perf_counter: Add ioctl for changing the sample period/frequency
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / perf_counter.c
blobabe2f3b6c4242aaad8d45577376b4e92545779c1
1 /*
2 * Performance counter core code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/hardirq.h>
24 #include <linux/rculist.h>
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/anon_inodes.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/perf_counter.h>
31 #include <asm/irq_regs.h>
34 * Each CPU has a list of per CPU counters:
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_tracking __read_mostly;
44 static atomic_t nr_munmap_tracking __read_mostly;
45 static atomic_t nr_comm_tracking __read_mostly;
47 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
49 int sysctl_perf_counter_limit __read_mostly = 100000; /* max NMIs per second */
52 * Lock for (sysadmin-configurable) counter reservations:
54 static DEFINE_SPINLOCK(perf_resource_lock);
57 * Architecture provided APIs - weak aliases:
59 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
61 return NULL;
64 void __weak hw_perf_disable(void) { barrier(); }
65 void __weak hw_perf_enable(void) { barrier(); }
67 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
69 int __weak
70 hw_perf_group_sched_in(struct perf_counter *group_leader,
71 struct perf_cpu_context *cpuctx,
72 struct perf_counter_context *ctx, int cpu)
74 return 0;
77 void __weak perf_counter_print_debug(void) { }
79 static DEFINE_PER_CPU(int, disable_count);
81 void __perf_disable(void)
83 __get_cpu_var(disable_count)++;
86 bool __perf_enable(void)
88 return !--__get_cpu_var(disable_count);
91 void perf_disable(void)
93 __perf_disable();
94 hw_perf_disable();
97 void perf_enable(void)
99 if (__perf_enable())
100 hw_perf_enable();
103 static void get_ctx(struct perf_counter_context *ctx)
105 atomic_inc(&ctx->refcount);
108 static void free_ctx(struct rcu_head *head)
110 struct perf_counter_context *ctx;
112 ctx = container_of(head, struct perf_counter_context, rcu_head);
113 kfree(ctx);
116 static void put_ctx(struct perf_counter_context *ctx)
118 if (atomic_dec_and_test(&ctx->refcount)) {
119 if (ctx->parent_ctx)
120 put_ctx(ctx->parent_ctx);
121 if (ctx->task)
122 put_task_struct(ctx->task);
123 call_rcu(&ctx->rcu_head, free_ctx);
128 * Get the perf_counter_context for a task and lock it.
129 * This has to cope with with the fact that until it is locked,
130 * the context could get moved to another task.
132 static struct perf_counter_context *
133 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
135 struct perf_counter_context *ctx;
137 rcu_read_lock();
138 retry:
139 ctx = rcu_dereference(task->perf_counter_ctxp);
140 if (ctx) {
142 * If this context is a clone of another, it might
143 * get swapped for another underneath us by
144 * perf_counter_task_sched_out, though the
145 * rcu_read_lock() protects us from any context
146 * getting freed. Lock the context and check if it
147 * got swapped before we could get the lock, and retry
148 * if so. If we locked the right context, then it
149 * can't get swapped on us any more.
151 spin_lock_irqsave(&ctx->lock, *flags);
152 if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
153 spin_unlock_irqrestore(&ctx->lock, *flags);
154 goto retry;
157 rcu_read_unlock();
158 return ctx;
162 * Get the context for a task and increment its pin_count so it
163 * can't get swapped to another task. This also increments its
164 * reference count so that the context can't get freed.
166 static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
168 struct perf_counter_context *ctx;
169 unsigned long flags;
171 ctx = perf_lock_task_context(task, &flags);
172 if (ctx) {
173 ++ctx->pin_count;
174 get_ctx(ctx);
175 spin_unlock_irqrestore(&ctx->lock, flags);
177 return ctx;
180 static void perf_unpin_context(struct perf_counter_context *ctx)
182 unsigned long flags;
184 spin_lock_irqsave(&ctx->lock, flags);
185 --ctx->pin_count;
186 spin_unlock_irqrestore(&ctx->lock, flags);
187 put_ctx(ctx);
191 * Add a counter from the lists for its context.
192 * Must be called with ctx->mutex and ctx->lock held.
194 static void
195 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
197 struct perf_counter *group_leader = counter->group_leader;
200 * Depending on whether it is a standalone or sibling counter,
201 * add it straight to the context's counter list, or to the group
202 * leader's sibling list:
204 if (group_leader == counter)
205 list_add_tail(&counter->list_entry, &ctx->counter_list);
206 else {
207 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
208 group_leader->nr_siblings++;
211 list_add_rcu(&counter->event_entry, &ctx->event_list);
212 ctx->nr_counters++;
216 * Remove a counter from the lists for its context.
217 * Must be called with ctx->mutex and ctx->lock held.
219 static void
220 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
222 struct perf_counter *sibling, *tmp;
224 if (list_empty(&counter->list_entry))
225 return;
226 ctx->nr_counters--;
228 list_del_init(&counter->list_entry);
229 list_del_rcu(&counter->event_entry);
231 if (counter->group_leader != counter)
232 counter->group_leader->nr_siblings--;
235 * If this was a group counter with sibling counters then
236 * upgrade the siblings to singleton counters by adding them
237 * to the context list directly:
239 list_for_each_entry_safe(sibling, tmp,
240 &counter->sibling_list, list_entry) {
242 list_move_tail(&sibling->list_entry, &ctx->counter_list);
243 sibling->group_leader = sibling;
247 static void
248 counter_sched_out(struct perf_counter *counter,
249 struct perf_cpu_context *cpuctx,
250 struct perf_counter_context *ctx)
252 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
253 return;
255 counter->state = PERF_COUNTER_STATE_INACTIVE;
256 counter->tstamp_stopped = ctx->time;
257 counter->pmu->disable(counter);
258 counter->oncpu = -1;
260 if (!is_software_counter(counter))
261 cpuctx->active_oncpu--;
262 ctx->nr_active--;
263 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
264 cpuctx->exclusive = 0;
267 static void
268 group_sched_out(struct perf_counter *group_counter,
269 struct perf_cpu_context *cpuctx,
270 struct perf_counter_context *ctx)
272 struct perf_counter *counter;
274 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
275 return;
277 counter_sched_out(group_counter, cpuctx, ctx);
280 * Schedule out siblings (if any):
282 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
283 counter_sched_out(counter, cpuctx, ctx);
285 if (group_counter->hw_event.exclusive)
286 cpuctx->exclusive = 0;
290 * Cross CPU call to remove a performance counter
292 * We disable the counter on the hardware level first. After that we
293 * remove it from the context list.
295 static void __perf_counter_remove_from_context(void *info)
297 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
298 struct perf_counter *counter = info;
299 struct perf_counter_context *ctx = counter->ctx;
302 * If this is a task context, we need to check whether it is
303 * the current task context of this cpu. If not it has been
304 * scheduled out before the smp call arrived.
306 if (ctx->task && cpuctx->task_ctx != ctx)
307 return;
309 spin_lock(&ctx->lock);
311 * Protect the list operation against NMI by disabling the
312 * counters on a global level.
314 perf_disable();
316 counter_sched_out(counter, cpuctx, ctx);
318 list_del_counter(counter, ctx);
320 if (!ctx->task) {
322 * Allow more per task counters with respect to the
323 * reservation:
325 cpuctx->max_pertask =
326 min(perf_max_counters - ctx->nr_counters,
327 perf_max_counters - perf_reserved_percpu);
330 perf_enable();
331 spin_unlock(&ctx->lock);
336 * Remove the counter from a task's (or a CPU's) list of counters.
338 * Must be called with ctx->mutex held.
340 * CPU counters are removed with a smp call. For task counters we only
341 * call when the task is on a CPU.
343 * If counter->ctx is a cloned context, callers must make sure that
344 * every task struct that counter->ctx->task could possibly point to
345 * remains valid. This is OK when called from perf_release since
346 * that only calls us on the top-level context, which can't be a clone.
347 * When called from perf_counter_exit_task, it's OK because the
348 * context has been detached from its task.
350 static void perf_counter_remove_from_context(struct perf_counter *counter)
352 struct perf_counter_context *ctx = counter->ctx;
353 struct task_struct *task = ctx->task;
355 if (!task) {
357 * Per cpu counters are removed via an smp call and
358 * the removal is always sucessful.
360 smp_call_function_single(counter->cpu,
361 __perf_counter_remove_from_context,
362 counter, 1);
363 return;
366 retry:
367 task_oncpu_function_call(task, __perf_counter_remove_from_context,
368 counter);
370 spin_lock_irq(&ctx->lock);
372 * If the context is active we need to retry the smp call.
374 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
375 spin_unlock_irq(&ctx->lock);
376 goto retry;
380 * The lock prevents that this context is scheduled in so we
381 * can remove the counter safely, if the call above did not
382 * succeed.
384 if (!list_empty(&counter->list_entry)) {
385 list_del_counter(counter, ctx);
387 spin_unlock_irq(&ctx->lock);
390 static inline u64 perf_clock(void)
392 return cpu_clock(smp_processor_id());
396 * Update the record of the current time in a context.
398 static void update_context_time(struct perf_counter_context *ctx)
400 u64 now = perf_clock();
402 ctx->time += now - ctx->timestamp;
403 ctx->timestamp = now;
407 * Update the total_time_enabled and total_time_running fields for a counter.
409 static void update_counter_times(struct perf_counter *counter)
411 struct perf_counter_context *ctx = counter->ctx;
412 u64 run_end;
414 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
415 return;
417 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
419 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
420 run_end = counter->tstamp_stopped;
421 else
422 run_end = ctx->time;
424 counter->total_time_running = run_end - counter->tstamp_running;
428 * Update total_time_enabled and total_time_running for all counters in a group.
430 static void update_group_times(struct perf_counter *leader)
432 struct perf_counter *counter;
434 update_counter_times(leader);
435 list_for_each_entry(counter, &leader->sibling_list, list_entry)
436 update_counter_times(counter);
440 * Cross CPU call to disable a performance counter
442 static void __perf_counter_disable(void *info)
444 struct perf_counter *counter = info;
445 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
446 struct perf_counter_context *ctx = counter->ctx;
449 * If this is a per-task counter, need to check whether this
450 * counter's task is the current task on this cpu.
452 if (ctx->task && cpuctx->task_ctx != ctx)
453 return;
455 spin_lock(&ctx->lock);
458 * If the counter is on, turn it off.
459 * If it is in error state, leave it in error state.
461 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
462 update_context_time(ctx);
463 update_counter_times(counter);
464 if (counter == counter->group_leader)
465 group_sched_out(counter, cpuctx, ctx);
466 else
467 counter_sched_out(counter, cpuctx, ctx);
468 counter->state = PERF_COUNTER_STATE_OFF;
471 spin_unlock(&ctx->lock);
475 * Disable a counter.
477 * If counter->ctx is a cloned context, callers must make sure that
478 * every task struct that counter->ctx->task could possibly point to
479 * remains valid. This condition is satisifed when called through
480 * perf_counter_for_each_child or perf_counter_for_each because they
481 * hold the top-level counter's child_mutex, so any descendant that
482 * goes to exit will block in sync_child_counter.
483 * When called from perf_pending_counter it's OK because counter->ctx
484 * is the current context on this CPU and preemption is disabled,
485 * hence we can't get into perf_counter_task_sched_out for this context.
487 static void perf_counter_disable(struct perf_counter *counter)
489 struct perf_counter_context *ctx = counter->ctx;
490 struct task_struct *task = ctx->task;
492 if (!task) {
494 * Disable the counter on the cpu that it's on
496 smp_call_function_single(counter->cpu, __perf_counter_disable,
497 counter, 1);
498 return;
501 retry:
502 task_oncpu_function_call(task, __perf_counter_disable, counter);
504 spin_lock_irq(&ctx->lock);
506 * If the counter is still active, we need to retry the cross-call.
508 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
509 spin_unlock_irq(&ctx->lock);
510 goto retry;
514 * Since we have the lock this context can't be scheduled
515 * in, so we can change the state safely.
517 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
518 update_counter_times(counter);
519 counter->state = PERF_COUNTER_STATE_OFF;
522 spin_unlock_irq(&ctx->lock);
525 static int
526 counter_sched_in(struct perf_counter *counter,
527 struct perf_cpu_context *cpuctx,
528 struct perf_counter_context *ctx,
529 int cpu)
531 if (counter->state <= PERF_COUNTER_STATE_OFF)
532 return 0;
534 counter->state = PERF_COUNTER_STATE_ACTIVE;
535 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
537 * The new state must be visible before we turn it on in the hardware:
539 smp_wmb();
541 if (counter->pmu->enable(counter)) {
542 counter->state = PERF_COUNTER_STATE_INACTIVE;
543 counter->oncpu = -1;
544 return -EAGAIN;
547 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
549 if (!is_software_counter(counter))
550 cpuctx->active_oncpu++;
551 ctx->nr_active++;
553 if (counter->hw_event.exclusive)
554 cpuctx->exclusive = 1;
556 return 0;
559 static int
560 group_sched_in(struct perf_counter *group_counter,
561 struct perf_cpu_context *cpuctx,
562 struct perf_counter_context *ctx,
563 int cpu)
565 struct perf_counter *counter, *partial_group;
566 int ret;
568 if (group_counter->state == PERF_COUNTER_STATE_OFF)
569 return 0;
571 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
572 if (ret)
573 return ret < 0 ? ret : 0;
575 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
576 return -EAGAIN;
579 * Schedule in siblings as one group (if any):
581 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
582 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
583 partial_group = counter;
584 goto group_error;
588 return 0;
590 group_error:
592 * Groups can be scheduled in as one unit only, so undo any
593 * partial group before returning:
595 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
596 if (counter == partial_group)
597 break;
598 counter_sched_out(counter, cpuctx, ctx);
600 counter_sched_out(group_counter, cpuctx, ctx);
602 return -EAGAIN;
606 * Return 1 for a group consisting entirely of software counters,
607 * 0 if the group contains any hardware counters.
