[MIPS] Lasat: Downgrade 64-bit kernel from experimental to broken.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / readahead.c
blob93d9ee692fd8b193b12ba207f69f900c831e404d
1 /*
2 * mm/readahead.c - address_space-level file readahead.
4 * Copyright (C) 2002, Linus Torvalds
6 * 09Apr2002 akpm@zip.com.au
7 * Initial version.
8 */
10 #include <linux/kernel.h>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/blkdev.h>
15 #include <linux/backing-dev.h>
16 #include <linux/task_io_accounting_ops.h>
17 #include <linux/pagevec.h>
19 void default_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
22 EXPORT_SYMBOL(default_unplug_io_fn);
24 struct backing_dev_info default_backing_dev_info = {
25 .ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE,
26 .state = 0,
27 .capabilities = BDI_CAP_MAP_COPY,
28 .unplug_io_fn = default_unplug_io_fn,
30 EXPORT_SYMBOL_GPL(default_backing_dev_info);
33 * Initialise a struct file's readahead state. Assumes that the caller has
34 * memset *ra to zero.
36 void
37 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
39 ra->ra_pages = mapping->backing_dev_info->ra_pages;
40 ra->prev_page = -1;
42 EXPORT_SYMBOL_GPL(file_ra_state_init);
45 * Return max readahead size for this inode in number-of-pages.
47 static inline unsigned long get_max_readahead(struct file_ra_state *ra)
49 return ra->ra_pages;
52 static inline unsigned long get_min_readahead(struct file_ra_state *ra)
54 return (VM_MIN_READAHEAD * 1024) / PAGE_CACHE_SIZE;
57 static inline void reset_ahead_window(struct file_ra_state *ra)
60 * ... but preserve ahead_start + ahead_size value,
61 * see 'recheck:' label in page_cache_readahead().
62 * Note: We never use ->ahead_size as rvalue without
63 * checking ->ahead_start != 0 first.
65 ra->ahead_size += ra->ahead_start;
66 ra->ahead_start = 0;
69 static inline void ra_off(struct file_ra_state *ra)
71 ra->start = 0;
72 ra->flags = 0;
73 ra->size = 0;
74 reset_ahead_window(ra);
75 return;
79 * Set the initial window size, round to next power of 2 and square
80 * for small size, x 4 for medium, and x 2 for large
81 * for 128k (32 page) max ra
82 * 1-8 page = 32k initial, > 8 page = 128k initial
84 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
86 unsigned long newsize = roundup_pow_of_two(size);
88 if (newsize <= max / 32)
89 newsize = newsize * 4;
90 else if (newsize <= max / 4)
91 newsize = newsize * 2;
92 else
93 newsize = max;
94 return newsize;
98 * Set the new window size, this is called only when I/O is to be submitted,
99 * not for each call to readahead. If a cache miss occured, reduce next I/O
100 * size, else increase depending on how close to max we are.
102 static inline unsigned long get_next_ra_size(struct file_ra_state *ra)
104 unsigned long max = get_max_readahead(ra);
105 unsigned long min = get_min_readahead(ra);
106 unsigned long cur = ra->size;
107 unsigned long newsize;
109 if (ra->flags & RA_FLAG_MISS) {
110 ra->flags &= ~RA_FLAG_MISS;
111 newsize = max((cur - 2), min);
112 } else if (cur < max / 16) {
113 newsize = 4 * cur;
114 } else {
115 newsize = 2 * cur;
117 return min(newsize, max);
120 #define list_to_page(head) (list_entry((head)->prev, struct page, lru))
123 * read_cache_pages - populate an address space with some pages & start reads against them
124 * @mapping: the address_space
125 * @pages: The address of a list_head which contains the target pages. These
126 * pages have their ->index populated and are otherwise uninitialised.
127 * @filler: callback routine for filling a single page.
128 * @data: private data for the callback routine.
130 * Hides the details of the LRU cache etc from the filesystems.
