(swp_entry_t entry
)
599 struct swap_info_struct
*p
;
601 p
= swap_info_get(entry
);
603 swap_entry_free(p
, entry
, 1);
604 spin_unlock(&swap_lock
);
609 * Called after dropping swapcache to decrease refcnt to swap entries.
611 void swapcache_free(swp_entry_t entry
, struct page
*page
)
613 struct swap_info_struct
*p
;
616 p
= swap_info_get(entry
);
618 count
= swap_entry_free(p
, entry
, SWAP_HAS_CACHE
);
620 mem_cgroup_uncharge_swapcache(page
, entry
, count
!= 0);
621 spin_unlock(&swap_lock
);
626 * How many references to page are currently swapped out?
627 * This does not give an exact answer when swap count is continued,
628 * but does include the high COUNT_CONTINUED flag to allow for that.
630 static inline int page_swapcount(struct page
*page
)
633 struct swap_info_struct
*p
;
636 entry
.val
= page_private(page
);
637 p
= swap_info_get(entry
);
639 count
= swap_count(p
->swap_map
[swp_offset(entry
)]);
640 spin_unlock(&swap_lock
);
646 * We can write to an anon page without COW if there are no other references
647 * to it. And as a side-effect, free up its swap: because the old content
648 * on disk will never be read, and seeking back there to write new content
649 * later would only waste time away from clustering.
651 int reuse_swap_page(struct page
*page
)
655 VM_BUG_ON(!PageLocked(page
));
656 if (unlikely(PageKsm(page
)))
658 count
= page_mapcount(page
);
659 if (count
<= 1 && PageSwapCache(page
)) {
660 count
+= page_swapcount(page
);
661 if (count
== 1 && !PageWriteback(page
)) {
662 delete_from_swap_cache(page
);
670 * If swap is getting full, or if there are no more mappings of this page,
671 * then try_to_free_swap is called to free its swap space.
673 int try_to_free_swap(struct page
*page
)
675 VM_BUG_ON(!PageLocked(page
));
677 if (!PageSwapCache(page
))
679 if (PageWriteback(page
))
681 if (page_swapcount(page
))
684 delete_from_swap_cache(page
);
690 * Free the swap entry like above, but also try to
691 * free the page cache entry if it is the last user.
693 int free_swap_and_cache(swp_entry_t entry
)
695 struct swap_info_struct
*p
;
696 struct page
*page
= NULL
;
698 if (non_swap_entry(entry
))
701 p
= swap_info_get(entry
);
703 if (swap_entry_free(p
, entry
, 1) == SWAP_HAS_CACHE
) {
704 page
= find_get_page(&swapper_space
, entry
.val
);
705 if (page
&& !trylock_page(page
)) {
706 page_cache_release(page
);
710 spin_unlock(&swap_lock
);
714 * Not mapped elsewhere, or swap space full? Free it!
715 * Also recheck PageSwapCache now page is locked (above).
717 if (PageSwapCache(page
) && !PageWriteback(page
) &&
718 (!page_mapped(page
) || vm_swap_full())) {
719 delete_from_swap_cache(page
);
723 page_cache_release(page
);
728 #ifdef CONFIG_HIBERNATION
730 * Find the swap type that corresponds to given device (if any).
732 * @offset - number of the PAGE_SIZE-sized block of the device, starting
733 * from 0, in which the swap header is expected to be located.
735 * This is needed for the suspend to disk (aka swsusp).
737 int swap_type_of(dev_t device
, sector_t offset
, struct block_device
**bdev_p
)
739 struct block_device
*bdev
= NULL
;
743 bdev
= bdget(device
);
745 spin_lock(&swap_lock
);
746 for (type
= 0; type
< nr_swapfiles
; type
++) {
747 struct swap_info_struct
*sis
= swap_info
[type
];
749 if (!(sis
->flags
& SWP_WRITEOK
))
754 *bdev_p
= bdgrab(sis
->bdev
);
756 spin_unlock(&swap_lock
);
759 if (bdev
== sis
->bdev
) {
760 struct swap_extent
*se
= &sis
->first_swap_extent
;
762 if (se
->start_block
== offset
) {
764 *bdev_p
= bdgrab(sis
->bdev
);
766 spin_unlock(&swap_lock
);
772 spin_unlock(&swap_lock
);
780 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
781 * corresponding to given index in swap_info (swap type).
783 sector_t
swapdev_block(int type
, pgoff_t offset
)
785 struct block_device
*bdev
;
787 if ((unsigned int)type
>= nr_swapfiles
)
789 if (!(swap_info
[type
]->flags
& SWP_WRITEOK
))
791 return map_swap_entry(swp_entry(type
, offset
), &bdev
);
795 * Return either the total number of swap pages of given type, or the number
796 * of free pages of that type (depending on @free)
798 * This is needed for software suspend
800 unsigned int count_swap_pages(int type
, int free
)
804 spin_lock(&swap_lock
);
805 if ((unsigned int)type
< nr_swapfiles
) {
806 struct swap_info_struct
*sis
= swap_info
[type
];
808 if (sis
->flags
& SWP_WRITEOK
) {
811 n
-= sis
->inuse_pages
;
814 spin_unlock(&swap_lock
);
817 #endif /* CONFIG_HIBERNATION */
820 * No need to decide whether this PTE shares the swap entry with others,
821 * just let do_wp_page work it out if a write is requested later - to
822 * force COW, vm_page_prot omits write permission from any private vma.
824 static int unuse_pte(struct vm_area_struct
*vma
, pmd_t
*pmd
,
825 unsigned long addr
, swp_entry_t entry
, struct page
*page
)
827 struct mem_cgroup
*ptr
= NULL
;
832 if (mem_cgroup_try_charge_swapin(vma
->vm_mm
, page
, GFP_KERNEL
, &ptr
)) {
837 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
838 if (unlikely(!pte_same(*pte
, swp_entry_to_pte(entry
)))) {
840 mem_cgroup_cancel_charge_swapin(ptr
);
845 inc_mm_counter(vma
->vm_mm
, anon_rss
);
847 set_pte_at(vma
->vm_mm
, addr
, pte
,
848 pte_mkold(mk_pte(page
, vma
->vm_page_prot
)));
849 page_add_anon_rmap(page
, vma
, addr
);
850 mem_cgroup_commit_charge_swapin(page
, ptr
);
853 * Move the page to the active list so it is not
854 * immediately swapped out again after swapon.
