5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map and udf_read_inode
23 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
24 * block boundaries (which is not actually allowed)
25 * 12/20/98 added support for strategy 4096
26 * 03/07/99 rewrote udf_block_map (again)
27 * New funcs, inode_bmap, udf_next_aext
28 * 04/19/99 Support for writing device EA's for major/minor #
33 #include <linux/smp_lock.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/buffer_head.h>
37 #include <linux/writeback.h>
38 #include <linux/slab.h>
43 MODULE_AUTHOR("Ben Fennema");
44 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
45 MODULE_LICENSE("GPL");
47 #define EXTENT_MERGE_SIZE 5
49 static mode_t
udf_convert_permissions(struct fileEntry
*);
50 static int udf_update_inode(struct inode
*, int);
51 static void udf_fill_inode(struct inode
*, struct buffer_head
*);
52 static int udf_alloc_i_data(struct inode
*inode
, size_t size
);
53 static struct buffer_head
*inode_getblk(struct inode
*, sector_t
, int *,
55 static int8_t udf_insert_aext(struct inode
*, struct extent_position
,
56 kernel_lb_addr
, uint32_t);
57 static void udf_split_extents(struct inode
*, int *, int, int,
58 kernel_long_ad
[EXTENT_MERGE_SIZE
], int *);
59 static void udf_prealloc_extents(struct inode
*, int, int,
60 kernel_long_ad
[EXTENT_MERGE_SIZE
], int *);
61 static void udf_merge_extents(struct inode
*,
62 kernel_long_ad
[EXTENT_MERGE_SIZE
], int *);
63 static void udf_update_extents(struct inode
*,
64 kernel_long_ad
[EXTENT_MERGE_SIZE
], int, int,
65 struct extent_position
*);
66 static int udf_get_block(struct inode
*, sector_t
, struct buffer_head
*, int);
72 * Clean-up before the specified inode is destroyed.
75 * This routine is called when the kernel destroys an inode structure
76 * ie. when iput() finds i_count == 0.
79 * July 1, 1997 - Andrew E. Mileski
80 * Written, tested, and released.
82 * Called at the last iput() if i_nlink is zero.
84 void udf_delete_inode(struct inode
*inode
)
86 truncate_inode_pages(&inode
->i_data
, 0);
88 if (is_bad_inode(inode
))
95 udf_update_inode(inode
, IS_SYNC(inode
));
96 udf_free_inode(inode
);
106 * If we are going to release inode from memory, we discard preallocation and
107 * truncate last inode extent to proper length. We could use drop_inode() but
108 * it's called under inode_lock and thus we cannot mark inode dirty there. We
109 * use clear_inode() but we have to make sure to write inode as it's not written
112 void udf_clear_inode(struct inode
*inode
)
114 if (!(inode
->i_sb
->s_flags
& MS_RDONLY
)) {
116 /* Discard preallocation for directories, symlinks, etc. */
117 udf_discard_prealloc(inode
);
118 udf_truncate_tail_extent(inode
);
120 write_inode_now(inode
, 1);
122 kfree(UDF_I_DATA(inode
));
123 UDF_I_DATA(inode
) = NULL
;
126 static int udf_writepage(struct page
*page
, struct writeback_control
*wbc
)
128 return block_write_full_page(page
, udf_get_block
, wbc
);
131 static int udf_readpage(struct file
*file
, struct page
*page
)
133 return block_read_full_page(page
, udf_get_block
);
136 static int udf_prepare_write(struct file
*file
, struct page
*page
,
137 unsigned from
, unsigned to
)
139 return block_prepare_write(page
, from
, to
, udf_get_block
);
142 static sector_t
udf_bmap(struct address_space
*mapping
, sector_t block
)
144 return generic_block_bmap(mapping
, block
, udf_get_block
);
147 const struct address_space_operations udf_aops
= {
148 .readpage
= udf_readpage
,
149 .writepage
= udf_writepage
,
150 .sync_page
= block_sync_page
,
151 .prepare_write
= udf_prepare_write
,
152 .commit_write
= generic_commit_write
,
156 void udf_expand_file_adinicb(struct inode
*inode
, int newsize
, int *err
)
160 struct writeback_control udf_wbc
= {
161 .sync_mode
= WB_SYNC_NONE
,
165 /* from now on we have normal address_space methods */
166 inode
->i_data
.a_ops
= &udf_aops
;
168 if (!UDF_I_LENALLOC(inode
)) {
169 if (UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_USE_SHORT_AD
))
170 UDF_I_ALLOCTYPE(inode
) = ICBTAG_FLAG_AD_SHORT
;
172 UDF_I_ALLOCTYPE(inode
) = ICBTAG_FLAG_AD_LONG
;
173 mark_inode_dirty(inode
);
177 page
= grab_cache_page(inode
->i_mapping
, 0);
178 BUG_ON(!PageLocked(page
));
180 if (!PageUptodate(page
)) {
182 memset(kaddr
+ UDF_I_LENALLOC(inode
), 0x00,
183 PAGE_CACHE_SIZE
- UDF_I_LENALLOC(inode
));
184 memcpy(kaddr
, UDF_I_DATA(inode
) + UDF_I_LENEATTR(inode
),
185 UDF_I_LENALLOC(inode
));
186 flush_dcache_page(page
);
187 SetPageUptodate(page
);
190 memset(UDF_I_DATA(inode
) + UDF_I_LENEATTR(inode
), 0x00,
191 UDF_I_LENALLOC(inode
));
192 UDF_I_LENALLOC(inode
) = 0;
193 if (UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_USE_SHORT_AD
))
194 UDF_I_ALLOCTYPE(inode
) = ICBTAG_FLAG_AD_SHORT
;
196 UDF_I_ALLOCTYPE(inode
) = ICBTAG_FLAG_AD_LONG
;
198 inode
->i_data
.a_ops
->writepage(page
, &udf_wbc
);
199 page_cache_release(page
);
201 mark_inode_dirty(inode
);
204 struct buffer_head
*udf_expand_dir_adinicb(struct inode
*inode
, int *block
,
208 struct buffer_head
*dbh
= NULL
;
212 struct extent_position epos
;
214 struct udf_fileident_bh sfibh
, dfibh
;
215 loff_t f_pos
= udf_ext0_offset(inode
) >> 2;
216 int size
= (udf_ext0_offset(inode
) + inode
->i_size
) >> 2;
217 struct fileIdentDesc cfi
, *sfi
, *dfi
;
219 if (UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_USE_SHORT_AD
))
220 alloctype
= ICBTAG_FLAG_AD_SHORT
;
222 alloctype
= ICBTAG_FLAG_AD_LONG
;
224 if (!inode
->i_size
) {
225 UDF_I_ALLOCTYPE(inode
) = alloctype
;
226 mark_inode_dirty(inode
);
230 /* alloc block, and copy data to it */
231 *block
= udf_new_block(inode
->i_sb
, inode
,
232 UDF_I_LOCATION(inode
).partitionReferenceNum
,
233 UDF_I_LOCATION(inode
).logicalBlockNum
, err
);
236 newblock
= udf_get_pblock(inode
->i_sb
, *block
,
237 UDF_I_LOCATION(inode
).partitionReferenceNum
, 0);
240 dbh
= udf_tgetblk(inode
->i_sb
, newblock
);
244 memset(dbh
->b_data
, 0x00, inode
->i_sb
->s_blocksize
);
245 set_buffer_uptodate(dbh
);
247 mark_buffer_dirty_inode(dbh
, inode
);
249 sfibh
.soffset
= sfibh
.eoffset
= (f_pos
& ((inode
->i_sb
->s_blocksize
- 1) >> 2)) << 2;
250 sfibh
.sbh
= sfibh
.ebh
= NULL
;
251 dfibh
.soffset
= dfibh
.eoffset
= 0;
252 dfibh
.sbh
= dfibh
.ebh
= dbh
;
253 while ((f_pos
< size
)) {
254 UDF_I_ALLOCTYPE(inode
) = ICBTAG_FLAG_AD_IN_ICB
;
255 sfi
= udf_fileident_read(inode
, &f_pos
, &sfibh
, &cfi
, NULL
, NULL
, NULL
, NULL
);
260 UDF_I_ALLOCTYPE(inode
) = alloctype
;
261 sfi
->descTag
.tagLocation
= cpu_to_le32(*block
);
262 dfibh
.soffset
= dfibh
.eoffset
;
263 dfibh
.eoffset
+= (sfibh
.eoffset
- sfibh
.soffset
);
264 dfi
= (struct fileIdentDesc
*)(dbh
->b_data
+ dfibh
.soffset
);
265 if (udf_write_fi(inode
, sfi
, dfi
, &dfibh
, sfi
->impUse
,
266 sfi
->fileIdent
+ le16_to_cpu(sfi
->lengthOfImpUse
))) {
267 UDF_I_ALLOCTYPE(inode
) = ICBTAG_FLAG_AD_IN_ICB
;
272 mark_buffer_dirty_inode(dbh
, inode
);
274 memset(UDF_I_DATA(inode
) + UDF_I_LENEATTR(inode
), 0, UDF_I_LENALLOC(inode
));
275 UDF_I_LENALLOC(inode
) = 0;
276 eloc
.logicalBlockNum
= *block
;
277 eloc
.partitionReferenceNum
= UDF_I_LOCATION(inode
).partitionReferenceNum
;
278 elen
= inode
->i_size
;
279 UDF_I_LENEXTENTS(inode
) = elen
;
281 epos
.block
= UDF_I_LOCATION(inode
);
282 epos
.offset
