ARM: implement CONFIG_STRICT_DEVMEM by disabling access to RAM via /dev/mem
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / raid1.c
blobad83a4dcadc3ed7cafa914d2e4dcb7ef1a939fdf
1 /*
2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/seq_file.h>
38 #include "md.h"
39 #include "raid1.h"
40 #include "bitmap.h"
42 #define DEBUG 0
43 #if DEBUG
44 #define PRINTK(x...) printk(x)
45 #else
46 #define PRINTK(x...)
47 #endif
50 * Number of guaranteed r1bios in case of extreme VM load:
52 #define NR_RAID1_BIOS 256
55 static void unplug_slaves(mddev_t *mddev);
57 static void allow_barrier(conf_t *conf);
58 static void lower_barrier(conf_t *conf);
60 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
62 struct pool_info *pi = data;
63 r1bio_t *r1_bio;
64 int size = offsetof(r1bio_t, bios[pi->raid_disks]);
66 /* allocate a r1bio with room for raid_disks entries in the bios array */
67 r1_bio = kzalloc(size, gfp_flags);
68 if (!r1_bio && pi->mddev)
69 unplug_slaves(pi->mddev);
71 return r1_bio;
74 static void r1bio_pool_free(void *r1_bio, void *data)
76 kfree(r1_bio);
79 #define RESYNC_BLOCK_SIZE (64*1024)
80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
83 #define RESYNC_WINDOW (2048*1024)
85 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
87 struct pool_info *pi = data;
88 struct page *page;
89 r1bio_t *r1_bio;
90 struct bio *bio;
91 int i, j;
93 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
94 if (!r1_bio) {
95 unplug_slaves(pi->mddev);
96 return NULL;
100 * Allocate bios : 1 for reading, n-1 for writing
102 for (j = pi->raid_disks ; j-- ; ) {
103 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
104 if (!bio)
105 goto out_free_bio;
106 r1_bio->bios[j] = bio;
109 * Allocate RESYNC_PAGES data pages and attach them to
110 * the first bio.
111 * If this is a user-requested check/repair, allocate
112 * RESYNC_PAGES for each bio.
114 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
115 j = pi->raid_disks;
116 else
117 j = 1;
118 while(j--) {
119 bio = r1_bio->bios[j];
120 for (i = 0; i < RESYNC_PAGES; i++) {
121 page = alloc_page(gfp_flags);
122 if (unlikely(!page))
123 goto out_free_pages;
125 bio->bi_io_vec[i].bv_page = page;
126 bio->bi_vcnt = i+1;
129 /* If not user-requests, copy the page pointers to all bios */
130 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
131 for (i=0; i<RESYNC_PAGES ; i++)
132 for (j=1; j<pi->raid_disks; j++)
133 r1_bio->bios[j]->bi_io_vec[i].bv_page =
134 r1_bio->bios[0]->bi_io_vec[i].bv_page;
137 r1_bio->master_bio = NULL;
139 return r1_bio;
141 out_free_pages:
142 for (j=0 ; j < pi->raid_disks; j++)
143 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
144 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
145 j = -1;
146 out_free_bio:
147 while ( ++j < pi->raid_disks )
148 bio_put(r1_bio->bios[j]);
149 r1bio_pool_free(r1_bio, data);
150 return NULL;
153 static void r1buf_pool_free(void *__r1_bio, void *data)
155 struct pool_info *pi = data;
156 int i,j;
157 r1bio_t *r1bio = __r1_bio;
159 for (i = 0; i < RESYNC_PAGES; i++)
160 for (j = pi->raid_disks; j-- ;) {
161 if (j == 0 ||
162 r1bio->bios[j]->bi_io_vec[i].bv_page !=
163 r1bio->bios[0]->bi_io_vec[i].bv_page)
164 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
166 for (i=0 ; i < pi->raid_disks; i++)
167 bio_put(r1bio->bios[i]);
169 r1bio_pool_free(r1bio, data);
172 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
174 int i;
176 for (i = 0; i < conf->raid_disks; i++) {
177 struct bio **bio = r1_bio->bios + i;
178 if (*bio && *bio != IO_BLOCKED)
179 bio_put(*bio);
180 *bio = NULL;
184 static void free_r1bio(r1bio_t *r1_bio)
186 conf_t *conf = r1_bio->mddev->private;
189 * Wake up any possible resync thread that waits for the device
190 * to go idle.
192 allow_barrier(conf);
194 put_all_bios(conf, r1_bio);
195 mempool_free(r1_bio, conf->r1bio_pool);
198 static void put_buf(r1bio_t *r1_bio)
200 conf_t *conf = r1_bio->mddev->private;
201 int i;
203 for (i=0; i<conf->raid_disks; i++) {
204 struct bio *bio = r1_bio->bios[i];
205 if (bio->bi_end_io)
206 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
209 mempool_free(r1_bio, conf->r1buf_pool);
211 lower_barrier(conf);
214 static void reschedule_retry(r1bio_t *r1_bio)
216 unsigned long flags;
217 mddev_t *mddev = r1_bio->mddev;
218 conf_t *conf = mddev->private;
220 spin_lock_irqsave(&conf->device_lock, flags);
221 list_add(&r1_bio->retry_list, &conf->retry_list);
222 conf->nr_queued ++;
223 spin_unlock_irqrestore(&conf->device_lock, flags);
225 wake_up(&conf->wait_barrier);
226 md_wakeup_thread(mddev->thread);
230 * raid_end_bio_io() is called when we have finished servicing a mirrored
231 * operation and are ready to return a success/failure code to the buffer
232 * cache layer.
234 static void raid_end_bio_io(r1bio_t *r1_bio)
236 struct bio *bio = r1_bio->master_bio;
238 /* if nobody has done the final endio yet, do it now */
239 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
240 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
241 (bio_data_dir(bio) == WRITE) ? "write" : "read",
242 (unsigned long long) bio->bi_sector,
243 (unsigned long long) bio->bi_sector +
244 (bio->bi_size >> 9) - 1);
246 bio_endio(bio,
247 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
249 free_r1bio(r1_bio);
253 * Update disk head position estimator based on IRQ completion info.
255 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
257 conf_t *conf = r1_bio->mddev->private;
259 conf->mirrors[disk].head_position =
260 r1_bio->sector + (r1_bio->sectors);
263 static void raid1_end_read_request(struct bio *bio, int error)
265 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
266 r1bio_t *r1_bio = bio->bi_private;
267 int mirror;
268 conf_t *conf = r1_bio->mddev->private;
270 mirror = r1_bio->read_disk;
272 * this branch is our 'one mirror IO has finished' event handler:
274 update_head_pos(mirror, r1_bio);
276 if (uptodate)
277 set_bit(R1BIO_Uptodate, &r1_bio->state);
278 else {
279 /* If all other devices have failed, we want to return
280 * the error upwards rather than fail the last device.
281 * Here we redefine "uptodate" to mean "Don't want to retry"
283 unsigned long flags;
284 spin_lock_irqsave(&conf->device_lock, flags);
285 if (r1_bio->mddev->degraded == conf->raid_disks ||
286 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
287 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
288 uptodate = 1;
289 spin_unlock_irqrestore(&conf->device_lock, flags);
292 if (uptodate)
293 raid_end_bio_io(r1_bio);
294 else {
296 * oops, read error:
298 char b[BDEVNAME_SIZE];
299 if (printk_ratelimit())
300 printk(KERN_ERR "md/raid1:%s: %s: rescheduling sector %llu\n",
301 mdname(conf->mddev),
302 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
303 reschedule_retry(r1_bio);
306 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
309 static void raid1_end_write_request(struct bio *bio, int error)
311 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
312 r1bio_t *r1_bio = bio->bi_private;
313 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
314 conf_t *conf = r1_bio->mddev->private;
315 struct bio *to_put = NULL;
318 for (mirror = 0; mirror < conf->raid_disks; mirror++)
319 if (r1_bio->bios[mirror] == bio)
320 break;
322 if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
323 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
324 set_bit(R1BIO_BarrierRetry, &r1_bio->state);
325 r1_bio->mddev->barriers_work = 0;
326 /* Don't rdev_dec_pending in this branch - keep it for the retry */
327 } else {
329 * this branch is our 'one mirror IO has finished' event handler:
331 r1_bio->bios[mirror] = NULL;
332 to_put = bio;
333 if (!uptodate) {
334 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
335 /* an I/O failed, we can't clear the bitmap */
336 set_bit(R1BIO_Degraded, &r1_bio->state);
337 } else
339 * Set R1BIO_Uptodate in our master bio, so that
340 * we will return a good error code for to the higher
341 * levels even if IO on some other mirrored buffer fails.
343 * The 'master' represents the composite IO operation to
344 * user-side. So if something waits for IO, then it will
345 * wait for the 'master' bio.