858 pte_unmap_unlock(pte
, ptl
);
863 static int unuse_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
864 unsigned long addr
, unsigned long end
,
865 swp_entry_t entry
, struct page
*page
)
867 pte_t swp_pte
= swp_entry_to_pte(entry
);
872 * We don't actually need pte lock while scanning for swp_pte: since
873 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
874 * page table while we're scanning; though it could get zapped, and on
875 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
876 * of unmatched parts which look like swp_pte, so unuse_pte must
877 * recheck under pte lock. Scanning without pte lock lets it be
878 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
880 pte
= pte_offset_map(pmd
, addr
);
883 * swapoff spends a _lot_ of time in this loop!
884 * Test inline before going to call unuse_pte.
886 if (unlikely(pte_same(*pte
, swp_pte
))) {
888 ret
= unuse_pte(vma
, pmd
, addr
, entry
, page
);
891 pte
= pte_offset_map(pmd
, addr
);
893 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
899 static inline int unuse_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
900 unsigned long addr
, unsigned long end
,
901 swp_entry_t entry
, struct page
*page
)
907 pmd
= pmd_offset(pud
, addr
);
909 next
= pmd_addr_end(addr
, end
);
910 if (pmd_none_or_clear_bad(pmd
))
912 ret
= unuse_pte_range(vma
, pmd
, addr
, next
, entry
, page
);
915 } while (pmd
++, addr
= next
, addr
!= end
);
919 static inline int unuse_pud_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
920 unsigned long addr
, unsigned long end
,
921 swp_entry_t entry
, struct page
*page
)
927 pud
= pud_offset(pgd
, addr
);
929 next
= pud_addr_end(addr
, end
);
930 if (pud_none_or_clear_bad(pud
))
932 ret
= unuse_pmd_range(vma
, pud
, addr
, next
, entry
, page
);
935 } while (pud
++, addr
= next
, addr
!= end
);
939 static int unuse_vma(struct vm_area_struct
*vma
,
940 swp_entry_t entry
, struct page
*page
)
943 unsigned long addr
, end
, next
;
946 if (page_anon_vma(page
)) {
947 addr
= page_address_in_vma(page
, vma
);
951 end
= addr
+ PAGE_SIZE
;
953 addr
= vma
->vm_start
;
957 pgd
= pgd_offset(vma
->vm_mm
, addr
);
959 next
= pgd_addr_end(addr
, end
);
960 if (pgd_none_or_clear_bad(pgd
))
962 ret
= unuse_pud_range(vma
, pgd
, addr
, next
, entry
, page
);
965 } while (pgd
++, addr
= next
, addr
!= end
);
969 static int unuse_mm(struct mm_struct
*mm
,
970 swp_entry_t entry
, struct page
*page
)
972 struct vm_area_struct
*vma
;
975 if (!down_read_trylock(&mm
->mmap_sem
)) {
977 * Activate page so shrink_inactive_list is unlikely to unmap
978 * its ptes while lock is dropped, so swapoff can make progress.
982 down_read(&mm
->mmap_sem
);
985 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
986 if (vma
->anon_vma
&& (ret
= unuse_vma(vma
, entry
, page
)))
989 up_read(&mm
->mmap_sem
);
990 return (ret
< 0)? ret
: 0;
994 * Scan swap_map from current position to next entry still in use.
995 * Recycle to start on reaching the end, returning 0 when empty.
997 static unsigned int find_next_to_unuse(struct swap_info_struct
*si
,
1000 unsigned int max
= si
->max
;
1001 unsigned int i
= prev
;
1002 unsigned char count
;
1005 * No need for swap_lock here: we're just looking
1006 * for whether an entry is in use, not modifying it; false
1007 * hits are okay, and sys_swapoff() has already prevented new
1008 * allocations from this area (while holding swap_lock).
1017 * No entries in use at top of swap_map,
1018 * loop back to start and recheck there.
1024 count
= si
->swap_map
[i
];
1025 if (count
&& swap_count(count
) != SWAP_MAP_BAD
)
1032 * We completely avoid races by reading each swap page in advance,
1033 * and then search for the process using it. All the necessary
1034 * page table adjustments can then be made atomically.
1036 static int try_to_unuse(unsigned int type
)
1038 struct swap_info_struct
*si
= swap_info
[type
];
1039 struct mm_struct
*start_mm
;
1040 unsigned char *swap_map
;
1041 unsigned char swcount
;
1048 * When searching mms for an entry, a good strategy is to
1049 * start at the first mm we freed the previous entry from
1050 * (though actually we don't notice whether we or coincidence
1051 * freed the entry). Initialize this start_mm with a hold.
1053 * A simpler strategy would be to start at the last mm we
1054 * freed the previous entry from; but that would take less
1055 * advantage of mmlist ordering, which clusters forked mms
1056 * together, child after parent. If we race with dup_mmap(), we
1057 * prefer to resolve parent before child, lest we miss entries
1058 * duplicated after we scanned child: using last mm would invert
1061 start_mm
= &init_mm
;
1062 atomic_inc(&init_mm
.mm_users
);
1065 * Keep on scanning until all entries have gone. Usually,
1066 * one pass through swap_map is enough, but not necessarily:
1067 * there are races when an instance of an entry might be missed.
1069 while ((i
= find_next_to_unuse(si
, i
)) != 0) {
1070 if (signal_pending(current
)) {
1076 * Get a page for the entry, using the existing swap
1077 * cache page if there is one. Otherwise, get a clean
1078 * page and read the swap into it.
1080 swap_map
= &si
->swap_map
[i
];
1081 entry
= swp_entry(type
, i
);
1082 page
= read_swap_cache_async(entry
,
1083 GFP_HIGHUSER_MOVABLE
, NULL
, 0);
1086 * Either swap_duplicate() failed because entry
1087 * has been freed independently, and will not be
1088 * reused since sys_swapoff() already disabled
1089 * allocation from here, or alloc_page() failed.
1098 * Don't hold on to start_mm if it looks like exiting.