132 int read_cache_pages(struct address_space *mapping, struct list_head *pages,
133 int (*filler)(void *, struct page *), void *data)
135 struct page *page;
136 struct pagevec lru_pvec;
137 int ret = 0;
139 pagevec_init(&lru_pvec, 0);
141 while (!list_empty(pages)) {
142 page = list_to_page(pages);
143 list_del(&page->lru);
144 if (add_to_page_cache(page, mapping, page->index, GFP_KERNEL)) {
145 page_cache_release(page);
146 continue;
148 ret = filler(data, page);
149 if (!pagevec_add(&lru_pvec, page))
150 __pagevec_lru_add(&lru_pvec);
151 if (ret) {
152 put_pages_list(pages);
153 break;
155 task_io_account_read(PAGE_CACHE_SIZE);
157 pagevec_lru_add(&lru_pvec);
158 return ret;
161 EXPORT_SYMBOL(read_cache_pages);
163 static int read_pages(struct address_space *mapping, struct file *filp,
164 struct list_head *pages, unsigned nr_pages)
166 unsigned page_idx;
167 struct pagevec lru_pvec;
168 int ret;
170 if (mapping->a_ops->readpages) {
171 ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
172 /* Clean up the remaining pages */
173 put_pages_list(pages);
174 goto out;
177 pagevec_init(&lru_pvec, 0);
178 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
179 struct page *page = list_to_page(pages);
180 list_del(&page->lru);
181 if (!add_to_page_cache(page, mapping,
182 page->index, GFP_KERNEL)) {
183 mapping->a_ops->readpage(filp, page);
184 if (!pagevec_add(&lru_pvec, page))
185 __pagevec_lru_add(&lru_pvec);
186 } else
187 page_cache_release(page);
189 pagevec_lru_add(&lru_pvec);
190 ret = 0;
191 out:
192 return ret;
196 * Readahead design.
198 * The fields in struct file_ra_state represent the most-recently-executed
199 * readahead attempt:
201 * start: Page index at which we started the readahead
202 * size: Number of pages in that read
203 * Together, these form the "current window".
204 * Together, start and size represent the `readahead window'.
205 * prev_page: The page which the readahead algorithm most-recently inspected.
206 * It is mainly used to detect sequential file reading.
207 * If page_cache_readahead sees that it is again being called for
208 * a page which it just looked at, it can return immediately without
209 * making any state changes.
210 * ahead_start,
211 * ahead_size: Together, these form the "ahead window".
212 * ra_pages: The externally controlled max readahead for this fd.
214 * When readahead is in the off state (size == 0), readahead is disabled.
215 * In this state, prev_page is used to detect the resumption of sequential I/O.
217 * The readahead code manages two windows - the "current" and the "ahead"
218 * windows. The intent is that while the application is walking the pages
219 * in the current window, I/O is underway on the ahead window. When the
220 * current window is fully traversed, it is replaced by the ahead window
221 * and the ahead window is invalidated. When this copying happens, the
222 * new current window's pages are probably still locked. So
223 * we submit a new batch of I/O immediately, creating a new ahead window.
225 * So:
227 * ----|----------------|----------------|-----
228 * ^start ^start+size
229 * ^ahead_start ^ahead_start+ahead_size
231 * ^ When this page is read, we submit I/O for the
232 * ahead window.
234 * A `readahead hit' occurs when a read request is made against a page which is
235 * the next sequential page. Ahead window calculations are done only when it
236 * is time to submit a new IO. The code ramps up the size agressively at first,
237 * but slow down as it approaches max_readhead.
239 * Any seek/ramdom IO will result in readahead being turned off. It will resume
240 * at the first sequential access.
242 * There is a special-case: if the first page which the application tries to
243 * read happens to be the first page of the file, it is assumed that a linear
244 * read is about to happen and the window is immediately set to the initial size
245 * based on I/O request size and the max_readahead.
247 * This function is to be called for every read request, rather than when
248 * it is time to perform readahead. It is called only once for the entire I/O
249 * regardless of size unless readahead is unable to start enough I/O to satisfy
250 * the request (I/O request > max_readahead).
254 * do_page_cache_readahead actually reads a chunk of disk. It allocates all
255 * the pages first, then submits them all for I/O. This avoids the very bad
256 * behaviour which would occur if page allocations are causing VM writeback.
257 * We really don't want to intermingle reads and writes like that.
259 * Returns the number of pages requested, or the maximum amount of I/O allowed.
261 * do_page_cache_readahead() returns -1 if it encountered request queue
262 * congestion.
264 static int
265 __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
266 pgoff_t offset, unsigned long nr_to_read)
268 struct inode *inode = mapping->host;
269 struct page *page;
270 unsigned long end_index; /* The last page we want to read */
271 LIST_HEAD(page_pool);
272 int page_idx;
273 int ret = 0;
274 loff_t isize = i_size_read(inode);
276 if (isize == 0)
277 goto out;
279 end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
282 * Preallocate as many pages as we will need.