609 static int is_software_only_group(struct perf_counter *leader)
611 struct perf_counter *counter;
613 if (!is_software_counter(leader))
614 return 0;
616 list_for_each_entry(counter, &leader->sibling_list, list_entry)
617 if (!is_software_counter(counter))
618 return 0;
620 return 1;
624 * Work out whether we can put this counter group on the CPU now.
626 static int group_can_go_on(struct perf_counter *counter,
627 struct perf_cpu_context *cpuctx,
628 int can_add_hw)
631 * Groups consisting entirely of software counters can always go on.
633 if (is_software_only_group(counter))
634 return 1;
636 * If an exclusive group is already on, no other hardware
637 * counters can go on.
639 if (cpuctx->exclusive)
640 return 0;
642 * If this group is exclusive and there are already
643 * counters on the CPU, it can't go on.
645 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
646 return 0;
648 * Otherwise, try to add it if all previous groups were able
649 * to go on.
651 return can_add_hw;
654 static void add_counter_to_ctx(struct perf_counter *counter,
655 struct perf_counter_context *ctx)
657 list_add_counter(counter, ctx);
658 counter->tstamp_enabled = ctx->time;
659 counter->tstamp_running = ctx->time;
660 counter->tstamp_stopped = ctx->time;
664 * Cross CPU call to install and enable a performance counter
666 * Must be called with ctx->mutex held
668 static void __perf_install_in_context(void *info)
670 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
671 struct perf_counter *counter = info;
672 struct perf_counter_context *ctx = counter->ctx;
673 struct perf_counter *leader = counter->group_leader;
674 int cpu = smp_processor_id();
675 int err;
678 * If this is a task context, we need to check whether it is
679 * the current task context of this cpu. If not it has been
680 * scheduled out before the smp call arrived.
681 * Or possibly this is the right context but it isn't
682 * on this cpu because it had no counters.
684 if (ctx->task && cpuctx->task_ctx != ctx) {
685 if (cpuctx->task_ctx || ctx->task != current)
686 return;
687 cpuctx->task_ctx = ctx;
690 spin_lock(&ctx->lock);
691 ctx->is_active = 1;
692 update_context_time(ctx);
695 * Protect the list operation against NMI by disabling the
696 * counters on a global level. NOP for non NMI based counters.
698 perf_disable();
700 add_counter_to_ctx(counter, ctx);
703 * Don't put the counter on if it is disabled or if
704 * it is in a group and the group isn't on.
706 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
707 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
708 goto unlock;
711 * An exclusive counter can't go on if there are already active
712 * hardware counters, and no hardware counter can go on if there
713 * is already an exclusive counter on.
715 if (!group_can_go_on(counter, cpuctx, 1))
716 err = -EEXIST;
717 else
718 err = counter_sched_in(counter, cpuctx, ctx, cpu);
720 if (err) {
722 * This counter couldn't go on. If it is in a group
723 * then we have to pull the whole group off.
724 * If the counter group is pinned then put it in error state.
726 if (leader != counter)
727 group_sched_out(leader, cpuctx, ctx);
728 if (leader->hw_event.pinned) {
729 update_group_times(leader);
730 leader->state = PERF_COUNTER_STATE_ERROR;
734 if (!err && !ctx->task && cpuctx->max_pertask)
735 cpuctx->max_pertask--;
737 unlock:
738 perf_enable();
740 spin_unlock(&ctx->lock);
744 * Attach a performance counter to a context
746 * First we add the counter to the list with the hardware enable bit
747 * in counter->hw_config cleared.
749 * If the counter is attached to a task which is on a CPU we use a smp
750 * call to enable it in the task context. The task might have been
751 * scheduled away, but we check this in the smp call again.
753 * Must be called with ctx->mutex held.
755 static void
756 perf_install_in_context(struct perf_counter_context *ctx,
757 struct perf_counter *counter,
758 int cpu)
760 struct task_struct *task = ctx->task;
762 if (!task) {
764 * Per cpu counters are installed via an smp call and
765 * the install is always sucessful.
767 smp_call_function_single(cpu, __perf_install_in_context,
768 counter, 1);
769 return;
772 retry:
773 task_oncpu_function_call(task, __perf_install_in_context,
774 counter);
776 spin_lock_irq(&ctx->lock);
778 * we need to retry the smp call.
780 if (ctx->is_active && list_empty(&counter->list_entry)) {
781 spin_unlock_irq(&ctx->lock);
782 goto retry;
786 * The lock prevents that this context is scheduled in so we
787 * can add the counter safely, if it the call above did not
788 * succeed.
790 if (list_empty(&counter->list_entry))
791 add_counter_to_ctx(counter, ctx);
792 spin_unlock_irq(&ctx->lock);
796 * Cross CPU call to enable a performance counter
798 static void __perf_counter_enable(void *info)
800 struct perf_counter *counter = info;
801 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
802 struct perf_counter_context *ctx = counter->ctx;
803 struct perf_counter *leader = counter->group_leader;
804 int err;
807 * If this is a per-task counter, need to check whether this
808 * counter's task is the current task on this cpu.
810 if (ctx->task && cpuctx->task_ctx != ctx) {
811 if (cpuctx->task_ctx || ctx->task != current)
812 return;
813 cpuctx->task_ctx = ctx;
816 spin_lock(&ctx->lock);
817 ctx->is_active = 1;
818 update_context_time(ctx);
820 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
821 goto unlock;
822 counter->state = PERF_COUNTER_STATE_INACTIVE;
823 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
826 * If the counter is in a group and isn't the group leader,
827 * then don't put it on unless the group is on.
829 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
830 goto unlock;
832 if (!group_can_go_on(counter, cpuctx, 1)) {
833 err = -EEXIST;
834 } else {
835 perf_disable();
836 if (counter == leader)
837 err = group_sched_in(counter, cpuctx, ctx,
838 smp_processor_id());
839 else
840 err = counter_sched_in(counter, cpuctx, ctx,
841 smp_processor_id());
842 perf_enable();
845 if (err) {
847 * If this counter can't go on and it's part of a
848 * group, then the whole group has to come off.
850 if (leader != counter)
851 group_sched_out(leader, cpuctx, ctx);
852 if (leader->hw_event.pinned) {
853 update_group_times(leader);
854 leader->state = PERF_COUNTER_STATE_ERROR;
858 unlock:
859 spin_unlock(&ctx->lock);
863 * Enable a counter.
865 * If counter->ctx is a cloned context, callers must make sure that
866 * every task struct that counter->ctx->task could possibly point to
867 * remains valid. This condition is satisfied when called through
868 * perf_counter_for_each_child or perf_counter_for_each as described
869 * for perf_counter_disable.
871 static void perf_counter_enable(struct perf_counter *counter)
873 struct perf_counter_context *ctx = counter->ctx;
874 struct task_struct *task = ctx->task;
876 if (!task) {
878 * Enable the counter on the cpu that it's on
880 smp_call_function_single(counter->cpu, __perf_counter_enable,
881 counter, 1);
882 return;
885 spin_lock_irq(&ctx->lock);
886 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
887 goto out;
890 * If the counter is in error state, clear that first.
891 * That way, if we see the counter in error state below, we
892 * know that it has gone back into error state, as distinct
893 * from the task having been scheduled away before the
894 * cross-call arrived.
896 if (counter->state == PERF_COUNTER_STATE_ERROR)
897 counter->state = PERF_COUNTER_STATE_OFF;
899 retry:
900 spin_unlock_irq(&ctx->lock);
901 task_oncpu_function_call(task, __perf_counter_enable, counter);
903 spin_lock_irq(&ctx->lock);
906 * If the context is active and the counter is still off,
907 * we need to retry the cross-call.
909 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
910 goto retry;
913 * Since we have the lock this context can't be scheduled
914 * in, so we can change the state safely.
916 if (counter->state == PERF_COUNTER_STATE_OFF) {
917 counter->state = PERF_COUNTER_STATE_INACTIVE;
918 counter->tstamp_enabled =
919 ctx->time - counter->total_time_enabled;
921 out:
922 spin_unlock_irq(&ctx->lock);
925 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
928 * not supported on inherited counters
930 if (counter->hw_event.inherit)
931 return -EINVAL;
933 atomic_add(refresh, &counter->event_limit);
934 perf_counter_enable(counter);
936 return 0;
939 void __perf_counter_sched_out(struct perf_counter_context *ctx,
940 struct perf_cpu_context *cpuctx)
942 struct perf_counter *counter;
944 spin_lock(&ctx->lock);
945 ctx->is_active = 0;
946 if (likely(!ctx->nr_counters))
947 goto out;
948 update_context_time(ctx);
950 perf_disable();
951 if (ctx->nr_active) {
952 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
953 if (counter != counter->group_leader)
954 counter_sched_out(counter, cpuctx, ctx);
955 else
956 group_sched_out(counter, cpuctx, ctx);
959 perf_enable();
960 out:
961 spin_unlock(&ctx->lock);
965 * Test whether two contexts are equivalent, i.e. whether they
966 * have both been cloned from the same version of the same context
967 * and they both have the same number of enabled counters.
968 * If the number of enabled counters is the same, then the set
969 * of enabled counters should be the same, because these are both
970 * inherited contexts, therefore we can't access individual counters
971 * in them directly with an fd; we can only enable/disable all
972 * counters via prctl, or enable/disable all counters in a family
973 * via ioctl, which will have the same effect on both contexts.
975 static int context_equiv(struct perf_counter_context *ctx1,
976 struct perf_counter_context *ctx2)
978 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
979 && ctx1->parent_gen == ctx2->parent_gen
980 && !ctx1->pin_count && !ctx2->pin_count;
984 * Called from scheduler to remove the counters of the current task,
985 * with interrupts disabled.
987 * We stop each counter and update the counter value in counter->count.
989 * This does not protect us against NMI, but disable()
990 * sets the disabled bit in the control field of counter _before_
991 * accessing the counter control register. If a NMI hits, then it will
992 * not restart the counter.
994 void perf_counter_task_sched_out(struct task_struct *task,
995 struct task_struct *next, int cpu)
997 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
998 struct perf_counter_context *ctx = task->perf_counter_ctxp;
999 struct perf_counter_context *next_ctx;
1000 struct perf_counter_context *parent;
1001 struct pt_regs *regs;
1002 int do_switch = 1;
1004 regs = task_pt_regs(task);
1005 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
1007 if (likely(!ctx || !cpuctx->task_ctx))
1008 return;
1010 update_context_time(ctx);
1012 rcu_read_lock();
1013 parent = rcu_dereference(ctx->parent_ctx);
1014 next_ctx = next->perf_counter_ctxp;
1015 if (parent && next_ctx &&
1016 rcu_dereference(next_ctx->parent_ctx) == parent) {
1018 * Looks like the two contexts are clones, so we might be
1019 * able to optimize the context switch. We lock both
1020 * contexts and check that they are clones under the
1021 * lock (including re-checking that neither has been
1022 * uncloned in the meantime). It doesn't matter which
1023 * order we take the locks because no other cpu could
1024 * be trying to lock both of these tasks.
1026 spin_lock(&ctx->lock);
1027 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1028 if (context_equiv(ctx, next_ctx)) {
1030 * XXX do we need a memory barrier of sorts
1031 * wrt to rcu_dereference() of perf_counter_ctxp
1033 task->perf_counter_ctxp = next_ctx;
1034 next->perf_counter_ctxp = ctx;
1035 ctx->task = next;
1036 next_ctx->task = task;
1037 do_switch = 0;
1039 spin_unlock(&next_ctx->lock);
1040 spin_unlock(&ctx->lock);
1042 rcu_read_unlock();
1044 if (do_switch) {
1045 __perf_counter_sched_out(ctx, cpuctx);
1046 cpuctx->task_ctx = NULL;
1051 * Called with IRQs disabled
1053 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
1055 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1057 if (!cpuctx->task_ctx)
1058 return;
1060 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1061 return;
1063 __perf_counter_sched_out(ctx, cpuctx);
1064 cpuctx->task_ctx = NULL;
1068 * Called with IRQs disabled
1070 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1072 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1075 static void
1076 __perf_counter_sched_in(struct perf_counter_context *ctx,
1077 struct perf_cpu_context *cpuctx, int cpu)
1079 struct perf_counter *counter;
1080 int can_add_hw = 1;
1082 spin_lock(&ctx->lock);
1083 ctx->is_active = 1;
1084 if (likely(!ctx->nr_counters))
1085 goto out;
1087 ctx->timestamp = perf_clock();
1089 perf_disable();
1092 * First go through the list and put on any pinned groups
1093 * in order to give them the best chance of going on.
