ARM: 6246/1: mmci: support larger MMCIDATALENGTH register
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / regulator / core.c
blob2248087b9be2456bc2430ddcbda3f4f0e6085d4f
1 /*
2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/mutex.h>
22 #include <linux/suspend.h>
23 #include <linux/delay.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/driver.h>
26 #include <linux/regulator/machine.h>
28 #include "dummy.h"
30 #define REGULATOR_VERSION "0.5"
32 static DEFINE_MUTEX(regulator_list_mutex);
33 static LIST_HEAD(regulator_list);
34 static LIST_HEAD(regulator_map_list);
35 static int has_full_constraints;
38 * struct regulator_map
40 * Used to provide symbolic supply names to devices.
42 struct regulator_map {
43 struct list_head list;
44 const char *dev_name; /* The dev_name() for the consumer */
45 const char *supply;
46 struct regulator_dev *regulator;
50 * struct regulator
52 * One for each consumer device.
54 struct regulator {
55 struct device *dev;
56 struct list_head list;
57 int uA_load;
58 int min_uV;
59 int max_uV;
60 char *supply_name;
61 struct device_attribute dev_attr;
62 struct regulator_dev *rdev;
65 static int _regulator_is_enabled(struct regulator_dev *rdev);
66 static int _regulator_disable(struct regulator_dev *rdev);
67 static int _regulator_get_voltage(struct regulator_dev *rdev);
68 static int _regulator_get_current_limit(struct regulator_dev *rdev);
69 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
70 static void _notifier_call_chain(struct regulator_dev *rdev,
71 unsigned long event, void *data);
73 static const char *rdev_get_name(struct regulator_dev *rdev)
75 if (rdev->constraints && rdev->constraints->name)
76 return rdev->constraints->name;
77 else if (rdev->desc->name)
78 return rdev->desc->name;
79 else
80 return "";
83 /* gets the regulator for a given consumer device */
84 static struct regulator *get_device_regulator(struct device *dev)
86 struct regulator *regulator = NULL;
87 struct regulator_dev *rdev;
89 mutex_lock(&regulator_list_mutex);
90 list_for_each_entry(rdev, &regulator_list, list) {
91 mutex_lock(&rdev->mutex);
92 list_for_each_entry(regulator, &rdev->consumer_list, list) {
93 if (regulator->dev == dev) {
94 mutex_unlock(&rdev->mutex);
95 mutex_unlock(&regulator_list_mutex);
96 return regulator;
99 mutex_unlock(&rdev->mutex);
101 mutex_unlock(&regulator_list_mutex);
102 return NULL;
105 /* Platform voltage constraint check */
106 static int regulator_check_voltage(struct regulator_dev *rdev,
107 int *min_uV, int *max_uV)
109 BUG_ON(*min_uV > *max_uV);
111 if (!rdev->constraints) {
112 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
113 rdev_get_name(rdev));
114 return -ENODEV;
116 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
117 printk(KERN_ERR "%s: operation not allowed for %s\n",
118 __func__, rdev_get_name(rdev));
119 return -EPERM;
122 if (*max_uV > rdev->constraints->max_uV)
123 *max_uV = rdev->constraints->max_uV;
124 if (*min_uV < rdev->constraints->min_uV)
125 *min_uV = rdev->constraints->min_uV;
127 if (*min_uV > *max_uV)
128 return -EINVAL;
130 return 0;
133 /* current constraint check */
134 static int regulator_check_current_limit(struct regulator_dev *rdev,
135 int *min_uA, int *max_uA)
137 BUG_ON(*min_uA > *max_uA);
139 if (!rdev->constraints) {
140 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
141 rdev_get_name(rdev));
142 return -ENODEV;
144 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
145 printk(KERN_ERR "%s: operation not allowed for %s\n",
146 __func__, rdev_get_name(rdev));
147 return -EPERM;
150 if (*max_uA > rdev->constraints->max_uA)
151 *max_uA = rdev->constraints->max_uA;
152 if (*min_uA < rdev->constraints->min_uA)
153 *min_uA = rdev->constraints->min_uA;
155 if (*min_uA > *max_uA)
156 return -EINVAL;
158 return 0;
161 /* operating mode constraint check */
162 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
164 switch (mode) {
165 case REGULATOR_MODE_FAST:
166 case REGULATOR_MODE_NORMAL:
167 case REGULATOR_MODE_IDLE:
168 case REGULATOR_MODE_STANDBY:
169 break;
170 default:
171 return -EINVAL;
174 if (!rdev->constraints) {
175 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
176 rdev_get_name(rdev));
177 return -ENODEV;
179 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
180 printk(KERN_ERR "%s: operation not allowed for %s\n",
181 __func__, rdev_get_name(rdev));
182 return -EPERM;
184 if (!(rdev->constraints->valid_modes_mask & mode)) {
185 printk(KERN_ERR "%s: invalid mode %x for %s\n",
186 __func__, mode, rdev_get_name(rdev));
187 return -EINVAL;
189 return 0;
192 /* dynamic regulator mode switching constraint check */
193 static int regulator_check_drms(struct regulator_dev *rdev)
195 if (!rdev->constraints) {
196 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
197 rdev_get_name(rdev));
198 return -ENODEV;
200 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
201 printk(KERN_ERR "%s: operation not allowed for %s\n",
202 __func__, rdev_get_name(rdev));
203 return -EPERM;
205 return 0;
208 static ssize_t device_requested_uA_show(struct device *dev,
209 struct device_attribute *attr, char *buf)
211 struct regulator *regulator;
213 regulator = get_device_regulator(dev);
214 if (regulator == NULL)
215 return 0;
217 return sprintf(buf, "%d\n", regulator->uA_load);
220 static ssize_t regulator_uV_show(struct device *dev,
221 struct device_attribute *attr, char *buf)
223 struct regulator_dev *rdev = dev_get_drvdata(dev);
224 ssize_t ret;
226 mutex_lock(&rdev->mutex);
227 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
228 mutex_unlock(&rdev->mutex);
230 return ret;
232 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
234 static ssize_t regulator_uA_show(struct device *dev,
235 struct device_attribute *attr, char *buf)
237 struct regulator_dev *rdev = dev_get_drvdata(dev);
239 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
241 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
243 static ssize_t regulator_name_show(struct device *dev,
244 struct device_attribute *attr, char *buf)
246 struct regulator_dev *rdev = dev_get_drvdata(dev);
248 return sprintf(buf, "%s\n", rdev_get_name(rdev));
251 static ssize_t regulator_print_opmode(char *buf, int mode)
253 switch (mode) {
254 case REGULATOR_MODE_FAST:
255 return sprintf(buf, "fast\n");
256 case REGULATOR_MODE_NORMAL:
257 return sprintf(buf, "normal\n");
258 case REGULATOR_MODE_IDLE:
259 return sprintf(buf, "idle\n");
260 case REGULATOR_MODE_STANDBY:
261 return sprintf(buf, "standby\n");
263 return sprintf(buf, "unknown\n");
266 static ssize_t regulator_opmode_show(struct device *dev,
267 struct device_attribute *attr, char *buf)
269 struct regulator_dev *rdev = dev_get_drvdata(dev);
271 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
273 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
275 static ssize_t regulator_print_state(char *buf, int state)
277 if (state > 0)
278 return sprintf(buf, "enabled\n");
279 else if (state == 0)
280 return sprintf(buf, "disabled\n");
281 else
282 return sprintf(buf, "unknown\n");
285 static ssize_t regulator_state_show(struct device *dev,
286 struct device_attribute *attr, char *buf)
288 struct regulator_dev *rdev = dev_get_drvdata(dev);
289 ssize_t ret;
291 mutex_lock(&rdev->mutex);
292 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
293 mutex_unlock(&rdev->mutex);
295 return ret;
297 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
299 static ssize_t regulator_status_show(struct device *dev,
300 struct device_attribute *attr, char *buf)
302 struct regulator_dev *rdev = dev_get_drvdata(dev);
303 int status;
304 char *label;
306 status = rdev->desc->ops->get_status(rdev);
307 if (status < 0)
308 return status;
310 switch (status) {
311 case REGULATOR_STATUS_OFF:
312 label = "off";
313 break;
314 case REGULATOR_STATUS_ON:
315 label = "on";
316 break;
317 case REGULATOR_STATUS_ERROR:
318 label = "error";
319 break;
320 case REGULATOR_STATUS_FAST:
321 label = "fast";
322 break;
323 case REGULATOR_STATUS_NORMAL:
324 label = "normal";
325 break;
326 case REGULATOR_STATUS_IDLE:
327 label = "idle";
328 break;
329 case REGULATOR_STATUS_STANDBY:
330 label = "standby";
331 break;
332 default:
333 return -ERANGE;
336 return sprintf(buf, "%s\n", label);
338 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
340 static ssize_t regulator_min_uA_show(struct device *dev,
341 struct device_attribute *attr, char *buf)
343 struct regulator_dev *rdev = dev_get_drvdata(dev);
345 if (!rdev->constraints)
346 return sprintf(buf, "constraint not defined\n");
348 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
350 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
352 static ssize_t regulator_max_uA_show(struct device *dev,
353 struct device_attribute *attr, char *buf)
355 struct regulator_dev *rdev = dev_get_drvdata(dev);
357 if (!rdev->constraints)
358 return sprintf(buf, "constraint not defined\n");
360 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
362 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
364 static ssize_t regulator_min_uV_show(struct device *dev,
365 struct device_attribute *attr, char *buf)
367 struct regulator_dev *rdev = dev_get_drvdata(dev);
369 if (!rdev->constraints)
370 return sprintf(buf, "constraint not defined\n");
372 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
374 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
376 static ssize_t regulator_max_uV_show(struct device *dev,
377 struct device_attribute *attr, char *buf)
379 struct regulator_dev *rdev = dev_get_drvdata(dev);
381 if (!rdev->constraints)
382 return sprintf(buf, "constraint not defined\n");
384 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
386 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
388 static ssize_t regulator_total_uA_show(struct device *dev,
389 struct device_attribute *attr, char *buf)
391 struct regulator_dev *rdev = dev_get_drvdata(dev);
392 struct regulator *regulator;
393 int uA = 0;
395 mutex_lock(&rdev->mutex);
396 list_for_each_entry(regulator, &rdev->consumer_list, list)