284 read_lock_irq(&mapping->tree_lock);
285 for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
286 pgoff_t page_offset = offset + page_idx;
288 if (page_offset > end_index)
289 break;
291 page = radix_tree_lookup(&mapping->page_tree, page_offset);
292 if (page)
293 continue;
295 read_unlock_irq(&mapping->tree_lock);
296 page = page_cache_alloc_cold(mapping);
297 read_lock_irq(&mapping->tree_lock);
298 if (!page)
299 break;
300 page->index = page_offset;
301 list_add(&page->lru, &page_pool);
302 ret++;
304 read_unlock_irq(&mapping->tree_lock);
307 * Now start the IO. We ignore I/O errors - if the page is not
308 * uptodate then the caller will launch readpage again, and
309 * will then handle the error.
311 if (ret)
312 read_pages(mapping, filp, &page_pool, ret);
313 BUG_ON(!list_empty(&page_pool));
314 out:
315 return ret;
319 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
320 * memory at once.
322 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
323 pgoff_t offset, unsigned long nr_to_read)
325 int ret = 0;
327 if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
328 return -EINVAL;
330 while (nr_to_read) {
331 int err;
333 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
335 if (this_chunk > nr_to_read)
336 this_chunk = nr_to_read;
337 err = __do_page_cache_readahead(mapping, filp,
338 offset, this_chunk);
339 if (err < 0) {
340 ret = err;
341 break;
343 ret += err;
344 offset += this_chunk;
345 nr_to_read -= this_chunk;
347 return ret;
351 * Check how effective readahead is being. If the amount of started IO is
352 * less than expected then the file is partly or fully in pagecache and
353 * readahead isn't helping.
356 static inline int check_ra_success(struct file_ra_state *ra,
357 unsigned long nr_to_read, unsigned long actual)
359 if (actual == 0) {
360 ra->cache_hit += nr_to_read;
361 if (ra->cache_hit >= VM_MAX_CACHE_HIT) {
362 ra_off(ra);
363 ra->flags |= RA_FLAG_INCACHE;
364 return 0;
366 } else {
367 ra->cache_hit=0;
369 return 1;
373 * This version skips the IO if the queue is read-congested, and will tell the
374 * block layer to abandon the readahead if request allocation would block.
376 * force_page_cache_readahead() will ignore queue congestion and will block on
377 * request queues.
379 int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
380 pgoff_t offset, unsigned long nr_to_read)
382 if (bdi_read_congested(mapping->backing_dev_info))
383 return -1;
385 return __do_page_cache_readahead(mapping, filp, offset, nr_to_read);
389 * Read 'nr_to_read' pages starting at page 'offset'. If the flag 'block'
390 * is set wait till the read completes. Otherwise attempt to read without
391 * blocking.
392 * Returns 1 meaning 'success' if read is successful without switching off
393 * readahead mode. Otherwise return failure.
395 static int
396 blockable_page_cache_readahead(struct address_space *mapping, struct file *filp,
397 pgoff_t offset, unsigned long nr_to_read,
398 struct file_ra_state *ra, int block)
400 int actual;
402 if (!block && bdi_read_congested(mapping->backing_dev_info))
403 return 0;
405 actual = __do_page_cache_readahead(mapping, filp, offset, nr_to_read);
407 return check_ra_success(ra, nr_to_read, actual);
410 static int make_ahead_window(struct address_space *mapping, struct file *filp,
411 struct file_ra_state *ra, int force)
413 int block, ret;
415 ra->ahead_size = get_next_ra_size(ra);
416 ra->ahead_start = ra->start + ra->size;
418 block = force || (ra->prev_page >= ra->ahead_start);
419 ret = blockable_page_cache_readahead(mapping, filp,
420 ra->ahead_start, ra->ahead_size, ra, block);
422 if (!ret && !force) {
423 /* A read failure in blocking mode, implies pages are
424 * all cached. So we can safely assume we have taken
425 * care of all the pages requested in this call.
426 * A read failure in non-blocking mode, implies we are
427 * reading more pages than requested in this call. So
428 * we safely assume we have taken care of all the pages
429 * requested in this call.
431 * Just reset the ahead window in case we failed due to
432 * congestion. The ahead window will any way be closed
433 * in case we failed due to excessive page cache hits.