347 set_bit(R1BIO_Uptodate, &r1_bio->state);
349 update_head_pos(mirror, r1_bio);
351 if (behind) {
352 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
353 atomic_dec(&r1_bio->behind_remaining);
355 /* In behind mode, we ACK the master bio once the I/O has safely
356 * reached all non-writemostly disks. Setting the Returned bit
357 * ensures that this gets done only once -- we don't ever want to
358 * return -EIO here, instead we'll wait */
360 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
361 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
362 /* Maybe we can return now */
363 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
364 struct bio *mbio = r1_bio->master_bio;
365 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
366 (unsigned long long) mbio->bi_sector,
367 (unsigned long long) mbio->bi_sector +
368 (mbio->bi_size >> 9) - 1);
369 bio_endio(mbio, 0);
373 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
377 * Let's see if all mirrored write operations have finished
378 * already.
380 if (atomic_dec_and_test(&r1_bio->remaining)) {
381 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state))
382 reschedule_retry(r1_bio);
383 else {
384 /* it really is the end of this request */
385 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
386 /* free extra copy of the data pages */
387 int i = bio->bi_vcnt;
388 while (i--)
389 safe_put_page(bio->bi_io_vec[i].bv_page);
391 /* clear the bitmap if all writes complete successfully */
392 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
393 r1_bio->sectors,
394 !test_bit(R1BIO_Degraded, &r1_bio->state),
395 behind);
396 md_write_end(r1_bio->mddev);
397 raid_end_bio_io(r1_bio);
401 if (to_put)
402 bio_put(to_put);
407 * This routine returns the disk from which the requested read should
408 * be done. There is a per-array 'next expected sequential IO' sector
409 * number - if this matches on the next IO then we use the last disk.
410 * There is also a per-disk 'last know head position' sector that is
411 * maintained from IRQ contexts, both the normal and the resync IO
412 * completion handlers update this position correctly. If there is no
413 * perfect sequential match then we pick the disk whose head is closest.
415 * If there are 2 mirrors in the same 2 devices, performance degrades
416 * because position is mirror, not device based.
418 * The rdev for the device selected will have nr_pending incremented.
420 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
422 const sector_t this_sector = r1_bio->sector;
423 int new_disk = conf->last_used, disk = new_disk;
424 int wonly_disk = -1;
425 const int sectors = r1_bio->sectors;
426 sector_t new_distance, current_distance;
427 mdk_rdev_t *rdev;
429 rcu_read_lock();
431 * Check if we can balance. We can balance on the whole
432 * device if no resync is going on, or below the resync window.
433 * We take the first readable disk when above the resync window.
435 retry:
436 if (conf->mddev->recovery_cp < MaxSector &&
437 (this_sector + sectors >= conf->next_resync)) {
438 /* Choose the first operational device, for consistancy */
439 new_disk = 0;
441 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
442 r1_bio->bios[new_disk] == IO_BLOCKED ||
443 !rdev || !test_bit(In_sync, &rdev->flags)
444 || test_bit(WriteMostly, &rdev->flags);
445 rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
447 if (rdev && test_bit(In_sync, &rdev->flags) &&
448 r1_bio->bios[new_disk] != IO_BLOCKED)
449 wonly_disk = new_disk;
451 if (new_disk == conf->raid_disks - 1) {
452 new_disk = wonly_disk;
453 break;
456 goto rb_out;
460 /* make sure the disk is operational */
461 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
462 r1_bio->bios[new_disk] == IO_BLOCKED ||
463 !rdev || !test_bit(In_sync, &rdev->flags) ||
464 test_bit(WriteMostly, &rdev->flags);
465 rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
467 if (rdev && test_bit(In_sync, &rdev->flags) &&
468 r1_bio->bios[new_disk] != IO_BLOCKED)
469 wonly_disk = new_disk;
471 if (new_disk <= 0)
472 new_disk = conf->raid_disks;
473 new_disk--;
474 if (new_disk == disk) {
475 new_disk = wonly_disk;
476 break;
480 if (new_disk < 0)
481 goto rb_out;
483 disk = new_disk;
484 /* now disk == new_disk == starting point for search */
487 * Don't change to another disk for sequential reads:
489 if (conf->next_seq_sect == this_sector)
490 goto rb_out;
491 if (this_sector == conf->mirrors[new_disk].head_position)
492 goto rb_out;
494 current_distance = abs(this_sector - conf->mirrors[disk].head_position);
496 /* Find the disk whose head is closest */
498 do {
499 if (disk <= 0)
500 disk = conf->raid_disks;
501 disk--;
503 rdev = rcu_dereference(conf->mirrors[disk].rdev);
505 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
506 !test_bit(In_sync, &rdev->flags) ||
507 test_bit(WriteMostly, &rdev->flags))
508 continue;
510 if (!atomic_read(&rdev->nr_pending)) {
511 new_disk = disk;
512 break;
514 new_distance = abs(this_sector - conf->mirrors[disk].head_position);
515 if (new_distance < current_distance) {
516 current_distance = new_distance;
517 new_disk = disk;
519 } while (disk != conf->last_used);
521 rb_out:
524 if (new_disk >= 0) {
525 rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
526 if (!rdev)
527 goto retry;
528 atomic_inc(&rdev->nr_pending);
529 if (!test_bit(In_sync, &rdev->flags)) {
530 /* cannot risk returning a device that failed
531 * before we inc'ed nr_pending
533 rdev_dec_pending(rdev, conf->mddev);
534 goto retry;
536 conf->next_seq_sect = this_sector + sectors;
537 conf->last_used = new_disk;
539 rcu_read_unlock();
541 return new_disk;
544 static void unplug_slaves(mddev_t *mddev)
546 conf_t *conf = mddev->private;
547 int i;
549 rcu_read_lock();
550 for (i=0; i<mddev->raid_disks; i++) {
551 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
552 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
553 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
555 atomic_inc(&rdev->nr_pending);
556 rcu_read_unlock();
558 blk_unplug(r_queue);
560 rdev_dec_pending(rdev, mddev);
561 rcu_read_lock();
564 rcu_read_unlock();
567 static void raid1_unplug(struct request_queue *q)
569 mddev_t *mddev = q->queuedata;
571 unplug_slaves(mddev);
572 md_wakeup_thread(mddev->thread);
575 static int raid1_congested(void *data, int bits)
577 mddev_t *mddev = data;
578 conf_t *conf = mddev->private;
579 int i, ret = 0;
581 if (mddev_congested(mddev, bits))
582 return 1;
584 rcu_read_lock();
585 for (i = 0; i < mddev->raid_disks; i++) {
586 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
587 if (rdev && !test_bit(Faulty, &rdev->flags)) {
588 struct request_queue *q = bdev_get_queue(rdev->bdev);
590 /* Note the '|| 1' - when read_balance prefers
591 * non-congested targets, it can be removed
593 if ((bits & (1<<BDI_async_congested)) || 1)
594 ret |= bdi_congested(&q->backing_dev_info, bits);
595 else
596 ret &= bdi_congested(&q->backing_dev_info, bits);
599 rcu_read_unlock();
600 return ret;
604 static int flush_pending_writes(conf_t *conf)
606 /* Any writes that have been queued but are awaiting
607 * bitmap updates get flushed here.
608 * We return 1 if any requests were actually submitted.
610 int rv = 0;
612 spin_lock_irq(&conf->device_lock);
614 if (conf->pending_bio_list.head) {
615 struct bio *bio;
616 bio = bio_list_get(&conf->pending_bio_list);
617 blk_remove_plug(conf->mddev->queue);
618 spin_unlock_irq(&conf->device_lock);
619 /* flush any pending bitmap writes to
620 * disk before proceeding w/ I/O */
621 bitmap_unplug(conf->mddev->bitmap);
623 while (bio) { /* submit pending writes */
624 struct bio *next = bio->bi_next;
625 bio->bi_next = NULL;
626 generic_make_request(bio);
627 bio = next;
629 rv = 1;
630 } else
631 spin_unlock_irq(&conf->device_lock);
632 return rv;
635 /* Barriers....
636 * Sometimes we need to suspend IO while we do something else,
637 * either some resync/recovery, or reconfigure the array.
638 * To do this we raise a 'barrier'.
639 * The 'barrier' is a counter that can be raised multiple times
640 * to count how many activities are happening which preclude
641 * normal IO.
642 * We can only raise the barrier if there is no pending IO.
643 * i.e. if nr_pending == 0.
644 * We choose only to raise the barrier if no-one is waiting for the
645 * barrier to go down. This means that as soon as an IO request
646 * is ready, no other operations which require a barrier will start
647 * until the IO request has had a chance.
649 * So: regular IO calls 'wait_barrier'. When that returns there
650 * is no backgroup IO happening, It must arrange to call
651 * allow_barrier when it has finished its IO.
652 * backgroup IO calls must call raise_barrier. Once that returns
653 * there is no normal IO happeing. It must arrange to call
654 * lower_barrier when the particular background IO completes.