1095 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1096 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1097 !counter->hw_event.pinned)
1098 continue;
1099 if (counter->cpu != -1 && counter->cpu != cpu)
1100 continue;
1102 if (counter != counter->group_leader)
1103 counter_sched_in(counter, cpuctx, ctx, cpu);
1104 else {
1105 if (group_can_go_on(counter, cpuctx, 1))
1106 group_sched_in(counter, cpuctx, ctx, cpu);
1110 * If this pinned group hasn't been scheduled,
1111 * put it in error state.
1113 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1114 update_group_times(counter);
1115 counter->state = PERF_COUNTER_STATE_ERROR;
1119 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1121 * Ignore counters in OFF or ERROR state, and
1122 * ignore pinned counters since we did them already.
1124 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1125 counter->hw_event.pinned)
1126 continue;
1129 * Listen to the 'cpu' scheduling filter constraint
1130 * of counters:
1132 if (counter->cpu != -1 && counter->cpu != cpu)
1133 continue;
1135 if (counter != counter->group_leader) {
1136 if (counter_sched_in(counter, cpuctx, ctx, cpu))
1137 can_add_hw = 0;
1138 } else {
1139 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1140 if (group_sched_in(counter, cpuctx, ctx, cpu))
1141 can_add_hw = 0;
1145 perf_enable();
1146 out:
1147 spin_unlock(&ctx->lock);
1151 * Called from scheduler to add the counters of the current task
1152 * with interrupts disabled.
1154 * We restore the counter value and then enable it.
1156 * This does not protect us against NMI, but enable()
1157 * sets the enabled bit in the control field of counter _before_
1158 * accessing the counter control register. If a NMI hits, then it will
1159 * keep the counter running.
1161 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1163 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1164 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1166 if (likely(!ctx))
1167 return;
1168 if (cpuctx->task_ctx == ctx)
1169 return;
1170 __perf_counter_sched_in(ctx, cpuctx, cpu);
1171 cpuctx->task_ctx = ctx;
1174 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1176 struct perf_counter_context *ctx = &cpuctx->ctx;
1178 __perf_counter_sched_in(ctx, cpuctx, cpu);
1181 #define MAX_INTERRUPTS (~0ULL)
1183 static void perf_log_throttle(struct perf_counter *counter, int enable);
1184 static void perf_log_period(struct perf_counter *counter, u64 period);
1186 static void perf_adjust_freq(struct perf_counter_context *ctx)
1188 struct perf_counter *counter;
1189 u64 interrupts, sample_period;
1190 u64 events, period;
1191 s64 delta;
1193 spin_lock(&ctx->lock);
1194 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1195 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1196 continue;
1198 interrupts = counter->hw.interrupts;
1199 counter->hw.interrupts = 0;
1201 if (interrupts == MAX_INTERRUPTS) {
1202 perf_log_throttle(counter, 1);
1203 counter->pmu->unthrottle(counter);
1204 interrupts = 2*sysctl_perf_counter_limit/HZ;
1207 if (!counter->hw_event.freq || !counter->hw_event.sample_freq)
1208 continue;
1210 events = HZ * interrupts * counter->hw.sample_period;
1211 period = div64_u64(events, counter->hw_event.sample_freq);
1213 delta = (s64)(1 + period - counter->hw.sample_period);
1214 delta >>= 1;
1216 sample_period = counter->hw.sample_period + delta;
1218 if (!sample_period)
1219 sample_period = 1;
1221 perf_log_period(counter, sample_period);
1223 counter->hw.sample_period = sample_period;
1225 spin_unlock(&ctx->lock);
1229 * Round-robin a context's counters:
1231 static void rotate_ctx(struct perf_counter_context *ctx)
1233 struct perf_counter *counter;
1235 if (!ctx->nr_counters)
1236 return;
1238 spin_lock(&ctx->lock);
1240 * Rotate the first entry last (works just fine for group counters too):
1242 perf_disable();
1243 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1244 list_move_tail(&counter->list_entry, &ctx->counter_list);
1245 break;
1247 perf_enable();
1249 spin_unlock(&ctx->lock);
1252 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1254 struct perf_cpu_context *cpuctx;
1255 struct perf_counter_context *ctx;
1257 if (!atomic_read(&nr_counters))
1258 return;
1260 cpuctx = &per_cpu(perf_cpu_context, cpu);
1261 ctx = curr->perf_counter_ctxp;
1263 perf_adjust_freq(&cpuctx->ctx);
1264 if (ctx)
1265 perf_adjust_freq(ctx);
1267 perf_counter_cpu_sched_out(cpuctx);
1268 if (ctx)
1269 __perf_counter_task_sched_out(ctx);
1271 rotate_ctx(&cpuctx->ctx);
1272 if (ctx)
1273 rotate_ctx(ctx);
1275 perf_counter_cpu_sched_in(cpuctx, cpu);
1276 if (ctx)
1277 perf_counter_task_sched_in(curr, cpu);
1281 * Cross CPU call to read the hardware counter
1283 static void __read(void *info)
1285 struct perf_counter *counter = info;
1286 struct perf_counter_context *ctx = counter->ctx;
1287 unsigned long flags;
1289 local_irq_save(flags);
1290 if (ctx->is_active)
1291 update_context_time(ctx);
1292 counter->pmu->read(counter);
1293 update_counter_times(counter);
1294 local_irq_restore(flags);
1297 static u64 perf_counter_read(struct perf_counter *counter)
1300 * If counter is enabled and currently active on a CPU, update the
1301 * value in the counter structure:
1303 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1304 smp_call_function_single(counter->oncpu,
1305 __read, counter, 1);
1306 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1307 update_counter_times(counter);
1310 return atomic64_read(&counter->count);
1314 * Initialize the perf_counter context in a task_struct:
1316 static void
1317 __perf_counter_init_context(struct perf_counter_context *ctx,
1318 struct task_struct *task)
1320 memset(ctx, 0, sizeof(*ctx));
1321 spin_lock_init(&ctx->lock);
1322 mutex_init(&ctx->mutex);
1323 INIT_LIST_HEAD(&ctx->counter_list);
1324 INIT_LIST_HEAD(&ctx->event_list);
1325 atomic_set(&ctx->refcount, 1);
1326 ctx->task = task;
1329 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1331 struct perf_counter_context *parent_ctx;
1332 struct perf_counter_context *ctx;
1333 struct perf_cpu_context *cpuctx;
1334 struct task_struct *task;
1335 unsigned long flags;
1336 int err;
1339 * If cpu is not a wildcard then this is a percpu counter:
1341 if (cpu != -1) {
1342 /* Must be root to operate on a CPU counter: */
1343 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1344 return ERR_PTR(-EACCES);
1346 if (cpu < 0 || cpu > num_possible_cpus())
1347 return ERR_PTR(-EINVAL);
1350 * We could be clever and allow to attach a counter to an
1351 * offline CPU and activate it when the CPU comes up, but
1352 * that's for later.
1354 if (!cpu_isset(cpu, cpu_online_map))
1355 return ERR_PTR(-ENODEV);
1357 cpuctx = &per_cpu(perf_cpu_context, cpu);
1358 ctx = &cpuctx->ctx;
1359 get_ctx(ctx);
1361 return ctx;
1364 rcu_read_lock();
1365 if (!pid)
1366 task = current;
1367 else
1368 task = find_task_by_vpid(pid);
1369 if (task)
1370 get_task_struct(task);
1371 rcu_read_unlock();
1373 if (!task)
1374 return ERR_PTR(-ESRCH);
1377 * Can't attach counters to a dying task.
1379 err = -ESRCH;
1380 if (task->flags & PF_EXITING)
1381 goto errout;
1383 /* Reuse ptrace permission checks for now. */
1384 err = -EACCES;
1385 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1386 goto errout;
1388 retry:
1389 ctx = perf_lock_task_context(task, &flags);
1390 if (ctx) {
1391 parent_ctx = ctx->parent_ctx;
1392 if (parent_ctx) {
1393 put_ctx(parent_ctx);
1394 ctx->parent_ctx = NULL; /* no longer a clone */
1397 * Get an extra reference before dropping the lock so that
1398 * this context won't get freed if the task exits.
1400 get_ctx(ctx);
1401 spin_unlock_irqrestore(&ctx->lock, flags);
1404 if (!ctx) {
1405 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1406 err = -ENOMEM;
1407 if (!ctx)
1408 goto errout;
1409 __perf_counter_init_context(ctx, task);
1410 get_ctx(ctx);
1411 if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1413 * We raced with some other task; use
1414 * the context they set.
1416 kfree(ctx);
1417 goto retry;
1419 get_task_struct(task);
1422 put_task_struct(task);
1423 return ctx;
1425 errout:
1426 put_task_struct(task);
1427 return ERR_PTR(err);
1430 static void free_counter_rcu(struct rcu_head *head)
1432 struct perf_counter *counter;
1434 counter = container_of(head, struct perf_counter, rcu_head);
1435 if (counter->ns)
1436 put_pid_ns(counter->ns);
1437 kfree(counter);
1440 static void perf_pending_sync(struct perf_counter *counter);
1442 static void free_counter(struct perf_counter *counter)
1444 perf_pending_sync(counter);
1446 atomic_dec(&nr_counters);
1447 if (counter->hw_event.mmap)
1448 atomic_dec(&nr_mmap_tracking);
1449 if (counter->hw_event.munmap)
1450 atomic_dec(&nr_munmap_tracking);
1451 if (counter->hw_event.comm)
1452 atomic_dec(&nr_comm_tracking);
1454 if (counter->destroy)
1455 counter->destroy(counter);
1457 put_ctx(counter->ctx);
1458 call_rcu(&counter->rcu_head, free_counter_rcu);
1462 * Called when the last reference to the file is gone.
1464 static int perf_release(struct inode *inode, struct file *file)
1466 struct perf_counter *counter = file->private_data;
1467 struct perf_counter_context *ctx = counter->ctx;
1469 file->private_data = NULL;
1471 WARN_ON_ONCE(ctx->parent_ctx);
1472 mutex_lock(&ctx->mutex);
1473 perf_counter_remove_from_context(counter);
1474 mutex_unlock(&ctx->mutex);
1476 mutex_lock(&counter->owner->perf_counter_mutex);
1477 list_del_init(&counter->owner_entry);
1478 mutex_unlock(&counter->owner->perf_counter_mutex);
1479 put_task_struct(counter->owner);
1481 free_counter(counter);
1483 return 0;
1487 * Read the performance counter - simple non blocking version for now
1489 static ssize_t
1490 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1492 u64 values[3];
1493 int n;
1496 * Return end-of-file for a read on a counter that is in
1497 * error state (i.e. because it was pinned but it couldn't be
1498 * scheduled on to the CPU at some point).
1500 if (counter->state == PERF_COUNTER_STATE_ERROR)
1501 return 0;
1503 WARN_ON_ONCE(counter->ctx->parent_ctx);
1504 mutex_lock(&counter->child_mutex);
1505 values[0] = perf_counter_read(counter);
1506 n = 1;
1507 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1508 values[n++] = counter->total_time_enabled +
1509 atomic64_read(&counter->child_total_time_enabled);
1510 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1511 values[n++] = counter->total_time_running +
1512 atomic64_read(&counter->child_total_time_running);
1513 if (counter->hw_event.read_format & PERF_FORMAT_ID)
1514 values[n++] = counter->id;
1515 mutex_unlock(&counter->child_mutex);
1517 if (count < n * sizeof(u64))
1518 return -EINVAL;
1519 count = n * sizeof(u64);
1521 if (copy_to_user(buf, values, count))
1522 return -EFAULT;
1524 return count;
1527 static ssize_t
1528 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1530 struct perf_counter *counter = file->private_data;
1532 return perf_read_hw(counter, buf, count);
1535 static unsigned int perf_poll(struct file *file, poll_table *wait)
1537 struct perf_counter *counter = file->private_data;
1538 struct perf_mmap_data *data;
1539 unsigned int events = POLL_HUP;
1541 rcu_read_lock();
1542 data = rcu_dereference(counter->data);
1543 if (data)
1544 events = atomic_xchg(&data->poll, 0);
1545 rcu_read_unlock();
1547 poll_wait(file, &counter->waitq, wait);
1549 return events;
1552 static void perf_counter_reset(struct perf_counter *counter)
1554 (void)perf_counter_read(counter);
1555 atomic64_set(&counter->count, 0);
1556 perf_counter_update_userpage(counter);
1559 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1560 void (*func)(struct perf_counter *))
1562 struct perf_counter_context *ctx = counter->ctx;
1563 struct perf_counter *sibling;
1565 WARN_ON_ONCE(ctx->parent_ctx);
1566 mutex_lock(&ctx->mutex);
1567 counter = counter->group_leader;
1569 func(counter);
1570 list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1571 func(sibling);
1572 mutex_unlock(&ctx->mutex);
1576 * Holding the top-level counter's child_mutex means that any
1577 * descendant process that has inherited this counter will block
1578 * in sync_child_counter if it goes to exit, thus satisfying the
1579 * task existence requirements of perf_counter_enable/disable.