397 uA += regulator->uA_load;
398 mutex_unlock(&rdev->mutex);
399 return sprintf(buf, "%d\n", uA);
401 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
403 static ssize_t regulator_num_users_show(struct device *dev,
404 struct device_attribute *attr, char *buf)
406 struct regulator_dev *rdev = dev_get_drvdata(dev);
407 return sprintf(buf, "%d\n", rdev->use_count);
410 static ssize_t regulator_type_show(struct device *dev,
411 struct device_attribute *attr, char *buf)
413 struct regulator_dev *rdev = dev_get_drvdata(dev);
415 switch (rdev->desc->type) {
416 case REGULATOR_VOLTAGE:
417 return sprintf(buf, "voltage\n");
418 case REGULATOR_CURRENT:
419 return sprintf(buf, "current\n");
421 return sprintf(buf, "unknown\n");
424 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
425 struct device_attribute *attr, char *buf)
427 struct regulator_dev *rdev = dev_get_drvdata(dev);
429 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
431 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
432 regulator_suspend_mem_uV_show, NULL);
434 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
435 struct device_attribute *attr, char *buf)
437 struct regulator_dev *rdev = dev_get_drvdata(dev);
439 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
441 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
442 regulator_suspend_disk_uV_show, NULL);
444 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
445 struct device_attribute *attr, char *buf)
447 struct regulator_dev *rdev = dev_get_drvdata(dev);
449 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
451 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
452 regulator_suspend_standby_uV_show, NULL);
454 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
455 struct device_attribute *attr, char *buf)
457 struct regulator_dev *rdev = dev_get_drvdata(dev);
459 return regulator_print_opmode(buf,
460 rdev->constraints->state_mem.mode);
462 static DEVICE_ATTR(suspend_mem_mode, 0444,
463 regulator_suspend_mem_mode_show, NULL);
465 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
466 struct device_attribute *attr, char *buf)
468 struct regulator_dev *rdev = dev_get_drvdata(dev);
470 return regulator_print_opmode(buf,
471 rdev->constraints->state_disk.mode);
473 static DEVICE_ATTR(suspend_disk_mode, 0444,
474 regulator_suspend_disk_mode_show, NULL);
476 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
477 struct device_attribute *attr, char *buf)
479 struct regulator_dev *rdev = dev_get_drvdata(dev);
481 return regulator_print_opmode(buf,
482 rdev->constraints->state_standby.mode);
484 static DEVICE_ATTR(suspend_standby_mode, 0444,
485 regulator_suspend_standby_mode_show, NULL);
487 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
488 struct device_attribute *attr, char *buf)
490 struct regulator_dev *rdev = dev_get_drvdata(dev);
492 return regulator_print_state(buf,
493 rdev->constraints->state_mem.enabled);
495 static DEVICE_ATTR(suspend_mem_state, 0444,
496 regulator_suspend_mem_state_show, NULL);
498 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
499 struct device_attribute *attr, char *buf)
501 struct regulator_dev *rdev = dev_get_drvdata(dev);
503 return regulator_print_state(buf,
504 rdev->constraints->state_disk.enabled);
506 static DEVICE_ATTR(suspend_disk_state, 0444,
507 regulator_suspend_disk_state_show, NULL);
509 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
510 struct device_attribute *attr, char *buf)
512 struct regulator_dev *rdev = dev_get_drvdata(dev);
514 return regulator_print_state(buf,
515 rdev->constraints->state_standby.enabled);
517 static DEVICE_ATTR(suspend_standby_state, 0444,
518 regulator_suspend_standby_state_show, NULL);
522 * These are the only attributes are present for all regulators.
523 * Other attributes are a function of regulator functionality.
525 static struct device_attribute regulator_dev_attrs[] = {
526 __ATTR(name, 0444, regulator_name_show, NULL),
527 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
528 __ATTR(type, 0444, regulator_type_show, NULL),
529 __ATTR_NULL,
532 static void regulator_dev_release(struct device *dev)
534 struct regulator_dev *rdev = dev_get_drvdata(dev);
535 kfree(rdev);
538 static struct class regulator_class = {
539 .name = "regulator",
540 .dev_release = regulator_dev_release,
541 .dev_attrs = regulator_dev_attrs,
544 /* Calculate the new optimum regulator operating mode based on the new total
545 * consumer load. All locks held by caller */
546 static void drms_uA_update(struct regulator_dev *rdev)
548 struct regulator *sibling;
549 int current_uA = 0, output_uV, input_uV, err;
550 unsigned int mode;
552 err = regulator_check_drms(rdev);
553 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
554 !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
555 return;
557 /* get output voltage */
558 output_uV = rdev->desc->ops->get_voltage(rdev);
559 if (output_uV <= 0)
560 return;
562 /* get input voltage */
563 if (rdev->supply && rdev->supply->desc->ops->get_voltage)
564 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
565 else
566 input_uV = rdev->constraints->input_uV;
567 if (input_uV <= 0)
568 return;
570 /* calc total requested load */
571 list_for_each_entry(sibling, &rdev->consumer_list, list)
572 current_uA += sibling->uA_load;
574 /* now get the optimum mode for our new total regulator load */
575 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
576 output_uV, current_uA);
578 /* check the new mode is allowed */
579 err = regulator_check_mode(rdev, mode);
580 if (err == 0)
581 rdev->desc->ops->set_mode(rdev, mode);
584 static int suspend_set_state(struct regulator_dev *rdev,
585 struct regulator_state *rstate)
587 int ret = 0;
588 bool can_set_state;
590 can_set_state = rdev->desc->ops->set_suspend_enable &&
591 rdev->desc->ops->set_suspend_disable;
593 /* If we have no suspend mode configration don't set anything;
594 * only warn if the driver actually makes the suspend mode
595 * configurable.
597 if (!rstate->enabled && !rstate->disabled) {
598 if (can_set_state)
599 printk(KERN_WARNING "%s: No configuration for %s\n",
600 __func__, rdev_get_name(rdev));
601 return 0;
604 if (rstate->enabled && rstate->disabled) {
605 printk(KERN_ERR "%s: invalid configuration for %s\n",
606 __func__, rdev_get_name(rdev));
607 return -EINVAL;
610 if (!can_set_state) {
611 printk(KERN_ERR "%s: no way to set suspend state\n",
612 __func__);
613 return -EINVAL;
616 if (rstate->enabled)
617 ret = rdev->desc->ops->set_suspend_enable(rdev);
618 else
619 ret = rdev->desc->ops->set_suspend_disable(rdev);
620 if (ret < 0) {
621 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
622 return ret;
625 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
626 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
627 if (ret < 0) {
628 printk(KERN_ERR "%s: failed to set voltage\n",
629 __func__);
630 return ret;
634 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
635 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
636 if (ret < 0) {
637 printk(KERN_ERR "%s: failed to set mode\n", __func__);
638 return ret;
641 return ret;
644 /* locks held by caller */
645 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
647 if (!rdev->constraints)
648 return -EINVAL;
650 switch (state) {
651 case PM_SUSPEND_STANDBY:
652 return suspend_set_state(rdev,
653 &rdev->constraints->state_standby);
654 case PM_SUSPEND_MEM:
655 return suspend_set_state(rdev,
656 &rdev->constraints->state_mem);
657 case PM_SUSPEND_MAX:
658 return suspend_set_state(rdev,
659 &rdev->constraints->state_disk);
660 default:
661 return -EINVAL;
665 static void print_constraints(struct regulator_dev *rdev)
667 struct regulation_constraints *constraints = rdev->constraints;
668 char buf[80] = "";
669 int count = 0;
670 int ret;
672 if (constraints->min_uV && constraints->max_uV) {
673 if (constraints->min_uV == constraints->max_uV)
674 count += sprintf(buf + count, "%d mV ",
675 constraints->min_uV / 1000);
676 else
677 count += sprintf(buf + count, "%d <--> %d mV ",
678 constraints->min_uV / 1000,
679 constraints->max_uV / 1000);
682 if (!constraints->min_uV ||
683 constraints->min_uV != constraints->max_uV) {
684 ret = _regulator_get_voltage(rdev);
685 if (ret > 0)
686 count += sprintf(buf + count, "at %d mV ", ret / 1000);
689 if (constraints->min_uA && constraints->max_uA) {
690 if (constraints->min_uA == constraints->max_uA)
691 count += sprintf(buf + count, "%d mA ",
692 constraints->min_uA / 1000);
693 else
694 count += sprintf(buf + count, "%d <--> %d mA ",
695 constraints->min_uA / 1000,
696 constraints->max_uA / 1000);
699 if (!constraints->min_uA ||
700 constraints->min_uA != constraints->max_uA) {
701 ret = _regulator_get_current_limit(rdev);
702 if (ret > 0)
703 count += sprintf(buf + count, "at %d uA ", ret / 1000);
706 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
707 count += sprintf(buf + count, "fast ");
708 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
709 count += sprintf(buf + count, "normal ");
710 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
711 count += sprintf(buf + count, "idle ");
712 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
713 count += sprintf(buf + count, "standby");
715 printk(KERN_INFO "regulator: %s: %s\n", rdev_get_name(rdev), buf);
718 static int machine_constraints_voltage(struct regulator_dev *rdev,
719 struct regulation_constraints *constraints)
721 struct regulator_ops *ops = rdev->desc->ops;
722 const char *name = rdev_get_name(rdev);
723 int ret;
725 /* do we need to apply the constraint voltage */
726 if (rdev->constraints->apply_uV &&
727 rdev->constraints->min_uV == rdev->constraints->max_uV &&
728 ops->set_voltage) {
729 ret = ops->set_voltage(rdev,
730 rdev->constraints->min_uV, rdev->constraints->max_uV);
731 if (ret < 0) {
732 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
733 __func__,
734 rdev->constraints->min_uV, name);
735 rdev->constraints = NULL;
736 return ret;
740 /* constrain machine-level voltage specs to fit
741 * the actual range supported by this regulator.
