dm table: clean dm_get_device and move exports
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / dm-table.c
blobd58b200a35310dcaf13c3c395040432860f0dd42
1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm.h"
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
22 #define DM_MSG_PREFIX "table"
24 #define MAX_DEPTH 16
25 #define NODE_SIZE L1_CACHE_BYTES
26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30 * The table has always exactly one reference from either mapped_device->map
31 * or hash_cell->new_map. This reference is not counted in table->holders.
32 * A pair of dm_create_table/dm_destroy_table functions is used for table
33 * creation/destruction.
35 * Temporary references from the other code increase table->holders. A pair
36 * of dm_table_get/dm_table_put functions is used to manipulate it.
38 * When the table is about to be destroyed, we wait for table->holders to
39 * drop to zero.
42 struct dm_table {
43 struct mapped_device *md;
44 atomic_t holders;
45 unsigned type;
47 /* btree table */
48 unsigned int depth;
49 unsigned int counts[MAX_DEPTH]; /* in nodes */
50 sector_t *index[MAX_DEPTH];
52 unsigned int num_targets;
53 unsigned int num_allocated;
54 sector_t *highs;
55 struct dm_target *targets;
57 unsigned integrity_supported:1;
60 * Indicates the rw permissions for the new logical
61 * device. This should be a combination of FMODE_READ
62 * and FMODE_WRITE.
64 fmode_t mode;
66 /* a list of devices used by this table */
67 struct list_head devices;
69 /* events get handed up using this callback */
70 void (*event_fn)(void *);
71 void *event_context;
73 struct dm_md_mempools *mempools;
75 struct list_head target_callbacks;
79 * Similar to ceiling(log_size(n))
81 static unsigned int int_log(unsigned int n, unsigned int base)
83 int result = 0;
85 while (n > 1) {
86 n = dm_div_up(n, base);
87 result++;
90 return result;
94 * Calculate the index of the child node of the n'th node k'th key.
96 static inline unsigned int get_child(unsigned int n, unsigned int k)
98 return (n * CHILDREN_PER_NODE) + k;
102 * Return the n'th node of level l from table t.
104 static inline sector_t *get_node(struct dm_table *t,
105 unsigned int l, unsigned int n)
107 return t->index[l] + (n * KEYS_PER_NODE);
111 * Return the highest key that you could lookup from the n'th
112 * node on level l of the btree.
114 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
116 for (; l < t->depth - 1; l++)
117 n = get_child(n, CHILDREN_PER_NODE - 1);
119 if (n >= t->counts[l])
120 return (sector_t) - 1;
122 return get_node(t, l, n)[KEYS_PER_NODE - 1];
126 * Fills in a level of the btree based on the highs of the level
127 * below it.
129 static int setup_btree_index(unsigned int l, struct dm_table *t)
131 unsigned int n, k;
132 sector_t *node;
134 for (n = 0U; n < t->counts[l]; n++) {
135 node = get_node(t, l, n);
137 for (k = 0U; k < KEYS_PER_NODE; k++)
138 node[k] = high(t, l + 1, get_child(n, k));
141 return 0;
144 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
146 unsigned long size;
147 void *addr;
150 * Check that we're not going to overflow.
152 if (nmemb > (ULONG_MAX / elem_size))
153 return NULL;
155 size = nmemb * elem_size;
156 addr = vzalloc(size);
158 return addr;
160 EXPORT_SYMBOL(dm_vcalloc);
163 * highs, and targets are managed as dynamic arrays during a
164 * table load.
166 static int alloc_targets(struct dm_table *t, unsigned int num)
168 sector_t *n_highs;
169 struct dm_target *n_targets;
170 int n = t->num_targets;
173 * Allocate both the target array and offset array at once.
174 * Append an empty entry to catch sectors beyond the end of
175 * the device.