1581 static void perf_counter_for_each_child(struct perf_counter *counter,
1582 void (*func)(struct perf_counter *))
1584 struct perf_counter *child;
1586 WARN_ON_ONCE(counter->ctx->parent_ctx);
1587 mutex_lock(&counter->child_mutex);
1588 func(counter);
1589 list_for_each_entry(child, &counter->child_list, child_list)
1590 func(child);
1591 mutex_unlock(&counter->child_mutex);
1594 static void perf_counter_for_each(struct perf_counter *counter,
1595 void (*func)(struct perf_counter *))
1597 struct perf_counter *child;
1599 WARN_ON_ONCE(counter->ctx->parent_ctx);
1600 mutex_lock(&counter->child_mutex);
1601 perf_counter_for_each_sibling(counter, func);
1602 list_for_each_entry(child, &counter->child_list, child_list)
1603 perf_counter_for_each_sibling(child, func);
1604 mutex_unlock(&counter->child_mutex);
1607 static int perf_counter_period(struct perf_counter *counter, u64 __user *arg)
1609 struct perf_counter_context *ctx = counter->ctx;
1610 unsigned long size;
1611 int ret = 0;
1612 u64 value;
1614 if (!counter->hw_event.sample_period)
1615 return -EINVAL;
1617 size = copy_from_user(&value, arg, sizeof(value));
1618 if (size != sizeof(value))
1619 return -EFAULT;
1621 if (!value)
1622 return -EINVAL;
1624 spin_lock_irq(&ctx->lock);
1625 if (counter->hw_event.freq) {
1626 if (value > sysctl_perf_counter_limit) {
1627 ret = -EINVAL;
1628 goto unlock;
1631 counter->hw_event.sample_freq = value;
1632 } else {
1633 counter->hw_event.sample_period = value;
1634 counter->hw.sample_period = value;
1636 perf_log_period(counter, value);
1638 unlock:
1639 spin_unlock_irq(&ctx->lock);
1641 return ret;
1644 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1646 struct perf_counter *counter = file->private_data;
1647 void (*func)(struct perf_counter *);
1648 u32 flags = arg;
1650 switch (cmd) {
1651 case PERF_COUNTER_IOC_ENABLE:
1652 func = perf_counter_enable;
1653 break;
1654 case PERF_COUNTER_IOC_DISABLE:
1655 func = perf_counter_disable;
1656 break;
1657 case PERF_COUNTER_IOC_RESET:
1658 func = perf_counter_reset;
1659 break;
1661 case PERF_COUNTER_IOC_REFRESH:
1662 return perf_counter_refresh(counter, arg);
1664 case PERF_COUNTER_IOC_PERIOD:
1665 return perf_counter_period(counter, (u64 __user *)arg);
1667 default:
1668 return -ENOTTY;
1671 if (flags & PERF_IOC_FLAG_GROUP)
1672 perf_counter_for_each(counter, func);
1673 else
1674 perf_counter_for_each_child(counter, func);
1676 return 0;
1679 int perf_counter_task_enable(void)
1681 struct perf_counter *counter;
1683 mutex_lock(&current->perf_counter_mutex);
1684 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1685 perf_counter_for_each_child(counter, perf_counter_enable);
1686 mutex_unlock(&current->perf_counter_mutex);
1688 return 0;
1691 int perf_counter_task_disable(void)
1693 struct perf_counter *counter;
1695 mutex_lock(&current->perf_counter_mutex);
1696 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1697 perf_counter_for_each_child(counter, perf_counter_disable);
1698 mutex_unlock(&current->perf_counter_mutex);
1700 return 0;
1704 * Callers need to ensure there can be no nesting of this function, otherwise
1705 * the seqlock logic goes bad. We can not serialize this because the arch
1706 * code calls this from NMI context.
1708 void perf_counter_update_userpage(struct perf_counter *counter)
1710 struct perf_counter_mmap_page *userpg;
1711 struct perf_mmap_data *data;
1713 rcu_read_lock();
1714 data = rcu_dereference(counter->data);
1715 if (!data)
1716 goto unlock;
1718 userpg = data->user_page;
1721 * Disable preemption so as to not let the corresponding user-space
1722 * spin too long if we get preempted.
1724 preempt_disable();
1725 ++userpg->lock;
1726 barrier();
1727 userpg->index = counter->hw.idx;
1728 userpg->offset = atomic64_read(&counter->count);
1729 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1730 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1732 barrier();
1733 ++userpg->lock;
1734 preempt_enable();
1735 unlock:
1736 rcu_read_unlock();
1739 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1741 struct perf_counter *counter = vma->vm_file->private_data;
1742 struct perf_mmap_data *data;
1743 int ret = VM_FAULT_SIGBUS;
1745 rcu_read_lock();
1746 data = rcu_dereference(counter->data);
1747 if (!data)
1748 goto unlock;
1750 if (vmf->pgoff == 0) {
1751 vmf->page = virt_to_page(data->user_page);
1752 } else {
1753 int nr = vmf->pgoff - 1;
1755 if ((unsigned)nr > data->nr_pages)
1756 goto unlock;
1758 vmf->page = virt_to_page(data->data_pages[nr]);
1760 get_page(vmf->page);
1761 ret = 0;
1762 unlock:
1763 rcu_read_unlock();
1765 return ret;
1768 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1770 struct perf_mmap_data *data;
1771 unsigned long size;
1772 int i;
1774 WARN_ON(atomic_read(&counter->mmap_count));
1776 size = sizeof(struct perf_mmap_data);
1777 size += nr_pages * sizeof(void *);
1779 data = kzalloc(size, GFP_KERNEL);
1780 if (!data)
1781 goto fail;
1783 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1784 if (!data->user_page)
1785 goto fail_user_page;
1787 for (i = 0; i < nr_pages; i++) {
1788 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1789 if (!data->data_pages[i])
1790 goto fail_data_pages;
1793 data->nr_pages = nr_pages;
1794 atomic_set(&data->lock, -1);
1796 rcu_assign_pointer(counter->data, data);
1798 return 0;
1800 fail_data_pages:
1801 for (i--; i >= 0; i--)
1802 free_page((unsigned long)data->data_pages[i]);
1804 free_page((unsigned long)data->user_page);
1806 fail_user_page:
1807 kfree(data);
1809 fail:
1810 return -ENOMEM;
1813 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1815 struct perf_mmap_data *data;
1816 int i;
1818 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
1820 free_page((unsigned long)data->user_page);
1821 for (i = 0; i < data->nr_pages; i++)
1822 free_page((unsigned long)data->data_pages[i]);
1823 kfree(data);
1826 static void perf_mmap_data_free(struct perf_counter *counter)
1828 struct perf_mmap_data *data = counter->data;
1830 WARN_ON(atomic_read(&counter->mmap_count));
1832 rcu_assign_pointer(counter->data, NULL);
1833 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1836 static void perf_mmap_open(struct vm_area_struct *vma)
1838 struct perf_counter *counter = vma->vm_file->private_data;
1840 atomic_inc(&counter->mmap_count);
1843 static void perf_mmap_close(struct vm_area_struct *vma)
1845 struct perf_counter *counter = vma->vm_file->private_data;
1847 WARN_ON_ONCE(counter->ctx->parent_ctx);
1848 if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
1849 struct user_struct *user = current_user();
1851 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1852 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1853 perf_mmap_data_free(counter);
1854 mutex_unlock(&counter->mmap_mutex);
1858 static struct vm_operations_struct perf_mmap_vmops = {
1859 .open = perf_mmap_open,
1860 .close = perf_mmap_close,
1861 .fault = perf_mmap_fault,
1864 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1866 struct perf_counter *counter = file->private_data;
1867 unsigned long user_locked, user_lock_limit;
1868 struct user_struct *user = current_user();
1869 unsigned long locked, lock_limit;
1870 unsigned long vma_size;
1871 unsigned long nr_pages;
1872 long user_extra, extra;
1873 int ret = 0;
1875 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1876 return -EINVAL;
1878 vma_size = vma->vm_end - vma->vm_start;
1879 nr_pages = (vma_size / PAGE_SIZE) - 1;
1882 * If we have data pages ensure they're a power-of-two number, so we
1883 * can do bitmasks instead of modulo.
1885 if (nr_pages != 0 && !is_power_of_2(nr_pages))
1886 return -EINVAL;
1888 if (vma_size != PAGE_SIZE * (1 + nr_pages))
1889 return -EINVAL;
1891 if (vma->vm_pgoff != 0)
1892 return -EINVAL;
1894 WARN_ON_ONCE(counter->ctx->parent_ctx);
1895 mutex_lock(&counter->mmap_mutex);
1896 if (atomic_inc_not_zero(&counter->mmap_count)) {
1897 if (nr_pages != counter->data->nr_pages)
1898 ret = -EINVAL;
1899 goto unlock;
1902 user_extra = nr_pages + 1;
1903 user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1906 * Increase the limit linearly with more CPUs:
1908 user_lock_limit *= num_online_cpus();
1910 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1912 extra = 0;
1913 if (user_locked > user_lock_limit)
1914 extra = user_locked - user_lock_limit;
1916 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1917 lock_limit >>= PAGE_SHIFT;
1918 locked = vma->vm_mm->locked_vm + extra;
1920 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1921 ret = -EPERM;
1922 goto unlock;
1925 WARN_ON(counter->data);
1926 ret = perf_mmap_data_alloc(counter, nr_pages);
1927 if (ret)
1928 goto unlock;
1930 atomic_set(&counter->mmap_count, 1);
1931 atomic_long_add(user_extra, &user->locked_vm);
1932 vma->vm_mm->locked_vm += extra;
1933 counter->data->nr_locked = extra;
1934 unlock:
1935 mutex_unlock(&counter->mmap_mutex);
1937 vma->vm_flags &= ~VM_MAYWRITE;
1938 vma->vm_flags |= VM_RESERVED;
1939 vma->vm_ops = &perf_mmap_vmops;
1941 return ret;
1944 static int perf_fasync(int fd, struct file *filp, int on)
1946 struct inode *inode = filp->f_path.dentry->d_inode;
1947 struct perf_counter *counter = filp->private_data;
1948 int retval;
1950 mutex_lock(&inode->i_mutex);
1951 retval = fasync_helper(fd, filp, on, &counter->fasync);
1952 mutex_unlock(&inode->i_mutex);
1954 if (retval < 0)
1955 return retval;
1957 return 0;
1960 static const struct file_operations perf_fops = {
1961 .release = perf_release,
1962 .read = perf_read,
1963 .poll = perf_poll,
1964 .unlocked_ioctl = perf_ioctl,
1965 .compat_ioctl = perf_ioctl,
1966 .mmap = perf_mmap,
1967 .fasync = perf_fasync,
1971 * Perf counter wakeup
1973 * If there's data, ensure we set the poll() state and publish everything
1974 * to user-space before waking everybody up.
1977 void perf_counter_wakeup(struct perf_counter *counter)
1979 wake_up_all(&counter->waitq);
1981 if (counter->pending_kill) {
1982 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1983 counter->pending_kill = 0;
1988 * Pending wakeups
1990 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1992 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1993 * single linked list and use cmpxchg() to add entries lockless.
1996 static void perf_pending_counter(struct perf_pending_entry *entry)
1998 struct perf_counter *counter = container_of(entry,
1999 struct perf_counter, pending);
2001 if (counter->pending_disable) {
2002 counter->pending_disable = 0;
2003 perf_counter_disable(counter);
2006 if (counter->pending_wakeup) {
2007 counter->pending_wakeup = 0;
2008 perf_counter_wakeup(counter);
2012 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2014 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2015 PENDING_TAIL,
2018 static void perf_pending_queue(struct perf_pending_entry *entry,
2019 void (*func)(struct perf_pending_entry *))
2021 struct perf_pending_entry **head;
2023 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2024 return;
2026 entry->func = func;
2028 head = &get_cpu_var(perf_pending_head);
2030 do {
2031 entry->next = *head;
2032 } while (cmpxchg(head, entry->next, entry) != entry->next);
2034 set_perf_counter_pending();
2036 put_cpu_var(perf_pending_head);
2039 static int __perf_pending_run(void)
2041 struct perf_pending_entry *list;
2042 int nr = 0;
2044 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2045 while (list != PENDING_TAIL) {
2046 void (*func)(struct perf_pending_entry *);
2047 struct perf_pending_entry *entry = list;
2049 list = list->next;
2051 func = entry->func;
2052 entry->next = NULL;
2054 * Ensure we observe the unqueue before we issue the wakeup,
2055 * so that we won't be waiting forever.
2056 * -- see perf_not_pending().
2058 smp_wmb();
2060 func(entry);
2061 nr++;
2064 return nr;
2067 static inline int perf_not_pending(struct perf_counter *counter)
2070 * If we flush on whatever cpu we run, there is a chance we don't
2071 * need to wait.