= udf_file_entry_alloc_offset(inode
);
283 udf_add_aext(inode
, &epos
, eloc
, elen
, 0);
287 mark_inode_dirty(inode
);
291 static int udf_get_block(struct inode
*inode
, sector_t block
,
292 struct buffer_head
*bh_result
, int create
)
295 struct buffer_head
*bh
;
299 phys
= udf_block_map(inode
, block
);
301 map_bh(bh_result
, inode
->i_sb
, phys
);
314 if (block
== UDF_I_NEXT_ALLOC_BLOCK(inode
) + 1) {
315 UDF_I_NEXT_ALLOC_BLOCK(inode
)++;
316 UDF_I_NEXT_ALLOC_GOAL(inode
)++;
321 bh
= inode_getblk(inode
, block
, &err
, &phys
, &new);
328 set_buffer_new(bh_result
);
329 map_bh(bh_result
, inode
->i_sb
, phys
);
336 udf_warning(inode
->i_sb
, "udf_get_block", "block < 0");
340 static struct buffer_head
*udf_getblk(struct inode
*inode
, long block
,
341 int create
, int *err
)
343 struct buffer_head
*bh
;
344 struct buffer_head dummy
;
347 dummy
.b_blocknr
= -1000;
348 *err
= udf_get_block(inode
, block
, &dummy
, create
);
349 if (!*err
&& buffer_mapped(&dummy
)) {
350 bh
= sb_getblk(inode
->i_sb
, dummy
.b_blocknr
);
351 if (buffer_new(&dummy
)) {
353 memset(bh
->b_data
, 0x00, inode
->i_sb
->s_blocksize
);
354 set_buffer_uptodate(bh
);
356 mark_buffer_dirty_inode(bh
, inode
);
364 /* Extend the file by 'blocks' blocks, return the number of extents added */
365 int udf_extend_file(struct inode
*inode
, struct extent_position
*last_pos
,
366 kernel_long_ad
* last_ext
, sector_t blocks
)
369 int count
= 0, fake
= !(last_ext
->extLength
& UDF_EXTENT_LENGTH_MASK
);
370 struct super_block
*sb
= inode
->i_sb
;
371 kernel_lb_addr prealloc_loc
= {};
372 int prealloc_len
= 0;
374 /* The previous extent is fake and we should not extend by anything
375 * - there's nothing to do... */
379 /* Round the last extent up to a multiple of block size */
380 if (last_ext
->extLength
& (sb
->s_blocksize
- 1)) {
381 last_ext
->extLength
=
382 (last_ext
->extLength
& UDF_EXTENT_FLAG_MASK
) |
383 (((last_ext
->extLength
& UDF_EXTENT_LENGTH_MASK
) +
384 sb
->s_blocksize
- 1) & ~(sb
->s_blocksize
- 1));
385 UDF_I_LENEXTENTS(inode
) =
386 (UDF_I_LENEXTENTS(inode
) + sb
->s_blocksize
- 1) &
387 ~(sb
->s_blocksize
- 1);
390 /* Last extent are just preallocated blocks? */
391 if ((last_ext
->extLength
& UDF_EXTENT_FLAG_MASK
) == EXT_NOT_RECORDED_ALLOCATED
) {
392 /* Save the extent so that we can reattach it to the end */
393 prealloc_loc
= last_ext
->extLocation
;
394 prealloc_len
= last_ext
->extLength
;
395 /* Mark the extent as a hole */
396 last_ext
->extLength
= EXT_NOT_RECORDED_NOT_ALLOCATED
|
397 (last_ext
->extLength
& UDF_EXTENT_LENGTH_MASK
);
398 last_ext
->extLocation
.logicalBlockNum
= 0;
399 last_ext
->extLocation
.partitionReferenceNum
= 0;
402 /* Can we merge with the previous extent? */
403 if ((last_ext
->extLength
& UDF_EXTENT_FLAG_MASK
) == EXT_NOT_RECORDED_NOT_ALLOCATED
) {
404 add
= ((1 << 30) - sb
->s_blocksize
- (last_ext
->extLength
&
405 UDF_EXTENT_LENGTH_MASK
)) >> sb
->s_blocksize_bits
;
409 last_ext
->extLength
+= add
<< sb
->s_blocksize_bits
;
413 udf_add_aext(inode
, last_pos
, last_ext
->extLocation
,
414 last_ext
->extLength
, 1);
417 udf_write_aext(inode
, last_pos
, last_ext
->extLocation
, last_ext
->extLength
, 1);
420 /* Managed to do everything necessary? */
424 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
425 last_ext
->extLocation
.logicalBlockNum
= 0;
426 last_ext
->extLocation
.partitionReferenceNum
= 0;
427 add
= (1 << (30-sb
->s_blocksize_bits
)) - 1;
428 last_ext
->extLength
= EXT_NOT_RECORDED_NOT_ALLOCATED
| (add
<< sb
->s_blocksize_bits
);
430 /* Create enough extents to cover the whole hole */
431 while (blocks
> add
) {
433 if (udf_add_aext(inode
, last_pos
, last_ext
->extLocation
,
434 last_ext
->extLength
, 1) == -1)
439 last_ext
->extLength
= EXT_NOT_RECORDED_NOT_ALLOCATED
|
440 (blocks
<< sb
->s_blocksize_bits
);
441 if (udf_add_aext(inode
, last_pos
, last_ext
->extLocation
,
442 last_ext
->extLength
, 1) == -1)
448 /* Do we have some preallocated blocks saved? */
450 if (udf_add_aext(inode
, last_pos
, prealloc_loc
, prealloc_len
, 1) == -1)
452 last_ext
->extLocation
= prealloc_loc
;
453 last_ext
->extLength
= prealloc_len
;
457 /* last_pos should point to the last written extent... */
458 if (UDF_I_ALLOCTYPE(inode
) == ICBTAG_FLAG_AD_SHORT
)
459 last_pos
->offset
-= sizeof(short_ad
);
460 else if (UDF_I_ALLOCTYPE(inode
) == ICBTAG_FLAG_AD_LONG
)
461 last_pos
->offset
-= sizeof(long_ad
);
468 static struct buffer_head
*inode_getblk(struct inode
*inode
, sector_t block
,
469 int *err
, long *phys
, int *new)
471 static sector_t last_block
;
472 struct buffer_head
*result
= NULL
;
473 kernel_long_ad laarr
[EXTENT_MERGE_SIZE
];
474 struct extent_position prev_epos
, cur_epos
, next_epos
;
475 int count
= 0, startnum
= 0, endnum
= 0;
476 uint32_t elen
= 0, tmpelen
;
477 kernel_lb_addr eloc
, tmpeloc
;
479 loff_t lbcount
= 0, b_off
= 0;
480 uint32_t newblocknum
, newblock
;
483 int goal
= 0, pgoal
= UDF_I_LOCATION(inode
).logicalBlockNum
;
486 prev_epos
.offset
= udf_file_entry_alloc_offset(inode
);
487 prev_epos
.block
= UDF_I_LOCATION(inode
);
489 cur_epos
= next_epos
= prev_epos
;
490 b_off
= (loff_t
)block
<< inode
->i_sb
->s_blocksize_bits
;
492 /* find the extent which contains the block we are looking for.
493 alternate between laarr[0] and laarr[1] for locations of the
494 current extent, and the previous extent */
496 if (prev_epos
.bh
!= cur_epos
.bh
) {
497 brelse(prev_epos
.bh
);
499 prev_epos
.bh
= cur_epos
.bh
;
501 if (cur_epos
.bh
!= next_epos
.bh
) {
503 get_bh(next_epos
.bh
);
504 cur_epos
.bh
= next_epos
.bh
;
509 prev_epos
.block
= cur_epos
.block
;
510 cur_epos
.block
= next_epos
.block
;
512 prev_epos
.offset
= cur_epos
.offset
;
513 cur_epos
.offset
= next_epos
.offset
;
515 if ((etype
= udf_next_aext(inode
, &next_epos
, &eloc
, &elen
, 1)) == -1)
520 laarr
[c
].extLength
= (etype
<< 30) | elen
;
521 laarr
[c
].extLocation
= eloc
;
523 if (etype
!= (EXT_NOT_RECORDED_NOT_ALLOCATED
>> 30))
524 pgoal
= eloc
.logicalBlockNum
+
525 ((elen
+ inode
->i_sb
->s_blocksize
- 1) >>
526 inode
->i_sb
->s_blocksize_bits
);
529 } while (lbcount
+ elen
<= b_off
);
532 offset
= b_off
>> inode
->i_sb
->s_blocksize_bits
;
534 * Move prev_epos and cur_epos into indirect extent if we are at
537 udf_next_aext(inode
, &prev_epos
, &tmpeloc
, &tmpelen
, 0);
538 udf_next_aext(inode
, &cur_epos
, &tmpeloc
, &tmpelen
, 0);
540 /* if the extent is allocated and recorded, return the block
541 if the extent is not a multiple of the blocksize, round up */
543 if (etype
== (EXT_RECORDED_ALLOCATED
>> 30)) {
544 if (elen
& (inode
->i_sb
->s_blocksize
- 1)) {
545 elen
= EXT_RECORDED_ALLOCATED
|
546 ((elen
+ inode
->i_sb
->s_blocksize
- 1) &
547 ~(inode
->i_sb
->s_blocksize
- 1));
548 etype
= udf_write_aext(inode
, &cur_epos
, eloc
, elen
, 1);
550 brelse(prev_epos
.bh
);
552 brelse(next_epos
.bh
);
553 newblock
= udf_get_lb_pblock(inode
->i_sb
, eloc
, offset
);
559 /* Are we beyond EOF? */
568 /* Create a fake extent when there's not one */
569 memset(&laarr
[0].extLocation
, 0x00, sizeof(kernel_lb_addr
));
570 laarr
[0].extLength
= EXT_NOT_RECORDED_NOT_ALLOCATED
;
571 /* Will udf_extend_file() create real extent from a fake one? */
572 startnum
= (offset
> 0);