177 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
178 sizeof(sector_t));
179 if (!n_highs)
180 return -ENOMEM;
182 n_targets = (struct dm_target *) (n_highs + num);
184 if (n) {
185 memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
186 memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
189 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
190 vfree(t->highs);
192 t->num_allocated = num;
193 t->highs = n_highs;
194 t->targets = n_targets;
196 return 0;
199 int dm_table_create(struct dm_table **result, fmode_t mode,
200 unsigned num_targets, struct mapped_device *md)
202 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
204 if (!t)
205 return -ENOMEM;
207 INIT_LIST_HEAD(&t->devices);
208 INIT_LIST_HEAD(&t->target_callbacks);
209 atomic_set(&t->holders, 0);
211 if (!num_targets)
212 num_targets = KEYS_PER_NODE;
214 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
216 if (alloc_targets(t, num_targets)) {
217 kfree(t);
218 t = NULL;
219 return -ENOMEM;
222 t->mode = mode;
223 t->md = md;
224 *result = t;
225 return 0;
228 static void free_devices(struct list_head *devices)
230 struct list_head *tmp, *next;
232 list_for_each_safe(tmp, next, devices) {
233 struct dm_dev_internal *dd =
234 list_entry(tmp, struct dm_dev_internal, list);
235 DMWARN("dm_table_destroy: dm_put_device call missing for %s",
236 dd->dm_dev.name);
237 kfree(dd);
241 void dm_table_destroy(struct dm_table *t)
243 unsigned int i;
245 if (!t)
246 return;
248 while (atomic_read(&t->holders))
249 msleep(1);
250 smp_mb();
252 /* free the indexes */
253 if (t->depth >= 2)
254 vfree(t->index[t->depth - 2]);
256 /* free the targets */
257 for (i = 0; i < t->num_targets; i++) {
258 struct dm_target *tgt = t->targets + i;
260 if (tgt->type->dtr)
261 tgt->type->dtr(tgt);
263 dm_put_target_type(tgt->type);
266 vfree(t->highs);
268 /* free the device list */
269 if (t->devices.next != &t->devices)
270 free_devices(&t->devices);
272 dm_free_md_mempools(t->mempools);
274 kfree(t);
277 void dm_table_get(struct dm_table *t)
279 atomic_inc(&t->holders);
281 EXPORT_SYMBOL(dm_table_get);
283 void dm_table_put(struct dm_table *t)
285 if (!t)
286 return;
288 smp_mb__before_atomic_dec();
289 atomic_dec(&t->holders);
291 EXPORT_SYMBOL(dm_table_put);
294 * Checks to see if we need to extend highs or targets.
296 static inline int check_space(struct dm_table *t)
298 if (t->num_targets >= t->num_allocated)
299 return alloc_targets(t, t->num_allocated * 2);
301 return 0;
305 * See if we've already got a device in the list.
307 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
309 struct dm_dev_internal *dd;
311 list_for_each_entry (dd, l, list)
312 if (dd->dm_dev.bdev->bd_dev == dev)
313 return dd;
315 return NULL;
319 * Open a device so we can use it as a map destination.
321 static int open_dev(struct dm_dev_internal *d, dev_t dev,
322 struct mapped_device *md)
324 static char *_claim_ptr = "I belong to device-mapper";
325 struct block_device *bdev;
327 int r;
329 BUG_ON(d->dm_dev.bdev);
331 bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr);
332 if (IS_ERR(bdev))
333 return PTR_ERR(bdev);
335 r = bd_link_disk_holder(bdev, dm_disk(md));
336 if (r) {
337 blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL);
338 return r;
341 d->dm_dev.bdev = bdev;
342 return 0;
346 * Close a device that we've been using.
348 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
350 if (!d->dm_dev.bdev)
351 return;
353 bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md));
354 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL);
355 d->dm_dev.bdev = NULL;
359 * If possible, this checks an area of a destination device is invalid.
361 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
362 sector_t start, sector_t len, void *data)
364 struct request_queue *q;
365 struct queue_limits *limits = data;
366 struct block_device *bdev = dev->bdev;
367 sector_t dev_size =
368 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
369 unsigned short logical_block_size_sectors =
370 limits->logical_block_size >> SECTOR_SHIFT;
371 char b[BDEVNAME_SIZE];
374 * Some devices exist without request functions,
375 * such as loop devices not yet bound to backing files.
376 * Forbid the use of such devices.