1100 if (atomic_read(&start_mm
->mm_users
) == 1) {
1102 start_mm
= &init_mm
;
1103 atomic_inc(&init_mm
.mm_users
);
1107 * Wait for and lock page. When do_swap_page races with
1108 * try_to_unuse, do_swap_page can handle the fault much
1109 * faster than try_to_unuse can locate the entry. This
1110 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1111 * defer to do_swap_page in such a case - in some tests,
1112 * do_swap_page and try_to_unuse repeatedly compete.
1114 wait_on_page_locked(page
);
1115 wait_on_page_writeback(page
);
1117 wait_on_page_writeback(page
);
1120 * Remove all references to entry.
1122 swcount
= *swap_map
;
1123 if (swap_count(swcount
) == SWAP_MAP_SHMEM
) {
1124 retval
= shmem_unuse(entry
, page
);
1125 /* page has already been unlocked and released */
1130 if (swap_count(swcount
) && start_mm
!= &init_mm
)
1131 retval
= unuse_mm(start_mm
, entry
, page
);
1133 if (swap_count(*swap_map
)) {
1134 int set_start_mm
= (*swap_map
>= swcount
);
1135 struct list_head
*p
= &start_mm
->mmlist
;
1136 struct mm_struct
*new_start_mm
= start_mm
;
1137 struct mm_struct
*prev_mm
= start_mm
;
1138 struct mm_struct
*mm
;
1140 atomic_inc(&new_start_mm
->mm_users
);
1141 atomic_inc(&prev_mm
->mm_users
);
1142 spin_lock(&mmlist_lock
);
1143 while (swap_count(*swap_map
) && !retval
&&
1144 (p
= p
->next
) != &start_mm
->mmlist
) {
1145 mm
= list_entry(p
, struct mm_struct
, mmlist
);
1146 if (!atomic_inc_not_zero(&mm
->mm_users
))
1148 spin_unlock(&mmlist_lock
);
1154 swcount
= *swap_map
;
1155 if (!swap_count(swcount
)) /* any usage ? */
1157 else if (mm
== &init_mm
)
1160 retval
= unuse_mm(mm
, entry
, page
);
1162 if (set_start_mm
&& *swap_map
< swcount
) {
1163 mmput(new_start_mm
);
1164 atomic_inc(&mm
->mm_users
);
1168 spin_lock(&mmlist_lock
);
1170 spin_unlock(&mmlist_lock
);
1173 start_mm
= new_start_mm
;
1177 page_cache_release(page
);
1182 * If a reference remains (rare), we would like to leave
1183 * the page in the swap cache; but try_to_unmap could
1184 * then re-duplicate the entry once we drop page lock,
1185 * so we might loop indefinitely; also, that page could
1186 * not be swapped out to other storage meanwhile. So:
1187 * delete from cache even if there's another reference,
1188 * after ensuring that the data has been saved to disk -
1189 * since if the reference remains (rarer), it will be
1190 * read from disk into another page. Splitting into two
1191 * pages would be incorrect if swap supported "shared
1192 * private" pages, but they are handled by tmpfs files.
1194 * Given how unuse_vma() targets one particular offset
1195 * in an anon_vma, once the anon_vma has been determined,
1196 * this splitting happens to be just what is needed to
1197 * handle where KSM pages have been swapped out: re-reading
1198 * is unnecessarily slow, but we can fix that later on.
1200 if (swap_count(*swap_map
) &&
1201 PageDirty(page
) && PageSwapCache(page
)) {
1202 struct writeback_control wbc
= {
1203 .sync_mode
= WB_SYNC_NONE
,
1206 swap_writepage(page
, &wbc
);
1208 wait_on_page_writeback(page
);
1212 * It is conceivable that a racing task removed this page from
1213 * swap cache just before we acquired the page lock at the top,
1214 * or while we dropped it in unuse_mm(). The page might even
1215 * be back in swap cache on another swap area: that we must not
1216 * delete, since it may not have been written out to swap yet.
1218 if (PageSwapCache(page
) &&
1219 likely(page_private(page
) == entry
.val
))
1220 delete_from_swap_cache(page
);
1223 * So we could skip searching mms once swap count went
1224 * to 1, we did not mark any present ptes as dirty: must
1225 * mark page dirty so shrink_page_list will preserve it.
1229 page_cache_release(page
);
1232 * Make sure that we aren't completely killing
1233 * interactive performance.
1243 * After a successful try_to_unuse, if no swap is now in use, we know
1244 * we can empty the mmlist. swap_lock must be held on entry and exit.
1245 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1246 * added to the mmlist just after page_duplicate - before would be racy.
1248 static void drain_mmlist(void)
1250 struct list_head
*p
, *next
;
1253 for (type
= 0; type
< nr_swapfiles
; type
++)
1254 if (swap_info
[type
]->inuse_pages
)
1256 spin_lock(&mmlist_lock
);
1257 list_for_each_safe(p
, next
, &init_mm
.mmlist
)
1259 spin_unlock(&mmlist_lock
);
1263 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1264 * corresponds to page offset for the specified swap entry.
1265 * Note that the type of this function is sector_t, but it returns page offset
1266 * into the bdev, not sector offset.
1268 static sector_t
map_swap_entry(swp_entry_t entry
, struct block_device
**bdev
)
1270 struct swap_info_struct
*sis
;
1271 struct swap_extent
*start_se
;
1272 struct swap_extent
*se
;
1275 sis
= swap_info
[swp_type(entry
)];
1278 offset
= swp_offset(entry
);
1279 start_se
= sis
->curr_swap_extent
;
1283 struct list_head
*lh
;
1285 if (se
->start_page
<= offset
&&
1286 offset
< (se
->start_page
+ se
->nr_pages
)) {
1287 return se
->start_block
+ (offset
- se
->start_page
);
1290 se
= list_entry(lh
, struct swap_extent
, list
);
1291 sis
->curr_swap_extent
= se
;
1292 BUG_ON(se
== start_se
); /* It *must* be present */
1297 * Returns the page offset into bdev for the specified page's swap entry.
1299 sector_t
map_swap_page(struct page
*page
, struct block_device
**bdev
)
1302 entry
.val
= page_private(page
);
1303 return map_swap_entry(entry
, bdev
);
1307 * Free all of a swapdev's extent information
1309 static void destroy_swap_extents(struct swap_info_struct
*sis
)
1311 while (!list_empty(&sis
->first_swap_extent
.list
)) {
1312 struct swap_extent
*se
;
1314 se
= list_entry(sis
->first_swap_extent
.list
.next
,
1315 struct swap_extent
, list
);
1316 list_del(&se
->list
);
1322 * Add a block range (and the corresponding page range) into this swapdev's
1323 * extent list. The extent list is kept sorted in page order.