656 #define RESYNC_DEPTH 32
658 static void raise_barrier(conf_t *conf)
660 spin_lock_irq(&conf->resync_lock);
662 /* Wait until no block IO is waiting */
663 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
664 conf->resync_lock,
665 raid1_unplug(conf->mddev->queue));
667 /* block any new IO from starting */
668 conf->barrier++;
670 /* No wait for all pending IO to complete */
671 wait_event_lock_irq(conf->wait_barrier,
672 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
673 conf->resync_lock,
674 raid1_unplug(conf->mddev->queue));
676 spin_unlock_irq(&conf->resync_lock);
679 static void lower_barrier(conf_t *conf)
681 unsigned long flags;
682 BUG_ON(conf->barrier <= 0);
683 spin_lock_irqsave(&conf->resync_lock, flags);
684 conf->barrier--;
685 spin_unlock_irqrestore(&conf->resync_lock, flags);
686 wake_up(&conf->wait_barrier);
689 static void wait_barrier(conf_t *conf)
691 spin_lock_irq(&conf->resync_lock);
692 if (conf->barrier) {
693 conf->nr_waiting++;
694 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
695 conf->resync_lock,
696 raid1_unplug(conf->mddev->queue));
697 conf->nr_waiting--;
699 conf->nr_pending++;
700 spin_unlock_irq(&conf->resync_lock);
703 static void allow_barrier(conf_t *conf)
705 unsigned long flags;
706 spin_lock_irqsave(&conf->resync_lock, flags);
707 conf->nr_pending--;
708 spin_unlock_irqrestore(&conf->resync_lock, flags);
709 wake_up(&conf->wait_barrier);
712 static void freeze_array(conf_t *conf)
714 /* stop syncio and normal IO and wait for everything to
715 * go quite.
716 * We increment barrier and nr_waiting, and then
717 * wait until nr_pending match nr_queued+1
718 * This is called in the context of one normal IO request
719 * that has failed. Thus any sync request that might be pending
720 * will be blocked by nr_pending, and we need to wait for
721 * pending IO requests to complete or be queued for re-try.
722 * Thus the number queued (nr_queued) plus this request (1)
723 * must match the number of pending IOs (nr_pending) before
724 * we continue.
726 spin_lock_irq(&conf->resync_lock);
727 conf->barrier++;
728 conf->nr_waiting++;
729 wait_event_lock_irq(conf->wait_barrier,
730 conf->nr_pending == conf->nr_queued+1,
731 conf->resync_lock,
732 ({ flush_pending_writes(conf);
733 raid1_unplug(conf->mddev->queue); }));
734 spin_unlock_irq(&conf->resync_lock);
736 static void unfreeze_array(conf_t *conf)
738 /* reverse the effect of the freeze */
739 spin_lock_irq(&conf->resync_lock);
740 conf->barrier--;
741 conf->nr_waiting--;
742 wake_up(&conf->wait_barrier);
743 spin_unlock_irq(&conf->resync_lock);
747 /* duplicate the data pages for behind I/O */
748 static struct page **alloc_behind_pages(struct bio *bio)
750 int i;
751 struct bio_vec *bvec;
752 struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
753 GFP_NOIO);
754 if (unlikely(!pages))
755 goto do_sync_io;
757 bio_for_each_segment(bvec, bio, i) {
758 pages[i] = alloc_page(GFP_NOIO);
759 if (unlikely(!pages[i]))
760 goto do_sync_io;
761 memcpy(kmap(pages[i]) + bvec->bv_offset,
762 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
763 kunmap(pages[i]);
764 kunmap(bvec->bv_page);
767 return pages;
769 do_sync_io:
770 if (pages)
771 for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
772 put_page(pages[i]);
773 kfree(pages);
774 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
775 return NULL;
778 static int make_request(mddev_t *mddev, struct bio * bio)
780 conf_t *conf = mddev->private;
781 mirror_info_t *mirror;
782 r1bio_t *r1_bio;
783 struct bio *read_bio;
784 int i, targets = 0, disks;
785 struct bitmap *bitmap;
786 unsigned long flags;
787 struct bio_list bl;
788 struct page **behind_pages = NULL;
789 const int rw = bio_data_dir(bio);
790 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
791 unsigned long do_barriers;
792 mdk_rdev_t *blocked_rdev;
795 * Register the new request and wait if the reconstruction
796 * thread has put up a bar for new requests.
797 * Continue immediately if no resync is active currently.
798 * We test barriers_work *after* md_write_start as md_write_start
799 * may cause the first superblock write, and that will check out
800 * if barriers work.
803 md_write_start(mddev, bio); /* wait on superblock update early */
805 if (bio_data_dir(bio) == WRITE &&
806 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
807 bio->bi_sector < mddev->suspend_hi) {
808 /* As the suspend_* range is controlled by
809 * userspace, we want an interruptible
810 * wait.
812 DEFINE_WAIT(w);
813 for (;;) {
814 flush_signals(current);
815 prepare_to_wait(&conf->wait_barrier,
816 &w, TASK_INTERRUPTIBLE);
817 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
818 bio->bi_sector >= mddev->suspend_hi)
819 break;
820 schedule();
822 finish_wait(&conf->wait_barrier, &w);
824 if (unlikely(!mddev->barriers_work &&
825 (bio->bi_rw & REQ_HARDBARRIER))) {
826 if (rw == WRITE)
827 md_write_end(mddev);
828 bio_endio(bio, -EOPNOTSUPP);
829 return 0;
832 wait_barrier(conf);
834 bitmap = mddev->bitmap;
837 * make_request() can abort the operation when READA is being
838 * used and no empty request is available.
841 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
843 r1_bio->master_bio = bio;
844 r1_bio->sectors = bio->bi_size >> 9;
845 r1_bio->state = 0;
846 r1_bio->mddev = mddev;
847 r1_bio->sector = bio->bi_sector;
849 if (rw == READ) {
851 * read balancing logic:
853 int rdisk = read_balance(conf, r1_bio);
855 if (rdisk < 0) {
856 /* couldn't find anywhere to read from */
857 raid_end_bio_io(r1_bio);
858 return 0;
860 mirror = conf->mirrors + rdisk;
862 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
863 bitmap) {
864 /* Reading from a write-mostly device must
865 * take care not to over-take any writes
866 * that are 'behind'
868 wait_event(bitmap->behind_wait,
869 atomic_read(&bitmap->behind_writes) == 0);
871 r1_bio->read_disk = rdisk;
873 read_bio = bio_clone(bio, GFP_NOIO);
875 r1_bio->bios[rdisk] = read_bio;
877 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
878 read_bio->bi_bdev = mirror->rdev->bdev;
879 read_bio->bi_end_io = raid1_end_read_request;
880 read_bio->bi_rw = READ | do_sync;
881 read_bio->bi_private = r1_bio;
883 generic_make_request(read_bio);
884 return 0;
888 * WRITE:
890 /* first select target devices under spinlock and
891 * inc refcount on their rdev. Record them by setting
892 * bios[x] to bio
894 disks = conf->raid_disks;
895 #if 0
896 { static int first=1;
897 if (first) printk("First Write sector %llu disks %d\n",
898 (unsigned long long)r1_bio->sector, disks);
899 first = 0;
901 #endif
902 retry_write:
903 blocked_rdev = NULL;
904 rcu_read_lock();
905 for (i = 0; i < disks; i++) {
906 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
907 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
908 atomic_inc(&rdev->nr_pending);
909 blocked_rdev = rdev;
910 break;
912 if (rdev && !test_bit(Faulty, &rdev->flags)) {
913 atomic_inc(&rdev->nr_pending);
914 if (test_bit(Faulty, &rdev->flags)) {
915 rdev_dec_pending(rdev, mddev);
916 r1_bio->bios[i] = NULL;
917 } else {
918 r1_bio->bios[i] = bio;
919 targets++;
921 } else
922 r1_bio->bios[i] = NULL;
924 rcu_read_unlock();
926 if (unlikely(blocked_rdev)) {
927 /* Wait for this device to become unblocked */
928 int j;
930 for (j = 0; j < i; j++)
931 if (r1_bio->bios[j])
932 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
934 allow_barrier(conf);
935 md_wait_for_blocked_rdev(blocked_rdev, mddev);
936 wait_barrier(conf);
937 goto retry_write;
940 BUG_ON(targets == 0); /* we never fail the last device */
942 if (targets < conf->raid_disks) {
943 /* array is degraded, we will not clear the bitmap
944 * on I/O completion (see raid1_end_write_request) */
945 set_bit(R1BIO_Degraded, &r1_bio->state);
948 /* do behind I/O ?