743 if (ops->list_voltage && rdev->desc->n_voltages) {
744 int count = rdev->desc->n_voltages;
745 int i;
746 int min_uV = INT_MAX;
747 int max_uV = INT_MIN;
748 int cmin = constraints->min_uV;
749 int cmax = constraints->max_uV;
751 /* it's safe to autoconfigure fixed-voltage supplies
752 and the constraints are used by list_voltage. */
753 if (count == 1 && !cmin) {
754 cmin = 1;
755 cmax = INT_MAX;
756 constraints->min_uV = cmin;
757 constraints->max_uV = cmax;
760 /* voltage constraints are optional */
761 if ((cmin == 0) && (cmax == 0))
762 return 0;
764 /* else require explicit machine-level constraints */
765 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
766 pr_err("%s: %s '%s' voltage constraints\n",
767 __func__, "invalid", name);
768 return -EINVAL;
771 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
772 for (i = 0; i < count; i++) {
773 int value;
775 value = ops->list_voltage(rdev, i);
776 if (value <= 0)
777 continue;
779 /* maybe adjust [min_uV..max_uV] */
780 if (value >= cmin && value < min_uV)
781 min_uV = value;
782 if (value <= cmax && value > max_uV)
783 max_uV = value;
786 /* final: [min_uV..max_uV] valid iff constraints valid */
787 if (max_uV < min_uV) {
788 pr_err("%s: %s '%s' voltage constraints\n",
789 __func__, "unsupportable", name);
790 return -EINVAL;
793 /* use regulator's subset of machine constraints */
794 if (constraints->min_uV < min_uV) {
795 pr_debug("%s: override '%s' %s, %d -> %d\n",
796 __func__, name, "min_uV",
797 constraints->min_uV, min_uV);
798 constraints->min_uV = min_uV;
800 if (constraints->max_uV > max_uV) {
801 pr_debug("%s: override '%s' %s, %d -> %d\n",
802 __func__, name, "max_uV",
803 constraints->max_uV, max_uV);
804 constraints->max_uV = max_uV;
808 return 0;
812 * set_machine_constraints - sets regulator constraints
813 * @rdev: regulator source
814 * @constraints: constraints to apply
816 * Allows platform initialisation code to define and constrain
817 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
818 * Constraints *must* be set by platform code in order for some
819 * regulator operations to proceed i.e. set_voltage, set_current_limit,
820 * set_mode.
822 static int set_machine_constraints(struct regulator_dev *rdev,
823 struct regulation_constraints *constraints)
825 int ret = 0;
826 const char *name;
827 struct regulator_ops *ops = rdev->desc->ops;
829 rdev->constraints = constraints;
831 name = rdev_get_name(rdev);
833 ret = machine_constraints_voltage(rdev, constraints);
834 if (ret != 0)
835 goto out;
837 /* do we need to setup our suspend state */
838 if (constraints->initial_state) {
839 ret = suspend_prepare(rdev, constraints->initial_state);
840 if (ret < 0) {
841 printk(KERN_ERR "%s: failed to set suspend state for %s\n",
842 __func__, name);
843 rdev->constraints = NULL;
844 goto out;
848 if (constraints->initial_mode) {
849 if (!ops->set_mode) {
850 printk(KERN_ERR "%s: no set_mode operation for %s\n",
851 __func__, name);
852 ret = -EINVAL;
853 goto out;
856 ret = ops->set_mode(rdev, constraints->initial_mode);
857 if (ret < 0) {
858 printk(KERN_ERR
859 "%s: failed to set initial mode for %s: %d\n",
860 __func__, name, ret);
861 goto out;
865 /* If the constraints say the regulator should be on at this point
866 * and we have control then make sure it is enabled.
868 if ((constraints->always_on || constraints->boot_on) && ops->enable) {
869 ret = ops->enable(rdev);
870 if (ret < 0) {
871 printk(KERN_ERR "%s: failed to enable %s\n",
872 __func__, name);
873 rdev->constraints = NULL;
874 goto out;
878 print_constraints(rdev);
879 out:
880 return ret;
884 * set_supply - set regulator supply regulator
885 * @rdev: regulator name
886 * @supply_rdev: supply regulator name
888 * Called by platform initialisation code to set the supply regulator for this
889 * regulator. This ensures that a regulators supply will also be enabled by the
890 * core if it's child is enabled.
892 static int set_supply(struct regulator_dev *rdev,
893 struct regulator_dev *supply_rdev)
895 int err;
897 err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
898 "supply");
899 if (err) {
900 printk(KERN_ERR
901 "%s: could not add device link %s err %d\n",
902 __func__, supply_rdev->dev.kobj.name, err);
903 goto out;
905 rdev->supply = supply_rdev;
906 list_add(&rdev->slist, &supply_rdev->supply_list);
907 out:
908 return err;
912 * set_consumer_device_supply: Bind a regulator to a symbolic supply
913 * @rdev: regulator source
914 * @consumer_dev: device the supply applies to
915 * @consumer_dev_name: dev_name() string for device supply applies to
916 * @supply: symbolic name for supply
918 * Allows platform initialisation code to map physical regulator
919 * sources to symbolic names for supplies for use by devices. Devices
920 * should use these symbolic names to request regulators, avoiding the
921 * need to provide board-specific regulator names as platform data.
923 * Only one of consumer_dev and consumer_dev_name may be specified.