574 /* Create extents for the hole between EOF and offset */
575 ret
= udf_extend_file(inode
, &prev_epos
, laarr
, offset
);
577 brelse(prev_epos
.bh
);
579 brelse(next_epos
.bh
);
580 /* We don't really know the error here so we just make
588 /* We are not covered by a preallocated extent? */
589 if ((laarr
[0].extLength
& UDF_EXTENT_FLAG_MASK
) != EXT_NOT_RECORDED_ALLOCATED
) {
590 /* Is there any real extent? - otherwise we overwrite
594 laarr
[c
].extLength
= EXT_NOT_RECORDED_NOT_ALLOCATED
|
595 inode
->i_sb
->s_blocksize
;
596 memset(&laarr
[c
].extLocation
, 0x00, sizeof(kernel_lb_addr
));
603 endnum
= startnum
= ((count
> 2) ? 2 : count
);
605 /* if the current extent is in position 0, swap it with the previous */
606 if (!c
&& count
!= 1) {
613 /* if the current block is located in an extent, read the next extent */
614 if ((etype
= udf_next_aext(inode
, &next_epos
, &eloc
, &elen
, 0)) != -1) {
615 laarr
[c
+ 1].extLength
= (etype
<< 30) | elen
;
616 laarr
[c
+ 1].extLocation
= eloc
;
625 /* if the current extent is not recorded but allocated, get the
626 * block in the extent corresponding to the requested block */
627 if ((laarr
[c
].extLength
>> 30) == (EXT_NOT_RECORDED_ALLOCATED
>> 30)) {
628 newblocknum
= laarr
[c
].extLocation
.logicalBlockNum
+ offset
;
629 } else { /* otherwise, allocate a new block */
630 if (UDF_I_NEXT_ALLOC_BLOCK(inode
) == block
)
631 goal
= UDF_I_NEXT_ALLOC_GOAL(inode
);
635 goal
= UDF_I_LOCATION(inode
).logicalBlockNum
+ 1;
638 if (!(newblocknum
= udf_new_block(inode
->i_sb
, inode
,
639 UDF_I_LOCATION(inode
).partitionReferenceNum
,
641 brelse(prev_epos
.bh
);
645 UDF_I_LENEXTENTS(inode
) += inode
->i_sb
->s_blocksize
;
648 /* if the extent the requsted block is located in contains multiple blocks,
649 * split the extent into at most three extents. blocks prior to requested
650 * block, requested block, and blocks after requested block */
651 udf_split_extents(inode
, &c
, offset
, newblocknum
, laarr
, &endnum
);
653 #ifdef UDF_PREALLOCATE
654 /* preallocate blocks */
655 udf_prealloc_extents(inode
, c
, lastblock
, laarr
, &endnum
);
658 /* merge any continuous blocks in laarr */
659 udf_merge_extents(inode
, laarr
, &endnum
);
661 /* write back the new extents, inserting new extents if the new number
662 * of extents is greater than the old number, and deleting extents if
663 * the new number of extents is less than the old number */
664 udf_update_extents(inode
, laarr
, startnum
, endnum
, &prev_epos
);
666 brelse(prev_epos
.bh
);
668 if (!(newblock
= udf_get_pblock(inode
->i_sb
, newblocknum
,
669 UDF_I_LOCATION(inode
).partitionReferenceNum
, 0))) {
675 UDF_I_NEXT_ALLOC_BLOCK(inode
) = block
;
676 UDF_I_NEXT_ALLOC_GOAL(inode
) = newblocknum
;
677 inode
->i_ctime
= current_fs_time(inode
->i_sb
);
680 udf_sync_inode(inode
);
682 mark_inode_dirty(inode
);
687 static void udf_split_extents(struct inode
*inode
, int *c
, int offset
,
689 kernel_long_ad laarr
[EXTENT_MERGE_SIZE
],
692 if ((laarr
[*c
].extLength
>> 30) == (EXT_NOT_RECORDED_ALLOCATED
>> 30) ||
693 (laarr
[*c
].extLength
>> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED
>> 30)) {
695 int blen
= ((laarr
[curr
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
696 inode
->i_sb
->s_blocksize
- 1) >> inode
->i_sb
->s_blocksize_bits
;
697 int8_t etype
= (laarr
[curr
].extLength
>> 30);
701 } else if (!offset
|| blen
== offset
+ 1) {
702 laarr
[curr
+ 2] = laarr
[curr
+ 1];
703 laarr
[curr
+ 1] = laarr
[curr
];
705 laarr
[curr
+ 3] = laarr
[curr
+ 1];
706 laarr
[curr
+ 2] = laarr
[curr
+ 1] = laarr
[curr
];
710 if (etype
== (EXT_NOT_RECORDED_ALLOCATED
>> 30)) {
711 udf_free_blocks(inode
->i_sb
, inode
, laarr
[curr
].extLocation
, 0, offset
);
712 laarr
[curr
].extLength
= EXT_NOT_RECORDED_NOT_ALLOCATED
|
713 (offset
<< inode
->i_sb
->s_blocksize_bits
);
714 laarr
[curr
].extLocation
.logicalBlockNum
= 0;
715 laarr
[curr
].extLocation
.partitionReferenceNum
= 0;
717 laarr
[curr
].extLength
= (etype
<< 30) |
718 (offset
<< inode
->i_sb
->s_blocksize_bits
);
725 laarr
[curr
].extLocation
.logicalBlockNum
= newblocknum
;
726 if (etype
== (EXT_NOT_RECORDED_NOT_ALLOCATED
>> 30))
727 laarr
[curr
].extLocation
.partitionReferenceNum
=
728 UDF_I_LOCATION(inode
).partitionReferenceNum
;
729 laarr
[curr
].extLength
= EXT_RECORDED_ALLOCATED
|
730 inode
->i_sb
->s_blocksize
;
733 if (blen
!= offset
+ 1) {
734 if (etype
== (EXT_NOT_RECORDED_ALLOCATED
>> 30))
735 laarr
[curr
].extLocation
.logicalBlockNum
+= (offset
+ 1);
736 laarr
[curr
].extLength
= (etype
<< 30) |
737 ((blen
- (offset
+ 1)) << inode
->i_sb
->s_blocksize_bits
);
744 static void udf_prealloc_extents(struct inode
*inode
, int c
, int lastblock
,
745 kernel_long_ad laarr
[EXTENT_MERGE_SIZE
],
748 int start
, length
= 0, currlength
= 0, i
;
750 if (*endnum
>= (c
+ 1)) {
756 if ((laarr
[c
+ 1].extLength
>> 30) == (EXT_NOT_RECORDED_ALLOCATED
>> 30)) {
758 length
= currlength
= (((laarr
[c
+ 1].extLength
& UDF_EXTENT_LENGTH_MASK
) +
759 inode
->i_sb
->s_blocksize
- 1) >> inode
->i_sb
->s_blocksize_bits
);
765 for (i
= start
+ 1; i
<= *endnum
; i
++) {
768 length
+= UDF_DEFAULT_PREALLOC_BLOCKS
;
769 } else if ((laarr
[i
].extLength
>> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED
>> 30)) {
770 length
+= (((laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
771 inode
->i_sb
->s_blocksize
- 1) >> inode
->i_sb
->s_blocksize_bits
);
778 int next
= laarr
[start
].extLocation
.logicalBlockNum
+
779 (((laarr
[start
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
780 inode
->i_sb
->s_blocksize
- 1) >> inode
->i_sb
->s_blocksize_bits
);
781 int numalloc
= udf_prealloc_blocks(inode
->i_sb
, inode
,
782 laarr
[start
].extLocation
.partitionReferenceNum
,
783 next
, (UDF_DEFAULT_PREALLOC_BLOCKS
> length
? length
:
784 UDF_DEFAULT_PREALLOC_BLOCKS
) - currlength
);
786 if (start
== (c
+ 1)) {
787 laarr
[start
].extLength
+=
788 (numalloc
<< inode
->i_sb
->s_blocksize_bits
);
790 memmove(&laarr
[c
+ 2], &laarr
[c
+ 1],
791 sizeof(long_ad
) * (*endnum
- (c
+ 1)));
793 laarr
[c
+ 1].extLocation
.logicalBlockNum
= next
;
794 laarr
[c
+ 1].extLocation
.partitionReferenceNum
=
795 laarr
[c
].extLocation
.partitionReferenceNum
;
796 laarr
[c
+ 1].extLength
= EXT_NOT_RECORDED_ALLOCATED
|
797 (numalloc
<< inode
->i_sb
->s_blocksize_bits
);
801 for (i
= start
+ 1; numalloc
&& i
< *endnum
; i
++) {
802 int elen
= ((laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
803 inode
->i_sb
->s_blocksize
- 1) >> inode
->i_sb
->s_blocksize_bits
;
805 if (elen
> numalloc
) {
806 laarr
[i
].extLength
-=
807 (numalloc
<< inode
->i_sb
->s_blocksize_bits
);
811 if (*endnum
> (i
+ 1))
812 memmove(&laarr
[i
], &laarr
[i
+ 1],
813 sizeof(long_ad
) * (*endnum
- (i
+ 1)));
818 UDF_I_LENEXTENTS(inode
) += numalloc
<< inode
->i_sb
->s_blocksize_bits
;
823 static void udf_merge_extents(struct inode
*inode
,
824 kernel_long_ad laarr
[EXTENT_MERGE_SIZE
],
829 for (i
= 0; i
< (*endnum
- 1); i
++) {
830 if ((laarr
[i
].extLength
>> 30) == (laarr
[i
+ 1].extLength
>> 30)) {
831 if (((laarr
[i
].extLength
>> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED
>> 30)) ||
832 ((laarr
[i
+ 1].extLocation
.logicalBlockNum
- laarr
[i
].extLocation
.logicalBlockNum
) ==