378 q = bdev_get_queue(bdev);
379 if (!q || !q->make_request_fn) {
380 DMWARN("%s: %s is not yet initialised: "
381 "start=%llu, len=%llu, dev_size=%llu",
382 dm_device_name(ti->table->md), bdevname(bdev, b),
383 (unsigned long long)start,
384 (unsigned long long)len,
385 (unsigned long long)dev_size);
386 return 1;
389 if (!dev_size)
390 return 0;
392 if ((start >= dev_size) || (start + len > dev_size)) {
393 DMWARN("%s: %s too small for target: "
394 "start=%llu, len=%llu, dev_size=%llu",
395 dm_device_name(ti->table->md), bdevname(bdev, b),
396 (unsigned long long)start,
397 (unsigned long long)len,
398 (unsigned long long)dev_size);
399 return 1;
402 if (logical_block_size_sectors <= 1)
403 return 0;
405 if (start & (logical_block_size_sectors - 1)) {
406 DMWARN("%s: start=%llu not aligned to h/w "
407 "logical block size %u of %s",
408 dm_device_name(ti->table->md),
409 (unsigned long long)start,
410 limits->logical_block_size, bdevname(bdev, b));
411 return 1;
414 if (len & (logical_block_size_sectors - 1)) {
415 DMWARN("%s: len=%llu not aligned to h/w "
416 "logical block size %u of %s",
417 dm_device_name(ti->table->md),
418 (unsigned long long)len,
419 limits->logical_block_size, bdevname(bdev, b));
420 return 1;
423 return 0;
427 * This upgrades the mode on an already open dm_dev, being
428 * careful to leave things as they were if we fail to reopen the
429 * device and not to touch the existing bdev field in case
430 * it is accessed concurrently inside dm_table_any_congested().
432 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
433 struct mapped_device *md)
435 int r;
436 struct dm_dev_internal dd_new, dd_old;
438 dd_new = dd_old = *dd;
440 dd_new.dm_dev.mode |= new_mode;
441 dd_new.dm_dev.bdev = NULL;
443 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
444 if (r)
445 return r;
447 dd->dm_dev.mode |= new_mode;
448 close_dev(&dd_old, md);
450 return 0;
454 * Add a device to the list, or just increment the usage count if
455 * it's already present.
457 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
458 struct dm_dev **result)
460 int r;
461 dev_t uninitialized_var(dev);
462 struct dm_dev_internal *dd;
463 unsigned int major, minor;
464 struct dm_table *t = ti->table;
466 BUG_ON(!t);
468 if (sscanf(path, "%u:%u", &major, &minor) == 2) {
469 /* Extract the major/minor numbers */
470 dev = MKDEV(major, minor);
471 if (MAJOR(dev) != major || MINOR(dev) != minor)
472 return -EOVERFLOW;
473 } else {
474 /* convert the path to a device */
475 struct block_device *bdev = lookup_bdev(path);
477 if (IS_ERR(bdev))
478 return PTR_ERR(bdev);
479 dev = bdev->bd_dev;
480 bdput(bdev);
483 dd = find_device(&t->devices, dev);
484 if (!dd) {
485 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
486 if (!dd)
487 return -ENOMEM;
489 dd->dm_dev.mode = mode;
490 dd->dm_dev.bdev = NULL;
492 if ((r = open_dev(dd, dev, t->md))) {
493 kfree(dd);
494 return r;
497 format_dev_t(dd->dm_dev.name, dev);
499 atomic_set(&dd->count, 0);
500 list_add(&dd->list, &t->devices);
502 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
503 r = upgrade_mode(dd, mode, t->md);
504 if (r)
505 return r;
507 atomic_inc(&dd->count);
509 *result = &dd->dm_dev;
510 return 0;
512 EXPORT_SYMBOL(dm_get_device);
514 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
515 sector_t start, sector_t len, void *data)
517 struct queue_limits *limits = data;
518 struct block_device *bdev = dev->bdev;
519 struct request_queue *q = bdev_get_queue(bdev);
520 char b[BDEVNAME_SIZE];
522 if (unlikely(!q)) {
523 DMWARN("%s: Cannot set limits for nonexistent device %s",
524 dm_device_name(ti->table->md), bdevname(bdev, b));
525 return 0;
528 if (bdev_stack_limits(limits, bdev, start) < 0)
529 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
530 "physical_block_size=%u, logical_block_size=%u, "
531 "alignment_offset=%u, start=%llu",
532 dm_device_name(ti->table->md), bdevname(bdev, b),
533 q->limits.physical_block_size,
534 q->limits.logical_block_size,
535 q->limits.alignment_offset,
536 (unsigned long long) start << SECTOR_SHIFT);
539 * Check if merge fn is supported.