2073 get_cpu();
2074 __perf_pending_run();
2075 put_cpu();
2078 * Ensure we see the proper queue state before going to sleep
2079 * so that we do not miss the wakeup. -- see perf_pending_handle()
2081 smp_rmb();
2082 return counter->pending.next == NULL;
2085 static void perf_pending_sync(struct perf_counter *counter)
2087 wait_event(counter->waitq, perf_not_pending(counter));
2090 void perf_counter_do_pending(void)
2092 __perf_pending_run();
2096 * Callchain support -- arch specific
2099 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2101 return NULL;
2105 * Output
2108 struct perf_output_handle {
2109 struct perf_counter *counter;
2110 struct perf_mmap_data *data;
2111 unsigned long head;
2112 unsigned long offset;
2113 int nmi;
2114 int overflow;
2115 int locked;
2116 unsigned long flags;
2119 static void perf_output_wakeup(struct perf_output_handle *handle)
2121 atomic_set(&handle->data->poll, POLL_IN);
2123 if (handle->nmi) {
2124 handle->counter->pending_wakeup = 1;
2125 perf_pending_queue(&handle->counter->pending,
2126 perf_pending_counter);
2127 } else
2128 perf_counter_wakeup(handle->counter);
2132 * Curious locking construct.
2134 * We need to ensure a later event doesn't publish a head when a former
2135 * event isn't done writing. However since we need to deal with NMIs we
2136 * cannot fully serialize things.
2138 * What we do is serialize between CPUs so we only have to deal with NMI
2139 * nesting on a single CPU.
2141 * We only publish the head (and generate a wakeup) when the outer-most
2142 * event completes.
2144 static void perf_output_lock(struct perf_output_handle *handle)
2146 struct perf_mmap_data *data = handle->data;
2147 int cpu;
2149 handle->locked = 0;
2151 local_irq_save(handle->flags);
2152 cpu = smp_processor_id();
2154 if (in_nmi() && atomic_read(&data->lock) == cpu)
2155 return;
2157 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2158 cpu_relax();
2160 handle->locked = 1;
2163 static void perf_output_unlock(struct perf_output_handle *handle)
2165 struct perf_mmap_data *data = handle->data;
2166 unsigned long head;
2167 int cpu;
2169 data->done_head = data->head;
2171 if (!handle->locked)
2172 goto out;
2174 again:
2176 * The xchg implies a full barrier that ensures all writes are done
2177 * before we publish the new head, matched by a rmb() in userspace when
2178 * reading this position.
2180 while ((head = atomic_long_xchg(&data->done_head, 0)))
2181 data->user_page->data_head = head;
2184 * NMI can happen here, which means we can miss a done_head update.
2187 cpu = atomic_xchg(&data->lock, -1);
2188 WARN_ON_ONCE(cpu != smp_processor_id());
2191 * Therefore we have to validate we did not indeed do so.
2193 if (unlikely(atomic_long_read(&data->done_head))) {
2195 * Since we had it locked, we can lock it again.
2197 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2198 cpu_relax();
2200 goto again;
2203 if (atomic_xchg(&data->wakeup, 0))
2204 perf_output_wakeup(handle);
2205 out:
2206 local_irq_restore(handle->flags);
2209 static int perf_output_begin(struct perf_output_handle *handle,
2210 struct perf_counter *counter, unsigned int size,
2211 int nmi, int overflow)
2213 struct perf_mmap_data *data;
2214 unsigned int offset, head;
2217 * For inherited counters we send all the output towards the parent.
2219 if (counter->parent)
2220 counter = counter->parent;
2222 rcu_read_lock();
2223 data = rcu_dereference(counter->data);
2224 if (!data)
2225 goto out;
2227 handle->data = data;
2228 handle->counter = counter;
2229 handle->nmi = nmi;
2230 handle->overflow = overflow;
2232 if (!data->nr_pages)
2233 goto fail;
2235 perf_output_lock(handle);
2237 do {
2238 offset = head = atomic_read(&data->head);
2239 head += size;
2240 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2242 handle->offset = offset;
2243 handle->head = head;
2245 if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2246 atomic_set(&data->wakeup, 1);
2248 return 0;
2250 fail:
2251 perf_output_wakeup(handle);
2252 out:
2253 rcu_read_unlock();
2255 return -ENOSPC;
2258 static void perf_output_copy(struct perf_output_handle *handle,
2259 void *buf, unsigned int len)
2261 unsigned int pages_mask;
2262 unsigned int offset;
2263 unsigned int size;
2264 void **pages;
2266 offset = handle->offset;
2267 pages_mask = handle->data->nr_pages - 1;
2268 pages = handle->data->data_pages;
2270 do {
2271 unsigned int page_offset;
2272 int nr;
2274 nr = (offset >> PAGE_SHIFT) & pages_mask;
2275 page_offset = offset & (PAGE_SIZE - 1);
2276 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2278 memcpy(pages[nr] + page_offset, buf, size);
2280 len -= size;
2281 buf += size;
2282 offset += size;
2283 } while (len);
2285 handle->offset = offset;
2288 * Check we didn't copy past our reservation window, taking the
2289 * possible unsigned int wrap into account.
2291 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2294 #define perf_output_put(handle, x) \
2295 perf_output_copy((handle), &(x), sizeof(x))
2297 static void perf_output_end(struct perf_output_handle *handle)
2299 struct perf_counter *counter = handle->counter;
2300 struct perf_mmap_data *data = handle->data;
2302 int wakeup_events = counter->hw_event.wakeup_events;
2304 if (handle->overflow && wakeup_events) {
2305 int events = atomic_inc_return(&data->events);
2306 if (events >= wakeup_events) {
2307 atomic_sub(wakeup_events, &data->events);
2308 atomic_set(&data->wakeup, 1);
2312 perf_output_unlock(handle);
2313 rcu_read_unlock();
2316 static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
2319 * only top level counters have the pid namespace they were created in
2321 if (counter->parent)
2322 counter = counter->parent;
2324 return task_tgid_nr_ns(p, counter->ns);
2327 static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
2330 * only top level counters have the pid namespace they were created in
2332 if (counter->parent)
2333 counter = counter->parent;
2335 return task_pid_nr_ns(p, counter->ns);
2338 static void perf_counter_output(struct perf_counter *counter,
2339 int nmi, struct pt_regs *regs, u64 addr)
2341 int ret;
2342 u64 sample_type = counter->hw_event.sample_type;
2343 struct perf_output_handle handle;
2344 struct perf_event_header header;
2345 u64 ip;
2346 struct {
2347 u32 pid, tid;
2348 } tid_entry;
2349 struct {
2350 u64 id;
2351 u64 counter;
2352 } group_entry;
2353 struct perf_callchain_entry *callchain = NULL;
2354 int callchain_size = 0;
2355 u64 time;
2356 struct {
2357 u32 cpu, reserved;
2358 } cpu_entry;
2360 header.type = 0;
2361 header.size = sizeof(header);
2363 header.misc = PERF_EVENT_MISC_OVERFLOW;
2364 header.misc |= perf_misc_flags(regs);
2366 if (sample_type & PERF_SAMPLE_IP) {
2367 ip = perf_instruction_pointer(regs);
2368 header.type |= PERF_SAMPLE_IP;
2369 header.size += sizeof(ip);
2372 if (sample_type & PERF_SAMPLE_TID) {
2373 /* namespace issues */
2374 tid_entry.pid = perf_counter_pid(counter, current);
2375 tid_entry.tid = perf_counter_tid(counter, current);
2377 header.type |= PERF_SAMPLE_TID;
2378 header.size += sizeof(tid_entry);
2381 if (sample_type & PERF_SAMPLE_TIME) {
2383 * Maybe do better on x86 and provide cpu_clock_nmi()
2385 time = sched_clock();
2387 header.type |= PERF_SAMPLE_TIME;
2388 header.size += sizeof(u64);
2391 if (sample_type & PERF_SAMPLE_ADDR) {
2392 header.type |= PERF_SAMPLE_ADDR;
2393 header.size += sizeof(u64);
2396 if (sample_type & PERF_SAMPLE_CONFIG) {
2397 header.type |= PERF_SAMPLE_CONFIG;
2398 header.size += sizeof(u64);
2401 if (sample_type & PERF_SAMPLE_CPU) {
2402 header.type |= PERF_SAMPLE_CPU;
2403 header.size += sizeof(cpu_entry);
2405 cpu_entry.cpu = raw_smp_processor_id();
2408 if (sample_type & PERF_SAMPLE_GROUP) {
2409 header.type |= PERF_SAMPLE_GROUP;
2410 header.size += sizeof(u64) +
2411 counter->nr_siblings * sizeof(group_entry);
2414 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2415 callchain = perf_callchain(regs);
2417 if (callchain) {
2418 callchain_size = (1 + callchain->nr) * sizeof(u64);
2420 header.type |= PERF_SAMPLE_CALLCHAIN;
2421 header.size += callchain_size;
2425 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2426 if (ret)
2427 return;
2429 perf_output_put(&handle, header);
2431 if (sample_type & PERF_SAMPLE_IP)
2432 perf_output_put(&handle, ip);
2434 if (sample_type & PERF_SAMPLE_TID)
2435 perf_output_put(&handle, tid_entry);
2437 if (sample_type & PERF_SAMPLE_TIME)
2438 perf_output_put(&handle, time);
2440 if (sample_type & PERF_SAMPLE_ADDR)
2441 perf_output_put(&handle, addr);
2443 if (sample_type & PERF_SAMPLE_CONFIG)
2444 perf_output_put(&handle, counter->hw_event.config);
2446 if (sample_type & PERF_SAMPLE_CPU)
2447 perf_output_put(&handle, cpu_entry);
2450 * XXX PERF_SAMPLE_GROUP vs inherited counters seems difficult.
2452 if (sample_type & PERF_SAMPLE_GROUP) {
2453 struct perf_counter *leader, *sub;
2454 u64 nr = counter->nr_siblings;
2456 perf_output_put(&handle, nr);
2458 leader = counter->group_leader;
2459 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2460 if (sub != counter)
2461 sub->pmu->read(sub);
2463 group_entry.id = sub->id;
2464 group_entry.counter = atomic64_read(&sub->count);
2466 perf_output_put(&handle, group_entry);
2470 if (callchain)
2471 perf_output_copy(&handle, callchain, callchain_size);
2473 perf_output_end(&handle);
2477 * comm tracking
2480 struct perf_comm_event {
2481 struct task_struct *task;
2482 char *comm;
2483 int comm_size;
2485 struct {
2486 struct perf_event_header header;
2488 u32 pid;
2489 u32 tid;
2490 } event;
2493 static void perf_counter_comm_output(struct perf_counter *counter,
2494 struct perf_comm_event *comm_event)
2496 struct perf_output_handle handle;
2497 int size = comm_event->event.header.size;
2498 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2500 if (ret)
2501 return;
2503 comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
2504 comm_event->event.tid = perf_counter_tid(counter, comm_event->task);
2506 perf_output_put(&handle, comm_event->event);
2507 perf_output_copy(&handle, comm_event->comm,
2508 comm_event->comm_size);
2509 perf_output_end(&handle);
2512 static int perf_counter_comm_match(struct perf_counter *counter,
2513 struct perf_comm_event *comm_event)
2515 if (counter->hw_event.comm &&
2516 comm_event->event.header.type == PERF_EVENT_COMM)
2517 return 1;
2519 return 0;
2522 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2523 struct perf_comm_event *comm_event)
2525 struct perf_counter *counter;
2527 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2528 return;
2530 rcu_read_lock();
2531 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2532 if (perf_counter_comm_match(counter, comm_event))
2533 perf_counter_comm_output(counter, comm_event);
2535 rcu_read_unlock();
2538 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2540 struct perf_cpu_context *cpuctx;
2541 struct perf_counter_context *ctx;
2542 unsigned int size;
2543 char *comm = comm_event->task->comm;
2545 size = ALIGN(strlen(comm)+1, sizeof(u64));
2547 comm_event->comm = comm;
2548 comm_event->comm_size = size;
2550 comm_event->event.header.size = sizeof(comm_event->event) + size;
2552 cpuctx = &get_cpu_var(perf_cpu_context);
2553 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2554 put_cpu_var(perf_cpu_context);
2556 rcu_read_lock();
2558 * doesn't really matter which of the child contexts the
2559 * events ends up in.