1325 * This function rather assumes that it is called in ascending page order.
1328 add_swap_extent(struct swap_info_struct
*sis
, unsigned long start_page
,
1329 unsigned long nr_pages
, sector_t start_block
)
1331 struct swap_extent
*se
;
1332 struct swap_extent
*new_se
;
1333 struct list_head
*lh
;
1335 if (start_page
== 0) {
1336 se
= &sis
->first_swap_extent
;
1337 sis
->curr_swap_extent
= se
;
1339 se
->nr_pages
= nr_pages
;
1340 se
->start_block
= start_block
;
1343 lh
= sis
->first_swap_extent
.list
.prev
; /* Highest extent */
1344 se
= list_entry(lh
, struct swap_extent
, list
);
1345 BUG_ON(se
->start_page
+ se
->nr_pages
!= start_page
);
1346 if (se
->start_block
+ se
->nr_pages
== start_block
) {
1348 se
->nr_pages
+= nr_pages
;
1354 * No merge. Insert a new extent, preserving ordering.
1356 new_se
= kmalloc(sizeof(*se
), GFP_KERNEL
);
1359 new_se
->start_page
= start_page
;
1360 new_se
->nr_pages
= nr_pages
;
1361 new_se
->start_block
= start_block
;
1363 list_add_tail(&new_se
->list
, &sis
->first_swap_extent
.list
);
1368 * A `swap extent' is a simple thing which maps a contiguous range of pages
1369 * onto a contiguous range of disk blocks. An ordered list of swap extents
1370 * is built at swapon time and is then used at swap_writepage/swap_readpage
1371 * time for locating where on disk a page belongs.
1373 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1374 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1375 * swap files identically.
1377 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1378 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1379 * swapfiles are handled *identically* after swapon time.
1381 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1382 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1383 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1384 * requirements, they are simply tossed out - we will never use those blocks
1387 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1388 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1389 * which will scribble on the fs.
1391 * The amount of disk space which a single swap extent represents varies.
1392 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1393 * extents in the list. To avoid much list walking, we cache the previous
1394 * search location in `curr_swap_extent', and start new searches from there.
1395 * This is extremely effective. The average number of iterations in
1396 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1398 static int setup_swap_extents(struct swap_info_struct
*sis
, sector_t
*span
)
1400 struct inode
*inode
;
1401 unsigned blocks_per_page
;
1402 unsigned long page_no
;
1404 sector_t probe_block
;
1405 sector_t last_block
;
1406 sector_t lowest_block
= -1;
1407 sector_t highest_block
= 0;
1411 inode
= sis
->swap_file
->f_mapping
->host
;
1412 if (S_ISBLK(inode
->i_mode
)) {
1413 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
1418 blkbits
= inode
->i_blkbits
;
1419 blocks_per_page
= PAGE_SIZE
>> blkbits
;
1422 * Map all the blocks into the extent list. This code doesn't try
1427 last_block
= i_size_read(inode
) >> blkbits
;
1428 while ((probe_block
+ blocks_per_page
) <= last_block
&&
1429 page_no
< sis
->max
) {
1430 unsigned block_in_page
;
1431 sector_t first_block
;
1433 first_block
= bmap(inode
, probe_block
);
1434 if (first_block
== 0)
1438 * It must be PAGE_SIZE aligned on-disk
1440 if (first_block
& (blocks_per_page
- 1)) {
1445 for (block_in_page
= 1; block_in_page
< blocks_per_page
;
1449 block
= bmap(inode
, probe_block
+ block_in_page
);
1452 if (block
!= first_block
+ block_in_page
) {
1459 first_block
>>= (PAGE_SHIFT
- blkbits
);
1460 if (page_no
) { /* exclude the header page */
1461 if (first_block
< lowest_block
)
1462 lowest_block
= first_block
;
1463 if (first_block
> highest_block
)
1464 highest_block
= first_block
;
1468 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1470 ret
= add_swap_extent(sis
, page_no
, 1, first_block
);
1475 probe_block
+= blocks_per_page
;
1480 *span
= 1 + highest_block
- lowest_block
;
1482 page_no
= 1; /* force Empty message */
1484 sis
->pages
= page_no
- 1;
1485 sis
->highest_bit
= page_no
- 1;
1489 printk(KERN_ERR
"swapon: swapfile has holes\n");
1494 SYSCALL_DEFINE1(swapoff
, const char __user
*, specialfile
)
1496 struct swap_info_struct
*p
= NULL
;
1497 unsigned char *swap_map
;
1498 struct file
*swap_file
, *victim
;
1499 struct address_space
*mapping
;
1500 struct inode
*inode
;
1505 if (!capable(CAP_SYS_ADMIN
))
1508 pathname
= getname(specialfile
);
1509 err
= PTR_ERR(pathname
);
1510 if (IS_ERR(pathname
))
1513 victim
= filp_open(pathname
, O_RDWR
|O_LARGEFILE
, 0);
1515 err
= PTR_ERR(victim
);
1519 mapping
= victim
->f_mapping
;
1521 spin_lock(&swap_lock
);
1522 for (type
= swap_list
.head
; type
>= 0; type
= swap_info
[type
]->next
) {
1523 p
= swap_info
[type
];
1524 if (p
->flags
& SWP_WRITEOK
) {
1525 if (p
->swap_file
->f_mapping
== mapping
)
1532 spin_unlock(&swap_lock
);
1535 if (!security_vm_enough_memory(p
->pages
))
1536 vm_unacct_memory(p
->pages
);
1539 spin_unlock(&swap_lock
);
1543 swap_list
.head
= p
->next
;
1545 swap_info