949 * Not if there are too many, or cannot allocate memory,
950 * or a reader on WriteMostly is waiting for behind writes
951 * to flush */
952 if (bitmap &&
953 (atomic_read(&bitmap->behind_writes)
954 < mddev->bitmap_info.max_write_behind) &&
955 !waitqueue_active(&bitmap->behind_wait) &&
956 (behind_pages = alloc_behind_pages(bio)) != NULL)
957 set_bit(R1BIO_BehindIO, &r1_bio->state);
959 atomic_set(&r1_bio->remaining, 0);
960 atomic_set(&r1_bio->behind_remaining, 0);
962 do_barriers = bio->bi_rw & REQ_HARDBARRIER;
963 if (do_barriers)
964 set_bit(R1BIO_Barrier, &r1_bio->state);
966 bio_list_init(&bl);
967 for (i = 0; i < disks; i++) {
968 struct bio *mbio;
969 if (!r1_bio->bios[i])
970 continue;
972 mbio = bio_clone(bio, GFP_NOIO);
973 r1_bio->bios[i] = mbio;
975 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
976 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
977 mbio->bi_end_io = raid1_end_write_request;
978 mbio->bi_rw = WRITE | do_barriers | do_sync;
979 mbio->bi_private = r1_bio;
981 if (behind_pages) {
982 struct bio_vec *bvec;
983 int j;
985 /* Yes, I really want the '__' version so that
986 * we clear any unused pointer in the io_vec, rather
987 * than leave them unchanged. This is important
988 * because when we come to free the pages, we won't
989 * know the originial bi_idx, so we just free
990 * them all
992 __bio_for_each_segment(bvec, mbio, j, 0)
993 bvec->bv_page = behind_pages[j];
994 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
995 atomic_inc(&r1_bio->behind_remaining);
998 atomic_inc(&r1_bio->remaining);
1000 bio_list_add(&bl, mbio);
1002 kfree(behind_pages); /* the behind pages are attached to the bios now */
1004 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
1005 test_bit(R1BIO_BehindIO, &r1_bio->state));
1006 spin_lock_irqsave(&conf->device_lock, flags);
1007 bio_list_merge(&conf->pending_bio_list, &bl);
1008 bio_list_init(&bl);
1010 blk_plug_device(mddev->queue);
1011 spin_unlock_irqrestore(&conf->device_lock, flags);
1013 /* In case raid1d snuck into freeze_array */
1014 wake_up(&conf->wait_barrier);
1016 if (do_sync)
1017 md_wakeup_thread(mddev->thread);
1018 #if 0
1019 while ((bio = bio_list_pop(&bl)) != NULL)
1020 generic_make_request(bio);
1021 #endif
1023 return 0;
1026 static void status(struct seq_file *seq, mddev_t *mddev)
1028 conf_t *conf = mddev->private;
1029 int i;
1031 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1032 conf->raid_disks - mddev->degraded);
1033 rcu_read_lock();
1034 for (i = 0; i < conf->raid_disks; i++) {
1035 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1036 seq_printf(seq, "%s",
1037 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1039 rcu_read_unlock();
1040 seq_printf(seq, "]");
1044 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1046 char b[BDEVNAME_SIZE];
1047 conf_t *conf = mddev->private;
1050 * If it is not operational, then we have already marked it as dead
1051 * else if it is the last working disks, ignore the error, let the
1052 * next level up know.
1053 * else mark the drive as failed
1055 if (test_bit(In_sync, &rdev->flags)
1056 && (conf->raid_disks - mddev->degraded) == 1) {
1058 * Don't fail the drive, act as though we were just a
1059 * normal single drive.
1060 * However don't try a recovery from this drive as
1061 * it is very likely to fail.
1063 mddev->recovery_disabled = 1;
1064 return;
1066 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1067 unsigned long flags;
1068 spin_lock_irqsave(&conf->device_lock, flags);
1069 mddev->degraded++;
1070 set_bit(Faulty, &rdev->flags);
1071 spin_unlock_irqrestore(&conf->device_lock, flags);
1073 * if recovery is running, make sure it aborts.
1075 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1076 } else
1077 set_bit(Faulty, &rdev->flags);
1078 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1079 printk(KERN_ALERT "md/raid1:%s: Disk failure on %s, disabling device.\n"
1080 KERN_ALERT "md/raid1:%s: Operation continuing on %d devices.\n",
1081 mdname(mddev), bdevname(rdev->bdev, b),
1082 mdname(mddev), conf->raid_disks - mddev->degraded);
1085 static void print_conf(conf_t *conf)
1087 int i;
1089 printk(KERN_DEBUG "RAID1 conf printout:\n");
1090 if (!conf) {
1091 printk(KERN_DEBUG "(!conf)\n");
1092 return;
1094 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1095 conf->raid_disks);
1097 rcu_read_lock();
1098 for (i = 0; i < conf->raid_disks; i++) {
1099 char b[BDEVNAME_SIZE];
1100 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1101 if (rdev)
1102 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1103 i, !test_bit(In_sync, &rdev->flags),
1104 !test_bit(Faulty, &rdev->flags),
1105 bdevname(rdev->bdev,b));
1107 rcu_read_unlock();
1110 static void close_sync(conf_t *conf)
1112 wait_barrier(conf);
1113 allow_barrier(conf);
1115 mempool_destroy(conf->r1buf_pool);
1116 conf->r1buf_pool = NULL;
1119 static int raid1_spare_active(mddev_t *mddev)
1121 int i;
1122 conf_t *conf = mddev->private;
1123 int count = 0;
1124 unsigned long flags;
1127 * Find all failed disks within the RAID1 configuration
1128 * and mark them readable.
1129 * Called under mddev lock, so rcu protection not needed.
1131 for (i = 0; i < conf->raid_disks; i++) {
1132 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1133 if (rdev
1134 && !test_bit(Faulty, &rdev->flags)
1135 && !test_and_set_bit(In_sync, &rdev->flags)) {
1136 count++;
1137 sysfs_notify_dirent(rdev->sysfs_state);
1140 spin_lock_irqsave(&conf->device_lock, flags);
1141 mddev->degraded -= count;
1142 spin_unlock_irqrestore(&conf->device_lock, flags);
1144 print_conf(conf);
1145 return count;
1149 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1151 conf_t *conf = mddev->private;
1152 int err = -EEXIST;
1153 int mirror = 0;
1154 mirror_info_t *p;
1155 int first = 0;
1156 int last = mddev->raid_disks - 1;
1158 if (rdev->raid_disk >= 0)
1159 first = last = rdev->raid_disk;
1161 for (mirror = first; mirror <= last; mirror++)
1162 if ( !(p=conf->mirrors+mirror)->rdev) {
1164 disk_stack_limits(mddev->gendisk, rdev->bdev,
1165 rdev->data_offset << 9);
1166 /* as we don't honour merge_bvec_fn, we must
1167 * never risk violating it, so limit
1168 * ->max_segments to one lying with a single
1169 * page, as a one page request is never in
1170 * violation.
1172 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1173 blk_queue_max_segments(mddev->queue, 1);
1174 blk_queue_segment_boundary(mddev->queue,
1175 PAGE_CACHE_SIZE - 1);
1178 p->head_position = 0;
1179 rdev->raid_disk = mirror;
1180 err = 0;
1181 /* As all devices are equivalent, we don't need a full recovery
1182 * if this was recently any drive of the array
1184 if (rdev->saved_raid_disk < 0)
1185 conf->fullsync = 1;
1186 rcu_assign_pointer(p->rdev, rdev);
1187 break;
1189 md_integrity_add_rdev(rdev, mddev);
1190 print_conf(conf);
1191 return err;
1194 static int raid1_remove_disk(mddev_t *mddev, int number)
1196 conf_t *conf = mddev->private;
1197 int err = 0;
1198 mdk_rdev_t *rdev;
1199 mirror_info_t *p = conf->mirrors+ number;
1201 print_conf(conf);
1202 rdev = p->rdev;
1203 if (rdev) {
1204 if (test_bit(In_sync, &rdev->flags) ||
1205 atomic_read(&rdev->nr_pending)) {
1206 err = -EBUSY;
1207 goto abort;
1209 /* Only remove non-faulty devices is recovery
1210 * is not possible.
1212 if (!test_bit(Faulty, &rdev->flags) &&
1213 mddev->degraded < conf->raid_disks) {
1214 err = -EBUSY;
1215 goto abort;
1217 p->rdev = NULL;
1218 synchronize_rcu();
1219 if (atomic_read(&rdev->nr_pending)) {
1220 /* lost the race, try later */
1221 err = -EBUSY;
1222 p->rdev = rdev;
1223 goto abort;
1225 md_integrity_register(mddev);
1227 abort:
1229 print_conf(conf);
1230 return err;
1234 static void end_sync_read(struct bio *bio, int error)
1236 r1bio_t *r1_bio = bio->bi_private;
1237 int i;
1239 for (i=r1_bio->mddev->raid_disks; i--; )
1240 if (r1_bio->bios[i] == bio)
1241 break;
1242 BUG_ON(i < 0);
1243 update_head_pos(i, r1_bio);
1245 * we have read a block, now it needs to be re-written,
1246 * or re-read if the read failed.