925 static int set_consumer_device_supply(struct regulator_dev *rdev,
926 struct device *consumer_dev, const char *consumer_dev_name,
927 const char *supply)
929 struct regulator_map *node;
930 int has_dev;
932 if (consumer_dev && consumer_dev_name)
933 return -EINVAL;
935 if (!consumer_dev_name && consumer_dev)
936 consumer_dev_name = dev_name(consumer_dev);
938 if (supply == NULL)
939 return -EINVAL;
941 if (consumer_dev_name != NULL)
942 has_dev = 1;
943 else
944 has_dev = 0;
946 list_for_each_entry(node, &regulator_map_list, list) {
947 if (node->dev_name && consumer_dev_name) {
948 if (strcmp(node->dev_name, consumer_dev_name) != 0)
949 continue;
950 } else if (node->dev_name || consumer_dev_name) {
951 continue;
954 if (strcmp(node->supply, supply) != 0)
955 continue;
957 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
958 dev_name(&node->regulator->dev),
959 node->regulator->desc->name,
960 supply,
961 dev_name(&rdev->dev), rdev_get_name(rdev));
962 return -EBUSY;
965 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
966 if (node == NULL)
967 return -ENOMEM;
969 node->regulator = rdev;
970 node->supply = supply;
972 if (has_dev) {
973 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
974 if (node->dev_name == NULL) {
975 kfree(node);
976 return -ENOMEM;
980 list_add(&node->list, &regulator_map_list);
981 return 0;
984 static void unset_regulator_supplies(struct regulator_dev *rdev)
986 struct regulator_map *node, *n;
988 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
989 if (rdev == node->regulator) {
990 list_del(&node->list);
991 kfree(node->dev_name);
992 kfree(node);
997 #define REG_STR_SIZE 32
999 static struct regulator *create_regulator(struct regulator_dev *rdev,
1000 struct device *dev,
1001 const char *supply_name)
1003 struct regulator *regulator;
1004 char buf[REG_STR_SIZE];
1005 int err, size;
1007 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1008 if (regulator == NULL)
1009 return NULL;
1011 mutex_lock(&rdev->mutex);
1012 regulator->rdev = rdev;
1013 list_add(&regulator->list, &rdev->consumer_list);
1015 if (dev) {
1016 /* create a 'requested_microamps_name' sysfs entry */
1017 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1018 supply_name);
1019 if (size >= REG_STR_SIZE)
1020 goto overflow_err;
1022 regulator->dev = dev;
1023 sysfs_attr_init(&regulator->dev_attr.attr);
1024 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1025 if (regulator->dev_attr.attr.name == NULL)
1026 goto attr_name_err;
1028 regulator->dev_attr.attr.owner = THIS_MODULE;
1029 regulator->dev_attr.attr.mode = 0444;
1030 regulator->dev_attr.show = device_requested_uA_show;
1031 err = device_create_file(dev, &regulator->dev_attr);
1032 if (err < 0) {
1033 printk(KERN_WARNING "%s: could not add regulator_dev"
1034 " load sysfs\n", __func__);
1035 goto attr_name_err;
1038 /* also add a link to the device sysfs entry */
1039 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1040 dev->kobj.name, supply_name);
1041 if (size >= REG_STR_SIZE)
1042 goto attr_err;
1044 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1045 if (regulator->supply_name == NULL)
1046 goto attr_err;
1048 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1049 buf);
1050 if (err) {
1051 printk(KERN_WARNING
1052 "%s: could not add device link %s err %d\n",
1053 __func__, dev->kobj.name, err);
1054 device_remove_file(dev, &regulator->dev_attr);
1055 goto link_name_err;
1058 mutex_unlock(&rdev->mutex);
1059 return regulator;
1060 link_name_err:
1061 kfree(regulator->supply_name);
1062 attr_err:
1063 device_remove_file(regulator->dev, &regulator->dev_attr);
1064 attr_name_err:
1065 kfree(regulator->dev_attr.attr.name);
1066 overflow_err:
1067 list_del(&regulator->list);
1068 kfree(regulator);
1069 mutex_unlock(&rdev->mutex);
1070 return NULL;
1073 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1075 if (!rdev->desc->ops->enable_time)
1076 return 0;
1077 return rdev->desc->ops->enable_time(rdev);
1080 /* Internal regulator request function */
1081 static struct regulator *_regulator_get(struct device *dev, const char *id,
1082 int exclusive)
1084 struct regulator_dev *rdev;
1085 struct regulator_map *map;
1086 struct regulator *regulator = ERR_PTR(-ENODEV);
1087 const char *devname = NULL;
1088 int ret;
1090 if (id == NULL) {
1091 printk(KERN_ERR "regulator: get() with no identifier\n");
1092 return regulator;
1095 if (dev)
1096 devname = dev_name(dev);
1098 mutex_lock(&regulator_list_mutex);
1100 list_for_each_entry(map, &regulator_map_list, list) {
1101 /* If the mapping has a device set up it must match */
1102 if (map->dev_name &&
1103 (!devname || strcmp(map->dev_name, devname)))
1104 continue;
1106 if (strcmp(map->supply, id) == 0) {
1107 rdev = map->regulator;
1108 goto found;
1112 #ifdef CONFIG_REGULATOR_DUMMY
1113 if (!devname)
1114 devname = "deviceless";
1116 /* If the board didn't flag that it was fully constrained then
1117 * substitute in a dummy regulator so consumers can continue.
1119 if (!has_full_constraints) {
1120 pr_warning("%s supply %s not found, using dummy regulator\n",
1121 devname, id);
1122 rdev = dummy_regulator_rdev;
1123 goto found;
1125 #endif
1127 mutex_unlock(&regulator_list_mutex);
1128 return regulator;
1130 found:
1131 if (rdev->exclusive) {
1132 regulator = ERR_PTR(-EPERM);
1133 goto out;
1136 if (exclusive && rdev->open_count) {
1137 regulator = ERR_PTR(-EBUSY);
1138 goto out;
1141 if (!try_module_get(rdev->owner))
1142 goto out;
1144 regulator = create_regulator(rdev, dev, id);
1145 if (regulator == NULL) {
1146 regulator = ERR_PTR(-ENOMEM);
1147 module_put(rdev->owner);
1150 rdev->open_count++;
1151 if (exclusive) {
1152 rdev->exclusive = 1;
1154 ret = _regulator_is_enabled(rdev);
1155 if (ret > 0)
1156 rdev->use_count = 1;
1157 else
1158 rdev->use_count = 0;
1161 out:
1162 mutex_unlock(&regulator_list_mutex);
1164 return regulator;
1168 * regulator_get - lookup and obtain a reference to a regulator.
1169 * @dev: device for regulator "consumer"
1170 * @id: Supply name or regulator ID.
1172 * Returns a struct regulator corresponding to the regulator producer,
1173 * or IS_ERR() condition containing errno.
1175 * Use of supply names configured via regulator_set_device_supply() is
1176 * strongly encouraged. It is recommended that the supply name used
1177 * should match the name used for the supply and/or the relevant
1178 * device pins in the datasheet.
1180 struct regulator *regulator_get(struct device *dev, const char *id)
1182 return _regulator_get(dev, id, 0);
1184 EXPORT_SYMBOL_GPL(regulator_get);
1187 * regulator_get_exclusive - obtain exclusive access to a regulator.
1188 * @dev: device for regulator "consumer"
1189 * @id: Supply name or regulator ID.
1191 * Returns a struct regulator corresponding to the regulator producer,
1192 * or IS_ERR() condition containing errno. Other consumers will be
1193 * unable to obtain this reference is held and the use count for the
1194 * regulator will be initialised to reflect the current state of the
1195 * regulator.
1197 * This is intended for use by consumers which cannot tolerate shared
1198 * use of the regulator such as those which need to force the
1199 * regulator off for correct operation of the hardware they are
1200 * controlling.
1202 * Use of supply names configured via regulator_set_device_supply() is
1203 * strongly encouraged. It is recommended that the supply name used
1204 * should match the name used for the supply and/or the relevant
1205 * device pins in the datasheet.
1207 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1209 return _regulator_get(dev, id, 1);
1211 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1214 * regulator_put - "free" the regulator source
1215 * @regulator: regulator source
1217 * Note: drivers must ensure that all regulator_enable calls made on this
1218 * regulator source are balanced by regulator_disable calls prior to calling
1219 * this function.
1221 void regulator_put(struct regulator *regulator)
1223 struct regulator_dev *rdev;
1225 if (regulator == NULL || IS_ERR(regulator))
1226 return;
1228 mutex_lock(&regulator_list_mutex);
1229 rdev = regulator->rdev;
1231 /* remove any sysfs entries */
1232 if (regulator->dev) {
1233 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1234 kfree(regulator->supply_name);
1235 device_remove_file(regulator->dev, &regulator->dev_attr);
1236 kfree(regulator->dev_attr.attr.name);
1238 list_del(&regulator->list);
1239 kfree(regulator);
1241 rdev->open_count--;
1242 rdev->exclusive = 0;
1244 module_put(rdev->owner);
1245 mutex_unlock(&regulator_list_mutex);
1247 EXPORT_SYMBOL_GPL(regulator_put);
1249 static int _regulator_can_change_status(struct regulator_dev *rdev)
1251 if (!rdev->constraints)
1252 return 0;
1254 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1255 return 1;
1256 else
1257 return 0;
1260 /* locks held by regulator_enable() */
1261 static int _regulator_enable(struct regulator_dev *rdev)
1263 int ret, delay;
1265 /* do we need to enable the supply regulator first */
1266 if (rdev->supply) {
1267 ret = _regulator_enable(rdev->supply);
1268 if (ret < 0) {
1269 printk(KERN_ERR "%s: failed to enable %s: %d\n",
1270 __func__, rdev_get_name(rdev), ret);
1271 return ret;
1275 /* check voltage and requested load before enabling */
1276 if (rdev->constraints &&
1277 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1278 drms_uA_update(rdev);
1280 if (rdev->use_count == 0) {
1281 /* The regulator may on if it's not switchable or left on */
1282 ret = _regulator_is_enabled(rdev);
1283 if (ret == -EINVAL || ret == 0) {
1284 if (!_regulator_can_change_status(rdev))
1285 return -EPERM;
1287 if (!rdev->desc->ops->enable)
1288 return -EINVAL;
1290 /* Query before enabling in case configuration
1291 * dependant. */
1292 ret = _regulator_get_enable_time(rdev);
1293 if (ret >= 0) {
1294 delay = ret;
1295 } else {
1296 printk(KERN_WARNING
1297 "%s: enable_time() failed for %s: %d\n",
1298 __func__, rdev_get_name(rdev),
1299 ret);
1300 delay = 0;
1303 /* Allow the regulator to ramp; it would be useful
1304 * to extend this for bulk operations so that the
1305 * regulators can ramp together. */
1306 ret = rdev->desc->ops->enable(rdev);
1307 if (ret < 0)
1308 return ret;
1310 if (delay >= 1000)
1311 mdelay(delay / 1000);
1312 else if (delay)
1313 udelay(delay);
1315 } else if (ret < 0) {
1316 printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1317 __func__, rdev_get_name(rdev), ret);
1318 return ret;
1320 /* Fallthrough on positive return values - already enabled */
1323 rdev->use_count++;
1325 return 0;
1329 * regulator_enable - enable regulator output
1330 * @regulator: regulator source
1332 * Request that the regulator be enabled with the regulator output at
1333 * the predefined voltage or current value. Calls to regulator_enable()
1334 * must be balanced with calls to regulator_disable().