[prev
]->next
= p
->next
;
1546 if (type
== swap_list
.next
) {
1547 /* just pick something that's safe... */
1548 swap_list
.next
= swap_list
.head
;
1551 for (i
= p
->next
; i
>= 0; i
= swap_info
[i
]->next
)
1552 swap_info
[i
]->prio
= p
->prio
--;
1555 nr_swap_pages
-= p
->pages
;
1556 total_swap_pages
-= p
->pages
;
1557 p
->flags
&= ~SWP_WRITEOK
;
1558 spin_unlock(&swap_lock
);
1560 current
->flags
|= PF_OOM_ORIGIN
;
1561 err
= try_to_unuse(type
);
1562 current
->flags
&= ~PF_OOM_ORIGIN
;
1565 /* re-insert swap space back into swap_list */
1566 spin_lock(&swap_lock
);
1568 p
->prio
= --least_priority
;
1570 for (i
= swap_list
.head
; i
>= 0; i
= swap_info
[i
]->next
) {
1571 if (p
->prio
>= swap_info
[i
]->prio
)
1577 swap_list
.head
= swap_list
.next
= type
;
1579 swap_info
[prev
]->next
= type
;
1580 nr_swap_pages
+= p
->pages
;
1581 total_swap_pages
+= p
->pages
;
1582 p
->flags
|= SWP_WRITEOK
;
1583 spin_unlock(&swap_lock
);
1587 /* wait for any unplug function to finish */
1588 down_write(&swap_unplug_sem
);
1589 up_write(&swap_unplug_sem
);
1591 destroy_swap_extents(p
);
1592 if (p
->flags
& SWP_CONTINUED
)
1593 free_swap_count_continuations(p
);
1595 mutex_lock(&swapon_mutex
);
1596 spin_lock(&swap_lock
);
1599 /* wait for anyone still in scan_swap_map */
1600 p
->highest_bit
= 0; /* cuts scans short */
1601 while (p
->flags
>= SWP_SCANNING
) {
1602 spin_unlock(&swap_lock
);
1603 schedule_timeout_uninterruptible(1);
1604 spin_lock(&swap_lock
);
1607 swap_file
= p
->swap_file
;
1608 p
->swap_file
= NULL
;
1610 swap_map
= p
->swap_map
;
1613 spin_unlock(&swap_lock
);
1614 mutex_unlock(&swapon_mutex
);
1616 /* Destroy swap account informatin */
1617 swap_cgroup_swapoff(type
);
1619 inode
= mapping
->host
;
1620 if (S_ISBLK(inode
->i_mode
)) {
1621 struct block_device
*bdev
= I_BDEV(inode
);
1622 set_blocksize(bdev
, p
->old_block_size
);
1625 mutex_lock(&inode
->i_mutex
);
1626 inode
->i_flags
&= ~S_SWAPFILE
;
1627 mutex_unlock(&inode
->i_mutex
);
1629 filp_close(swap_file
, NULL
);
1633 filp_close(victim
, NULL
);
1638 #ifdef CONFIG_PROC_FS
1640 static void *swap_start(struct seq_file
*swap
, loff_t
*pos
)
1642 struct swap_info_struct
*si
;
1646 mutex_lock(&swapon_mutex
);
1649 return SEQ_START_TOKEN
;
1651 for (type
= 0; type
< nr_swapfiles
; type
++) {
1652 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1653 si
= swap_info
[type
];
1654 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
1663 static void *swap_next(struct seq_file
*swap
, void *v
, loff_t
*pos
)
1665 struct swap_info_struct
*si
= v
;
1668 if (v
== SEQ_START_TOKEN
)
1671 type
= si
->type
+ 1;
1673 for (; type
< nr_swapfiles
; type
++) {
1674 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1675 si
= swap_info
[type
];
1676 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
1685 static void swap_stop(struct seq_file
*swap
, void *v
)
1687 mutex_unlock(&swapon_mutex
);
1690 static int swap_show(struct seq_file
*swap
, void *v
)
1692 struct swap_info_struct
*si
= v
;
1696 if (si
== SEQ_START_TOKEN
) {
1697 seq_puts(swap
,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1701 file
= si
->swap_file
;
1702 len
= seq_path(swap
, &file
->f_path
, " \t\n\\");
1703 seq_printf(swap
, "%*s%s\t%u\t%u\t%d\n",
1704 len
< 40 ? 40 - len
: 1, " ",
1705 S_ISBLK(file
->f_path
.dentry
->d_inode
->i_mode
) ?
1706 "partition" : "file\t",
1707 si
->pages
<< (PAGE_SHIFT
- 10),
1708 si
->inuse_pages
<< (PAGE_SHIFT
- 10),
1713 static const struct seq_operations swaps_op
= {
1714 .start
= swap_start
,
1720 static int swaps_open(struct inode
*inode
, struct file
*file
)
1722 return seq_open(file
, &swaps_op
);
1725 static const struct file_operations proc_swaps_operations
= {
1728 .llseek
= seq_lseek
,
1729 .release
= seq_release
,
1732 static int __init
procswaps_init(void)
1734 proc_create("swaps", 0, NULL
, &proc_swaps_operations
);
1737 __initcall(procswaps_init
);
1738 #endif /* CONFIG_PROC_FS */
1740 #ifdef MAX_SWAPFILES_CHECK
1741 static int __init
max_swapfiles_check(void)
1743 MAX_SWAPFILES_CHECK();
1746 late_initcall(max_swapfiles_check
);
1750 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1752 * The swapon system call
1754 SYSCALL_DEFINE2(swapon
, const char __user
*, specialfile
, int, swap_flags
)
1756 struct swap_info_struct
*p
;
1758 struct block_device
*bdev
= NULL
;
1759 struct file
*swap_file
= NULL
;
1760 struct address_space
*mapping
;
1764 union swap_header
*swap_header
= NULL
;
1765 unsigned int nr_good_pages
= 0;
1768 unsigned long maxpages
= 1;
1769 unsigned long swapfilepages
;
1770 unsigned char *swap_map
= NULL
;
1771 struct page
*page
= NULL
;
1772 struct inode
*inode
= NULL
;
1775 if (!capable(CAP_SYS_ADMIN
))
1778 p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
1782 spin_lock(&swap_lock
);
1783 for (type
= 0; type
< nr_swapfiles
; type
++) {
1784 if (!(swap_info
[type
]->flags
& SWP_USED
))
1788 if (type
>= MAX_SWAPFILES
) {
1789 spin_unlock(&swap_lock
);
1793 if (type
>= nr_swapfiles
) {
1795 swap_info
[type
] = p
;
1797 * Write swap_info[type] before nr_swapfiles, in case a
1798 * racing procfs swap_start() or swap_next() is reading them.