540 * If not we'll force DM to use PAGE_SIZE or
541 * smaller I/O, just to be safe.
544 if (q->merge_bvec_fn && !ti->type->merge)
545 blk_limits_max_hw_sectors(limits,
546 (unsigned int) (PAGE_SIZE >> 9));
547 return 0;
549 EXPORT_SYMBOL_GPL(dm_set_device_limits);
552 * Decrement a device's use count and remove it if necessary.
554 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
556 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
557 dm_dev);
559 if (atomic_dec_and_test(&dd->count)) {
560 close_dev(dd, ti->table->md);
561 list_del(&dd->list);
562 kfree(dd);
565 EXPORT_SYMBOL(dm_put_device);
568 * Checks to see if the target joins onto the end of the table.
570 static int adjoin(struct dm_table *table, struct dm_target *ti)
572 struct dm_target *prev;
574 if (!table->num_targets)
575 return !ti->begin;
577 prev = &table->targets[table->num_targets - 1];
578 return (ti->begin == (prev->begin + prev->len));
582 * Used to dynamically allocate the arg array.
584 static char **realloc_argv(unsigned *array_size, char **old_argv)
586 char **argv;
587 unsigned new_size;
589 new_size = *array_size ? *array_size * 2 : 64;
590 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
591 if (argv) {
592 memcpy(argv, old_argv, *array_size * sizeof(*argv));
593 *array_size = new_size;
596 kfree(old_argv);
597 return argv;
601 * Destructively splits up the argument list to pass to ctr.
603 int dm_split_args(int *argc, char ***argvp, char *input)
605 char *start, *end = input, *out, **argv = NULL;
606 unsigned array_size = 0;
608 *argc = 0;
610 if (!input) {
611 *argvp = NULL;
612 return 0;
615 argv = realloc_argv(&array_size, argv);
616 if (!argv)
617 return -ENOMEM;
619 while (1) {
620 /* Skip whitespace */
621 start = skip_spaces(end);
623 if (!*start)
624 break; /* success, we hit the end */
626 /* 'out' is used to remove any back-quotes */
627 end = out = start;
628 while (*end) {
629 /* Everything apart from '\0' can be quoted */
630 if (*end == '\\' && *(end + 1)) {
631 *out++ = *(end + 1);
632 end += 2;
633 continue;
636 if (isspace(*end))
637 break; /* end of token */
639 *out++ = *end++;
642 /* have we already filled the array ? */
643 if ((*argc + 1) > array_size) {
644 argv = realloc_argv(&array_size, argv);
645 if (!argv)
646 return -ENOMEM;
649 /* we know this is whitespace */
650 if (*end)
651 end++;
653 /* terminate the string and put it in the array */
654 *out = '\0';
655 argv[*argc] = start;
656 (*argc)++;
659 *argvp = argv;
660 return 0;
664 * Impose necessary and sufficient conditions on a devices's table such
665 * that any incoming bio which respects its logical_block_size can be
666 * processed successfully. If it falls across the boundary between
667 * two or more targets, the size of each piece it gets split into must
668 * be compatible with the logical_block_size of the target processing it.
670 static int validate_hardware_logical_block_alignment(struct dm_table *table,
671 struct queue_limits *limits)
674 * This function uses arithmetic modulo the logical_block_size
675 * (in units of 512-byte sectors).
677 unsigned short device_logical_block_size_sects =
678 limits->logical_block_size >> SECTOR_SHIFT;
681 * Offset of the start of the next table entry, mod logical_block_size.
683 unsigned short next_target_start = 0;
686 * Given an aligned bio that extends beyond the end of a
687 * target, how many sectors must the next target handle?
689 unsigned short remaining = 0;
691 struct dm_target *uninitialized_var(ti);
692 struct queue_limits ti_limits;
693 unsigned i = 0;
696 * Check each entry in the table in turn.
698 while (i < dm_table_get_num_targets(table)) {
699 ti = dm_table_get_target(table, i++);
701 blk_set_default_limits(&ti_limits);
703 /* combine all target devices' limits */
704 if (ti->type->iterate_devices)
705 ti->type->iterate_devices(ti, dm_set_device_limits,
706 &ti_limits);
709 * If the remaining sectors fall entirely within this
710 * table entry are they compatible with its logical_block_size?