2561 ctx = rcu_dereference(current->perf_counter_ctxp);
2562 if (ctx)
2563 perf_counter_comm_ctx(ctx, comm_event);
2564 rcu_read_unlock();
2567 void perf_counter_comm(struct task_struct *task)
2569 struct perf_comm_event comm_event;
2571 if (!atomic_read(&nr_comm_tracking))
2572 return;
2574 comm_event = (struct perf_comm_event){
2575 .task = task,
2576 .event = {
2577 .header = { .type = PERF_EVENT_COMM, },
2581 perf_counter_comm_event(&comm_event);
2585 * mmap tracking
2588 struct perf_mmap_event {
2589 struct file *file;
2590 char *file_name;
2591 int file_size;
2593 struct {
2594 struct perf_event_header header;
2596 u32 pid;
2597 u32 tid;
2598 u64 start;
2599 u64 len;
2600 u64 pgoff;
2601 } event;
2604 static void perf_counter_mmap_output(struct perf_counter *counter,
2605 struct perf_mmap_event *mmap_event)
2607 struct perf_output_handle handle;
2608 int size = mmap_event->event.header.size;
2609 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2611 if (ret)
2612 return;
2614 mmap_event->event.pid = perf_counter_pid(counter, current);
2615 mmap_event->event.tid = perf_counter_tid(counter, current);
2617 perf_output_put(&handle, mmap_event->event);
2618 perf_output_copy(&handle, mmap_event->file_name,
2619 mmap_event->file_size);
2620 perf_output_end(&handle);
2623 static int perf_counter_mmap_match(struct perf_counter *counter,
2624 struct perf_mmap_event *mmap_event)
2626 if (counter->hw_event.mmap &&
2627 mmap_event->event.header.type == PERF_EVENT_MMAP)
2628 return 1;
2630 if (counter->hw_event.munmap &&
2631 mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2632 return 1;
2634 return 0;
2637 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2638 struct perf_mmap_event *mmap_event)
2640 struct perf_counter *counter;
2642 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2643 return;
2645 rcu_read_lock();
2646 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2647 if (perf_counter_mmap_match(counter, mmap_event))
2648 perf_counter_mmap_output(counter, mmap_event);
2650 rcu_read_unlock();
2653 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2655 struct perf_cpu_context *cpuctx;
2656 struct perf_counter_context *ctx;
2657 struct file *file = mmap_event->file;
2658 unsigned int size;
2659 char tmp[16];
2660 char *buf = NULL;
2661 char *name;
2663 if (file) {
2664 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2665 if (!buf) {
2666 name = strncpy(tmp, "//enomem", sizeof(tmp));
2667 goto got_name;
2669 name = d_path(&file->f_path, buf, PATH_MAX);
2670 if (IS_ERR(name)) {
2671 name = strncpy(tmp, "//toolong", sizeof(tmp));
2672 goto got_name;
2674 } else {
2675 name = strncpy(tmp, "//anon", sizeof(tmp));
2676 goto got_name;
2679 got_name:
2680 size = ALIGN(strlen(name)+1, sizeof(u64));
2682 mmap_event->file_name = name;
2683 mmap_event->file_size = size;
2685 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2687 cpuctx = &get_cpu_var(perf_cpu_context);
2688 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2689 put_cpu_var(perf_cpu_context);
2691 rcu_read_lock();
2693 * doesn't really matter which of the child contexts the
2694 * events ends up in.
2696 ctx = rcu_dereference(current->perf_counter_ctxp);
2697 if (ctx)
2698 perf_counter_mmap_ctx(ctx, mmap_event);
2699 rcu_read_unlock();
2701 kfree(buf);
2704 void perf_counter_mmap(unsigned long addr, unsigned long len,
2705 unsigned long pgoff, struct file *file)
2707 struct perf_mmap_event mmap_event;
2709 if (!atomic_read(&nr_mmap_tracking))
2710 return;
2712 mmap_event = (struct perf_mmap_event){
2713 .file = file,
2714 .event = {
2715 .header = { .type = PERF_EVENT_MMAP, },
2716 .start = addr,
2717 .len = len,
2718 .pgoff = pgoff,
2722 perf_counter_mmap_event(&mmap_event);
2725 void perf_counter_munmap(unsigned long addr, unsigned long len,
2726 unsigned long pgoff, struct file *file)
2728 struct perf_mmap_event mmap_event;
2730 if (!atomic_read(&nr_munmap_tracking))
2731 return;
2733 mmap_event = (struct perf_mmap_event){
2734 .file = file,
2735 .event = {
2736 .header = { .type = PERF_EVENT_MUNMAP, },
2737 .start = addr,
2738 .len = len,
2739 .pgoff = pgoff,
2743 perf_counter_mmap_event(&mmap_event);
2747 * Log sample_period changes so that analyzing tools can re-normalize the
2748 * event flow.
2751 static void perf_log_period(struct perf_counter *counter, u64 period)
2753 struct perf_output_handle handle;
2754 int ret;
2756 struct {
2757 struct perf_event_header header;
2758 u64 time;
2759 u64 period;
2760 } freq_event = {
2761 .header = {
2762 .type = PERF_EVENT_PERIOD,
2763 .misc = 0,
2764 .size = sizeof(freq_event),
2766 .time = sched_clock(),
2767 .period = period,
2770 if (counter->hw.sample_period == period)
2771 return;
2773 ret = perf_output_begin(&handle, counter, sizeof(freq_event), 0, 0);
2774 if (ret)
2775 return;
2777 perf_output_put(&handle, freq_event);
2778 perf_output_end(&handle);
2782 * IRQ throttle logging
2785 static void perf_log_throttle(struct perf_counter *counter, int enable)
2787 struct perf_output_handle handle;
2788 int ret;
2790 struct {
2791 struct perf_event_header header;
2792 u64 time;
2793 } throttle_event = {
2794 .header = {
2795 .type = PERF_EVENT_THROTTLE + 1,
2796 .misc = 0,
2797 .size = sizeof(throttle_event),
2799 .time = sched_clock(),
2802 ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
2803 if (ret)
2804 return;
2806 perf_output_put(&handle, throttle_event);
2807 perf_output_end(&handle);
2811 * Generic counter overflow handling.
2814 int perf_counter_overflow(struct perf_counter *counter,
2815 int nmi, struct pt_regs *regs, u64 addr)
2817 int events = atomic_read(&counter->event_limit);
2818 int throttle = counter->pmu->unthrottle != NULL;
2819 int ret = 0;
2821 if (!throttle) {
2822 counter->hw.interrupts++;
2823 } else if (counter->hw.interrupts != MAX_INTERRUPTS) {
2824 counter->hw.interrupts++;
2825 if (HZ*counter->hw.interrupts > (u64)sysctl_perf_counter_limit) {
2826 counter->hw.interrupts = MAX_INTERRUPTS;
2827 perf_log_throttle(counter, 0);
2828 ret = 1;
2833 * XXX event_limit might not quite work as expected on inherited
2834 * counters
2837 counter->pending_kill = POLL_IN;
2838 if (events && atomic_dec_and_test(&counter->event_limit)) {
2839 ret = 1;
2840 counter->pending_kill = POLL_HUP;
2841 if (nmi) {
2842 counter->pending_disable = 1;
2843 perf_pending_queue(&counter->pending,
2844 perf_pending_counter);
2845 } else
2846 perf_counter_disable(counter);
2849 perf_counter_output(counter, nmi, regs, addr);
2850 return ret;
2854 * Generic software counter infrastructure
2857 static void perf_swcounter_update(struct perf_counter *counter)
2859 struct hw_perf_counter *hwc = &counter->hw;
2860 u64 prev, now;
2861 s64 delta;
2863 again:
2864 prev = atomic64_read(&hwc->prev_count);
2865 now = atomic64_read(&hwc->count);
2866 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2867 goto again;
2869 delta = now - prev;
2871 atomic64_add(delta, &counter->count);
2872 atomic64_sub(delta, &hwc->period_left);
2875 static void perf_swcounter_set_period(struct perf_counter *counter)
2877 struct hw_perf_counter *hwc = &counter->hw;
2878 s64 left = atomic64_read(&hwc->period_left);
2879 s64 period = hwc->sample_period;
2881 if (unlikely(left <= -period)) {
2882 left = period;
2883 atomic64_set(&hwc->period_left, left);
2886 if (unlikely(left <= 0)) {
2887 left += period;
2888 atomic64_add(period, &hwc->period_left);
2891 atomic64_set(&hwc->prev_count, -left);
2892 atomic64_set(&hwc->count, -left);
2895 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2897 enum hrtimer_restart ret = HRTIMER_RESTART;
2898 struct perf_counter *counter;
2899 struct pt_regs *regs;
2900 u64 period;
2902 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2903 counter->pmu->read(counter);
2905 regs = get_irq_regs();
2907 * In case we exclude kernel IPs or are somehow not in interrupt
2908 * context, provide the next best thing, the user IP.
2910 if ((counter->hw_event.exclude_kernel || !regs) &&
2911 !counter->hw_event.exclude_user)
2912 regs = task_pt_regs(current);
2914 if (regs) {
2915 if (perf_counter_overflow(counter, 0, regs, 0))
2916 ret = HRTIMER_NORESTART;
2919 period = max_t(u64, 10000, counter->hw.sample_period);
2920 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
2922 return ret;
2925 static void perf_swcounter_overflow(struct perf_counter *counter,
2926 int nmi, struct pt_regs *regs, u64 addr)
2928 perf_swcounter_update(counter);
2929 perf_swcounter_set_period(counter);
2930 if (perf_counter_overflow(counter, nmi, regs, addr))
2931 /* soft-disable the counter */
2936 static int perf_swcounter_is_counting(struct perf_counter *counter)
2938 struct perf_counter_context *ctx;
2939 unsigned long flags;
2940 int count;
2942 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
2943 return 1;
2945 if (counter->state != PERF_COUNTER_STATE_INACTIVE)
2946 return 0;
2949 * If the counter is inactive, it could be just because
2950 * its task is scheduled out, or because it's in a group
2951 * which could not go on the PMU. We want to count in
2952 * the first case but not the second. If the context is
2953 * currently active then an inactive software counter must
2954 * be the second case. If it's not currently active then
2955 * we need to know whether the counter was active when the
2956 * context was last active, which we can determine by
2957 * comparing counter->tstamp_stopped with ctx->time.
2959 * We are within an RCU read-side critical section,
2960 * which protects the existence of *ctx.
2962 ctx = counter->ctx;
2963 spin_lock_irqsave(&ctx->lock, flags);
2964 count = 1;
2965 /* Re-check state now we have the lock */
2966 if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
2967 counter->ctx->is_active ||
2968 counter->tstamp_stopped < ctx->time)
2969 count = 0;
2970 spin_unlock_irqrestore(&ctx->lock, flags);
2971 return count;
2974 static int perf_swcounter_match(struct perf_counter *counter,
2975 enum perf_event_types type,
2976 u32 event, struct pt_regs *regs)
2978 u64 event_config;
2980 event_config = ((u64) type << PERF_COUNTER_TYPE_SHIFT) | event;
2982 if (!perf_swcounter_is_counting(counter))
2983 return 0;
2985 if (counter->hw_event.config != event_config)
2986 return 0;
2988 if (regs) {
2989 if (counter->hw_event.exclude_user && user_mode(regs))
2990 return 0;
2992 if (counter->hw_event.exclude_kernel && !user_mode(regs))
2993 return 0;
2996 return 1;
2999 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
3000 int nmi, struct pt_regs *regs, u64 addr)
3002 int neg = atomic64_add_negative(nr, &counter->hw.count);
3004 if (counter->hw.sample_period && !neg && regs)
3005 perf_swcounter_overflow(counter, nmi, regs, addr);
3008 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
3009 enum perf_event_types type, u32 event,
3010 u64 nr, int nmi, struct pt_regs *regs,
3011 u64 addr)
3013 struct perf_counter *counter;
3015 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3016 return;
3018 rcu_read_lock();
3019 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3020 if (perf_swcounter_match(counter, type, event, regs))
3021 perf_swcounter_add(counter, nr, nmi, regs, addr);
3023 rcu_read_unlock();
3026 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
3028 if (in_nmi())
3029 return &cpuctx->recursion[3];
3031 if (in_irq())
3032 return &cpuctx->recursion[2];
3034 if (in_softirq())
3035 return &cpuctx->recursion[1];
3037 return &cpuctx->recursion[0];
3040 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
3041 u64 nr, int nmi, struct pt_regs *regs,
3042 u64 addr)
3044 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3045 int *recursion = perf_swcounter_recursion_context(cpuctx);
3046 struct perf_counter_context *ctx;
3048 if (*recursion)
3049 goto out;
3051 (*recursion)++;
3052 barrier();
3054 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
3055 nr, nmi, regs, addr);
3056 rcu_read_lock();
3058 * doesn't really matter which of the child contexts the
3059 * events ends up in.