833 (((laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
834 inode
->i_sb
->s_blocksize
- 1) >> inode
->i_sb
->s_blocksize_bits
))) {
835 if (((laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
836 (laarr
[i
+ 1].extLength
& UDF_EXTENT_LENGTH_MASK
) +
837 inode
->i_sb
->s_blocksize
- 1) & ~UDF_EXTENT_LENGTH_MASK
) {
838 laarr
[i
+ 1].extLength
= (laarr
[i
+ 1].extLength
-
839 (laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
840 UDF_EXTENT_LENGTH_MASK
) & ~(inode
->i_sb
->s_blocksize
- 1);
841 laarr
[i
].extLength
= (laarr
[i
].extLength
& UDF_EXTENT_FLAG_MASK
) +
842 (UDF_EXTENT_LENGTH_MASK
+ 1) - inode
->i_sb
->s_blocksize
;
843 laarr
[i
+ 1].extLocation
.logicalBlockNum
=
844 laarr
[i
].extLocation
.logicalBlockNum
+
845 ((laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) >>
846 inode
->i_sb
->s_blocksize_bits
);
848 laarr
[i
].extLength
= laarr
[i
+ 1].extLength
+
849 (((laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
850 inode
->i_sb
->s_blocksize
- 1) & ~(inode
->i_sb
->s_blocksize
- 1));
851 if (*endnum
> (i
+ 2))
852 memmove(&laarr
[i
+ 1], &laarr
[i
+ 2],
853 sizeof(long_ad
) * (*endnum
- (i
+ 2)));
858 } else if (((laarr
[i
].extLength
>> 30) == (EXT_NOT_RECORDED_ALLOCATED
>> 30)) &&
859 ((laarr
[i
+ 1].extLength
>> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED
>> 30))) {
860 udf_free_blocks(inode
->i_sb
, inode
, laarr
[i
].extLocation
, 0,
861 ((laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
862 inode
->i_sb
->s_blocksize
- 1) >> inode
->i_sb
->s_blocksize_bits
);
863 laarr
[i
].extLocation
.logicalBlockNum
= 0;
864 laarr
[i
].extLocation
.partitionReferenceNum
= 0;
866 if (((laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
867 (laarr
[i
+ 1].extLength
& UDF_EXTENT_LENGTH_MASK
) +
868 inode
->i_sb
->s_blocksize
- 1) & ~UDF_EXTENT_LENGTH_MASK
) {
869 laarr
[i
+ 1].extLength
= (laarr
[i
+ 1].extLength
-
870 (laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
871 UDF_EXTENT_LENGTH_MASK
) & ~(inode
->i_sb
->s_blocksize
- 1);
872 laarr
[i
].extLength
= (laarr
[i
].extLength
& UDF_EXTENT_FLAG_MASK
) +
873 (UDF_EXTENT_LENGTH_MASK
+ 1) - inode
->i_sb
->s_blocksize
;
875 laarr
[i
].extLength
= laarr
[i
+ 1].extLength
+
876 (((laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
877 inode
->i_sb
->s_blocksize
- 1) & ~(inode
->i_sb
->s_blocksize
- 1));
878 if (*endnum
> (i
+ 2))
879 memmove(&laarr
[i
+ 1], &laarr
[i
+ 2],
880 sizeof(long_ad
) * (*endnum
- (i
+ 2)));
884 } else if ((laarr
[i
].extLength
>> 30) == (EXT_NOT_RECORDED_ALLOCATED
>> 30)) {
885 udf_free_blocks(inode
->i_sb
, inode
, laarr
[i
].extLocation
, 0,
886 ((laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
887 inode
->i_sb
->s_blocksize
- 1) >> inode
->i_sb
->s_blocksize_bits
);
888 laarr
[i
].extLocation
.logicalBlockNum
= 0;
889 laarr
[i
].extLocation
.partitionReferenceNum
= 0;
890 laarr
[i
].extLength
= (laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) |
891 EXT_NOT_RECORDED_NOT_ALLOCATED
;
896 static void udf_update_extents(struct inode
*inode
,
897 kernel_long_ad laarr
[EXTENT_MERGE_SIZE
],
898 int startnum
, int endnum
,
899 struct extent_position
*epos
)
902 kernel_lb_addr tmploc
;
905 if (startnum
> endnum
) {
906 for (i
= 0; i
< (startnum
- endnum
); i
++)
907 udf_delete_aext(inode
, *epos
, laarr
[i
].extLocation
,
909 } else if (startnum
< endnum
) {
910 for (i
= 0; i
< (endnum
- startnum
); i
++) {
911 udf_insert_aext(inode
, *epos
, laarr
[i
].extLocation
,
913 udf_next_aext(inode
, epos
, &laarr
[i
].extLocation
,
914 &laarr
[i
].extLength
, 1);
919 for (i
= start
; i
< endnum
; i
++) {
920 udf_next_aext(inode
, epos
, &tmploc
, &tmplen
, 0);
921 udf_write_aext(inode
, epos
, laarr
[i
].extLocation
,
922 laarr
[i
].extLength
, 1);
926 struct buffer_head
*udf_bread(struct inode
*inode
, int block
,
927 int create
, int *err
)
929 struct buffer_head
*bh
= NULL
;
931 bh
= udf_getblk(inode
, block
, create
, err
);
935 if (buffer_uptodate(bh
))
938 ll_rw_block(READ
, 1, &bh
);
941 if (buffer_uptodate(bh
))
949 void udf_truncate(struct inode
*inode
)
954 if (!(S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
955 S_ISLNK(inode
->i_mode
)))
957 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
961 if (UDF_I_ALLOCTYPE(inode
) == ICBTAG_FLAG_AD_IN_ICB
) {
962 if (inode
->i_sb
->s_blocksize
< (udf_file_entry_alloc_offset(inode
) +
964 udf_expand_file_adinicb(inode
, inode
->i_size
, &err
);
965 if (UDF_I_ALLOCTYPE(inode
) == ICBTAG_FLAG_AD_IN_ICB
) {
966 inode
->i_size
= UDF_I_LENALLOC(inode
);
970 udf_truncate_extents(inode
);
973 offset
= inode
->i_size
& (inode
->i_sb
->s_blocksize
- 1);
974 memset(UDF_I_DATA(inode
) + UDF_I_LENEATTR(inode
) + offset
, 0x00,
975 inode
->i_sb
->s_blocksize
- offset
- udf_file_entry_alloc_offset(inode
));
976 UDF_I_LENALLOC(inode
) = inode
->i_size
;
979 block_truncate_page(inode
->i_mapping
, inode
->i_size
, udf_get_block
);
980 udf_truncate_extents(inode
);
983 inode
->i_mtime
= inode
->i_ctime
= current_fs_time(inode
->i_sb
);
985 udf_sync_inode(inode
);
987 mark_inode_dirty(inode
);
991 static void __udf_read_inode(struct inode
*inode
)
993 struct buffer_head
*bh
= NULL
;
994 struct fileEntry
*fe
;
998 * Set defaults, but the inode is still incomplete!
999 * Note: get_new_inode() sets the following on a new inode:
1002 * i_flags = sb->s_flags
1004 * clean_inode(): zero fills and sets
1009 bh
= udf_read_ptagged(inode
->i_sb
, UDF_I_LOCATION(inode
), 0, &ident
);
1011 printk(KERN_ERR
"udf: udf_read_inode(ino %ld) failed !bh\n",
1013 make_bad_inode(inode
);
1017 if (ident
!= TAG_IDENT_FE
&& ident
!= TAG_IDENT_EFE
&&
1018 ident
!= TAG_IDENT_USE
) {
1019 printk(KERN_ERR
"udf: udf_read_inode(ino %ld) failed ident=%d\n",
1020 inode
->i_ino
, ident
);
1022 make_bad_inode(inode
);
1026 fe
= (struct fileEntry
*)bh
->b_data
;
1028 if (le16_to_cpu(fe
->icbTag
.strategyType
) == 4096) {
1029 struct buffer_head
*ibh
= NULL
, *nbh
= NULL
;
1030 struct indirectEntry
*ie
;
1032 ibh
= udf_read_ptagged(inode
->i_sb
, UDF_I_LOCATION(inode
), 1, &ident
);
1033 if (ident
== TAG_IDENT_IE
) {
1036 ie
= (struct indirectEntry
*)ibh
->b_data
;
1038 loc
= lelb_to_cpu(ie
->indirectICB
.extLocation
);
1040 if (ie
->indirectICB
.extLength
&&
1041 (nbh
= udf_read_ptagged(inode
->i_sb
, loc
, 0, &ident
))) {
1042 if (ident
== TAG_IDENT_FE
||
1043 ident
== TAG_IDENT_EFE
) {
1044 memcpy(&UDF_I_LOCATION(inode
), &loc
,
1045 sizeof(kernel_lb_addr
));
1049 __udf_read_inode(inode
);
1062 } else if (le16_to_cpu(fe
->icbTag
.strategyType
) != 4) {
1063 printk(KERN_ERR
"udf: unsupported strategy type: %d\n",
1064 le16_to_cpu(fe
->icbTag
.strategyType
));
1066 make_bad_inode(inode
);
1069 udf_fill_inode(inode
, bh
);
1074 static void udf_fill_inode(struct inode
*inode
, struct buffer_head
*bh
)
1076 struct fileEntry
*fe
;
1077 struct extendedFileEntry
*efe
;
1082 fe
= (struct fileEntry
*)bh
->b_data
;
1083 efe
= (struct extendedFileEntry
*)bh
->b_data
;
1085 if (le16_to_cpu(fe
->icbTag
.strategyType
) == 4)
1086 UDF_I_STRAT4096(inode
) = 0;
1087 else /* if (le16_to_cpu(fe->icbTag.strategyType) == 4096) */
1088 UDF_I_STRAT4096(inode
) = 1;
1090 UDF_I_ALLOCTYPE(inode
) = le16_to_cpu(fe
->icbTag
.flags
) & ICBTAG_FLAG_AD_MASK
;
1091 UDF_I_UNIQUE(inode
) = 0;
1092 UDF_I_LENEATTR(inode