712 if (remaining < ti->len &&
713 remaining & ((ti_limits.logical_block_size >>
714 SECTOR_SHIFT) - 1))
715 break; /* Error */
717 next_target_start =
718 (unsigned short) ((next_target_start + ti->len) &
719 (device_logical_block_size_sects - 1));
720 remaining = next_target_start ?
721 device_logical_block_size_sects - next_target_start : 0;
724 if (remaining) {
725 DMWARN("%s: table line %u (start sect %llu len %llu) "
726 "not aligned to h/w logical block size %u",
727 dm_device_name(table->md), i,
728 (unsigned long long) ti->begin,
729 (unsigned long long) ti->len,
730 limits->logical_block_size);
731 return -EINVAL;
734 return 0;
737 int dm_table_add_target(struct dm_table *t, const char *type,
738 sector_t start, sector_t len, char *params)
740 int r = -EINVAL, argc;
741 char **argv;
742 struct dm_target *tgt;
744 if ((r = check_space(t)))
745 return r;
747 tgt = t->targets + t->num_targets;
748 memset(tgt, 0, sizeof(*tgt));
750 if (!len) {
751 DMERR("%s: zero-length target", dm_device_name(t->md));
752 return -EINVAL;
755 tgt->type = dm_get_target_type(type);
756 if (!tgt->type) {
757 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
758 type);
759 return -EINVAL;
762 tgt->table = t;
763 tgt->begin = start;
764 tgt->len = len;
765 tgt->error = "Unknown error";
768 * Does this target adjoin the previous one ?
770 if (!adjoin(t, tgt)) {
771 tgt->error = "Gap in table";
772 r = -EINVAL;
773 goto bad;
776 r = dm_split_args(&argc, &argv, params);
777 if (r) {
778 tgt->error = "couldn't split parameters (insufficient memory)";
779 goto bad;
782 r = tgt->type->ctr(tgt, argc, argv);
783 kfree(argv);
784 if (r)
785 goto bad;
787 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
789 if (!tgt->num_discard_requests && tgt->discards_supported)
790 DMWARN("%s: %s: ignoring discards_supported because num_discard_requests is zero.",
791 dm_device_name(t->md), type);
793 return 0;
795 bad:
796 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
797 dm_put_target_type(tgt->type);
798 return r;
801 static int dm_table_set_type(struct dm_table *t)
803 unsigned i;
804 unsigned bio_based = 0, request_based = 0;
805 struct dm_target *tgt;
806 struct dm_dev_internal *dd;
807 struct list_head *devices;
809 for (i = 0; i < t->num_targets; i++) {
810 tgt = t->targets + i;
811 if (dm_target_request_based(tgt))
812 request_based = 1;
813 else
814 bio_based = 1;
816 if (bio_based && request_based) {
817 DMWARN("Inconsistent table: different target types"
818 " can't be mixed up");
819 return -EINVAL;
823 if (bio_based) {
824 /* We must use this table as bio-based */
825 t->type = DM_TYPE_BIO_BASED;
826 return 0;
829 BUG_ON(!request_based); /* No targets in this table */
831 /* Non-request-stackable devices can't be used for request-based dm */
832 devices = dm_table_get_devices(t);
833 list_for_each_entry(dd, devices, list) {
834 if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
835 DMWARN("table load rejected: including"
836 " non-request-stackable devices");
837 return -EINVAL;
842 * Request-based dm supports only tables that have a single target now.
843 * To support multiple targets, request splitting support is needed,
844 * and that needs lots of changes in the block-layer.
845 * (e.g. request completion process for partial completion.)