1336 * NOTE: the output value can be set by other drivers, boot loader or may be
1337 * hardwired in the regulator.
1339 int regulator_enable(struct regulator *regulator)
1341 struct regulator_dev *rdev = regulator->rdev;
1342 int ret = 0;
1344 mutex_lock(&rdev->mutex);
1345 ret = _regulator_enable(rdev);
1346 mutex_unlock(&rdev->mutex);
1347 return ret;
1349 EXPORT_SYMBOL_GPL(regulator_enable);
1351 /* locks held by regulator_disable() */
1352 static int _regulator_disable(struct regulator_dev *rdev)
1354 int ret = 0;
1356 if (WARN(rdev->use_count <= 0,
1357 "unbalanced disables for %s\n",
1358 rdev_get_name(rdev)))
1359 return -EIO;
1361 /* are we the last user and permitted to disable ? */
1362 if (rdev->use_count == 1 &&
1363 (rdev->constraints && !rdev->constraints->always_on)) {
1365 /* we are last user */
1366 if (_regulator_can_change_status(rdev) &&
1367 rdev->desc->ops->disable) {
1368 ret = rdev->desc->ops->disable(rdev);
1369 if (ret < 0) {
1370 printk(KERN_ERR "%s: failed to disable %s\n",
1371 __func__, rdev_get_name(rdev));
1372 return ret;
1375 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1376 NULL);
1379 /* decrease our supplies ref count and disable if required */
1380 if (rdev->supply)
1381 _regulator_disable(rdev->supply);
1383 rdev->use_count = 0;
1384 } else if (rdev->use_count > 1) {
1386 if (rdev->constraints &&
1387 (rdev->constraints->valid_ops_mask &
1388 REGULATOR_CHANGE_DRMS))
1389 drms_uA_update(rdev);
1391 rdev->use_count--;
1393 return ret;
1397 * regulator_disable - disable regulator output
1398 * @regulator: regulator source
1400 * Disable the regulator output voltage or current. Calls to
1401 * regulator_enable() must be balanced with calls to
1402 * regulator_disable().
1404 * NOTE: this will only disable the regulator output if no other consumer
1405 * devices have it enabled, the regulator device supports disabling and
1406 * machine constraints permit this operation.
1408 int regulator_disable(struct regulator *regulator)
1410 struct regulator_dev *rdev = regulator->rdev;
1411 int ret = 0;
1413 mutex_lock(&rdev->mutex);
1414 ret = _regulator_disable(rdev);
1415 mutex_unlock(&rdev->mutex);
1416 return ret;
1418 EXPORT_SYMBOL_GPL(regulator_disable);
1420 /* locks held by regulator_force_disable() */
1421 static int _regulator_force_disable(struct regulator_dev *rdev)
1423 int ret = 0;
1425 /* force disable */
1426 if (rdev->desc->ops->disable) {
1427 /* ah well, who wants to live forever... */
1428 ret = rdev->desc->ops->disable(rdev);
1429 if (ret < 0) {
1430 printk(KERN_ERR "%s: failed to force disable %s\n",
1431 __func__, rdev_get_name(rdev));
1432 return ret;
1434 /* notify other consumers that power has been forced off */
1435 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1436 REGULATOR_EVENT_DISABLE, NULL);
1439 /* decrease our supplies ref count and disable if required */
1440 if (rdev->supply)
1441 _regulator_disable(rdev->supply);
1443 rdev->use_count = 0;
1444 return ret;
1448 * regulator_force_disable - force disable regulator output
1449 * @regulator: regulator source
1451 * Forcibly disable the regulator output voltage or current.
1452 * NOTE: this *will* disable the regulator output even if other consumer
1453 * devices have it enabled. This should be used for situations when device
1454 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1456 int regulator_force_disable(struct regulator *regulator)
1458 int ret;
1460 mutex_lock(&regulator->rdev->mutex);
1461 regulator->uA_load = 0;
1462 ret = _regulator_force_disable(regulator->rdev);
1463 mutex_unlock(&regulator->rdev->mutex);
1464 return ret;
1466 EXPORT_SYMBOL_GPL(regulator_force_disable);
1468 static int _regulator_is_enabled(struct regulator_dev *rdev)
1470 /* If we don't know then assume that the regulator is always on */
1471 if (!rdev->desc->ops->is_enabled)
1472 return 1;
1474 return rdev->desc->ops->is_enabled(rdev);
1478 * regulator_is_enabled - is the regulator output enabled
1479 * @regulator: regulator source
1481 * Returns positive if the regulator driver backing the source/client
1482 * has requested that the device be enabled, zero if it hasn't, else a
1483 * negative errno code.
1485 * Note that the device backing this regulator handle can have multiple
1486 * users, so it might be enabled even if regulator_enable() was never
1487 * called for this particular source.
1489 int regulator_is_enabled(struct regulator *regulator)
1491 int ret;
1493 mutex_lock(&regulator->rdev->mutex);
1494 ret = _regulator_is_enabled(regulator->rdev);
1495 mutex_unlock(&regulator->rdev->mutex);
1497 return ret;
1499 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1502 * regulator_count_voltages - count regulator_list_voltage() selectors
1503 * @regulator: regulator source
1505 * Returns number of selectors, or negative errno. Selectors are
1506 * numbered starting at zero, and typically correspond to bitfields
1507 * in hardware registers.
1509 int regulator_count_voltages(struct regulator *regulator)
1511 struct regulator_dev *rdev = regulator->rdev;
1513 return rdev->desc->n_voltages ? : -EINVAL;
1515 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1518 * regulator_list_voltage - enumerate supported voltages
1519 * @regulator: regulator source
1520 * @selector: identify voltage to list
1521 * Context: can sleep
1523 * Returns a voltage that can be passed to @regulator_set_voltage(),
1524 * zero if this selector code can't be used on this system, or a
1525 * negative errno.
1527 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1529 struct regulator_dev *rdev = regulator->rdev;
1530 struct regulator_ops *ops = rdev->desc->ops;
1531 int ret;
1533 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1534 return -EINVAL;
1536 mutex_lock(&rdev->mutex);
1537 ret = ops->list_voltage(rdev, selector);
1538 mutex_unlock(&rdev->mutex);
1540 if (ret > 0) {
1541 if (ret < rdev->constraints->min_uV)
1542 ret = 0;
1543 else if (ret > rdev->constraints->max_uV)
1544 ret = 0;
1547 return ret;
1549 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1552 * regulator_is_supported_voltage - check if a voltage range can be supported
1554 * @regulator: Regulator to check.
1555 * @min_uV: Minimum required voltage in uV.
1556 * @max_uV: Maximum required voltage in uV.
1558 * Returns a boolean or a negative error code.
1560 int regulator_is_supported_voltage(struct regulator *regulator,
1561 int min_uV, int max_uV)
1563 int i, voltages, ret;
1565 ret = regulator_count_voltages(regulator);
1566 if (ret < 0)
1567 return ret;
1568 voltages = ret;
1570 for (i = 0; i < voltages; i++) {
1571 ret = regulator_list_voltage(regulator, i);
1573 if (ret >= min_uV && ret <= max_uV)
1574 return 1;
1577 return 0;
1581 * regulator_set_voltage - set regulator output voltage
1582 * @regulator: regulator source
1583 * @min_uV: Minimum required voltage in uV
1584 * @max_uV: Maximum acceptable voltage in uV
1586 * Sets a voltage regulator to the desired output voltage. This can be set
1587 * during any regulator state. IOW, regulator can be disabled or enabled.
1589 * If the regulator is enabled then the voltage will change to the new value
1590 * immediately otherwise if the regulator is disabled the regulator will
1591 * output at the new voltage when enabled.
1593 * NOTE: If the regulator is shared between several devices then the lowest
1594 * request voltage that meets the system constraints will be used.
1595 * Regulator system constraints must be set for this regulator before
1596 * calling this function otherwise this call will fail.
1598 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1600 struct regulator_dev *rdev = regulator->rdev;
1601 int ret;
1603 mutex_lock(&rdev->mutex);
1605 /* sanity check */
1606 if (!rdev->desc->ops->set_voltage) {
1607 ret = -EINVAL;
1608 goto out;
1611 /* constraints check */
1612 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1613 if (ret < 0)
1614 goto out;
1615 regulator->min_uV = min_uV;
1616 regulator->max_uV = max_uV;
1617 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1619 out:
1620 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1621 mutex_unlock(&rdev->mutex);
1622 return ret;
1624 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1626 static int _regulator_get_voltage(struct regulator_dev *rdev)
1628 /* sanity check */
1629 if (rdev->desc->ops->get_voltage)
1630 return rdev->desc->ops->get_voltage(rdev);
1631 else
1632 return -EINVAL;
1636 * regulator_get_voltage - get regulator output voltage
1637 * @regulator: regulator source
1639 * This returns the current regulator voltage in uV.