1799 * (We never shrink nr_swapfiles, we never free this entry.)
1805 p
= swap_info
[type
];
1807 * Do not memset this entry: a racing procfs swap_next()
1808 * would be relying on p->type to remain valid.
1811 INIT_LIST_HEAD(&p
->first_swap_extent
.list
);
1812 p
->flags
= SWP_USED
;
1814 spin_unlock(&swap_lock
);
1816 name
= getname(specialfile
);
1817 error
= PTR_ERR(name
);
1822 swap_file
= filp_open(name
, O_RDWR
|O_LARGEFILE
, 0);
1823 error
= PTR_ERR(swap_file
);
1824 if (IS_ERR(swap_file
)) {
1829 p
->swap_file
= swap_file
;
1830 mapping
= swap_file
->f_mapping
;
1831 inode
= mapping
->host
;
1834 for (i
= 0; i
< nr_swapfiles
; i
++) {
1835 struct swap_info_struct
*q
= swap_info
[i
];
1837 if (i
== type
|| !q
->swap_file
)
1839 if (mapping
== q
->swap_file
->f_mapping
)
1844 if (S_ISBLK(inode
->i_mode
)) {
1845 bdev
= I_BDEV(inode
);
1846 error
= bd_claim(bdev
, sys_swapon
);
1852 p
->old_block_size
= block_size(bdev
);
1853 error
= set_blocksize(bdev
, PAGE_SIZE
);
1857 } else if (S_ISREG(inode
->i_mode
)) {
1858 p
->bdev
= inode
->i_sb
->s_bdev
;
1859 mutex_lock(&inode
->i_mutex
);
1861 if (IS_SWAPFILE(inode
)) {
1869 swapfilepages
= i_size_read(inode
) >> PAGE_SHIFT
;
1872 * Read the swap header.
1874 if (!mapping
->a_ops
->readpage
) {
1878 page
= read_mapping_page(mapping
, 0, swap_file
);
1880 error
= PTR_ERR(page
);
1883 swap_header
= kmap(page
);
1885 if (memcmp("SWAPSPACE2", swap_header
->magic
.magic
, 10)) {
1886 printk(KERN_ERR
"Unable to find swap-space signature\n");
1891 /* swap partition endianess hack... */
1892 if (swab32(swap_header
->info
.version
) == 1) {
1893 swab32s(&swap_header
->info
.version
);
1894 swab32s(&swap_header
->info
.last_page
);
1895 swab32s(&swap_header
->info
.nr_badpages
);
1896 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++)
1897 swab32s(&swap_header
->info
.badpages
[i
]);
1899 /* Check the swap header's sub-version */
1900 if (swap_header
->info
.version
!= 1) {
1902 "Unable to handle swap header version %d\n",
1903 swap_header
->info
.version
);
1909 p
->cluster_next
= 1;
1913 * Find out how many pages are allowed for a single swap
1914 * device. There are two limiting factors: 1) the number of
1915 * bits for the swap offset in the swp_entry_t type and
1916 * 2) the number of bits in the a swap pte as defined by
1917 * the different architectures. In order to find the
1918 * largest possible bit mask a swap entry with swap type 0
1919 * and swap offset ~0UL is created, encoded to a swap pte,
1920 * decoded to a swp_entry_t again and finally the swap
1921 * offset is extracted. This will mask all the bits from
1922 * the initial ~0UL mask that can't be encoded in either
1923 * the swp_entry_t or the architecture definition of a
1926 maxpages
= swp_offset(pte_to_swp_entry(
1927 swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1;
1928 if (maxpages
> swap_header
->info
.last_page
)
1929 maxpages
= swap_header
->info
.last_page
;
1930 p
->highest_bit
= maxpages
- 1;
1935 if (swapfilepages
&& maxpages
> swapfilepages
) {
1937 "Swap area shorter than signature indicates\n");
1940 if (swap_header
->info
.nr_badpages
&& S_ISREG(inode
->i_mode
))
1942 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
1945 /* OK, set up the swap map and apply the bad block list */
1946 swap_map
= vmalloc(maxpages
);
1952 memset(swap_map
, 0, maxpages
);
1953 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++) {
1954 int page_nr
= swap_header
->info
.badpages
[i
];
1955 if (page_nr
<= 0 || page_nr
>= swap_header
->info
.last_page
) {
1959 swap_map
[page_nr
] = SWAP_MAP_BAD
;
1962 error
= swap_cgroup_swapon(type
, maxpages
);
1966 nr_good_pages
= swap_header
->info
.last_page
-
1967 swap_header
->info
.nr_badpages
-
1968 1 /* header page */;
1970 if (nr_good_pages
) {
1971 swap_map
[0] = SWAP_MAP_BAD
;
1973 p
->pages
= nr_good_pages
;
1974 nr_extents
= setup_swap_extents(p
, &span
);
1975 if (nr_extents
< 0) {
1979 nr_good_pages
= p
->pages
;
1981 if (!nr_good_pages
) {
1982 printk(KERN_WARNING
"Empty swap-file\n");
1988 if (blk_queue_nonrot(bdev_get_queue(p
->bdev
))) {
1989 p
->flags
|= SWP_SOLIDSTATE
;
1990 p
->cluster_next
= 1 + (random32() % p
->highest_bit
);
1992 if (discard_swap(p
) == 0)
1993 p
->flags
|= SWP_DISCARDABLE
;
1996 mutex_lock(&swapon_mutex
);
1997 spin_lock(&swap_lock
);
1998 if (swap_flags
& SWAP_FLAG_PREFER
)
2000 (swap_flags
& SWAP_FLAG_PRIO_MASK
) >> SWAP_FLAG_PRIO_SHIFT
;
2002 p
->prio
= --least_priority
;
2003 p
->swap_map
= swap_map
;
2004 p
->flags
|= SWP_WRITEOK
;
2005 nr_swap_pages
+= nr_good_pages
;
2006 total_swap_pages
+= nr_good_pages
;
2008 printk(KERN_INFO
"Adding %uk swap on %s. "
2009 "Priority:%d extents:%d across:%lluk %s%s\n",
2010 nr_good_pages
<<(PAGE_SHIFT
-10), name
, p
->prio
,
2011 nr_extents
, (unsigned long long)span
<<(PAGE_SHIFT
-10),
2012 (p
->flags
& SWP_SOLIDSTATE
) ? "SS" : "",
2013 (p
->flags
& SWP_DISCARDABLE
) ? "D" : "");
2015 /* insert swap space into swap_list: */