847 if (t->num_targets > 1) {
848 DMWARN("Request-based dm doesn't support multiple targets yet");
849 return -EINVAL;
852 t->type = DM_TYPE_REQUEST_BASED;
854 return 0;
857 unsigned dm_table_get_type(struct dm_table *t)
859 return t->type;
862 bool dm_table_request_based(struct dm_table *t)
864 return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
867 int dm_table_alloc_md_mempools(struct dm_table *t)
869 unsigned type = dm_table_get_type(t);
871 if (unlikely(type == DM_TYPE_NONE)) {
872 DMWARN("no table type is set, can't allocate mempools");
873 return -EINVAL;
876 t->mempools = dm_alloc_md_mempools(type, t->integrity_supported);
877 if (!t->mempools)
878 return -ENOMEM;
880 return 0;
883 void dm_table_free_md_mempools(struct dm_table *t)
885 dm_free_md_mempools(t->mempools);
886 t->mempools = NULL;
889 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
891 return t->mempools;
894 static int setup_indexes(struct dm_table *t)
896 int i;
897 unsigned int total = 0;
898 sector_t *indexes;
900 /* allocate the space for *all* the indexes */
901 for (i = t->depth - 2; i >= 0; i--) {
902 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
903 total += t->counts[i];
906 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
907 if (!indexes)
908 return -ENOMEM;
910 /* set up internal nodes, bottom-up */
911 for (i = t->depth - 2; i >= 0; i--) {
912 t->index[i] = indexes;
913 indexes += (KEYS_PER_NODE * t->counts[i]);
914 setup_btree_index(i, t);
917 return 0;
921 * Builds the btree to index the map.
923 static int dm_table_build_index(struct dm_table *t)
925 int r = 0;
926 unsigned int leaf_nodes;
928 /* how many indexes will the btree have ? */
929 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
930 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
932 /* leaf layer has already been set up */
933 t->counts[t->depth - 1] = leaf_nodes;
934 t->index[t->depth - 1] = t->highs;
936 if (t->depth >= 2)
937 r = setup_indexes(t);
939 return r;
943 * Get a disk whose integrity profile reflects the table's profile.
944 * If %match_all is true, all devices' profiles must match.
945 * If %match_all is false, all devices must at least have an
946 * allocated integrity profile; but uninitialized is ok.
947 * Returns NULL if integrity support was inconsistent or unavailable.
949 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
950 bool match_all)
952 struct list_head *devices = dm_table_get_devices(t);
953 struct dm_dev_internal *dd = NULL;
954 struct gendisk *prev_disk = NULL, *template_disk = NULL;
956 list_for_each_entry(dd, devices, list) {
957 template_disk = dd->dm_dev.bdev->bd_disk;
958 if (!blk_get_integrity(template_disk))
959 goto no_integrity;
960 if (!match_all && !blk_integrity_is_initialized(template_disk))
961 continue; /* skip uninitialized profiles */
962 else if (prev_disk &&
963 blk_integrity_compare(prev_disk, template_disk) < 0)
964 goto no_integrity;
965 prev_disk = template_disk;
968 return template_disk;
970 no_integrity:
971 if (prev_disk)
972 DMWARN("%s: integrity not set: %s and %s profile mismatch",
973 dm_device_name(t->md),
974 prev_disk->disk_name,
975 template_disk->disk_name);
976 return NULL;
980 * Register the mapped device for blk_integrity support if
981 * the underlying devices have an integrity profile. But all devices
982 * may not have matching profiles (checking all devices isn't reliable
983 * during table load because this table may use other DM device(s) which
984 * must be resumed before they will have an initialized integity profile).
985 * Stacked DM devices force a 2 stage integrity profile validation:
986 * 1 - during load, validate all initialized integrity profiles match
987 * 2 - during resume, validate all integrity profiles match
989 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
991 struct gendisk *template_disk = NULL;
993 template_disk = dm_table_get_integrity_disk(t, false);
994 if (!template_disk)
995 return 0;
997 if (!blk_integrity_is_initialized(dm_disk(md))) {
998 t->integrity_supported = 1;
999 return blk_integrity_register(dm_disk(md), NULL);
1003 * If DM device already has an initalized integrity
1004 * profile the new profile should not conflict.
1006 if (blk_integrity_is_initialized(template_disk) &&
1007 blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1008 DMWARN("%s: conflict with existing integrity profile: "
1009 "%s profile mismatch",
1010 dm_device_name(t->md),
1011 template_disk->disk_name);
1012 return 1;
1015 /* Preserve existing initialized integrity profile */
1016 t->integrity_supported = 1;
1017 return 0;
1021 * Prepares the table for use by building the indices,
1022 * setting the type, and allocating mempools.