1641 * NOTE: If the regulator is disabled it will return the voltage value. This
1642 * function should not be used to determine regulator state.
1644 int regulator_get_voltage(struct regulator *regulator)
1646 int ret;
1648 mutex_lock(&regulator->rdev->mutex);
1650 ret = _regulator_get_voltage(regulator->rdev);
1652 mutex_unlock(&regulator->rdev->mutex);
1654 return ret;
1656 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1659 * regulator_set_current_limit - set regulator output current limit
1660 * @regulator: regulator source
1661 * @min_uA: Minimuum supported current in uA
1662 * @max_uA: Maximum supported current in uA
1664 * Sets current sink to the desired output current. This can be set during
1665 * any regulator state. IOW, regulator can be disabled or enabled.
1667 * If the regulator is enabled then the current will change to the new value
1668 * immediately otherwise if the regulator is disabled the regulator will
1669 * output at the new current when enabled.
1671 * NOTE: Regulator system constraints must be set for this regulator before
1672 * calling this function otherwise this call will fail.
1674 int regulator_set_current_limit(struct regulator *regulator,
1675 int min_uA, int max_uA)
1677 struct regulator_dev *rdev = regulator->rdev;
1678 int ret;
1680 mutex_lock(&rdev->mutex);
1682 /* sanity check */
1683 if (!rdev->desc->ops->set_current_limit) {
1684 ret = -EINVAL;
1685 goto out;
1688 /* constraints check */
1689 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1690 if (ret < 0)
1691 goto out;
1693 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1694 out:
1695 mutex_unlock(&rdev->mutex);
1696 return ret;
1698 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1700 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1702 int ret;
1704 mutex_lock(&rdev->mutex);
1706 /* sanity check */
1707 if (!rdev->desc->ops->get_current_limit) {
1708 ret = -EINVAL;
1709 goto out;
1712 ret = rdev->desc->ops->get_current_limit(rdev);
1713 out:
1714 mutex_unlock(&rdev->mutex);
1715 return ret;
1719 * regulator_get_current_limit - get regulator output current
1720 * @regulator: regulator source
1722 * This returns the current supplied by the specified current sink in uA.
1724 * NOTE: If the regulator is disabled it will return the current value. This
1725 * function should not be used to determine regulator state.
1727 int regulator_get_current_limit(struct regulator *regulator)
1729 return _regulator_get_current_limit(regulator->rdev);
1731 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1734 * regulator_set_mode - set regulator operating mode
1735 * @regulator: regulator source
1736 * @mode: operating mode - one of the REGULATOR_MODE constants
1738 * Set regulator operating mode to increase regulator efficiency or improve
1739 * regulation performance.
1741 * NOTE: Regulator system constraints must be set for this regulator before
1742 * calling this function otherwise this call will fail.
1744 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1746 struct regulator_dev *rdev = regulator->rdev;
1747 int ret;
1748 int regulator_curr_mode;
1750 mutex_lock(&rdev->mutex);
1752 /* sanity check */
1753 if (!rdev->desc->ops->set_mode) {
1754 ret = -EINVAL;
1755 goto out;
1758 /* return if the same mode is requested */
1759 if (rdev->desc->ops->get_mode) {
1760 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
1761 if (regulator_curr_mode == mode) {
1762 ret = 0;
1763 goto out;
1767 /* constraints check */
1768 ret = regulator_check_mode(rdev, mode);
1769 if (ret < 0)
1770 goto out;
1772 ret = rdev->desc->ops->set_mode(rdev, mode);
1773 out:
1774 mutex_unlock(&rdev->mutex);
1775 return ret;
1777 EXPORT_SYMBOL_GPL(regulator_set_mode);
1779 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1781 int ret;
1783 mutex_lock(&rdev->mutex);
1785 /* sanity check */
1786 if (!rdev->desc->ops->get_mode) {
1787 ret = -EINVAL;
1788 goto out;
1791 ret = rdev->desc->ops->get_mode(rdev);
1792 out:
1793 mutex_unlock(&rdev->mutex);
1794 return ret;
1798 * regulator_get_mode - get regulator operating mode
1799 * @regulator: regulator source
1801 * Get the current regulator operating mode.
1803 unsigned int regulator_get_mode(struct regulator *regulator)
1805 return _regulator_get_mode(regulator->rdev);
1807 EXPORT_SYMBOL_GPL(regulator_get_mode);
1810 * regulator_set_optimum_mode - set regulator optimum operating mode
1811 * @regulator: regulator source
1812 * @uA_load: load current
1814 * Notifies the regulator core of a new device load. This is then used by
1815 * DRMS (if enabled by constraints) to set the most efficient regulator
1816 * operating mode for the new regulator loading.
1818 * Consumer devices notify their supply regulator of the maximum power
1819 * they will require (can be taken from device datasheet in the power
1820 * consumption tables) when they change operational status and hence power
1821 * state. Examples of operational state changes that can affect power
1822 * consumption are :-
1824 * o Device is opened / closed.
1825 * o Device I/O is about to begin or has just finished.
1826 * o Device is idling in between work.
1828 * This information is also exported via sysfs to userspace.
1830 * DRMS will sum the total requested load on the regulator and change
1831 * to the most efficient operating mode if platform constraints allow.
1833 * Returns the new regulator mode or error.
1835 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1837 struct regulator_dev *rdev = regulator->rdev;
1838 struct regulator *consumer;
1839 int ret, output_uV, input_uV, total_uA_load = 0;
1840 unsigned int mode;
1842 mutex_lock(&rdev->mutex);
1844 regulator->uA_load = uA_load;
1845 ret = regulator_check_drms(rdev);
1846 if (ret < 0)
1847 goto out;
1848 ret = -EINVAL;
1850 /* sanity check */
1851 if (!rdev->desc->ops->get_optimum_mode)
1852 goto out;
1854 /* get output voltage */
1855 output_uV = rdev->desc->ops->get_voltage(rdev);
1856 if (output_uV <= 0) {
1857 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1858 __func__, rdev_get_name(rdev));
1859 goto out;
1862 /* get input voltage */
1863 if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1864 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1865 else
1866 input_uV = rdev->constraints->input_uV;
1867 if (input_uV <= 0) {
1868 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1869 __func__, rdev_get_name(rdev));
1870 goto out;
1873 /* calc total requested load for this regulator */
1874 list_for_each_entry(consumer, &rdev->consumer_list, list)
1875 total_uA_load += consumer->uA_load;
1877 mode = rdev->desc->ops->get_optimum_mode(rdev,
1878 input_uV, output_uV,
1879 total_uA_load);
1880 ret = regulator_check_mode(rdev, mode);
1881 if (ret < 0) {
1882 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1883 " %d uA %d -> %d uV\n", __func__, rdev_get_name(rdev),
1884 total_uA_load, input_uV, output_uV);
1885 goto out;
1888 ret = rdev->desc->ops->set_mode(rdev, mode);
1889 if (ret < 0) {
1890 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1891 __func__, mode, rdev_get_name(rdev));
1892 goto out;
1894 ret = mode;
1895 out:
1896 mutex_unlock(&rdev->mutex);
1897 return ret;
1899 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1902 * regulator_register_notifier - register regulator event notifier
1903 * @regulator: regulator source
1904 * @nb: notifier block
1906 * Register notifier block to receive regulator events.
1908 int regulator_register_notifier(struct regulator *regulator,
1909 struct notifier_block *nb)
1911 return blocking_notifier_chain_register(&regulator->rdev->notifier,
1912 nb);
1914 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1917 * regulator_unregister_notifier - unregister regulator event notifier
1918 * @regulator: regulator source
1919 * @nb: notifier block
1921 * Unregister regulator event notifier block.
1923 int regulator_unregister_notifier(struct regulator *regulator,
1924 struct notifier_block *nb)
1926 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1927 nb);
1929 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1931 /* notify regulator consumers and downstream regulator consumers.
1932 * Note mutex must be held by caller.
1934 static void _notifier_call_chain(struct regulator_dev *rdev,
1935 unsigned long event, void *data)
1937 struct regulator_dev *_rdev;
1939 /* call rdev chain first */
1940 blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1942 /* now notify regulator we supply */
1943 list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1944 mutex_lock(&_rdev->mutex);
1945 _notifier_call_chain(_rdev, event, data);
1946 mutex_unlock(&_rdev->mutex);
1951 * regulator_bulk_get - get multiple regulator consumers
1953 * @dev: Device to supply
1954 * @num_consumers: Number of consumers to register
1955 * @consumers: Configuration of consumers; clients are stored here.
1957 * @return 0 on success, an errno on failure.
1959 * This helper function allows drivers to get several regulator
1960 * consumers in one operation. If any of the regulators cannot be
1961 * acquired then any regulators that were allocated will be freed
1962 * before returning to the caller.