435 reset_ahead_window(ra);
438 return ret;
442 * page_cache_readahead - generic adaptive readahead
443 * @mapping: address_space which holds the pagecache and I/O vectors
444 * @ra: file_ra_state which holds the readahead state
445 * @filp: passed on to ->readpage() and ->readpages()
446 * @offset: start offset into @mapping, in PAGE_CACHE_SIZE units
447 * @req_size: hint: total size of the read which the caller is performing in
448 * PAGE_CACHE_SIZE units
450 * page_cache_readahead() is the main function. If performs the adaptive
451 * readahead window size management and submits the readahead I/O.
453 * Note that @filp is purely used for passing on to the ->readpage[s]()
454 * handler: it may refer to a different file from @mapping (so we may not use
455 * @filp->f_mapping or @filp->f_path.dentry->d_inode here).
456 * Also, @ra may not be equal to &@filp->f_ra.
459 unsigned long
460 page_cache_readahead(struct address_space *mapping, struct file_ra_state *ra,
461 struct file *filp, pgoff_t offset, unsigned long req_size)
463 unsigned long max, newsize;
464 int sequential;
467 * We avoid doing extra work and bogusly perturbing the readahead
468 * window expansion logic.
470 if (offset == ra->prev_page && --req_size)
471 ++offset;
473 /* Note that prev_page == -1 if it is a first read */
474 sequential = (offset == ra->prev_page + 1);
475 ra->prev_page = offset;
477 max = get_max_readahead(ra);
478 newsize = min(req_size, max);
480 /* No readahead or sub-page sized read or file already in cache */
481 if (newsize == 0 || (ra->flags & RA_FLAG_INCACHE))
482 goto out;
484 ra->prev_page += newsize - 1;
487 * Special case - first read at start of file. We'll assume it's
488 * a whole-file read and grow the window fast. Or detect first
489 * sequential access
491 if (sequential && ra->size == 0) {
492 ra->size = get_init_ra_size(newsize, max);
493 ra->start = offset;
494 if (!blockable_page_cache_readahead(mapping, filp, offset,
495 ra->size, ra, 1))
496 goto out;
499 * If the request size is larger than our max readahead, we
500 * at least want to be sure that we get 2 IOs in flight and
501 * we know that we will definitly need the new I/O.
502 * once we do this, subsequent calls should be able to overlap
503 * IOs,* thus preventing stalls. so issue the ahead window
504 * immediately.
506 if (req_size >= max)
507 make_ahead_window(mapping, filp, ra, 1);
509 goto out;
513 * Now handle the random case:
514 * partial page reads and first access were handled above,
515 * so this must be the next page otherwise it is random
517 if (!sequential) {
518 ra_off(ra);
519 blockable_page_cache_readahead(mapping, filp, offset,
520 newsize, ra, 1);
521 goto out;
525 * If we get here we are doing sequential IO and this was not the first
526 * occurence (ie we have an existing window)
528 if (ra->ahead_start == 0) { /* no ahead window yet */
529 if (!make_ahead_window(mapping, filp, ra, 0))
530 goto recheck;
534 * Already have an ahead window, check if we crossed into it.
535 * If so, shift windows and issue a new ahead window.
536 * Only return the #pages that are in the current window, so that
537 * we get called back on the first page of the ahead window which
538 * will allow us to submit more IO.
540 if (ra->prev_page >= ra->ahead_start) {
541 ra->start = ra->ahead_start;
542 ra->size = ra->ahead_size;
543 make_ahead_window(mapping, filp, ra, 0);
544 recheck:
545 /* prev_page shouldn't overrun the ahead window */
546 ra->prev_page = min(ra->prev_page,
547 ra->ahead_start + ra->ahead_size - 1);
550 out:
551 return ra->prev_page + 1;
553 EXPORT_SYMBOL_GPL(page_cache_readahead);
556 * handle_ra_miss() is called when it is known that a page which should have
557 * been present in the pagecache (we just did some readahead there) was in fact
558 * not found. This will happen if it was evicted by the VM (readahead
559 * thrashing)
561 * Turn on the cache miss flag in the RA struct, this will cause the RA code
562 * to reduce the RA size on the next read.
564 void handle_ra_miss(struct address_space *mapping,
565 struct file_ra_state *ra, pgoff_t offset)
567 ra->flags |= RA_FLAG_MISS;
568 ra->flags &= ~RA_FLAG_INCACHE;
569 ra->cache_hit = 0;
573 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
574 * sensible upper limit.
576 unsigned long max_sane_readahead(unsigned long nr)
578 return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE)
579 + node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);