1247 * We don't do much here, just schedule handling by raid1d
1249 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1250 set_bit(R1BIO_Uptodate, &r1_bio->state);
1252 if (atomic_dec_and_test(&r1_bio->remaining))
1253 reschedule_retry(r1_bio);
1256 static void end_sync_write(struct bio *bio, int error)
1258 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1259 r1bio_t *r1_bio = bio->bi_private;
1260 mddev_t *mddev = r1_bio->mddev;
1261 conf_t *conf = mddev->private;
1262 int i;
1263 int mirror=0;
1265 for (i = 0; i < conf->raid_disks; i++)
1266 if (r1_bio->bios[i] == bio) {
1267 mirror = i;
1268 break;
1270 if (!uptodate) {
1271 int sync_blocks = 0;
1272 sector_t s = r1_bio->sector;
1273 long sectors_to_go = r1_bio->sectors;
1274 /* make sure these bits doesn't get cleared. */
1275 do {
1276 bitmap_end_sync(mddev->bitmap, s,
1277 &sync_blocks, 1);
1278 s += sync_blocks;
1279 sectors_to_go -= sync_blocks;
1280 } while (sectors_to_go > 0);
1281 md_error(mddev, conf->mirrors[mirror].rdev);
1284 update_head_pos(mirror, r1_bio);
1286 if (atomic_dec_and_test(&r1_bio->remaining)) {
1287 sector_t s = r1_bio->sectors;
1288 put_buf(r1_bio);
1289 md_done_sync(mddev, s, uptodate);
1293 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1295 conf_t *conf = mddev->private;
1296 int i;
1297 int disks = conf->raid_disks;
1298 struct bio *bio, *wbio;
1300 bio = r1_bio->bios[r1_bio->read_disk];
1303 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1304 /* We have read all readable devices. If we haven't
1305 * got the block, then there is no hope left.
1306 * If we have, then we want to do a comparison
1307 * and skip the write if everything is the same.
1308 * If any blocks failed to read, then we need to
1309 * attempt an over-write
1311 int primary;
1312 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1313 for (i=0; i<mddev->raid_disks; i++)
1314 if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1315 md_error(mddev, conf->mirrors[i].rdev);
1317 md_done_sync(mddev, r1_bio->sectors, 1);
1318 put_buf(r1_bio);
1319 return;
1321 for (primary=0; primary<mddev->raid_disks; primary++)
1322 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1323 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1324 r1_bio->bios[primary]->bi_end_io = NULL;
1325 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1326 break;
1328 r1_bio->read_disk = primary;
1329 for (i=0; i<mddev->raid_disks; i++)
1330 if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
1331 int j;
1332 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1333 struct bio *pbio = r1_bio->bios[primary];
1334 struct bio *sbio = r1_bio->bios[i];
1336 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1337 for (j = vcnt; j-- ; ) {
1338 struct page *p, *s;
1339 p = pbio->bi_io_vec[j].bv_page;
1340 s = sbio->bi_io_vec[j].bv_page;
1341 if (memcmp(page_address(p),
1342 page_address(s),
1343 PAGE_SIZE))
1344 break;
1346 } else
1347 j = 0;
1348 if (j >= 0)
1349 mddev->resync_mismatches += r1_bio->sectors;
1350 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1351 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1352 sbio->bi_end_io = NULL;
1353 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1354 } else {
1355 /* fixup the bio for reuse */
1356 int size;
1357 sbio->bi_vcnt = vcnt;
1358 sbio->bi_size = r1_bio->sectors << 9;
1359 sbio->bi_idx = 0;
1360 sbio->bi_phys_segments = 0;
1361 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1362 sbio->bi_flags |= 1 << BIO_UPTODATE;
1363 sbio->bi_next = NULL;
1364 sbio->bi_sector = r1_bio->sector +
1365 conf->mirrors[i].rdev->data_offset;
1366 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1367 size = sbio->bi_size;
1368 for (j = 0; j < vcnt ; j++) {
1369 struct bio_vec *bi;
1370 bi = &sbio->bi_io_vec[j];
1371 bi->bv_offset = 0;
1372 if (size > PAGE_SIZE)
1373 bi->bv_len = PAGE_SIZE;
1374 else
1375 bi->bv_len = size;
1376 size -= PAGE_SIZE;
1377 memcpy(page_address(bi->bv_page),
1378 page_address(pbio->bi_io_vec[j].bv_page),
1379 PAGE_SIZE);
1385 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1386 /* ouch - failed to read all of that.
1387 * Try some synchronous reads of other devices to get
1388 * good data, much like with normal read errors. Only
1389 * read into the pages we already have so we don't
1390 * need to re-issue the read request.
1391 * We don't need to freeze the array, because being in an
1392 * active sync request, there is no normal IO, and
1393 * no overlapping syncs.
1395 sector_t sect = r1_bio->sector;
1396 int sectors = r1_bio->sectors;
1397 int idx = 0;
1399 while(sectors) {
1400 int s = sectors;
1401 int d = r1_bio->read_disk;
1402 int success = 0;
1403 mdk_rdev_t *rdev;
1405 if (s > (PAGE_SIZE>>9))
1406 s = PAGE_SIZE >> 9;
1407 do {
1408 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1409 /* No rcu protection needed here devices
1410 * can only be removed when no resync is
1411 * active, and resync is currently active
1413 rdev = conf->mirrors[d].rdev;
1414 if (sync_page_io(rdev->bdev,
1415 sect + rdev->data_offset,
1416 s<<9,
1417 bio->bi_io_vec[idx].bv_page,
1418 READ)) {
1419 success = 1;
1420 break;
1423 d++;
1424 if (d == conf->raid_disks)
1425 d = 0;
1426 } while (!success && d != r1_bio->read_disk);
1428 if (success) {
1429 int start = d;
1430 /* write it back and re-read */
1431 set_bit(R1BIO_Uptodate, &r1_bio->state);
1432 while (d != r1_bio->read_disk) {
1433 if (d == 0)
1434 d = conf->raid_disks;
1435 d--;
1436 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1437 continue;
1438 rdev = conf->mirrors[d].rdev;
1439 atomic_add(s, &rdev->corrected_errors);
1440 if (sync_page_io(rdev->bdev,
1441 sect + rdev->data_offset,
1442 s<<9,
1443 bio->bi_io_vec[idx].bv_page,
1444 WRITE) == 0)
1445 md_error(mddev, rdev);
1447 d = start;
1448 while (d != r1_bio->read_disk) {
1449 if (d == 0)
1450 d = conf->raid_disks;
1451 d--;
1452 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1453 continue;
1454 rdev = conf->mirrors[d].rdev;
1455 if (sync_page_io(rdev->bdev,
1456 sect + rdev->data_offset,
1457 s<<9,
1458 bio->bi_io_vec[idx].bv_page,
1459 READ) == 0)
1460 md_error(mddev, rdev);
1462 } else {
1463 char b[BDEVNAME_SIZE];
1464 /* Cannot read from anywhere, array is toast */
1465 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1466 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1467 " for block %llu\n",
1468 mdname(mddev),
1469 bdevname(bio->bi_bdev, b),
1470 (unsigned long long)r1_bio->sector);
1471 md_done_sync(mddev, r1_bio->sectors, 0);
1472 put_buf(r1_bio);
1473 return;
1475 sectors -= s;
1476 sect += s;
1477 idx ++;
1482 * schedule writes
1484 atomic_set(&r1_bio->remaining, 1);
1485 for (i = 0; i < disks ; i++) {
1486 wbio = r1_bio->bios[i];
1487 if (wbio->bi_end_io == NULL ||
1488 (wbio->bi_end_io == end_sync_read &&
1489 (i == r1_bio->read_disk ||
1490 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1491 continue;
1493 wbio->bi_rw = WRITE;
1494 wbio->bi_end_io = end_sync_write;
1495 atomic_inc(&r1_bio->remaining);
1496 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1498 generic_make_request(wbio);
1501 if (atomic_dec_and_test(&r1_bio->remaining)) {
1502 /* if we're here, all write(s) have completed, so clean up */
1503 md_done_sync(mddev, r1_bio->sectors, 1);
1504 put_buf(r1_bio);
1509 * This is a kernel thread which:
1511 * 1. Retries failed read operations on working mirrors.
1512 * 2. Updates the raid superblock when problems encounter.
1513 * 3. Performs writes following reads for array syncronising.
1516 static void fix_read_error(conf_t *conf, int read_disk,
1517 sector_t sect, int sectors)
1519 mddev_t *mddev = conf->mddev;
1520 while(sectors) {
1521 int s = sectors;
1522 int d = read_disk;
1523 int success = 0;
1524 int start;
1525 mdk_rdev_t *rdev;
1527 if (s > (PAGE_SIZE>>9))
1528 s = PAGE_SIZE >> 9;
1530 do {
1531 /* Note: no rcu protection needed here
1532 * as this is synchronous in the raid1d thread
1533 * which is the thread that might remove
1534 * a device. If raid1d ever becomes multi-threaded....