1024 int dm_table_complete(struct dm_table *t)
1026 int r;
1028 r = dm_table_set_type(t);
1029 if (r) {
1030 DMERR("unable to set table type");
1031 return r;
1034 r = dm_table_build_index(t);
1035 if (r) {
1036 DMERR("unable to build btrees");
1037 return r;
1040 r = dm_table_prealloc_integrity(t, t->md);
1041 if (r) {
1042 DMERR("could not register integrity profile.");
1043 return r;
1046 r = dm_table_alloc_md_mempools(t);
1047 if (r)
1048 DMERR("unable to allocate mempools");
1050 return r;
1053 static DEFINE_MUTEX(_event_lock);
1054 void dm_table_event_callback(struct dm_table *t,
1055 void (*fn)(void *), void *context)
1057 mutex_lock(&_event_lock);
1058 t->event_fn = fn;
1059 t->event_context = context;
1060 mutex_unlock(&_event_lock);
1063 void dm_table_event(struct dm_table *t)
1066 * You can no longer call dm_table_event() from interrupt
1067 * context, use a bottom half instead.
1069 BUG_ON(in_interrupt());
1071 mutex_lock(&_event_lock);
1072 if (t->event_fn)
1073 t->event_fn(t->event_context);
1074 mutex_unlock(&_event_lock);
1076 EXPORT_SYMBOL(dm_table_event);
1078 sector_t dm_table_get_size(struct dm_table *t)
1080 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1082 EXPORT_SYMBOL(dm_table_get_size);
1084 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1086 if (index >= t->num_targets)
1087 return NULL;
1089 return t->targets + index;
1093 * Search the btree for the correct target.
1095 * Caller should check returned pointer with dm_target_is_valid()
1096 * to trap I/O beyond end of device.
1098 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1100 unsigned int l, n = 0, k = 0;
1101 sector_t *node;
1103 for (l = 0; l < t->depth; l++) {
1104 n = get_child(n, k);
1105 node = get_node(t, l, n);
1107 for (k = 0; k < KEYS_PER_NODE; k++)
1108 if (node[k] >= sector)
1109 break;
1112 return &t->targets[(KEYS_PER_NODE * n) + k];
1116 * Establish the new table's queue_limits and validate them.
1118 int dm_calculate_queue_limits(struct dm_table *table,
1119 struct queue_limits *limits)
1121 struct dm_target *uninitialized_var(ti);
1122 struct queue_limits ti_limits;
1123 unsigned i = 0;
1125 blk_set_default_limits(limits);
1127 while (i < dm_table_get_num_targets(table)) {
1128 blk_set_default_limits(&ti_limits);
1130 ti = dm_table_get_target(table, i++);
1132 if (!ti->type->iterate_devices)
1133 goto combine_limits;
1136 * Combine queue limits of all the devices this target uses.
1138 ti->type->iterate_devices(ti, dm_set_device_limits,
1139 &ti_limits);
1141 /* Set I/O hints portion of queue limits */
1142 if (ti->type->io_hints)
1143 ti->type->io_hints(ti, &ti_limits);
1146 * Check each device area is consistent with the target's
1147 * overall queue limits.
1149 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1150 &ti_limits))
1151 return -EINVAL;
1153 combine_limits:
1155 * Merge this target's queue limits into the overall limits
1156 * for the table.
1158 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1159 DMWARN("%s: adding target device "
1160 "(start sect %llu len %llu) "
1161 "caused an alignment inconsistency",
1162 dm_device_name(table->md),
1163 (unsigned long long) ti->begin,
1164 (unsigned long long) ti->len);
1167 return validate_hardware_logical_block_alignment(table, limits);
1171 * Set the integrity profile for this device if all devices used have
1172 * matching profiles. We're quite deep in the resume path but still
1173 * don't know if all devices (particularly DM devices this device
1174 * may be stacked on) have matching profiles. Even if the profiles
1175 * don't match we have no way to fail (to resume) at this point.
1177 static void dm_table_set_integrity(struct dm_table *t)
1179 struct gendisk *template_disk = NULL;
1181 if (!blk_get_integrity(dm_disk(t->md)))
1182 return;
1184 template_disk = dm_table_get_integrity_disk(t, true);
1185 if (!template_disk &&
1186 blk_integrity_is_initialized(dm_disk(t->md))) {
1187 DMWARN("%s: device no longer has a valid integrity profile",
1188 dm_device_name(t->md));
1189 return;
1191 blk_integrity_register(dm_disk(t->md),
1192 blk_get_integrity(template_disk));
1195 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1196 struct queue_limits *limits)
1199 * Copy table's limits to the DM device's request_queue
1201 q->limits = *limits;
1203 if (!dm_table_supports_discards(t))
1204 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1205 else
1206 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1208 dm_table_set_integrity(t);
1211 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1212 * visible to other CPUs because, once the flag is set, incoming bios
1213 * are processed by request-based dm, which refers to the queue
1214 * settings.