1964 int regulator_bulk_get(struct device *dev, int num_consumers,
1965 struct regulator_bulk_data *consumers)
1967 int i;
1968 int ret;
1970 for (i = 0; i < num_consumers; i++)
1971 consumers[i].consumer = NULL;
1973 for (i = 0; i < num_consumers; i++) {
1974 consumers[i].consumer = regulator_get(dev,
1975 consumers[i].supply);
1976 if (IS_ERR(consumers[i].consumer)) {
1977 ret = PTR_ERR(consumers[i].consumer);
1978 dev_err(dev, "Failed to get supply '%s': %d\n",
1979 consumers[i].supply, ret);
1980 consumers[i].consumer = NULL;
1981 goto err;
1985 return 0;
1987 err:
1988 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1989 regulator_put(consumers[i].consumer);
1991 return ret;
1993 EXPORT_SYMBOL_GPL(regulator_bulk_get);
1996 * regulator_bulk_enable - enable multiple regulator consumers
1998 * @num_consumers: Number of consumers
1999 * @consumers: Consumer data; clients are stored here.
2000 * @return 0 on success, an errno on failure
2002 * This convenience API allows consumers to enable multiple regulator
2003 * clients in a single API call. If any consumers cannot be enabled
2004 * then any others that were enabled will be disabled again prior to
2005 * return.
2007 int regulator_bulk_enable(int num_consumers,
2008 struct regulator_bulk_data *consumers)
2010 int i;
2011 int ret;
2013 for (i = 0; i < num_consumers; i++) {
2014 ret = regulator_enable(consumers[i].consumer);
2015 if (ret != 0)
2016 goto err;
2019 return 0;
2021 err:
2022 printk(KERN_ERR "Failed to enable %s: %d\n", consumers[i].supply, ret);
2023 for (--i; i >= 0; --i)
2024 regulator_disable(consumers[i].consumer);
2026 return ret;
2028 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2031 * regulator_bulk_disable - disable multiple regulator consumers
2033 * @num_consumers: Number of consumers
2034 * @consumers: Consumer data; clients are stored here.
2035 * @return 0 on success, an errno on failure
2037 * This convenience API allows consumers to disable multiple regulator
2038 * clients in a single API call. If any consumers cannot be enabled
2039 * then any others that were disabled will be disabled again prior to
2040 * return.
2042 int regulator_bulk_disable(int num_consumers,
2043 struct regulator_bulk_data *consumers)
2045 int i;
2046 int ret;
2048 for (i = 0; i < num_consumers; i++) {
2049 ret = regulator_disable(consumers[i].consumer);
2050 if (ret != 0)
2051 goto err;
2054 return 0;
2056 err:
2057 printk(KERN_ERR "Failed to disable %s: %d\n", consumers[i].supply,
2058 ret);
2059 for (--i; i >= 0; --i)
2060 regulator_enable(consumers[i].consumer);
2062 return ret;
2064 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2067 * regulator_bulk_free - free multiple regulator consumers
2069 * @num_consumers: Number of consumers
2070 * @consumers: Consumer data; clients are stored here.
2072 * This convenience API allows consumers to free multiple regulator
2073 * clients in a single API call.
2075 void regulator_bulk_free(int num_consumers,
2076 struct regulator_bulk_data *consumers)
2078 int i;
2080 for (i = 0; i < num_consumers; i++) {
2081 regulator_put(consumers[i].consumer);
2082 consumers[i].consumer = NULL;
2085 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2088 * regulator_notifier_call_chain - call regulator event notifier
2089 * @rdev: regulator source
2090 * @event: notifier block
2091 * @data: callback-specific data.
2093 * Called by regulator drivers to notify clients a regulator event has
2094 * occurred. We also notify regulator clients downstream.
2095 * Note lock must be held by caller.
2097 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2098 unsigned long event, void *data)
2100 _notifier_call_chain(rdev, event, data);
2101 return NOTIFY_DONE;
2104 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2107 * regulator_mode_to_status - convert a regulator mode into a status
2109 * @mode: Mode to convert
2111 * Convert a regulator mode into a status.
2113 int regulator_mode_to_status(unsigned int mode)
2115 switch (mode) {
2116 case REGULATOR_MODE_FAST:
2117 return REGULATOR_STATUS_FAST;
2118 case REGULATOR_MODE_NORMAL:
2119 return REGULATOR_STATUS_NORMAL;
2120 case REGULATOR_MODE_IDLE:
2121 return REGULATOR_STATUS_IDLE;
2122 case REGULATOR_STATUS_STANDBY:
2123 return REGULATOR_STATUS_STANDBY;
2124 default:
2125 return 0;
2128 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2131 * To avoid cluttering sysfs (and memory) with useless state, only
2132 * create attributes that can be meaningfully displayed.
2134 static int add_regulator_attributes(struct regulator_dev *rdev)
2136 struct device *dev = &rdev->dev;
2137 struct regulator_ops *ops = rdev->desc->ops;
2138 int status = 0;
2140 /* some attributes need specific methods to be displayed */
2141 if (ops->get_voltage) {
2142 status = device_create_file(dev, &dev_attr_microvolts);
2143 if (status < 0)
2144 return status;
2146 if (ops->get_current_limit) {
2147 status = device_create_file(dev, &dev_attr_microamps);
2148 if (status < 0)
2149 return status;
2151 if (ops->get_mode) {
2152 status = device_create_file(dev, &dev_attr_opmode);
2153 if (status < 0)
2154 return status;
2156 if (ops->is_enabled) {
2157 status = device_create_file(dev, &dev_attr_state);
2158 if (status < 0)
2159 return status;
2161 if (ops->get_status) {
2162 status = device_create_file(dev, &dev_attr_status);
2163 if (status < 0)
2164 return status;
2167 /* some attributes are type-specific */
2168 if (rdev->desc->type == REGULATOR_CURRENT) {
2169 status = device_create_file(dev, &dev_attr_requested_microamps);
2170 if (status < 0)
2171 return status;
2174 /* all the other attributes exist to support constraints;
2175 * don't show them if there are no constraints, or if the
2176 * relevant supporting methods are missing.
2178 if (!rdev->constraints)
2179 return status;
2181 /* constraints need specific supporting methods */
2182 if (ops->set_voltage) {
2183 status = device_create_file(dev, &dev_attr_min_microvolts);
2184 if (status < 0)
2185 return status;
2186 status = device_create_file(dev, &dev_attr_max_microvolts);
2187 if (status < 0)
2188 return status;
2190 if (ops->set_current_limit) {
2191 status = device_create_file(dev, &dev_attr_min_microamps);
2192 if (status < 0)
2193 return status;
2194 status = device_create_file(dev, &dev_attr_max_microamps);
2195 if (status < 0)
2196 return status;
2199 /* suspend mode constraints need multiple supporting methods */
2200 if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2201 return status;
2203 status = device_create_file(dev, &dev_attr_suspend_standby_state);
2204 if (status < 0)
2205 return status;
2206 status = device_create_file(dev, &dev_attr_suspend_mem_state);
2207 if (status < 0)
2208 return status;
2209 status = device_create_file(dev, &dev_attr_suspend_disk_state);
2210 if (status < 0)
2211 return status;
2213 if (ops->set_suspend_voltage) {
2214 status = device_create_file(dev,
2215 &dev_attr_suspend_standby_microvolts);
2216 if (status < 0)
2217 return status;
2218 status = device_create_file(dev,
2219 &dev_attr_suspend_mem_microvolts);
2220 if (status < 0)
2221 return status;
2222 status = device_create_file(dev,
2223 &dev_attr_suspend_disk_microvolts);
2224 if (status < 0)
2225 return status;
2228 if (ops->set_suspend_mode) {
2229 status = device_create_file(dev,
2230 &dev_attr_suspend_standby_mode);
2231 if (status < 0)
2232 return status;
2233 status = device_create_file(dev,
2234 &dev_attr_suspend_mem_mode);
2235 if (status < 0)
2236 return status;
2237 status = device_create_file(dev,
2238 &dev_attr_suspend_disk_mode);
2239 if (status < 0)
2240 return status;
2243 return status;
2247 * regulator_register - register regulator
2248 * @regulator_desc: regulator to register
2249 * @dev: struct device for the regulator
2250 * @init_data: platform provided init data, passed through by driver
2251 * @driver_data: private regulator data
2253 * Called by regulator drivers to register a regulator.
2254 * Returns 0 on success.