) = 0;
1093 UDF_I_LENEXTENTS(inode
) = 0;
1094 UDF_I_LENALLOC(inode
) = 0;
1095 UDF_I_NEXT_ALLOC_BLOCK(inode
) = 0;
1096 UDF_I_NEXT_ALLOC_GOAL(inode
) = 0;
1097 if (le16_to_cpu(fe
->descTag
.tagIdent
) == TAG_IDENT_EFE
) {
1098 UDF_I_EFE(inode
) = 1;
1099 UDF_I_USE(inode
) = 0;
1100 if (udf_alloc_i_data(inode
, inode
->i_sb
->s_blocksize
- sizeof(struct extendedFileEntry
))) {
1101 make_bad_inode(inode
);
1104 memcpy(UDF_I_DATA(inode
), bh
->b_data
+ sizeof(struct extendedFileEntry
),
1105 inode
->i_sb
->s_blocksize
- sizeof(struct extendedFileEntry
));
1106 } else if (le16_to_cpu(fe
->descTag
.tagIdent
) == TAG_IDENT_FE
) {
1107 UDF_I_EFE(inode
) = 0;
1108 UDF_I_USE(inode
) = 0;
1109 if (udf_alloc_i_data(inode
, inode
->i_sb
->s_blocksize
- sizeof(struct fileEntry
))) {
1110 make_bad_inode(inode
);
1113 memcpy(UDF_I_DATA(inode
), bh
->b_data
+ sizeof(struct fileEntry
),
1114 inode
->i_sb
->s_blocksize
- sizeof(struct fileEntry
));
1115 } else if (le16_to_cpu(fe
->descTag
.tagIdent
) == TAG_IDENT_USE
) {
1116 UDF_I_EFE(inode
) = 0;
1117 UDF_I_USE(inode
) = 1;
1118 UDF_I_LENALLOC(inode
) =
1119 le32_to_cpu(((struct unallocSpaceEntry
*)bh
->b_data
)->lengthAllocDescs
);
1120 if (udf_alloc_i_data(inode
, inode
->i_sb
->s_blocksize
- sizeof(struct unallocSpaceEntry
))) {
1121 make_bad_inode(inode
);
1124 memcpy(UDF_I_DATA(inode
), bh
->b_data
+ sizeof(struct unallocSpaceEntry
),
1125 inode
->i_sb
->s_blocksize
- sizeof(struct unallocSpaceEntry
));
1129 inode
->i_uid
= le32_to_cpu(fe
->uid
);
1130 if (inode
->i_uid
== -1 ||
1131 UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_UID_IGNORE
) ||
1132 UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_UID_SET
))
1133 inode
->i_uid
= UDF_SB(inode
->i_sb
)->s_uid
;
1135 inode
->i_gid
= le32_to_cpu(fe
->gid
);
1136 if (inode
->i_gid
== -1 ||
1137 UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_GID_IGNORE
) ||
1138 UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_GID_SET
))
1139 inode
->i_gid
= UDF_SB(inode
->i_sb
)->s_gid
;
1141 inode
->i_nlink
= le16_to_cpu(fe
->fileLinkCount
);
1142 if (!inode
->i_nlink
)
1145 inode
->i_size
= le64_to_cpu(fe
->informationLength
);
1146 UDF_I_LENEXTENTS(inode
) = inode
->i_size
;
1148 inode
->i_mode
= udf_convert_permissions(fe
);
1149 inode
->i_mode
&= ~UDF_SB(inode
->i_sb
)->s_umask
;
1151 if (UDF_I_EFE(inode
) == 0) {
1152 inode
->i_blocks
= le64_to_cpu(fe
->logicalBlocksRecorded
) <<
1153 (inode
->i_sb
->s_blocksize_bits
- 9);
1155 if (udf_stamp_to_time(&convtime
, &convtime_usec
,
1156 lets_to_cpu(fe
->accessTime
))) {
1157 inode
->i_atime
.tv_sec
= convtime
;
1158 inode
->i_atime
.tv_nsec
= convtime_usec
* 1000;
1160 inode
->i_atime
= UDF_SB_RECORDTIME(inode
->i_sb
);
1163 if (udf_stamp_to_time(&convtime
, &convtime_usec
,
1164 lets_to_cpu(fe
->modificationTime
))) {
1165 inode
->i_mtime
.tv_sec
= convtime
;
1166 inode
->i_mtime
.tv_nsec
= convtime_usec
* 1000;
1168 inode
->i_mtime
= UDF_SB_RECORDTIME(inode
->i_sb
);
1171 if (udf_stamp_to_time(&convtime
, &convtime_usec
,
1172 lets_to_cpu(fe
->attrTime
))) {
1173 inode
->i_ctime
.tv_sec
= convtime
;
1174 inode
->i_ctime
.tv_nsec
= convtime_usec
* 1000;
1176 inode
->i_ctime
= UDF_SB_RECORDTIME(inode
->i_sb
);
1179 UDF_I_UNIQUE(inode
) = le64_to_cpu(fe
->uniqueID
);
1180 UDF_I_LENEATTR(inode
) = le32_to_cpu(fe
->lengthExtendedAttr
);
1181 UDF_I_LENALLOC(inode
) = le32_to_cpu(fe
->lengthAllocDescs
);
1182 offset
= sizeof(struct fileEntry
) + UDF_I_LENEATTR(inode
);
1184 inode
->i_blocks
= le64_to_cpu(efe
->logicalBlocksRecorded
) <<
1185 (inode
->i_sb
->s_blocksize_bits
- 9);
1187 if (udf_stamp_to_time(&convtime
, &convtime_usec
,
1188 lets_to_cpu(efe
->accessTime
))) {
1189 inode
->i_atime
.tv_sec
= convtime
;
1190 inode
->i_atime
.tv_nsec
= convtime_usec
* 1000;
1192 inode
->i_atime
= UDF_SB_RECORDTIME(inode
->i_sb
);
1195 if (udf_stamp_to_time(&convtime
, &convtime_usec
,
1196 lets_to_cpu(efe
->modificationTime
))) {
1197 inode
->i_mtime
.tv_sec
= convtime
;
1198 inode
->i_mtime
.tv_nsec
= convtime_usec
* 1000;
1200 inode
->i_mtime
= UDF_SB_RECORDTIME(inode
->i_sb
);
1203 if (udf_stamp_to_time(&convtime
, &convtime_usec
,
1204 lets_to_cpu(efe
->createTime
))) {
1205 UDF_I_CRTIME(inode
).tv_sec
= convtime
;
1206 UDF_I_CRTIME(inode
).tv_nsec
= convtime_usec
* 1000;
1208 UDF_I_CRTIME(inode
) = UDF_SB_RECORDTIME(inode
->i_sb
);
1211 if (udf_stamp_to_time(&convtime
, &convtime_usec
,
1212 lets_to_cpu(efe
->attrTime
))) {
1213 inode
->i_ctime
.tv_sec
= convtime
;
1214 inode
->i_ctime
.tv_nsec
= convtime_usec
* 1000;
1216 inode
->i_ctime
= UDF_SB_RECORDTIME(inode
->i_sb
);
1219 UDF_I_UNIQUE(inode
) = le64_to_cpu(efe
->uniqueID
);
1220 UDF_I_LENEATTR(inode
) = le32_to_cpu(efe
->lengthExtendedAttr
);
1221 UDF_I_LENALLOC(inode
) = le32_to_cpu(efe
->lengthAllocDescs
);
1222 offset
= sizeof(struct extendedFileEntry
) + UDF_I_LENEATTR(inode
);
1225 switch (fe
->icbTag
.fileType
) {
1226 case ICBTAG_FILE_TYPE_DIRECTORY
:
1227 inode
->i_op
= &udf_dir_inode_operations
;
1228 inode
->i_fop
= &udf_dir_operations
;
1229 inode
->i_mode
|= S_IFDIR
;
1232 case ICBTAG_FILE_TYPE_REALTIME
:
1233 case ICBTAG_FILE_TYPE_REGULAR
:
1234 case ICBTAG_FILE_TYPE_UNDEF
:
1235 if (UDF_I_ALLOCTYPE(inode
) == ICBTAG_FLAG_AD_IN_ICB
)
1236 inode
->i_data
.a_ops
= &udf_adinicb_aops
;
1238 inode
->i_data
.a_ops
= &udf_aops
;
1239 inode
->i_op
= &udf_file_inode_operations
;
1240 inode
->i_fop
= &udf_file_operations
;
1241 inode
->i_mode
|= S_IFREG
;
1243 case ICBTAG_FILE_TYPE_BLOCK
:
1244 inode
->i_mode
|= S_IFBLK
;
1246 case ICBTAG_FILE_TYPE_CHAR
:
1247 inode
->i_mode
|= S_IFCHR
;
1249 case ICBTAG_FILE_TYPE_FIFO
:
1250 init_special_inode(inode
, inode
->i_mode
| S_IFIFO
, 0);
1252 case ICBTAG_FILE_TYPE_SOCKET
:
1253 init_special_inode(inode
, inode
->i_mode
| S_IFSOCK
, 0);
1255 case ICBTAG_FILE_TYPE_SYMLINK
:
1256 inode
->i_data
.a_ops
= &udf_symlink_aops
;
1257 inode
->i_op
= &page_symlink_inode_operations
;
1258 inode
->i_mode
= S_IFLNK
| S_IRWXUGO
;
1261 printk(KERN_ERR
"udf: udf_fill_inode(ino %ld) failed unknown file type=%d\n",
1262 inode
->i_ino
, fe
->icbTag
.fileType
);
1263 make_bad_inode(inode
);
1266 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
1267 struct deviceSpec
*dsea
= (struct deviceSpec
*)udf_get_extendedattr(inode
, 12, 1);
1269 init_special_inode(inode
, inode
->i_mode
,
1270 MKDEV(le32_to_cpu(dsea
->majorDeviceIdent
),
1271 le32_to_cpu(dsea
->minorDeviceIdent
)));
1272 /* Developer ID ??? */
1274 make_bad_inode(inode
);
1279 static int udf_alloc_i_data(struct inode
*inode
, size_t size
)
1281 UDF_I_DATA(inode
) = kmalloc(size
, GFP_KERNEL
);
1283 if (!UDF_I_DATA(inode
)) {
1284 printk(KERN_ERR
"udf:udf_alloc_i_data (ino %ld) no free memory\n",
1292 static mode_t
udf_convert_permissions(struct fileEntry
*fe
)
1295 uint32_t permissions
;
1298 permissions
= le32_to_cpu(fe
->permissions
);
1299 flags
= le16_to_cpu(fe
->icbTag
.flags
);
1301 mode
= (( permissions
) & S_IRWXO
) |
1302 (( permissions
>> 2 ) & S_IRWXG
) |
1303 (( permissions
>> 4 ) & S_IRWXU
) |
1304 (( flags
& ICBTAG_FLAG_SETUID
) ? S_ISUID
: 0) |
1305 (( flags
& ICBTAG_FLAG_SETGID
) ? S_ISGID
: 0) |
1306 (( flags
& ICBTAG_FLAG_STICKY
) ? S_ISVTX
: 0);
1315 * Write out the specified inode.