1536 rdev = conf->mirrors[d].rdev;
1537 if (rdev &&
1538 test_bit(In_sync, &rdev->flags) &&
1539 sync_page_io(rdev->bdev,
1540 sect + rdev->data_offset,
1541 s<<9,
1542 conf->tmppage, READ))
1543 success = 1;
1544 else {
1545 d++;
1546 if (d == conf->raid_disks)
1547 d = 0;
1549 } while (!success && d != read_disk);
1551 if (!success) {
1552 /* Cannot read from anywhere -- bye bye array */
1553 md_error(mddev, conf->mirrors[read_disk].rdev);
1554 break;
1556 /* write it back and re-read */
1557 start = d;
1558 while (d != read_disk) {
1559 if (d==0)
1560 d = conf->raid_disks;
1561 d--;
1562 rdev = conf->mirrors[d].rdev;
1563 if (rdev &&
1564 test_bit(In_sync, &rdev->flags)) {
1565 if (sync_page_io(rdev->bdev,
1566 sect + rdev->data_offset,
1567 s<<9, conf->tmppage, WRITE)
1568 == 0)
1569 /* Well, this device is dead */
1570 md_error(mddev, rdev);
1573 d = start;
1574 while (d != read_disk) {
1575 char b[BDEVNAME_SIZE];
1576 if (d==0)
1577 d = conf->raid_disks;
1578 d--;
1579 rdev = conf->mirrors[d].rdev;
1580 if (rdev &&
1581 test_bit(In_sync, &rdev->flags)) {
1582 if (sync_page_io(rdev->bdev,
1583 sect + rdev->data_offset,
1584 s<<9, conf->tmppage, READ)
1585 == 0)
1586 /* Well, this device is dead */
1587 md_error(mddev, rdev);
1588 else {
1589 atomic_add(s, &rdev->corrected_errors);
1590 printk(KERN_INFO
1591 "md/raid1:%s: read error corrected "
1592 "(%d sectors at %llu on %s)\n",
1593 mdname(mddev), s,
1594 (unsigned long long)(sect +
1595 rdev->data_offset),
1596 bdevname(rdev->bdev, b));
1600 sectors -= s;
1601 sect += s;
1605 static void raid1d(mddev_t *mddev)
1607 r1bio_t *r1_bio;
1608 struct bio *bio;
1609 unsigned long flags;
1610 conf_t *conf = mddev->private;
1611 struct list_head *head = &conf->retry_list;
1612 int unplug=0;
1613 mdk_rdev_t *rdev;
1615 md_check_recovery(mddev);
1617 for (;;) {
1618 char b[BDEVNAME_SIZE];
1620 unplug += flush_pending_writes(conf);
1622 spin_lock_irqsave(&conf->device_lock, flags);
1623 if (list_empty(head)) {
1624 spin_unlock_irqrestore(&conf->device_lock, flags);
1625 break;
1627 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1628 list_del(head->prev);
1629 conf->nr_queued--;
1630 spin_unlock_irqrestore(&conf->device_lock, flags);
1632 mddev = r1_bio->mddev;
1633 conf = mddev->private;
1634 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1635 sync_request_write(mddev, r1_bio);
1636 unplug = 1;
1637 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1638 /* some requests in the r1bio were REQ_HARDBARRIER
1639 * requests which failed with -EOPNOTSUPP. Hohumm..
1640 * Better resubmit without the barrier.
1641 * We know which devices to resubmit for, because
1642 * all others have had their bios[] entry cleared.
1643 * We already have a nr_pending reference on these rdevs.
1645 int i;
1646 const unsigned long do_sync = (r1_bio->master_bio->bi_rw & REQ_SYNC);
1647 clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1648 clear_bit(R1BIO_Barrier, &r1_bio->state);
1649 for (i=0; i < conf->raid_disks; i++)
1650 if (r1_bio->bios[i])
1651 atomic_inc(&r1_bio->remaining);
1652 for (i=0; i < conf->raid_disks; i++)
1653 if (r1_bio->bios[i]) {
1654 struct bio_vec *bvec;
1655 int j;
1657 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1658 /* copy pages from the failed bio, as
1659 * this might be a write-behind device */
1660 __bio_for_each_segment(bvec, bio, j, 0)
1661 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1662 bio_put(r1_bio->bios[i]);
1663 bio->bi_sector = r1_bio->sector +
1664 conf->mirrors[i].rdev->data_offset;
1665 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1666 bio->bi_end_io = raid1_end_write_request;
1667 bio->bi_rw = WRITE | do_sync;
1668 bio->bi_private = r1_bio;
1669 r1_bio->bios[i] = bio;
1670 generic_make_request(bio);
1672 } else {
1673 int disk;
1675 /* we got a read error. Maybe the drive is bad. Maybe just
1676 * the block and we can fix it.
1677 * We freeze all other IO, and try reading the block from
1678 * other devices. When we find one, we re-write
1679 * and check it that fixes the read error.
1680 * This is all done synchronously while the array is
1681 * frozen
1683 if (mddev->ro == 0) {
1684 freeze_array(conf);
1685 fix_read_error(conf, r1_bio->read_disk,
1686 r1_bio->sector,
1687 r1_bio->sectors);
1688 unfreeze_array(conf);
1689 } else
1690 md_error(mddev,
1691 conf->mirrors[r1_bio->read_disk].rdev);
1693 bio = r1_bio->bios[r1_bio->read_disk];
1694 if ((disk=read_balance(conf, r1_bio)) == -1) {
1695 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
1696 " read error for block %llu\n",
1697 mdname(mddev),
1698 bdevname(bio->bi_bdev,b),
1699 (unsigned long long)r1_bio->sector);
1700 raid_end_bio_io(r1_bio);
1701 } else {
1702 const unsigned long do_sync = r1_bio->master_bio->bi_rw & REQ_SYNC;
1703 r1_bio->bios[r1_bio->read_disk] =
1704 mddev->ro ? IO_BLOCKED : NULL;
1705 r1_bio->read_disk = disk;
1706 bio_put(bio);
1707 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1708 r1_bio->bios[r1_bio->read_disk] = bio;
1709 rdev = conf->mirrors[disk].rdev;
1710 if (printk_ratelimit())
1711 printk(KERN_ERR "md/raid1:%s: redirecting sector %llu to"
1712 " other mirror: %s\n",
1713 mdname(mddev),
1714 (unsigned long long)r1_bio->sector,
1715 bdevname(rdev->bdev,b));
1716 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1717 bio->bi_bdev = rdev->bdev;
1718 bio->bi_end_io = raid1_end_read_request;
1719 bio->bi_rw = READ | do_sync;
1720 bio->bi_private = r1_bio;
1721 unplug = 1;
1722 generic_make_request(bio);
1725 cond_resched();
1727 if (unplug)
1728 unplug_slaves(mddev);
1732 static int init_resync(conf_t *conf)
1734 int buffs;
1736 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1737 BUG_ON(conf->r1buf_pool);
1738 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1739 conf->poolinfo);
1740 if (!conf->r1buf_pool)
1741 return -ENOMEM;
1742 conf->next_resync = 0;
1743 return 0;
1747 * perform a "sync" on one "block"
1749 * We need to make sure that no normal I/O request - particularly write
1750 * requests - conflict with active sync requests.
1752 * This is achieved by tracking pending requests and a 'barrier' concept
1753 * that can be installed to exclude normal IO requests.
1756 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1758 conf_t *conf = mddev->private;
1759 r1bio_t *r1_bio;
1760 struct bio *bio;
1761 sector_t max_sector, nr_sectors;
1762 int disk = -1;
1763 int i;
1764 int wonly = -1;
1765 int write_targets = 0, read_targets = 0;
1766 int sync_blocks;
1767 int still_degraded = 0;
1769 if (!conf->r1buf_pool)
1770 if (init_resync(conf))
1771 return 0;
1773 max_sector = mddev->dev_sectors;
1774 if (sector_nr >= max_sector) {
1775 /* If we aborted, we need to abort the
1776 * sync on the 'current' bitmap chunk (there will
1777 * only be one in raid1 resync.
1778 * We can find the current addess in mddev->curr_resync
1780 if (mddev->curr_resync < max_sector) /* aborted */
1781 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1782 &sync_blocks, 1);
1783 else /* completed sync */
1784 conf->fullsync = 0;
1786 bitmap_close_sync(mddev->bitmap);
1787 close_sync(conf);
1788 return 0;
1791 if (mddev->bitmap == NULL &&
1792 mddev->recovery_cp == MaxSector &&
1793 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1794 conf->fullsync == 0) {
1795 *skipped = 1;
1796 return max_sector - sector_nr;
1798 /* before building a request, check if we can skip these blocks..
1799 * This call the bitmap_start_sync doesn't actually record anything
1801 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1802 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1803 /* We can skip this block, and probably several more */
1804 *skipped = 1;
1805 return sync_blocks;
1808 * If there is non-resync activity waiting for a turn,
1809 * and resync is going fast enough,
1810 * then let it though before starting on this new sync request.