3061 ctx = rcu_dereference(current->perf_counter_ctxp);
3062 if (ctx)
3063 perf_swcounter_ctx_event(ctx, type, event, nr, nmi, regs, addr);
3064 rcu_read_unlock();
3066 barrier();
3067 (*recursion)--;
3069 out:
3070 put_cpu_var(perf_cpu_context);
3073 void
3074 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
3076 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
3079 static void perf_swcounter_read(struct perf_counter *counter)
3081 perf_swcounter_update(counter);
3084 static int perf_swcounter_enable(struct perf_counter *counter)
3086 perf_swcounter_set_period(counter);
3087 return 0;
3090 static void perf_swcounter_disable(struct perf_counter *counter)
3092 perf_swcounter_update(counter);
3095 static const struct pmu perf_ops_generic = {
3096 .enable = perf_swcounter_enable,
3097 .disable = perf_swcounter_disable,
3098 .read = perf_swcounter_read,
3102 * Software counter: cpu wall time clock
3105 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
3107 int cpu = raw_smp_processor_id();
3108 s64 prev;
3109 u64 now;
3111 now = cpu_clock(cpu);
3112 prev = atomic64_read(&counter->hw.prev_count);
3113 atomic64_set(&counter->hw.prev_count, now);
3114 atomic64_add(now - prev, &counter->count);
3117 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
3119 struct hw_perf_counter *hwc = &counter->hw;
3120 int cpu = raw_smp_processor_id();
3122 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3123 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3124 hwc->hrtimer.function = perf_swcounter_hrtimer;
3125 if (hwc->sample_period) {
3126 u64 period = max_t(u64, 10000, hwc->sample_period);
3127 __hrtimer_start_range_ns(&hwc->hrtimer,
3128 ns_to_ktime(period), 0,
3129 HRTIMER_MODE_REL, 0);
3132 return 0;
3135 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
3137 if (counter->hw.sample_period)
3138 hrtimer_cancel(&counter->hw.hrtimer);
3139 cpu_clock_perf_counter_update(counter);
3142 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
3144 cpu_clock_perf_counter_update(counter);
3147 static const struct pmu perf_ops_cpu_clock = {
3148 .enable = cpu_clock_perf_counter_enable,
3149 .disable = cpu_clock_perf_counter_disable,
3150 .read = cpu_clock_perf_counter_read,
3154 * Software counter: task time clock
3157 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
3159 u64 prev;
3160 s64 delta;
3162 prev = atomic64_xchg(&counter->hw.prev_count, now);
3163 delta = now - prev;
3164 atomic64_add(delta, &counter->count);
3167 static int task_clock_perf_counter_enable(struct perf_counter *counter)
3169 struct hw_perf_counter *hwc = &counter->hw;
3170 u64 now;
3172 now = counter->ctx->time;
3174 atomic64_set(&hwc->prev_count, now);
3175 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3176 hwc->hrtimer.function = perf_swcounter_hrtimer;
3177 if (hwc->sample_period) {
3178 u64 period = max_t(u64, 10000, hwc->sample_period);
3179 __hrtimer_start_range_ns(&hwc->hrtimer,
3180 ns_to_ktime(period), 0,
3181 HRTIMER_MODE_REL, 0);
3184 return 0;
3187 static void task_clock_perf_counter_disable(struct perf_counter *counter)
3189 if (counter->hw.sample_period)
3190 hrtimer_cancel(&counter->hw.hrtimer);
3191 task_clock_perf_counter_update(counter, counter->ctx->time);
3195 static void task_clock_perf_counter_read(struct perf_counter *counter)
3197 u64 time;
3199 if (!in_nmi()) {
3200 update_context_time(counter->ctx);
3201 time = counter->ctx->time;
3202 } else {
3203 u64 now = perf_clock();
3204 u64 delta = now - counter->ctx->timestamp;
3205 time = counter->ctx->time + delta;
3208 task_clock_perf_counter_update(counter, time);
3211 static const struct pmu perf_ops_task_clock = {
3212 .enable = task_clock_perf_counter_enable,
3213 .disable = task_clock_perf_counter_disable,
3214 .read = task_clock_perf_counter_read,
3218 * Software counter: cpu migrations
3220 void perf_counter_task_migration(struct task_struct *task, int cpu)
3222 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3223 struct perf_counter_context *ctx;
3225 perf_swcounter_ctx_event(&cpuctx->ctx, PERF_TYPE_SOFTWARE,
3226 PERF_COUNT_CPU_MIGRATIONS,
3227 1, 1, NULL, 0);
3229 ctx = perf_pin_task_context(task);
3230 if (ctx) {
3231 perf_swcounter_ctx_event(ctx, PERF_TYPE_SOFTWARE,
3232 PERF_COUNT_CPU_MIGRATIONS,
3233 1, 1, NULL, 0);
3234 perf_unpin_context(ctx);
3238 #ifdef CONFIG_EVENT_PROFILE
3239 void perf_tpcounter_event(int event_id)
3241 struct pt_regs *regs = get_irq_regs();
3243 if (!regs)
3244 regs = task_pt_regs(current);
3246 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
3248 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3250 extern int ftrace_profile_enable(int);
3251 extern void ftrace_profile_disable(int);
3253 static void tp_perf_counter_destroy(struct perf_counter *counter)
3255 ftrace_profile_disable(perf_event_id(&counter->hw_event));
3258 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3260 int event_id = perf_event_id(&counter->hw_event);
3261 int ret;
3263 ret = ftrace_profile_enable(event_id);
3264 if (ret)
3265 return NULL;
3267 counter->destroy = tp_perf_counter_destroy;
3268 counter->hw.sample_period = counter->hw_event.sample_period;
3270 return &perf_ops_generic;
3272 #else
3273 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3275 return NULL;
3277 #endif
3279 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3281 const struct pmu *pmu = NULL;
3284 * Software counters (currently) can't in general distinguish
3285 * between user, kernel and hypervisor events.
3286 * However, context switches and cpu migrations are considered
3287 * to be kernel events, and page faults are never hypervisor
3288 * events.
3290 switch (perf_event_id(&counter->hw_event)) {
3291 case PERF_COUNT_CPU_CLOCK:
3292 pmu = &perf_ops_cpu_clock;
3294 break;
3295 case PERF_COUNT_TASK_CLOCK:
3297 * If the user instantiates this as a per-cpu counter,
3298 * use the cpu_clock counter instead.
3300 if (counter->ctx->task)
3301 pmu = &perf_ops_task_clock;
3302 else
3303 pmu = &perf_ops_cpu_clock;
3305 break;
3306 case PERF_COUNT_PAGE_FAULTS:
3307 case PERF_COUNT_PAGE_FAULTS_MIN:
3308 case PERF_COUNT_PAGE_FAULTS_MAJ:
3309 case PERF_COUNT_CONTEXT_SWITCHES:
3310 case PERF_COUNT_CPU_MIGRATIONS:
3311 pmu = &perf_ops_generic;
3312 break;
3315 return pmu;
3319 * Allocate and initialize a counter structure
3321 static struct perf_counter *
3322 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
3323 int cpu,
3324 struct perf_counter_context *ctx,
3325 struct perf_counter *group_leader,
3326 gfp_t gfpflags)
3328 const struct pmu *pmu;
3329 struct perf_counter *counter;
3330 struct hw_perf_counter *hwc;
3331 long err;
3333 counter = kzalloc(sizeof(*counter), gfpflags);
3334 if (!counter)
3335 return ERR_PTR(-ENOMEM);
3338 * Single counters are their own group leaders, with an
3339 * empty sibling list:
3341 if (!group_leader)
3342 group_leader = counter;
3344 mutex_init(&counter->child_mutex);
3345 INIT_LIST_HEAD(&counter->child_list);
3347 INIT_LIST_HEAD(&counter->list_entry);
3348 INIT_LIST_HEAD(&counter->event_entry);
3349 INIT_LIST_HEAD(&counter->sibling_list);
3350 init_waitqueue_head(&counter->waitq);
3352 mutex_init(&counter->mmap_mutex);
3354 counter->cpu = cpu;
3355 counter->hw_event = *hw_event;
3356 counter->group_leader = group_leader;
3357 counter->pmu = NULL;
3358 counter->ctx = ctx;
3359 counter->oncpu = -1;
3361 counter->state = PERF_COUNTER_STATE_INACTIVE;
3362 if (hw_event->disabled)
3363 counter->state = PERF_COUNTER_STATE_OFF;
3365 pmu = NULL;
3367 hwc = &counter->hw;
3368 if (hw_event->freq && hw_event->sample_freq)
3369 hwc->sample_period = div64_u64(TICK_NSEC, hw_event->sample_freq);
3370 else
3371 hwc->sample_period = hw_event->sample_period;
3374 * we currently do not support PERF_SAMPLE_GROUP on inherited counters
3376 if (hw_event->inherit && (hw_event->sample_type & PERF_SAMPLE_GROUP))
3377 goto done;
3379 if (perf_event_raw(hw_event)) {
3380 pmu = hw_perf_counter_init(counter);
3381 goto done;
3384 switch (perf_event_type(hw_event)) {
3385 case PERF_TYPE_HARDWARE:
3386 pmu = hw_perf_counter_init(counter);
3387 break;
3389 case PERF_TYPE_SOFTWARE:
3390 pmu = sw_perf_counter_init(counter);
3391 break;
3393 case PERF_TYPE_TRACEPOINT:
3394 pmu = tp_perf_counter_init(counter);
3395 break;
3397 done:
3398 err = 0;
3399 if (!pmu)
3400 err = -EINVAL;
3401 else if (IS_ERR(pmu))
3402 err = PTR_ERR(pmu);
3404 if (err) {
3405 kfree(counter);
3406 return ERR_PTR(err);
3409 counter->pmu = pmu;
3411 atomic_inc(&nr_counters);
3412 if (counter->hw_event.mmap)
3413 atomic_inc(&nr_mmap_tracking);
3414 if (counter->hw_event.munmap)
3415 atomic_inc(&nr_munmap_tracking);
3416 if (counter->hw_event.comm)
3417 atomic_inc(&nr_comm_tracking);
3419 return counter;
3422 static atomic64_t perf_counter_id;
3425 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3427 * @hw_event_uptr: event type attributes for monitoring/sampling
3428 * @pid: target pid
3429 * @cpu: target cpu
3430 * @group_fd: group leader counter fd
3432 SYSCALL_DEFINE5(perf_counter_open,
3433 const struct perf_counter_hw_event __user *, hw_event_uptr,
3434 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3436 struct perf_counter *counter, *group_leader;
3437 struct perf_counter_hw_event hw_event;
3438 struct perf_counter_context *ctx;
3439 struct file *counter_file = NULL;
3440 struct file *group_file = NULL;
3441 int fput_needed = 0;
3442 int fput_needed2 = 0;
3443 int ret;
3445 /* for future expandability... */
3446 if (flags)
3447 return -EINVAL;
3449 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
3450 return -EFAULT;
3453 * Get the target context (task or percpu):
3455 ctx = find_get_context(pid, cpu);
3456 if (IS_ERR(ctx))
3457 return PTR_ERR(ctx);
3460 * Look up the group leader (we will attach this counter to it):
3462 group_leader = NULL;
3463 if (group_fd != -1) {
3464 ret = -EINVAL;
3465 group_file = fget_light(group_fd, &fput_needed);
3466 if (!group_file)
3467 goto err_put_context;
3468 if (group_file->f_op != &perf_fops)
3469 goto err_put_context;
3471 group_leader = group_file->private_data;
3473 * Do not allow a recursive hierarchy (this new sibling
3474 * becoming part of another group-sibling):
3476 if (group_leader->group_leader != group_leader)
3477 goto err_put_context;
3479 * Do not allow to attach to a group in a different
3480 * task or CPU context:
3482 if (group_leader->ctx != ctx)
3483 goto err_put_context;
3485 * Only a group leader can be exclusive or pinned
3487 if (hw_event.exclusive || hw_event.pinned)
3488 goto err_put_context;
3491 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
3492 GFP_KERNEL);
3493 ret = PTR_ERR(counter);
3494 if (IS_ERR(counter))
3495 goto err_put_context;
3497 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3498 if (ret < 0)
3499 goto err_free_put_context;
3501 counter_file = fget_light(ret, &fput_needed2);
3502 if (!counter_file)
3503 goto err_free_put_context;
3505 counter->filp = counter_file;
3506 WARN_ON_ONCE(ctx->parent_ctx);
3507 mutex_lock(&ctx->mutex);
3508 perf_install_in_context(ctx, counter, cpu);
3509 ++ctx->generation;
3510 mutex_unlock(&ctx->mutex);
3512 counter->owner = current;
3513 get_task_struct(current);
3514 mutex_lock(&current->perf_counter_mutex);
3515 list_add_tail(&counter->owner_entry, &current->perf_counter_list);
3516 mutex_unlock(&current->perf_counter_mutex);
3518 counter->ns = get_pid_ns(current->nsproxy->pid_ns);
3519 counter->id = atomic64_inc_return(&perf_counter_id);
3521 fput_light(counter_file, fput_needed2);
3523 out_fput:
3524 fput_light(group_file, fput_needed);
3526 return ret;
3528 err_free_put_context:
3529 kfree(counter);
3531 err_put_context:
3532 put_ctx(ctx);
3534 goto out_fput;
3538 * inherit a counter from parent task to child task:
3540 static struct perf_counter *
3541 inherit_counter(struct perf_counter *parent_counter,
3542 struct task_struct *parent,
3543 struct perf_counter_context *parent_ctx,
3544 struct task_struct *child,
3545 struct perf_counter *group_leader,
3546 struct perf_counter_context *child_ctx)
3548 struct perf_counter *child_counter;
3551 * Instead of creating recursive hierarchies of counters,
3552 * we link inherited counters back to the original parent,
3553 * which has a filp for sure, which we use as the reference
3554 * count:
3556 if (parent_counter->parent)
3557 parent_counter = parent_counter->parent;
3559 child_counter = perf_counter_alloc(&parent_counter->hw_event,
3560 parent_counter->cpu, child_ctx,
3561 group_leader, GFP_KERNEL);
3562 if (IS_ERR(child_counter))
3563 return child_counter;
3564 get_ctx(child_ctx);
3567 * Make the child state follow the state of the parent counter,
3568 * not its hw_event.disabled bit. We hold the parent's mutex,
3569 * so we won't race with perf_counter_{en, dis}able_family.