1318 * This routine is called whenever an inode is synced.
1319 * Currently this routine is just a placeholder.
1322 * July 1, 1997 - Andrew E. Mileski
1323 * Written, tested, and released.
1326 int udf_write_inode(struct inode
*inode
, int sync
)
1331 ret
= udf_update_inode(inode
, sync
);
1337 int udf_sync_inode(struct inode
*inode
)
1339 return udf_update_inode(inode
, 1);
1342 static int udf_update_inode(struct inode
*inode
, int do_sync
)
1344 struct buffer_head
*bh
= NULL
;
1345 struct fileEntry
*fe
;
1346 struct extendedFileEntry
*efe
;
1351 kernel_timestamp cpu_time
;
1354 bh
= udf_tread(inode
->i_sb
, udf_get_lb_pblock(inode
->i_sb
, UDF_I_LOCATION(inode
), 0));
1356 udf_debug("bread failure\n");
1360 memset(bh
->b_data
, 0x00, inode
->i_sb
->s_blocksize
);
1362 fe
= (struct fileEntry
*)bh
->b_data
;
1363 efe
= (struct extendedFileEntry
*)bh
->b_data
;
1365 if (le16_to_cpu(fe
->descTag
.tagIdent
) == TAG_IDENT_USE
) {
1366 struct unallocSpaceEntry
*use
=
1367 (struct unallocSpaceEntry
*)bh
->b_data
;
1369 use
->lengthAllocDescs
= cpu_to_le32(UDF_I_LENALLOC(inode
));
1370 memcpy(bh
->b_data
+ sizeof(struct unallocSpaceEntry
), UDF_I_DATA(inode
),
1371 inode
->i_sb
->s_blocksize
- sizeof(struct unallocSpaceEntry
));
1372 crclen
= sizeof(struct unallocSpaceEntry
) + UDF_I_LENALLOC(inode
) - sizeof(tag
);
1373 use
->descTag
.tagLocation
= cpu_to_le32(UDF_I_LOCATION(inode
).logicalBlockNum
);
1374 use
->descTag
.descCRCLength
= cpu_to_le16(crclen
);
1375 use
->descTag
.descCRC
= cpu_to_le16(udf_crc((char *)use
+ sizeof(tag
), crclen
, 0));
1377 use
->descTag
.tagChecksum
= 0;
1378 for (i
= 0; i
< 16; i
++) {
1380 use
->descTag
.tagChecksum
+= ((uint8_t *)&(use
->descTag
))[i
];
1383 mark_buffer_dirty(bh
);
1388 if (UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_UID_FORGET
))
1389 fe
->uid
= cpu_to_le32(-1);
1391 fe
->uid
= cpu_to_le32(inode
->i_uid
);
1393 if (UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_GID_FORGET
))
1394 fe
->gid
= cpu_to_le32(-1);
1396 fe
->gid
= cpu_to_le32(inode
->i_gid
);
1398 udfperms
= ((inode
->i_mode
& S_IRWXO
) ) |
1399 ((inode
->i_mode
& S_IRWXG
) << 2) |
1400 ((inode
->i_mode
& S_IRWXU
) << 4);
1402 udfperms
|= (le32_to_cpu(fe
->permissions
) &
1403 (FE_PERM_O_DELETE
| FE_PERM_O_CHATTR
|
1404 FE_PERM_G_DELETE
| FE_PERM_G_CHATTR
|
1405 FE_PERM_U_DELETE
| FE_PERM_U_CHATTR
));
1406 fe
->permissions
= cpu_to_le32(udfperms
);
1408 if (S_ISDIR(inode
->i_mode
))
1409 fe
->fileLinkCount
= cpu_to_le16(inode
->i_nlink
- 1);
1411 fe
->fileLinkCount
= cpu_to_le16(inode
->i_nlink
);
1413 fe
->informationLength
= cpu_to_le64(inode
->i_size
);
1415 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
1417 struct deviceSpec
*dsea
=
1418 (struct deviceSpec
*)udf_get_extendedattr(inode
, 12, 1);
1420 dsea
= (struct deviceSpec
*)
1421 udf_add_extendedattr(inode
,
1422 sizeof(struct deviceSpec
) +
1423 sizeof(regid
), 12, 0x3);
1424 dsea
->attrType
= cpu_to_le32(12);
1425 dsea
->attrSubtype
= 1;
1426 dsea
->attrLength
= cpu_to_le32(sizeof(struct deviceSpec
) +
1428 dsea
->impUseLength
= cpu_to_le32(sizeof(regid
));
1430 eid
= (regid
*)dsea
->impUse
;
1431 memset(eid
, 0, sizeof(regid
));
1432 strcpy(eid
->ident
, UDF_ID_DEVELOPER
);
1433 eid
->identSuffix
[0] = UDF_OS_CLASS_UNIX
;
1434 eid
->identSuffix
[1] = UDF_OS_ID_LINUX
;
1435 dsea
->majorDeviceIdent
= cpu_to_le32(imajor(inode
));
1436 dsea
->minorDeviceIdent
= cpu_to_le32(iminor(inode
));
1439 if (UDF_I_EFE(inode
) == 0) {
1440 memcpy(bh
->b_data
+ sizeof(struct fileEntry
), UDF_I_DATA(inode
),
1441 inode
->i_sb
->s_blocksize
- sizeof(struct fileEntry
));
1442 fe
->logicalBlocksRecorded
= cpu_to_le64(
1443 (inode
->i_blocks
+ (1 << (inode
->i_sb
->s_blocksize_bits
- 9)) - 1) >>
1444 (inode
->i_sb
->s_blocksize_bits
- 9));
1446 if (udf_time_to_stamp(&cpu_time
, inode
->i_atime
))
1447 fe
->accessTime
= cpu_to_lets(cpu_time
);
1448 if (udf_time_to_stamp(&cpu_time
, inode
->i_mtime
))
1449 fe
->modificationTime
= cpu_to_lets(cpu_time
);
1450 if (udf_time_to_stamp(&cpu_time
, inode
->i_ctime
))
1451 fe
->attrTime
= cpu_to_lets(cpu_time
);
1452 memset(&(fe
->impIdent
), 0, sizeof(regid
));
1453 strcpy(fe
->impIdent
.ident
, UDF_ID_DEVELOPER
);
1454 fe
->impIdent
.identSuffix
[0] = UDF_OS_CLASS_UNIX
;
1455 fe
->impIdent
.identSuffix
[1] = UDF_OS_ID_LINUX
;
1456 fe
->uniqueID
= cpu_to_le64(UDF_I_UNIQUE(inode
));
1457 fe
->lengthExtendedAttr
= cpu_to_le32(UDF_I_LENEATTR(inode
));
1458 fe
->lengthAllocDescs
= cpu_to_le32(UDF_I_LENALLOC(inode
));
1459 fe
->descTag
.tagIdent
= cpu_to_le16(TAG_IDENT_FE
);
1460 crclen
= sizeof(struct fileEntry
);
1462 memcpy(bh
->b_data
+ sizeof(struct extendedFileEntry
), UDF_I_DATA(inode
),
1463 inode
->i_sb
->s_blocksize
- sizeof(struct extendedFileEntry
));
1464 efe
->objectSize
= cpu_to_le64(inode
->i_size
);
1465 efe
->logicalBlocksRecorded
= cpu_to_le64(
1466 (inode
->i_blocks
+ (1 << (inode
->i_sb
->s_blocksize_bits
- 9)) - 1) >>
1467 (inode
->i_sb
->s_blocksize_bits
- 9));
1469 if (UDF_I_CRTIME(inode
).tv_sec
> inode
->i_atime
.tv_sec
||
1470 (UDF_I_CRTIME(inode
).tv_sec
== inode
->i_atime
.tv_sec
&&
1471 UDF_I_CRTIME(inode
).tv_nsec
> inode
->i_atime
.tv_nsec
)) {
1472 UDF_I_CRTIME(inode
) = inode
->i_atime
;
1474 if (UDF_I_CRTIME(inode
).tv_sec
> inode
->i_mtime
.tv_sec
||
1475 (UDF_I_CRTIME(inode
).tv_sec
== inode
->i_mtime
.tv_sec
&&
1476 UDF_I_CRTIME(inode
).tv_nsec
> inode
->i_mtime
.tv_nsec
)) {
1477 UDF_I_CRTIME(inode
) = inode
->i_mtime
;
1479 if (UDF_I_CRTIME(inode
).tv_sec
> inode
->i_ctime
.tv_sec
||
1480 (UDF_I_CRTIME(inode
).tv_sec
== inode
->i_ctime
.tv_sec
&&
1481 UDF_I_CRTIME(inode
).tv_nsec
> inode
->i_ctime
.tv_nsec
)) {
1482 UDF_I_CRTIME(inode
) = inode
->i_ctime
;
1485 if (udf_time_to_stamp(&cpu_time
, inode
->i_atime
))
1486 efe
->accessTime
= cpu_to_lets(cpu_time
);
1487 if (udf_time_to_stamp(&cpu_time
, inode
->i_mtime
))
1488 efe
->modificationTime
= cpu_to_lets(cpu_time
);
1489 if (udf_time_to_stamp(&cpu_time
, UDF_I_CRTIME(inode
)))
1490 efe
->createTime
= cpu_to_lets(cpu_time
);
1491 if (udf_time_to_stamp(&cpu_time
, inode
->i_ctime
))
1492 efe
->attrTime
= cpu_to_lets(cpu_time
);
1494 memset(&(efe
->impIdent
), 0, sizeof(regid
));
1495 strcpy(efe
->impIdent
.ident
, UDF_ID_DEVELOPER
);
1496 efe
->impIdent
.identSuffix
[0] = UDF_OS_CLASS_UNIX
;
1497 efe
->impIdent
.identSuffix
[1] = UDF_OS_ID_LINUX
;
1498 efe
->uniqueID
= cpu_to_le64(UDF_I_UNIQUE(inode
));
1499 efe
->lengthExtendedAttr
= cpu_to_le32(UDF_I_LENEATTR(inode
));
1500 efe
->lengthAllocDescs
= cpu_to_le32(UDF_I_LENALLOC(inode
));
1501 efe
->descTag
.tagIdent
= cpu_to_le16(TAG_IDENT_EFE
);
1502 crclen
= sizeof(struct extendedFileEntry
);
1504 if (UDF_I_STRAT4096(inode
)) {
1505 fe
->icbTag