1812 if (!go_faster && conf->nr_waiting)
1813 msleep_interruptible(1000);
1815 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1816 raise_barrier(conf);
1818 conf->next_resync = sector_nr;
1820 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1821 rcu_read_lock();
1823 * If we get a correctably read error during resync or recovery,
1824 * we might want to read from a different device. So we
1825 * flag all drives that could conceivably be read from for READ,
1826 * and any others (which will be non-In_sync devices) for WRITE.
1827 * If a read fails, we try reading from something else for which READ
1828 * is OK.
1831 r1_bio->mddev = mddev;
1832 r1_bio->sector = sector_nr;
1833 r1_bio->state = 0;
1834 set_bit(R1BIO_IsSync, &r1_bio->state);
1836 for (i=0; i < conf->raid_disks; i++) {
1837 mdk_rdev_t *rdev;
1838 bio = r1_bio->bios[i];
1840 /* take from bio_init */
1841 bio->bi_next = NULL;
1842 bio->bi_flags |= 1 << BIO_UPTODATE;
1843 bio->bi_rw = READ;
1844 bio->bi_vcnt = 0;
1845 bio->bi_idx = 0;
1846 bio->bi_phys_segments = 0;
1847 bio->bi_size = 0;
1848 bio->bi_end_io = NULL;
1849 bio->bi_private = NULL;
1851 rdev = rcu_dereference(conf->mirrors[i].rdev);
1852 if (rdev == NULL ||
1853 test_bit(Faulty, &rdev->flags)) {
1854 still_degraded = 1;
1855 continue;
1856 } else if (!test_bit(In_sync, &rdev->flags)) {
1857 bio->bi_rw = WRITE;
1858 bio->bi_end_io = end_sync_write;
1859 write_targets ++;
1860 } else {
1861 /* may need to read from here */
1862 bio->bi_rw = READ;
1863 bio->bi_end_io = end_sync_read;
1864 if (test_bit(WriteMostly, &rdev->flags)) {
1865 if (wonly < 0)
1866 wonly = i;
1867 } else {
1868 if (disk < 0)
1869 disk = i;
1871 read_targets++;
1873 atomic_inc(&rdev->nr_pending);
1874 bio->bi_sector = sector_nr + rdev->data_offset;
1875 bio->bi_bdev = rdev->bdev;
1876 bio->bi_private = r1_bio;
1878 rcu_read_unlock();
1879 if (disk < 0)
1880 disk = wonly;
1881 r1_bio->read_disk = disk;
1883 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1884 /* extra read targets are also write targets */
1885 write_targets += read_targets-1;
1887 if (write_targets == 0 || read_targets == 0) {
1888 /* There is nowhere to write, so all non-sync
1889 * drives must be failed - so we are finished
1891 sector_t rv = max_sector - sector_nr;
1892 *skipped = 1;
1893 put_buf(r1_bio);
1894 return rv;
1897 if (max_sector > mddev->resync_max)
1898 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1899 nr_sectors = 0;
1900 sync_blocks = 0;
1901 do {
1902 struct page *page;
1903 int len = PAGE_SIZE;
1904 if (sector_nr + (len>>9) > max_sector)
1905 len = (max_sector - sector_nr) << 9;
1906 if (len == 0)
1907 break;
1908 if (sync_blocks == 0) {
1909 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1910 &sync_blocks, still_degraded) &&
1911 !conf->fullsync &&
1912 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1913 break;
1914 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1915 if (len > (sync_blocks<<9))
1916 len = sync_blocks<<9;
1919 for (i=0 ; i < conf->raid_disks; i++) {
1920 bio = r1_bio->bios[i];
1921 if (bio->bi_end_io) {
1922 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1923 if (bio_add_page(bio, page, len, 0) == 0) {
1924 /* stop here */
1925 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1926 while (i > 0) {
1927 i--;
1928 bio = r1_bio->bios[i];
1929 if (bio->bi_end_io==NULL)
1930 continue;
1931 /* remove last page from this bio */
1932 bio->bi_vcnt--;
1933 bio->bi_size -= len;
1934 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1936 goto bio_full;
1940 nr_sectors += len>>9;
1941 sector_nr += len>>9;
1942 sync_blocks -= (len>>9);
1943 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1944 bio_full:
1945 r1_bio->sectors = nr_sectors;
1947 /* For a user-requested sync, we read all readable devices and do a
1948 * compare
1950 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1951 atomic_set(&r1_bio->remaining, read_targets);
1952 for (i=0; i<conf->raid_disks; i++) {
1953 bio = r1_bio->bios[i];
1954 if (bio->bi_end_io == end_sync_read) {
1955 md_sync_acct(bio->bi_bdev, nr_sectors);
1956 generic_make_request(bio);
1959 } else {
1960 atomic_set(&r1_bio->remaining, 1);
1961 bio = r1_bio->bios[r1_bio->read_disk];
1962 md_sync_acct(bio->bi_bdev, nr_sectors);
1963 generic_make_request(bio);
1966 return nr_sectors;
1969 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
1971 if (sectors)
1972 return sectors;
1974 return mddev->dev_sectors;
1977 static conf_t *setup_conf(mddev_t *mddev)
1979 conf_t *conf;
1980 int i;
1981 mirror_info_t *disk;
1982 mdk_rdev_t *rdev;
1983 int err = -ENOMEM;
1985 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1986 if (!conf)
1987 goto abort;
1989 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1990 GFP_KERNEL);
1991 if (!conf->mirrors)
1992 goto abort;
1994 conf->tmppage = alloc_page(GFP_KERNEL);
1995 if (!conf->tmppage)
1996 goto abort;
1998 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1999 if (!conf->poolinfo)
2000 goto abort;
2001 conf->poolinfo->raid_disks = mddev->raid_disks;
2002 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2003 r1bio_pool_free,
2004 conf->poolinfo);
2005 if (!conf->r1bio_pool)
2006 goto abort;
2008 conf->poolinfo->mddev = mddev;
2010 spin_lock_init(&conf->device_lock);
2011 list_for_each_entry(rdev, &mddev->disks, same_set) {
2012 int disk_idx = rdev->raid_disk;
2013 if (disk_idx >= mddev->raid_disks
2014 || disk_idx < 0)
2015 continue;
2016 disk = conf->mirrors + disk_idx;
2018 disk->rdev = rdev;
2020 disk->head_position = 0;
2022 conf->raid_disks = mddev->raid_disks;
2023 conf->mddev = mddev;
2024 INIT_LIST_HEAD(&conf->retry_list);
2026 spin_lock_init(&conf->resync_lock);
2027 init_waitqueue_head(&conf->wait_barrier);
2029 bio_list_init(&conf->pending_bio_list);
2030 bio_list_init(&conf->flushing_bio_list);
2032 conf->last_used = -1;
2033 for (i = 0; i < conf->raid_disks; i++) {
2035 disk = conf->mirrors + i;
2037 if (!disk->rdev ||
2038 !test_bit(In_sync, &disk->rdev->flags)) {
2039 disk->head_position = 0;
2040 if (disk->rdev)
2041 conf->fullsync = 1;
2042 } else if (conf->last_used < 0)
2044 * The first working device is used as a
2045 * starting point to read balancing.
2047 conf->last_used = i;
2050 err = -EIO;
2051 if (conf->last_used < 0) {
2052 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
2053 mdname(mddev));
2054 goto abort;
2056 err = -ENOMEM;
2057 conf->thread = md_register_thread(raid1d, mddev, NULL);
2058 if (!conf->thread) {
2059 printk(KERN_ERR
2060 "md/raid1:%s: couldn't allocate thread\n",
2061 mdname(mddev));
2062 goto abort;
2065 return conf;
2067 abort:
2068 if (conf) {
2069 if (conf->r1bio_pool)
2070 mempool_destroy(conf->r1bio_pool);
2071 kfree(conf->mirrors);
2072 safe_put_page(conf->tmppage);
2073 kfree(conf->poolinfo);
2074 kfree(conf);
2076 return ERR_PTR(err);
2079 static int run(mddev_t *mddev)
2081 conf_t *conf;
2082 int i;
2083 mdk_rdev_t *rdev;
2085 if (mddev->level != 1) {
2086 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2087 mdname(mddev), mddev->level);
2088 return -EIO;
2090 if (mddev->reshape_position != MaxSector) {
2091 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2092 mdname(mddev));
2093 return -EIO;
2096 * copy the already verified devices into our private RAID1
2097 * bookkeeping area. [whatever we allocate in run(),
2098 * should be freed in stop()]
2100 if (mddev->private == NULL)
2101 conf = setup_conf(mddev);
2102 else
2103 conf = mddev->private;
2105 if (IS_ERR(conf))
2106 return PTR_ERR(conf);
2108 mddev->queue->queue_lock = &conf->device_lock;
2109 list_for_each_entry(rdev, &mddev->disks, same_set) {
2110 disk_stack_limits(mddev->gendisk, rdev->bdev,
2111 rdev->data_offset << 9);
2112 /* as we don't honour merge_bvec_fn, we must never risk
2113 * violating it, so limit ->max_segments to 1 lying within
2114 * a single page, as a one page request is never in violation.