3571 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3572 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3573 else
3574 child_counter->state = PERF_COUNTER_STATE_OFF;
3577 * Link it up in the child's context:
3579 add_counter_to_ctx(child_counter, child_ctx);
3581 child_counter->parent = parent_counter;
3583 * inherit into child's child as well:
3585 child_counter->hw_event.inherit = 1;
3588 * Get a reference to the parent filp - we will fput it
3589 * when the child counter exits. This is safe to do because
3590 * we are in the parent and we know that the filp still
3591 * exists and has a nonzero count:
3593 atomic_long_inc(&parent_counter->filp->f_count);
3596 * Link this into the parent counter's child list
3598 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3599 mutex_lock(&parent_counter->child_mutex);
3600 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3601 mutex_unlock(&parent_counter->child_mutex);
3603 return child_counter;
3606 static int inherit_group(struct perf_counter *parent_counter,
3607 struct task_struct *parent,
3608 struct perf_counter_context *parent_ctx,
3609 struct task_struct *child,
3610 struct perf_counter_context *child_ctx)
3612 struct perf_counter *leader;
3613 struct perf_counter *sub;
3614 struct perf_counter *child_ctr;
3616 leader = inherit_counter(parent_counter, parent, parent_ctx,
3617 child, NULL, child_ctx);
3618 if (IS_ERR(leader))
3619 return PTR_ERR(leader);
3620 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3621 child_ctr = inherit_counter(sub, parent, parent_ctx,
3622 child, leader, child_ctx);
3623 if (IS_ERR(child_ctr))
3624 return PTR_ERR(child_ctr);
3626 return 0;
3629 static void sync_child_counter(struct perf_counter *child_counter,
3630 struct perf_counter *parent_counter)
3632 u64 child_val;
3634 child_val = atomic64_read(&child_counter->count);
3637 * Add back the child's count to the parent's count:
3639 atomic64_add(child_val, &parent_counter->count);
3640 atomic64_add(child_counter->total_time_enabled,
3641 &parent_counter->child_total_time_enabled);
3642 atomic64_add(child_counter->total_time_running,
3643 &parent_counter->child_total_time_running);
3646 * Remove this counter from the parent's list
3648 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3649 mutex_lock(&parent_counter->child_mutex);
3650 list_del_init(&child_counter->child_list);
3651 mutex_unlock(&parent_counter->child_mutex);
3654 * Release the parent counter, if this was the last
3655 * reference to it.
3657 fput(parent_counter->filp);
3660 static void
3661 __perf_counter_exit_task(struct perf_counter *child_counter,
3662 struct perf_counter_context *child_ctx)
3664 struct perf_counter *parent_counter;
3666 update_counter_times(child_counter);
3667 perf_counter_remove_from_context(child_counter);
3669 parent_counter = child_counter->parent;
3671 * It can happen that parent exits first, and has counters
3672 * that are still around due to the child reference. These
3673 * counters need to be zapped - but otherwise linger.
3675 if (parent_counter) {
3676 sync_child_counter(child_counter, parent_counter);
3677 free_counter(child_counter);
3682 * When a child task exits, feed back counter values to parent counters.
3684 void perf_counter_exit_task(struct task_struct *child)
3686 struct perf_counter *child_counter, *tmp;
3687 struct perf_counter_context *child_ctx;
3688 unsigned long flags;
3690 if (likely(!child->perf_counter_ctxp))
3691 return;
3693 local_irq_save(flags);
3695 * We can't reschedule here because interrupts are disabled,
3696 * and either child is current or it is a task that can't be
3697 * scheduled, so we are now safe from rescheduling changing
3698 * our context.
3700 child_ctx = child->perf_counter_ctxp;
3701 __perf_counter_task_sched_out(child_ctx);
3704 * Take the context lock here so that if find_get_context is
3705 * reading child->perf_counter_ctxp, we wait until it has
3706 * incremented the context's refcount before we do put_ctx below.
3708 spin_lock(&child_ctx->lock);
3709 child->perf_counter_ctxp = NULL;
3710 if (child_ctx->parent_ctx) {
3712 * This context is a clone; unclone it so it can't get
3713 * swapped to another process while we're removing all
3714 * the counters from it.
3716 put_ctx(child_ctx->parent_ctx);
3717 child_ctx->parent_ctx = NULL;
3719 spin_unlock(&child_ctx->lock);
3720 local_irq_restore(flags);
3722 mutex_lock(&child_ctx->mutex);
3724 again:
3725 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3726 list_entry)
3727 __perf_counter_exit_task(child_counter, child_ctx);
3730 * If the last counter was a group counter, it will have appended all
3731 * its siblings to the list, but we obtained 'tmp' before that which
3732 * will still point to the list head terminating the iteration.
3734 if (!list_empty(&child_ctx->counter_list))
3735 goto again;
3737 mutex_unlock(&child_ctx->mutex);
3739 put_ctx(child_ctx);
3743 * free an unexposed, unused context as created by inheritance by
3744 * init_task below, used by fork() in case of fail.
3746 void perf_counter_free_task(struct task_struct *task)
3748 struct perf_counter_context *ctx = task->perf_counter_ctxp;
3749 struct perf_counter *counter, *tmp;
3751 if (!ctx)
3752 return;
3754 mutex_lock(&ctx->mutex);
3755 again:
3756 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
3757 struct perf_counter *parent = counter->parent;
3759 if (WARN_ON_ONCE(!parent))
3760 continue;
3762 mutex_lock(&parent->child_mutex);
3763 list_del_init(&counter->child_list);
3764 mutex_unlock(&parent->child_mutex);
3766 fput(parent->filp);
3768 list_del_counter(counter, ctx);
3769 free_counter(counter);
3772 if (!list_empty(&ctx->counter_list))
3773 goto again;
3775 mutex_unlock(&ctx->mutex);
3777 put_ctx(ctx);
3781 * Initialize the perf_counter context in task_struct
3783 int perf_counter_init_task(struct task_struct *child)
3785 struct perf_counter_context *child_ctx, *parent_ctx;
3786 struct perf_counter_context *cloned_ctx;
3787 struct perf_counter *counter;
3788 struct task_struct *parent = current;
3789 int inherited_all = 1;
3790 int ret = 0;
3792 child->perf_counter_ctxp = NULL;
3794 mutex_init(&child->perf_counter_mutex);
3795 INIT_LIST_HEAD(&child->perf_counter_list);
3797 if (likely(!parent->perf_counter_ctxp))
3798 return 0;
3801 * This is executed from the parent task context, so inherit
3802 * counters that have been marked for cloning.
3803 * First allocate and initialize a context for the child.
3806 child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
3807 if (!child_ctx)
3808 return -ENOMEM;
3810 __perf_counter_init_context(child_ctx, child);
3811 child->perf_counter_ctxp = child_ctx;
3812 get_task_struct(child);
3815 * If the parent's context is a clone, pin it so it won't get
3816 * swapped under us.
3818 parent_ctx = perf_pin_task_context(parent);
3821 * No need to check if parent_ctx != NULL here; since we saw
3822 * it non-NULL earlier, the only reason for it to become NULL
3823 * is if we exit, and since we're currently in the middle of
3824 * a fork we can't be exiting at the same time.
3828 * Lock the parent list. No need to lock the child - not PID
3829 * hashed yet and not running, so nobody can access it.
3831 mutex_lock(&parent_ctx->mutex);
3834 * We dont have to disable NMIs - we are only looking at
3835 * the list, not manipulating it:
3837 list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
3838 if (counter != counter->group_leader)
3839 continue;
3841 if (!counter->hw_event.inherit) {
3842 inherited_all = 0;
3843 continue;
3846 ret = inherit_group(counter, parent, parent_ctx,
3847 child, child_ctx);
3848 if (ret) {
3849 inherited_all = 0;
3850 break;
3854 if (inherited_all) {
3856 * Mark the child context as a clone of the parent
3857 * context, or of whatever the parent is a clone of.
3858 * Note that if the parent is a clone, it could get
3859 * uncloned at any point, but that doesn't matter
3860 * because the list of counters and the generation
3861 * count can't have changed since we took the mutex.
3863 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
3864 if (cloned_ctx) {
3865 child_ctx->parent_ctx = cloned_ctx;
3866 child_ctx->parent_gen = parent_ctx->parent_gen;
3867 } else {
3868 child_ctx->parent_ctx = parent_ctx;
3869 child_ctx->parent_gen = parent_ctx->generation;
3871 get_ctx(child_ctx->parent_ctx);
3874 mutex_unlock(&parent_ctx->mutex);
3876 perf_unpin_context(parent_ctx);
3878 return ret;
3881 static void __cpuinit perf_counter_init_cpu(int cpu)
3883 struct perf_cpu_context *cpuctx;
3885 cpuctx = &per_cpu(perf_cpu_context, cpu);
3886 __perf_counter_init_context(&cpuctx->ctx, NULL);
3888 spin_lock(&perf_resource_lock);
3889 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3890 spin_unlock(&perf_resource_lock);
3892 hw_perf_counter_setup(cpu);
3895 #ifdef CONFIG_HOTPLUG_CPU
3896 static void __perf_counter_exit_cpu(void *info)
3898 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3899 struct perf_counter_context *ctx = &cpuctx->ctx;
3900 struct perf_counter *counter, *tmp;
3902 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3903 __perf_counter_remove_from_context(counter);
3905 static void perf_counter_exit_cpu(int cpu)
3907 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3908 struct perf_counter_context *ctx = &cpuctx->ctx;
3910 mutex_lock(&ctx->mutex);
3911 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3912 mutex_unlock(&ctx->mutex);
3914 #else
3915 static inline void perf_counter_exit_cpu(int cpu) { }
3916 #endif
3918 static int __cpuinit
3919 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3921 unsigned int cpu = (long)hcpu;
3923 switch (action) {
3925 case CPU_UP_PREPARE:
3926 case CPU_UP_PREPARE_FROZEN:
3927 perf_counter_init_cpu(cpu);
3928 break;
3930 case CPU_DOWN_PREPARE:
3931 case CPU_DOWN_PREPARE_FROZEN:
3932 perf_counter_exit_cpu(cpu);
3933 break;
3935 default:
3936 break;
3939 return NOTIFY_OK;
3943 * This has to have a higher priority than migration_notifier in sched.c.
3945 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3946 .notifier_call = perf_cpu_notify,
3947 .priority = 20,
3950 void __init perf_counter_init(void)
3952 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3953 (void *)(long)smp_processor_id());
3954 register_cpu_notifier(&perf_cpu_nb);
3957 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3959 return sprintf(buf, "%d\n", perf_reserved_percpu);
3962 static ssize_t
3963 perf_set_reserve_percpu(struct sysdev_class *class,
3964 const char *buf,
3965 size_t count)
3967 struct perf_cpu_context *cpuctx;
3968 unsigned long val;
3969 int err, cpu, mpt;
3971 err = strict_strtoul(buf, 10, &val);
3972 if (err)
3973 return err;
3974 if (val > perf_max_counters)
3975 return -EINVAL;
3977 spin_lock(&perf_resource_lock);
3978 perf_reserved_percpu = val;
3979 for_each_online_cpu(cpu) {
3980 cpuctx = &per_cpu(perf_cpu_context, cpu);
3981 spin_lock_irq(&cpuctx->ctx.lock);
3982 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3983 perf_max_counters - perf_reserved_percpu);
3984 cpuctx->max_pertask = mpt;
3985 spin_unlock_irq(&cpuctx->ctx.lock);
3987 spin_unlock(&perf_resource_lock);
3989 return count;
3992 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3994 return sprintf(buf, "%d\n", perf_overcommit);
3997 static ssize_t
3998 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
4000 unsigned long val;
4001 int err;
4003 err = strict_strtoul(buf, 10, &val);
4004 if (err)
4005 return err;
4006 if (val > 1)
4007 return -EINVAL;
4009 spin_lock(&perf_resource_lock);
4010 perf_overcommit = val;
4011 spin_unlock(&perf_resource_lock);
4013 return count;
4016 static SYSDEV_CLASS_ATTR(
4017 reserve_percpu,
4018 0644,
4019 perf_show_reserve_percpu,
4020 perf_set_reserve_percpu
4023 static SYSDEV_CLASS_ATTR(
4024 overcommit,
4025 0644,
4026 perf_show_overcommit,
4027 perf_set_overcommit
4030 static struct attribute *perfclass_attrs[] = {
4031 &attr_reserve_percpu.attr,
4032 &attr_overcommit.attr,
4033 NULL
4036 static struct attribute_group perfclass_attr_group = {
4037 .attrs = perfclass_attrs,
4038 .name = "perf_counters",
4041 static int __init perf_counter_sysfs_init(void)
4043 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
4044 &perfclass_attr_group);
4046 device_initcall(perf_counter_sysfs_init);