.strategyType
= cpu_to_le16(4096);
1506 fe
->icbTag
.strategyParameter
= cpu_to_le16(1);
1507 fe
->icbTag
.numEntries
= cpu_to_le16(2);
1509 fe
->icbTag
.strategyType
= cpu_to_le16(4);
1510 fe
->icbTag
.numEntries
= cpu_to_le16(1);
1513 if (S_ISDIR(inode
->i_mode
))
1514 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_DIRECTORY
;
1515 else if (S_ISREG(inode
->i_mode
))
1516 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_REGULAR
;
1517 else if (S_ISLNK(inode
->i_mode
))
1518 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_SYMLINK
;
1519 else if (S_ISBLK(inode
->i_mode
))
1520 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_BLOCK
;
1521 else if (S_ISCHR(inode
->i_mode
))
1522 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_CHAR
;
1523 else if (S_ISFIFO(inode
->i_mode
))
1524 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_FIFO
;
1525 else if (S_ISSOCK(inode
->i_mode
))
1526 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_SOCKET
;
1528 icbflags
= UDF_I_ALLOCTYPE(inode
) |
1529 ((inode
->i_mode
& S_ISUID
) ? ICBTAG_FLAG_SETUID
: 0) |
1530 ((inode
->i_mode
& S_ISGID
) ? ICBTAG_FLAG_SETGID
: 0) |
1531 ((inode
->i_mode
& S_ISVTX
) ? ICBTAG_FLAG_STICKY
: 0) |
1532 (le16_to_cpu(fe
->icbTag
.flags
) &
1533 ~(ICBTAG_FLAG_AD_MASK
| ICBTAG_FLAG_SETUID
|
1534 ICBTAG_FLAG_SETGID
| ICBTAG_FLAG_STICKY
));
1536 fe
->icbTag
.flags
= cpu_to_le16(icbflags
);
1537 if (UDF_SB_UDFREV(inode
->i_sb
) >= 0x0200)
1538 fe
->descTag
.descVersion
= cpu_to_le16(3);
1540 fe
->descTag
.descVersion
= cpu_to_le16(2);
1541 fe
->descTag
.tagSerialNum
= cpu_to_le16(UDF_SB_SERIALNUM(inode
->i_sb
));
1542 fe
->descTag
.tagLocation
= cpu_to_le32(UDF_I_LOCATION(inode
).logicalBlockNum
);
1543 crclen
+= UDF_I_LENEATTR(inode
) + UDF_I_LENALLOC(inode
) - sizeof(tag
);
1544 fe
->descTag
.descCRCLength
= cpu_to_le16(crclen
);
1545 fe
->descTag
.descCRC
= cpu_to_le16(udf_crc((char *)fe
+ sizeof(tag
), crclen
, 0));
1547 fe
->descTag
.tagChecksum
= 0;
1548 for (i
= 0; i
< 16; i
++) {
1550 fe
->descTag
.tagChecksum
+= ((uint8_t *)&(fe
->descTag
))[i
];
1553 /* write the data blocks */
1554 mark_buffer_dirty(bh
);
1556 sync_dirty_buffer(bh
);
1557 if (buffer_req(bh
) && !buffer_uptodate(bh
)) {
1558 printk("IO error syncing udf inode [%s:%08lx]\n",
1559 inode
->i_sb
->s_id
, inode
->i_ino
);
1568 struct inode
*udf_iget(struct super_block
*sb
, kernel_lb_addr ino
)
1570 unsigned long block
= udf_get_lb_pblock(sb
, ino
, 0);
1571 struct inode
*inode
= iget_locked(sb
, block
);
1576 if (inode
->i_state
& I_NEW
) {
1577 memcpy(&UDF_I_LOCATION(inode
), &ino
, sizeof(kernel_lb_addr
));
1578 __udf_read_inode(inode
);
1579 unlock_new_inode(inode
);
1582 if (is_bad_inode(inode
))
1585 if (ino
.logicalBlockNum
>= UDF_SB_PARTLEN(sb
, ino
.partitionReferenceNum
)) {
1586 udf_debug("block=%d, partition=%d out of range\n",
1587 ino
.logicalBlockNum
, ino
.partitionReferenceNum
);
1588 make_bad_inode(inode
);
1599 int8_t udf_add_aext(struct inode
* inode
, struct extent_position
* epos
,
1600 kernel_lb_addr eloc
, uint32_t elen
, int inc
)
1603 short_ad
*sad
= NULL
;
1604 long_ad
*lad
= NULL
;
1605 struct allocExtDesc
*aed
;
1610 ptr
= UDF_I_DATA(inode
) + epos
->offset
- udf_file_entry_alloc_offset(inode
) + UDF_I_LENEATTR(inode
);
1612 ptr
= epos
->bh
->b_data
+ epos
->offset
;
1614 if (UDF_I_ALLOCTYPE(inode
) == ICBTAG_FLAG_AD_SHORT
)
1615 adsize
= sizeof(short_ad
);
1616 else if (UDF_I_ALLOCTYPE(inode
) == ICBTAG_FLAG_AD_LONG
)
1617 adsize
= sizeof(long_ad
);
1621 if (epos
->offset
+ (2 * adsize
) > inode
->i_sb
->s_blocksize
) {
1623 struct buffer_head
*nbh
;
1625 kernel_lb_addr obloc
= epos
->block
;
1627 if (!(epos
->block
.logicalBlockNum
= udf_new_block(inode
->i_sb
, NULL
,
1628 obloc
.partitionReferenceNum
,
1629 obloc
.logicalBlockNum
, &err
))) {
1632 if (!(nbh
= udf_tgetblk(inode
->i_sb
, udf_get_lb_pblock(inode
->i_sb
,
1633 epos
->block
, 0)))) {
1637 memset(nbh
->b_data
, 0x00, inode
->i_sb
->s_blocksize
);
1638 set_buffer_uptodate(nbh
);
1640 mark_buffer_dirty_inode(nbh
, inode
);
1642 aed
= (struct allocExtDesc
*)(nbh
->b_data
);
1643 if (!UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_STRICT
))
1644 aed
->previousAllocExtLocation
= cpu_to_le32(obloc
.logicalBlockNum
);
1645 if (epos
->offset
+ adsize
> inode
->i_sb
->s_blocksize
) {
1646 loffset
= epos
->offset
;
1647 aed
->lengthAllocDescs
= cpu_to_le32(adsize
);
1648 sptr
= ptr
- adsize
;
1649 dptr
= nbh
->b_data
+ sizeof(struct allocExtDesc
);
1650 memcpy(dptr
, sptr
, adsize
);
1651 epos
->offset
= sizeof(struct allocExtDesc
) + adsize
;
1653 loffset
= epos
->offset
+ adsize
;
1654 aed
->lengthAllocDescs
= cpu_to_le32(0);
1656 epos
->offset
= sizeof(struct allocExtDesc
);
1659 aed
= (struct allocExtDesc
*)epos
->bh
->b_data
;
1660 aed
->lengthAllocDescs
=
1661 cpu_to_le32(le32_to_cpu(aed
->lengthAllocDescs
) + adsize
);
1663 UDF_I_LENALLOC(inode
) += adsize
;
1664 mark_inode_dirty(inode
);
1667 if (UDF_SB_UDFREV(inode
->i_sb
) >= 0x0200)
1668 udf_new_tag(nbh
->b_data
, TAG_IDENT_AED
, 3, 1,
1669 epos
->block
.logicalBlockNum
, sizeof(tag
));
1671 udf_new_tag(nbh
->b_data
, TAG_IDENT_AED
, 2, 1,
1672 epos
->block
.logicalBlockNum
, sizeof(tag
));
1673 switch (UDF_I_ALLOCTYPE(inode
)) {
1674 case ICBTAG_FLAG_AD_SHORT
:
1675 sad
= (short_ad
*)sptr
;
1676 sad
->extLength
= cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS
|
1677 inode
->i_sb
->s_blocksize
);
1678 sad
->extPosition
= cpu_to_le32(epos
->block
.logicalBlockNum
);
1680 case ICBTAG_FLAG_AD_LONG
:
1681 lad
= (long_ad
*)sptr
;
1682 lad
->extLength
= cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS
|
1683 inode
->i_sb
->s_blocksize
);
1684 lad
->extLocation
= cpu_to_lelb(epos
->block
);
1685 memset(lad
->impUse
, 0x00, sizeof(lad
->impUse
));
1689 if (!UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_STRICT
) ||
1690 UDF_SB_UDFREV(inode
->i_sb
) >= 0x0201)
1691 udf_update_tag(epos
->bh
->b_data
, loffset
);
1693 udf_update_tag(epos
->bh
->b_data
, sizeof(struct allocExtDesc
));
1694 mark_buffer_dirty_inode(epos
->bh
, inode
);
1697 mark_inode_dirty(inode
);
1702 etype
= udf_write_aext(inode
, epos
, eloc
, elen
, inc
);
1705 UDF_I_LENALLOC(inode
) += adsize
;
1706 mark_inode_dirty(inode
);
1708 aed
= (struct allocExtDesc
*)epos
->bh
->b_data
;
1709 aed
->lengthAllocDescs
=
1710 cpu_to_le32(le32_to_cpu(aed
->lengthAllocDescs
) + adsize
);
1711 if (!UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_STRICT
) || UDF_SB_UDFREV(inode
->i_sb
) >= 0x0201)
1712 udf_update_tag(epos
->bh
->b_data
, epos
->offset
+ (inc
? 0 : adsize
));
1714 udf_update_tag(epos
->bh
->b_data
, sizeof(struct allocExtDesc
));
1715 mark_buffer_dirty_inode(epos
->bh
, inode
);
1721 int8_t udf_write_aext(struct inode