2256 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2257 struct device *dev, struct regulator_init_data *init_data,
2258 void *driver_data)
2260 static atomic_t regulator_no = ATOMIC_INIT(0);
2261 struct regulator_dev *rdev;
2262 int ret, i;
2264 if (regulator_desc == NULL)
2265 return ERR_PTR(-EINVAL);
2267 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2268 return ERR_PTR(-EINVAL);
2270 if (regulator_desc->type != REGULATOR_VOLTAGE &&
2271 regulator_desc->type != REGULATOR_CURRENT)
2272 return ERR_PTR(-EINVAL);
2274 if (!init_data)
2275 return ERR_PTR(-EINVAL);
2277 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2278 if (rdev == NULL)
2279 return ERR_PTR(-ENOMEM);
2281 mutex_lock(&regulator_list_mutex);
2283 mutex_init(&rdev->mutex);
2284 rdev->reg_data = driver_data;
2285 rdev->owner = regulator_desc->owner;
2286 rdev->desc = regulator_desc;
2287 INIT_LIST_HEAD(&rdev->consumer_list);
2288 INIT_LIST_HEAD(&rdev->supply_list);
2289 INIT_LIST_HEAD(&rdev->list);
2290 INIT_LIST_HEAD(&rdev->slist);
2291 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2293 /* preform any regulator specific init */
2294 if (init_data->regulator_init) {
2295 ret = init_data->regulator_init(rdev->reg_data);
2296 if (ret < 0)
2297 goto clean;
2300 /* register with sysfs */
2301 rdev->dev.class = &regulator_class;
2302 rdev->dev.parent = dev;
2303 dev_set_name(&rdev->dev, "regulator.%d",
2304 atomic_inc_return(&regulator_no) - 1);
2305 ret = device_register(&rdev->dev);
2306 if (ret != 0)
2307 goto clean;
2309 dev_set_drvdata(&rdev->dev, rdev);
2311 /* set regulator constraints */
2312 ret = set_machine_constraints(rdev, &init_data->constraints);
2313 if (ret < 0)
2314 goto scrub;
2316 /* add attributes supported by this regulator */
2317 ret = add_regulator_attributes(rdev);
2318 if (ret < 0)
2319 goto scrub;
2321 /* set supply regulator if it exists */
2322 if (init_data->supply_regulator && init_data->supply_regulator_dev) {
2323 dev_err(dev,
2324 "Supply regulator specified by both name and dev\n");
2325 goto scrub;
2328 if (init_data->supply_regulator) {
2329 struct regulator_dev *r;
2330 int found = 0;
2332 list_for_each_entry(r, &regulator_list, list) {
2333 if (strcmp(rdev_get_name(r),
2334 init_data->supply_regulator) == 0) {
2335 found = 1;
2336 break;
2340 if (!found) {
2341 dev_err(dev, "Failed to find supply %s\n",
2342 init_data->supply_regulator);
2343 goto scrub;
2346 ret = set_supply(rdev, r);
2347 if (ret < 0)
2348 goto scrub;
2351 if (init_data->supply_regulator_dev) {
2352 dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2353 ret = set_supply(rdev,
2354 dev_get_drvdata(init_data->supply_regulator_dev));
2355 if (ret < 0)
2356 goto scrub;
2359 /* add consumers devices */
2360 for (i = 0; i < init_data->num_consumer_supplies; i++) {
2361 ret = set_consumer_device_supply(rdev,
2362 init_data->consumer_supplies[i].dev,
2363 init_data->consumer_supplies[i].dev_name,
2364 init_data->consumer_supplies[i].supply);
2365 if (ret < 0)
2366 goto unset_supplies;
2369 list_add(&rdev->list, &regulator_list);
2370 out:
2371 mutex_unlock(&regulator_list_mutex);
2372 return rdev;
2374 unset_supplies:
2375 unset_regulator_supplies(rdev);
2377 scrub:
2378 device_unregister(&rdev->dev);
2379 /* device core frees rdev */
2380 rdev = ERR_PTR(ret);
2381 goto out;
2383 clean:
2384 kfree(rdev);
2385 rdev = ERR_PTR(ret);
2386 goto out;
2388 EXPORT_SYMBOL_GPL(regulator_register);
2391 * regulator_unregister - unregister regulator
2392 * @rdev: regulator to unregister
2394 * Called by regulator drivers to unregister a regulator.
2396 void regulator_unregister(struct regulator_dev *rdev)
2398 if (rdev == NULL)
2399 return;
2401 mutex_lock(&regulator_list_mutex);
2402 WARN_ON(rdev->open_count);
2403 unset_regulator_supplies(rdev);
2404 list_del(&rdev->list);
2405 if (rdev->supply)
2406 sysfs_remove_link(&rdev->dev.kobj, "supply");
2407 device_unregister(&rdev->dev);
2408 mutex_unlock(&regulator_list_mutex);
2410 EXPORT_SYMBOL_GPL(regulator_unregister);
2413 * regulator_suspend_prepare - prepare regulators for system wide suspend
2414 * @state: system suspend state
2416 * Configure each regulator with it's suspend operating parameters for state.
2417 * This will usually be called by machine suspend code prior to supending.
2419 int regulator_suspend_prepare(suspend_state_t state)
2421 struct regulator_dev *rdev;
2422 int ret = 0;
2424 /* ON is handled by regulator active state */
2425 if (state == PM_SUSPEND_ON)
2426 return -EINVAL;
2428 mutex_lock(&regulator_list_mutex);
2429 list_for_each_entry(rdev, &regulator_list, list) {
2431 mutex_lock(&rdev->mutex);
2432 ret = suspend_prepare(rdev, state);
2433 mutex_unlock(&rdev->mutex);
2435 if (ret < 0) {
2436 printk(KERN_ERR "%s: failed to prepare %s\n",
2437 __func__, rdev_get_name(rdev));
2438 goto out;
2441 out:
2442 mutex_unlock(&regulator_list_mutex);
2443 return ret;
2445 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2448 * regulator_has_full_constraints - the system has fully specified constraints
2450 * Calling this function will cause the regulator API to disable all
2451 * regulators which have a zero use count and don't have an always_on
2452 * constraint in a late_initcall.
2454 * The intention is that this will become the default behaviour in a
2455 * future kernel release so users are encouraged to use this facility
2456 * now.
2458 void regulator_has_full_constraints(void)
2460 has_full_constraints = 1;
2462 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2465 * rdev_get_drvdata - get rdev regulator driver data
2466 * @rdev: regulator
2468 * Get rdev regulator driver private data. This call can be used in the
2469 * regulator driver context.
2471 void *rdev_get_drvdata(struct regulator_dev *rdev)
2473 return rdev->reg_data;
2475 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2478 * regulator_get_drvdata - get regulator driver data
2479 * @regulator: regulator
2481 * Get regulator driver private data. This call can be used in the consumer
2482 * driver context when non API regulator specific functions need to be called.
2484 void *regulator_get_drvdata(struct regulator *regulator)
2486 return regulator->rdev->reg_data;
2488 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2491 * regulator_set_drvdata - set regulator driver data
2492 * @regulator: regulator
2493 * @data: data
2495 void regulator_set_drvdata(struct regulator *regulator, void *data)
2497 regulator->rdev->reg_data = data;
2499 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2502 * regulator_get_id - get regulator ID
2503 * @rdev: regulator
2505 int rdev_get_id(struct regulator_dev *rdev)
2507 return rdev->desc->id;
2509 EXPORT_SYMBOL_GPL(rdev_get_id);
2511 struct device *rdev_get_dev(struct regulator_dev *rdev)
2513 return &rdev->dev;
2515 EXPORT_SYMBOL_GPL(rdev_get_dev);
2517 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2519 return reg_init_data->driver_data;
2521 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2523 static int __init regulator_init(void)
2525 int ret;
2527 printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2529 ret = class_register(&regulator_class);
2531 regulator_dummy_init();
2533 return ret;
2536 /* init early to allow our consumers to complete system booting */
2537 core_initcall(regulator_init);
2539 static int __init regulator_init_complete(void)
2541 struct regulator_dev *rdev;
2542 struct regulator_ops *ops;
2543 struct regulation_constraints *c;
2544 int enabled, ret;
2545 const char *name;
2547 mutex_lock(&regulator_list_mutex);
2549 /* If we have a full configuration then disable any regulators
2550 * which are not in use or always_on. This will become the
2551 * default behaviour in the future.
2553 list_for_each_entry(rdev, &regulator_list, list) {
2554 ops = rdev->desc->ops;
2555 c = rdev->constraints;
2557 name = rdev_get_name(rdev);
2559 if (!ops->disable || (c && c->always_on))
2560 continue;
2562 mutex_lock(&rdev->mutex);
2564 if (rdev->use_count)
2565 goto unlock;
2567 /* If we can't read the status assume it's on. */
2568 if (ops->is_enabled)
2569 enabled = ops->is_enabled(rdev);
2570 else
2571 enabled = 1;
2573 if (!enabled)
2574 goto unlock;
2576 if (has_full_constraints) {
2577 /* We log since this may kill the system if it
2578 * goes wrong. */
2579 printk(KERN_INFO "%s: disabling %s\n",
2580 __func__, name);
2581 ret = ops->disable(rdev);
2582 if (ret != 0) {
2583 printk(KERN_ERR
2584 "%s: couldn't disable %s: %d\n",
2585 __func__, name, ret);
2587 } else {
2588 /* The intention is that in future we will
2589 * assume that full constraints are provided
2590 * so warn even if we aren't going to do
2591 * anything here.
2593 printk(KERN_WARNING
2594 "%s: incomplete constraints, leaving %s on\n",
2595 __func__, name);
2598 unlock:
2599 mutex_unlock(&rdev->mutex);
2602 mutex_unlock(&regulator_list_mutex);
2604 return 0;
2606 late_initcall(regulator_init_complete);