2116 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2117 blk_queue_max_segments(mddev->queue, 1);
2118 blk_queue_segment_boundary(mddev->queue,
2119 PAGE_CACHE_SIZE - 1);
2123 mddev->degraded = 0;
2124 for (i=0; i < conf->raid_disks; i++)
2125 if (conf->mirrors[i].rdev == NULL ||
2126 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2127 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2128 mddev->degraded++;
2130 if (conf->raid_disks - mddev->degraded == 1)
2131 mddev->recovery_cp = MaxSector;
2133 if (mddev->recovery_cp != MaxSector)
2134 printk(KERN_NOTICE "md/raid1:%s: not clean"
2135 " -- starting background reconstruction\n",
2136 mdname(mddev));
2137 printk(KERN_INFO
2138 "md/raid1:%s: active with %d out of %d mirrors\n",
2139 mdname(mddev), mddev->raid_disks - mddev->degraded,
2140 mddev->raid_disks);
2143 * Ok, everything is just fine now
2145 mddev->thread = conf->thread;
2146 conf->thread = NULL;
2147 mddev->private = conf;
2149 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2151 mddev->queue->unplug_fn = raid1_unplug;
2152 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2153 mddev->queue->backing_dev_info.congested_data = mddev;
2154 md_integrity_register(mddev);
2155 return 0;
2158 static int stop(mddev_t *mddev)
2160 conf_t *conf = mddev->private;
2161 struct bitmap *bitmap = mddev->bitmap;
2163 /* wait for behind writes to complete */
2164 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2165 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2166 mdname(mddev));
2167 /* need to kick something here to make sure I/O goes? */
2168 wait_event(bitmap->behind_wait,
2169 atomic_read(&bitmap->behind_writes) == 0);
2172 raise_barrier(conf);
2173 lower_barrier(conf);
2175 md_unregister_thread(mddev->thread);
2176 mddev->thread = NULL;
2177 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2178 if (conf->r1bio_pool)
2179 mempool_destroy(conf->r1bio_pool);
2180 kfree(conf->mirrors);
2181 kfree(conf->poolinfo);
2182 kfree(conf);
2183 mddev->private = NULL;
2184 return 0;
2187 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2189 /* no resync is happening, and there is enough space
2190 * on all devices, so we can resize.
2191 * We need to make sure resync covers any new space.
2192 * If the array is shrinking we should possibly wait until
2193 * any io in the removed space completes, but it hardly seems
2194 * worth it.
2196 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2197 if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2198 return -EINVAL;
2199 set_capacity(mddev->gendisk, mddev->array_sectors);
2200 revalidate_disk(mddev->gendisk);
2201 if (sectors > mddev->dev_sectors &&
2202 mddev->recovery_cp == MaxSector) {
2203 mddev->recovery_cp = mddev->dev_sectors;
2204 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2206 mddev->dev_sectors = sectors;
2207 mddev->resync_max_sectors = sectors;
2208 return 0;
2211 static int raid1_reshape(mddev_t *mddev)
2213 /* We need to:
2214 * 1/ resize the r1bio_pool
2215 * 2/ resize conf->mirrors
2217 * We allocate a new r1bio_pool if we can.
2218 * Then raise a device barrier and wait until all IO stops.
2219 * Then resize conf->mirrors and swap in the new r1bio pool.
2221 * At the same time, we "pack" the devices so that all the missing
2222 * devices have the higher raid_disk numbers.
2224 mempool_t *newpool, *oldpool;
2225 struct pool_info *newpoolinfo;
2226 mirror_info_t *newmirrors;
2227 conf_t *conf = mddev->private;
2228 int cnt, raid_disks;
2229 unsigned long flags;
2230 int d, d2, err;
2232 /* Cannot change chunk_size, layout, or level */
2233 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2234 mddev->layout != mddev->new_layout ||
2235 mddev->level != mddev->new_level) {
2236 mddev->new_chunk_sectors = mddev->chunk_sectors;
2237 mddev->new_layout = mddev->layout;
2238 mddev->new_level = mddev->level;
2239 return -EINVAL;
2242 err = md_allow_write(mddev);
2243 if (err)
2244 return err;
2246 raid_disks = mddev->raid_disks + mddev->delta_disks;
2248 if (raid_disks < conf->raid_disks) {
2249 cnt=0;
2250 for (d= 0; d < conf->raid_disks; d++)
2251 if (conf->mirrors[d].rdev)
2252 cnt++;
2253 if (cnt > raid_disks)
2254 return -EBUSY;
2257 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2258 if (!newpoolinfo)
2259 return -ENOMEM;
2260 newpoolinfo->mddev = mddev;
2261 newpoolinfo->raid_disks = raid_disks;
2263 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2264 r1bio_pool_free, newpoolinfo);
2265 if (!newpool) {
2266 kfree(newpoolinfo);
2267 return -ENOMEM;
2269 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2270 if (!newmirrors) {
2271 kfree(newpoolinfo);
2272 mempool_destroy(newpool);
2273 return -ENOMEM;
2276 raise_barrier(conf);
2278 /* ok, everything is stopped */
2279 oldpool = conf->r1bio_pool;
2280 conf->r1bio_pool = newpool;
2282 for (d = d2 = 0; d < conf->raid_disks; d++) {
2283 mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2284 if (rdev && rdev->raid_disk != d2) {
2285 char nm[20];
2286 sprintf(nm, "rd%d", rdev->raid_disk);
2287 sysfs_remove_link(&mddev->kobj, nm);
2288 rdev->raid_disk = d2;
2289 sprintf(nm, "rd%d", rdev->raid_disk);
2290 sysfs_remove_link(&mddev->kobj, nm);
2291 if (sysfs_create_link(&mddev->kobj,
2292 &rdev->kobj, nm))
2293 printk(KERN_WARNING
2294 "md/raid1:%s: cannot register "
2295 "%s\n",
2296 mdname(mddev), nm);
2298 if (rdev)
2299 newmirrors[d2++].rdev = rdev;
2301 kfree(conf->mirrors);
2302 conf->mirrors = newmirrors;
2303 kfree(conf->poolinfo);
2304 conf->poolinfo = newpoolinfo;
2306 spin_lock_irqsave(&conf->device_lock, flags);
2307 mddev->degraded += (raid_disks - conf->raid_disks);
2308 spin_unlock_irqrestore(&conf->device_lock, flags);
2309 conf->raid_disks = mddev->raid_disks = raid_disks;
2310 mddev->delta_disks = 0;
2312 conf->last_used = 0; /* just make sure it is in-range */
2313 lower_barrier(conf);
2315 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2316 md_wakeup_thread(mddev->thread);
2318 mempool_destroy(oldpool);
2319 return 0;
2322 static void raid1_quiesce(mddev_t *mddev, int state)
2324 conf_t *conf = mddev->private;
2326 switch(state) {
2327 case 2: /* wake for suspend */
2328 wake_up(&conf->wait_barrier);
2329 break;
2330 case 1:
2331 raise_barrier(conf);
2332 break;
2333 case 0:
2334 lower_barrier(conf);
2335 break;
2339 static void *raid1_takeover(mddev_t *mddev)
2341 /* raid1 can take over:
2342 * raid5 with 2 devices, any layout or chunk size
2344 if (mddev->level == 5 && mddev->raid_disks == 2) {
2345 conf_t *conf;
2346 mddev->new_level = 1;
2347 mddev->new_layout = 0;
2348 mddev->new_chunk_sectors = 0;
2349 conf = setup_conf(mddev);
2350 if (!IS_ERR(conf))
2351 conf->barrier = 1;
2352 return conf;
2354 return ERR_PTR(-EINVAL);
2357 static struct mdk_personality raid1_personality =
2359 .name = "raid1",
2360 .level = 1,
2361 .owner = THIS_MODULE,
2362 .make_request = make_request,
2363 .run = run,
2364 .stop = stop,
2365 .status = status,
2366 .error_handler = error,
2367 .hot_add_disk = raid1_add_disk,
2368 .hot_remove_disk= raid1_remove_disk,
2369 .spare_active = raid1_spare_active,
2370 .sync_request = sync_request,
2371 .resize = raid1_resize,
2372 .size = raid1_size,
2373 .check_reshape = raid1_reshape,
2374 .quiesce = raid1_quiesce,
2375 .takeover = raid1_takeover,
2378 static int __init raid_init(void)
2380 return register_md_personality(&raid1_personality);
2383 static void raid_exit(void)
2385 unregister_md_personality(&raid1_personality);
2388 module_init(raid_init);
2389 module_exit(raid_exit);
2390 MODULE_LICENSE("GPL");
2391 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2392 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2393 MODULE_ALIAS("md-raid1");
2394 MODULE_ALIAS("md-level-1");