* inode
, struct extent_position
* epos
,
1722 kernel_lb_addr eloc
, uint32_t elen
, int inc
)
1730 ptr
= UDF_I_DATA(inode
) + epos
->offset
- udf_file_entry_alloc_offset(inode
) + UDF_I_LENEATTR(inode
);
1732 ptr
= epos
->bh
->b_data
+ epos
->offset
;
1734 switch (UDF_I_ALLOCTYPE(inode
)) {
1735 case ICBTAG_FLAG_AD_SHORT
:
1736 sad
= (short_ad
*)ptr
;
1737 sad
->extLength
= cpu_to_le32(elen
);
1738 sad
->extPosition
= cpu_to_le32(eloc
.logicalBlockNum
);
1739 adsize
= sizeof(short_ad
);
1741 case ICBTAG_FLAG_AD_LONG
:
1742 lad
= (long_ad
*)ptr
;
1743 lad
->extLength
= cpu_to_le32(elen
);
1744 lad
->extLocation
= cpu_to_lelb(eloc
);
1745 memset(lad
->impUse
, 0x00, sizeof(lad
->impUse
));
1746 adsize
= sizeof(long_ad
);
1753 if (!UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_STRICT
) ||
1754 UDF_SB_UDFREV(inode
->i_sb
) >= 0x0201) {
1755 struct allocExtDesc
*aed
= (struct allocExtDesc
*)epos
->bh
->b_data
;
1756 udf_update_tag(epos
->bh
->b_data
,
1757 le32_to_cpu(aed
->lengthAllocDescs
) + sizeof(struct allocExtDesc
));
1759 mark_buffer_dirty_inode(epos
->bh
, inode
);
1761 mark_inode_dirty(inode
);
1765 epos
->offset
+= adsize
;
1767 return (elen
>> 30);
1770 int8_t udf_next_aext(struct inode
* inode
, struct extent_position
* epos
,
1771 kernel_lb_addr
* eloc
, uint32_t * elen
, int inc
)
1775 while ((etype
= udf_current_aext(inode
, epos
, eloc
, elen
, inc
)) ==
1776 (EXT_NEXT_EXTENT_ALLOCDECS
>> 30)) {
1777 epos
->block
= *eloc
;
1778 epos
->offset
= sizeof(struct allocExtDesc
);
1780 if (!(epos
->bh
= udf_tread(inode
->i_sb
, udf_get_lb_pblock(inode
->i_sb
, epos
->block
, 0)))) {
1781 udf_debug("reading block %d failed!\n",
1782 udf_get_lb_pblock(inode
->i_sb
, epos
->block
, 0));
1790 int8_t udf_current_aext(struct inode
* inode
, struct extent_position
* epos
,
1791 kernel_lb_addr
* eloc
, uint32_t * elen
, int inc
)
1802 epos
->offset
= udf_file_entry_alloc_offset(inode
);
1803 ptr
= UDF_I_DATA(inode
) + epos
->offset
- udf_file_entry_alloc_offset(inode
) + UDF_I_LENEATTR(inode
);
1804 alen
= udf_file_entry_alloc_offset(inode
) + UDF_I_LENALLOC(inode
);
1807 epos
->offset
= sizeof(struct allocExtDesc
);
1808 ptr
= epos
->bh
->b_data
+ epos
->offset
;
1809 alen
= sizeof(struct allocExtDesc
) +
1810 le32_to_cpu(((struct allocExtDesc
*)epos
->bh
->b_data
)->lengthAllocDescs
);
1813 switch (UDF_I_ALLOCTYPE(inode
)) {
1814 case ICBTAG_FLAG_AD_SHORT
:
1815 if (!(sad
= udf_get_fileshortad(ptr
, alen
, &epos
->offset
, inc
)))
1817 etype
= le32_to_cpu(sad
->extLength
) >> 30;
1818 eloc
->logicalBlockNum
= le32_to_cpu(sad
->extPosition
);
1819 eloc
->partitionReferenceNum
= UDF_I_LOCATION(inode
).partitionReferenceNum
;
1820 *elen
= le32_to_cpu(sad
->extLength
) & UDF_EXTENT_LENGTH_MASK
;
1822 case ICBTAG_FLAG_AD_LONG
:
1823 if (!(lad
= udf_get_filelongad(ptr
, alen
, &epos
->offset
, inc
)))
1825 etype
= le32_to_cpu(lad
->extLength
) >> 30;
1826 *eloc
= lelb_to_cpu(lad
->extLocation
);
1827 *elen
= le32_to_cpu(lad
->extLength
) & UDF_EXTENT_LENGTH_MASK
;
1830 udf_debug("alloc_type = %d unsupported\n", UDF_I_ALLOCTYPE(inode
));
1837 static int8_t udf_insert_aext(struct inode
*inode
, struct extent_position epos
,
1838 kernel_lb_addr neloc
, uint32_t nelen
)
1840 kernel_lb_addr oeloc
;
1847 while ((etype
= udf_next_aext(inode
, &epos
, &oeloc
, &oelen
, 0)) != -1) {
1848 udf_write_aext(inode
, &epos
, neloc
, nelen
, 1);
1850 nelen
= (etype
<< 30) | oelen
;
1852 udf_add_aext(inode
, &epos
, neloc
, nelen
, 1);
1855 return (nelen
>> 30);
1858 int8_t udf_delete_aext(struct inode
* inode
, struct extent_position epos
,
1859 kernel_lb_addr eloc
, uint32_t elen
)
1861 struct extent_position oepos
;
1864 struct allocExtDesc
*aed
;
1871 if (UDF_I_ALLOCTYPE(inode
) == ICBTAG_FLAG_AD_SHORT
)
1872 adsize
= sizeof(short_ad
);
1873 else if (UDF_I_ALLOCTYPE(inode
) == ICBTAG_FLAG_AD_LONG
)
1874 adsize
= sizeof(long_ad
);
1879 if (udf_next_aext(inode
, &epos
, &eloc
, &elen
, 1) == -1)
1882 while ((etype
= udf_next_aext(inode
, &epos
, &eloc
, &elen
, 1)) != -1) {
1883 udf_write_aext(inode
, &oepos
, eloc
, (etype
<< 30) | elen
, 1);
1884 if (oepos
.bh
!= epos
.bh
) {
1885 oepos
.block
= epos
.block
;
1889 oepos
.offset
= epos
.offset
- adsize
;
1892 memset(&eloc
, 0x00, sizeof(kernel_lb_addr
));
1895 if (epos
.bh
!= oepos
.bh
) {
1896 udf_free_blocks(inode
->i_sb
, inode
, epos
.block
, 0, 1);
1897 udf_write_aext(inode
, &oepos
, eloc
, elen
, 1);
1898 udf_write_aext(inode
, &oepos
, eloc
, elen
, 1);
1900 UDF_I_LENALLOC(inode
) -= (adsize
* 2);
1901 mark_inode_dirty(inode
);
1903 aed
= (struct allocExtDesc
*)oepos
.bh
->b_data
;
1904 aed
->lengthAllocDescs
=
1905 cpu_to_le32(le32_to_cpu(aed
->lengthAllocDescs
) - (2 * adsize
));
1906 if (!UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_STRICT
) ||
1907 UDF_SB_UDFREV(inode
->i_sb
) >= 0x0201)
1908 udf_update_tag(oepos
.bh
->b_data
, oepos
.offset
- (2 * adsize
));
1910 udf_update_tag(oepos
.bh
->b_data
, sizeof(struct allocExtDesc
));
1911 mark_buffer_dirty_inode(oepos
.bh
, inode
);
1914 udf_write_aext(inode
, &oepos
, eloc
, elen
, 1);
1916 UDF_I_LENALLOC(inode
) -= adsize
;
1917 mark_inode_dirty(inode
);
1919 aed
= (struct allocExtDesc
*)oepos
.bh
->b_data
;
1920 aed
->lengthAllocDescs
=
1921 cpu_to_le32(le32_to_cpu(aed
->lengthAllocDescs
) - adsize
);
1922 if (!UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_STRICT
) ||
1923 UDF_SB_UDFREV(inode
->i_sb
) >= 0x0201)
1924 udf_update_tag(oepos
.bh
->b_data
, epos
.offset
- adsize
);
1926 udf_update_tag(oepos
.bh
->b_data
, sizeof(struct allocExtDesc
));
1927 mark_buffer_dirty_inode(oepos
.bh
, inode
);
1934 return (elen
>> 30);
1937 int8_t inode_bmap(struct inode
* inode
, sector_t block
,
1938 struct extent_position
* pos
, kernel_lb_addr
* eloc
,
1939 uint32_t * elen
, sector_t
* offset
)
1941 loff_t lbcount
= 0, bcount
=
1942 (loff_t
) block
<< inode
->i_sb
->s_blocksize_bits
;
1946 printk(KERN_ERR
"udf: inode_bmap: block < 0\n");
1951 pos
->block
= UDF_I_LOCATION(inode
);
1956 if ((etype
= udf_next_aext(inode
, pos
, eloc
, elen
, 1)) == -1) {
1957 *offset
= (bcount
- lbcount
) >> inode
->i_sb
->s_blocksize_bits
;
1958 UDF_I_LENEXTENTS(inode
) = lbcount
;
1962 } while (lbcount
<= bcount
);
1964 *offset
= (bcount
+ *elen
- lbcount
) >> inode
->i_sb
->s_blocksize_bits
;
1969 long udf_block_map(struct inode
*inode
, sector_t block
)
1971 kernel_lb_addr eloc
;
1974 struct extent_position epos
= {};
1979 if (inode_bmap(inode
, block
, &epos
, &eloc
, &elen
, &offset
) == (EXT_RECORDED_ALLOCATED
>> 30))
1980 ret
= udf_get_lb_pblock(inode
->i_sb
, eloc
, offset
);
1987 if (UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_VARCONV
))
1988 return udf_fixed_to_variable(ret
);