2017 for (i
= swap_list
.head
; i
>= 0; i
= swap_info
[i
]->next
) {
2018 if (p
->prio
>= swap_info
[i
]->prio
)
2024 swap_list
.head
= swap_list
.next
= type
;
2026 swap_info
[prev
]->next
= type
;
2027 spin_unlock(&swap_lock
);
2028 mutex_unlock(&swapon_mutex
);
2033 set_blocksize(bdev
, p
->old_block_size
);
2036 destroy_swap_extents(p
);
2037 swap_cgroup_swapoff(type
);
2039 spin_lock(&swap_lock
);
2040 p
->swap_file
= NULL
;
2042 spin_unlock(&swap_lock
);
2045 filp_close(swap_file
, NULL
);
2047 if (page
&& !IS_ERR(page
)) {
2049 page_cache_release(page
);
2055 inode
->i_flags
|= S_SWAPFILE
;
2056 mutex_unlock(&inode
->i_mutex
);
2061 void si_swapinfo(struct sysinfo
*val
)
2064 unsigned long nr_to_be_unused
= 0;
2066 spin_lock(&swap_lock
);
2067 for (type
= 0; type
< nr_swapfiles
; type
++) {
2068 struct swap_info_struct
*si
= swap_info
[type
];
2070 if ((si
->flags
& SWP_USED
) && !(si
->flags
& SWP_WRITEOK
))
2071 nr_to_be_unused
+= si
->inuse_pages
;
2073 val
->freeswap
= nr_swap_pages
+ nr_to_be_unused
;
2074 val
->totalswap
= total_swap_pages
+ nr_to_be_unused
;
2075 spin_unlock(&swap_lock
);
2079 * Verify that a swap entry is valid and increment its swap map count.
2081 * Returns error code in following case.
2083 * - swp_entry is invalid -> EINVAL
2084 * - swp_entry is migration entry -> EINVAL
2085 * - swap-cache reference is requested but there is already one. -> EEXIST
2086 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2087 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2089 static int __swap_duplicate(swp_entry_t entry
, unsigned char usage
)
2091 struct swap_info_struct
*p
;
2092 unsigned long offset
, type
;
2093 unsigned char count
;
2094 unsigned char has_cache
;
2097 if (non_swap_entry(entry
))
2100 type
= swp_type(entry
);
2101 if (type
>= nr_swapfiles
)
2103 p
= swap_info
[type
];
2104 offset
= swp_offset(entry
);
2106 spin_lock(&swap_lock
);
2107 if (unlikely(offset
>= p
->max
))
2110 count
= p
->swap_map
[offset
];
2111 has_cache
= count
& SWAP_HAS_CACHE
;
2112 count
&= ~SWAP_HAS_CACHE
;
2115 if (usage
== SWAP_HAS_CACHE
) {
2117 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2118 if (!has_cache
&& count
)
2119 has_cache
= SWAP_HAS_CACHE
;
2120 else if (has_cache
) /* someone else added cache */
2122 else /* no users remaining */
2125 } else if (count
|| has_cache
) {
2127 if ((count
& ~COUNT_CONTINUED
) < SWAP_MAP_MAX
)
2129 else if ((count
& ~COUNT_CONTINUED
) > SWAP_MAP_MAX
)
2131 else if (swap_count_continued(p
, offset
, count
))
2132 count
= COUNT_CONTINUED
;
2136 err
= -ENOENT
; /* unused swap entry */
2138 p
->swap_map
[offset
] = count
| has_cache
;
2141 spin_unlock(&swap_lock
);
2146 printk(KERN_ERR
"swap_dup: %s%08lx\n", Bad_file
, entry
.val
);
2151 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2152 * (in which case its reference count is never incremented).
2154 void swap_shmem_alloc(swp_entry_t entry
)
2156 __swap_duplicate(entry
, SWAP_MAP_SHMEM
);
2160 * increase reference count of swap entry by 1.
2162 int swap_duplicate(swp_entry_t entry
)
2166 while (!err
&& __swap_duplicate(entry
, 1) == -ENOMEM
)
2167 err
= add_swap_count_continuation(entry
, GFP_ATOMIC
);
2172 * @entry: swap entry for which we allocate swap cache.
2174 * Called when allocating swap cache for existing swap entry,
2175 * This can return error codes. Returns 0 at success.
2176 * -EBUSY means there is a swap cache.
2177 * Note: return code is different from swap_duplicate().
2179 int swapcache_prepare(swp_entry_t entry
)
2181 return __swap_duplicate(entry
, SWAP_HAS_CACHE
);
2185 * swap_lock prevents swap_map being freed. Don't grab an extra
2186 * reference on the swaphandle, it doesn't matter if it becomes unused.
2188 int valid_swaphandles(swp_entry_t entry
, unsigned long *offset
)
2190 struct swap_info_struct
*si
;
2191 int our_page_cluster
= page_cluster
;
2192 pgoff_t target
, toff
;
2196 if (!our_page_cluster
) /* no readahead */
2199 si
= swap_info
[swp_type(entry
)];
2200 target
= swp_offset(entry
);
2201 base
= (target
>> our_page_cluster
) << our_page_cluster
;
2202 end
= base
+ (1 << our_page_cluster
);
2203 if (!base
) /* first page is swap header */
2206 spin_lock(&swap_lock
);
2207 if (end
> si
->max
) /* don't go beyond end of map */
2210 /* Count contiguous allocated slots above our target */
2211 for (toff
= target
; ++toff
< end
; nr_pages
++) {
2212 /* Don't read in free or bad pages */
2213 if (!si
->swap_map
[toff
])
2215 if (swap_count(si
->swap_map
[toff
]) == SWAP_MAP_BAD
)
2218 /* Count contiguous allocated slots below our target */
2219 for (toff
= target
; --toff
>= base
; nr_pages
++) {
2220 /* Don't read in free or bad pages */
2221 if (!si
->swap_map
[toff
])
2223 if (swap_count(si
->swap_map
[toff
]) == SWAP_MAP_BAD
)
2226 spin_unlock(&swap_lock
);
2229 * Indicate starting offset, and return number of pages to get:
2230 * if only 1, say 0, since there's then no readahead to be done.