1215 * Until the flag set, bios are passed to bio-based dm and queued to
1216 * md->deferred where queue settings are not needed yet.
1217 * Those bios are passed to request-based dm at the resume time.
1219 smp_mb();
1220 if (dm_table_request_based(t))
1221 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1224 unsigned int dm_table_get_num_targets(struct dm_table *t)
1226 return t->num_targets;
1229 struct list_head *dm_table_get_devices(struct dm_table *t)
1231 return &t->devices;
1234 fmode_t dm_table_get_mode(struct dm_table *t)
1236 return t->mode;
1238 EXPORT_SYMBOL(dm_table_get_mode);
1240 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1242 int i = t->num_targets;
1243 struct dm_target *ti = t->targets;
1245 while (i--) {
1246 if (postsuspend) {
1247 if (ti->type->postsuspend)
1248 ti->type->postsuspend(ti);
1249 } else if (ti->type->presuspend)
1250 ti->type->presuspend(ti);
1252 ti++;
1256 void dm_table_presuspend_targets(struct dm_table *t)
1258 if (!t)
1259 return;
1261 suspend_targets(t, 0);
1264 void dm_table_postsuspend_targets(struct dm_table *t)
1266 if (!t)
1267 return;
1269 suspend_targets(t, 1);
1272 int dm_table_resume_targets(struct dm_table *t)
1274 int i, r = 0;
1276 for (i = 0; i < t->num_targets; i++) {
1277 struct dm_target *ti = t->targets + i;
1279 if (!ti->type->preresume)
1280 continue;
1282 r = ti->type->preresume(ti);
1283 if (r)
1284 return r;
1287 for (i = 0; i < t->num_targets; i++) {
1288 struct dm_target *ti = t->targets + i;
1290 if (ti->type->resume)
1291 ti->type->resume(ti);
1294 return 0;
1297 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1299 list_add(&cb->list, &t->target_callbacks);
1301 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1303 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1305 struct dm_dev_internal *dd;
1306 struct list_head *devices = dm_table_get_devices(t);
1307 struct dm_target_callbacks *cb;
1308 int r = 0;
1310 list_for_each_entry(dd, devices, list) {
1311 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1312 char b[BDEVNAME_SIZE];
1314 if (likely(q))
1315 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1316 else
1317 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1318 dm_device_name(t->md),
1319 bdevname(dd->dm_dev.bdev, b));
1322 list_for_each_entry(cb, &t->target_callbacks, list)
1323 if (cb->congested_fn)
1324 r |= cb->congested_fn(cb, bdi_bits);
1326 return r;
1329 int dm_table_any_busy_target(struct dm_table *t)
1331 unsigned i;
1332 struct dm_target *ti;
1334 for (i = 0; i < t->num_targets; i++) {
1335 ti = t->targets + i;
1336 if (ti->type->busy && ti->type->busy(ti))
1337 return 1;
1340 return 0;
1343 struct mapped_device *dm_table_get_md(struct dm_table *t)
1345 return t->md;
1347 EXPORT_SYMBOL(dm_table_get_md);
1349 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1350 sector_t start, sector_t len, void *data)
1352 struct request_queue *q = bdev_get_queue(dev->bdev);
1354 return q && blk_queue_discard(q);
1357 bool dm_table_supports_discards(struct dm_table *t)
1359 struct dm_target *ti;
1360 unsigned i = 0;
1363 * Unless any target used by the table set discards_supported,
1364 * require at least one underlying device to support discards.
1365 * t->devices includes internal dm devices such as mirror logs
1366 * so we need to use iterate_devices here, which targets
1367 * supporting discard selectively must provide.
1369 while (i < dm_table_get_num_targets(t)) {
1370 ti = dm_table_get_target(t, i++);
1372 if (!ti->num_discard_requests)
1373 continue;
1375 if (ti->discards_supported)
1376 return 1;
1378 if (ti->type->iterate_devices &&
1379 ti->type->iterate_devices(ti, device_discard_capable, NULL))
1380 return 1;
1383 return 0;