2233 return nr_pages
? ++nr_pages
: 0;
2237 * add_swap_count_continuation - called when a swap count is duplicated
2238 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2239 * page of the original vmalloc'ed swap_map, to hold the continuation count
2240 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2241 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2243 * These continuation pages are seldom referenced: the common paths all work
2244 * on the original swap_map, only referring to a continuation page when the
2245 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2247 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2248 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2249 * can be called after dropping locks.
2251 int add_swap_count_continuation(swp_entry_t entry
, gfp_t gfp_mask
)
2253 struct swap_info_struct
*si
;
2256 struct page
*list_page
;
2258 unsigned char count
;
2261 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2262 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2264 page
= alloc_page(gfp_mask
| __GFP_HIGHMEM
);
2266 si
= swap_info_get(entry
);
2269 * An acceptable race has occurred since the failing
2270 * __swap_duplicate(): the swap entry has been freed,
2271 * perhaps even the whole swap_map cleared for swapoff.
2276 offset
= swp_offset(entry
);
2277 count
= si
->swap_map
[offset
] & ~SWAP_HAS_CACHE
;
2279 if ((count
& ~COUNT_CONTINUED
) != SWAP_MAP_MAX
) {
2281 * The higher the swap count, the more likely it is that tasks
2282 * will race to add swap count continuation: we need to avoid
2283 * over-provisioning.
2289 spin_unlock(&swap_lock
);
2294 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2295 * no architecture is using highmem pages for kernel pagetables: so it
2296 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2298 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2299 offset
&= ~PAGE_MASK
;
2302 * Page allocation does not initialize the page's lru field,
2303 * but it does always reset its private field.
2305 if (!page_private(head
)) {
2306 BUG_ON(count
& COUNT_CONTINUED
);
2307 INIT_LIST_HEAD(&head
->lru
);
2308 set_page_private(head
, SWP_CONTINUED
);
2309 si
->flags
|= SWP_CONTINUED
;
2312 list_for_each_entry(list_page
, &head
->lru
, lru
) {
2316 * If the previous map said no continuation, but we've found
2317 * a continuation page, free our allocation and use this one.
2319 if (!(count
& COUNT_CONTINUED
))
2322 map
= kmap_atomic(list_page
, KM_USER0
) + offset
;
2324 kunmap_atomic(map
, KM_USER0
);
2327 * If this continuation count now has some space in it,
2328 * free our allocation and use this one.
2330 if ((count
& ~COUNT_CONTINUED
) != SWAP_CONT_MAX
)
2334 list_add_tail(&page
->lru
, &head
->lru
);
2335 page
= NULL
; /* now it's attached, don't free it */
2337 spin_unlock(&swap_lock
);
2345 * swap_count_continued - when the original swap_map count is incremented
2346 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2347 * into, carry if so, or else fail until a new continuation page is allocated;
2348 * when the original swap_map count is decremented from 0 with continuation,
2349 * borrow from the continuation and report whether it still holds more.
2350 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2352 static bool swap_count_continued(struct swap_info_struct
*si
,
2353 pgoff_t offset
, unsigned char count
)
2359 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2360 if (page_private(head
) != SWP_CONTINUED
) {
2361 BUG_ON(count
& COUNT_CONTINUED
);
2362 return false; /* need to add count continuation */
2365 offset
&= ~PAGE_MASK
;
2366 page
= list_entry(head
->lru
.next
, struct page
, lru
);
2367 map
= kmap_atomic(page
, KM_USER0
) + offset
;
2369 if (count
== SWAP_MAP_MAX
) /* initial increment from swap_map */
2370 goto init_map
; /* jump over SWAP_CONT_MAX checks */
2372 if (count
== (SWAP_MAP_MAX
| COUNT_CONTINUED
)) { /* incrementing */
2374 * Think of how you add 1 to 999
2376 while (*map
== (SWAP_CONT_MAX
| COUNT_CONTINUED
)) {
2377 kunmap_atomic(map
, KM_USER0
);
2378 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2379 BUG_ON(page
== head
);
2380 map
= kmap_atomic(page
, KM_USER0
) + offset
;
2382 if (*map
== SWAP_CONT_MAX
) {
2383 kunmap_atomic(map
, KM_USER0
);
2384 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2386 return false; /* add count continuation */
2387 map
= kmap_atomic(page
, KM_USER0
) + offset
;
2388 init_map
: *map
= 0; /* we didn't zero the page */
2391 kunmap_atomic(map
, KM_USER0
);
2392 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2393 while (page
!= head
) {
2394 map
= kmap_atomic(page
, KM_USER0
) + offset
;
2395 *map
= COUNT_CONTINUED
;
2396 kunmap_atomic(map
, KM_USER0
);
2397 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2399 return true; /* incremented */
2401 } else { /* decrementing */
2403 * Think of how you subtract 1 from 1000
2405 BUG_ON(count
!= COUNT_CONTINUED
);
2406 while (*map
== COUNT_CONTINUED
) {
2407 kunmap_atomic(map
, KM_USER0
);
2408 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2409 BUG_ON(page
== head
);
2410 map
= kmap_atomic(page
, KM_USER0
) + offset
;
2416 kunmap_atomic(map
, KM_USER0
);
2417 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2418 while (page
!= head
) {
2419 map
= kmap_atomic(page
, KM_USER0
) + offset
;
2420 *map
= SWAP_CONT_MAX
| count
;
2421 count
= COUNT_CONTINUED
;
2422 kunmap_atomic(map
, KM_USER0
);
2423 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2425 return count
== COUNT_CONTINUED
;
2430 * free_swap_count_continuations - swapoff free all the continuation pages
2431 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2433 static void free_swap_count_continuations(struct swap_info_struct
*si
)
2437 for (offset
= 0; offset
< si
->max
; offset
+= PAGE_SIZE
) {
2439 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2440 if (page_private(head
)) {
2441 struct list_head
*this, *next
;
2442 list_for_each_safe(this, next
, &head
->lru
) {
2444 page
= list_entry(this, struct page
, lru
);