uml: mmapper_kern needs MODULE_LICENSE
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / rtc / rtc-sh.c
blob06e41ed9323080475a5639eed3dde6b589c84fc1
1 /*
2 * SuperH On-Chip RTC Support
4 * Copyright (C) 2006 - 2009 Paul Mundt
5 * Copyright (C) 2006 Jamie Lenehan
6 * Copyright (C) 2008 Angelo Castello
8 * Based on the old arch/sh/kernel/cpu/rtc.c by:
10 * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org>
11 * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka
13 * This file is subject to the terms and conditions of the GNU General Public
14 * License. See the file "COPYING" in the main directory of this archive
15 * for more details.
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/bcd.h>
20 #include <linux/rtc.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/seq_file.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/io.h>
27 #include <linux/log2.h>
28 #include <linux/clk.h>
29 #include <linux/slab.h>
30 #include <asm/rtc.h>
32 #define DRV_NAME "sh-rtc"
33 #define DRV_VERSION "0.2.3"
35 #define RTC_REG(r) ((r) * rtc_reg_size)
37 #define R64CNT RTC_REG(0)
39 #define RSECCNT RTC_REG(1) /* RTC sec */
40 #define RMINCNT RTC_REG(2) /* RTC min */
41 #define RHRCNT RTC_REG(3) /* RTC hour */
42 #define RWKCNT RTC_REG(4) /* RTC week */
43 #define RDAYCNT RTC_REG(5) /* RTC day */
44 #define RMONCNT RTC_REG(6) /* RTC month */
45 #define RYRCNT RTC_REG(7) /* RTC year */
46 #define RSECAR RTC_REG(8) /* ALARM sec */
47 #define RMINAR RTC_REG(9) /* ALARM min */
48 #define RHRAR RTC_REG(10) /* ALARM hour */
49 #define RWKAR RTC_REG(11) /* ALARM week */
50 #define RDAYAR RTC_REG(12) /* ALARM day */
51 #define RMONAR RTC_REG(13) /* ALARM month */
52 #define RCR1 RTC_REG(14) /* Control */
53 #define RCR2 RTC_REG(15) /* Control */
56 * Note on RYRAR and RCR3: Up until this point most of the register
57 * definitions are consistent across all of the available parts. However,
58 * the placement of the optional RYRAR and RCR3 (the RYRAR control
59 * register used to control RYRCNT/RYRAR compare) varies considerably
60 * across various parts, occasionally being mapped in to a completely
61 * unrelated address space. For proper RYRAR support a separate resource
62 * would have to be handed off, but as this is purely optional in
63 * practice, we simply opt not to support it, thereby keeping the code
64 * quite a bit more simplified.
67 /* ALARM Bits - or with BCD encoded value */
68 #define AR_ENB 0x80 /* Enable for alarm cmp */
70 /* Period Bits */
71 #define PF_HP 0x100 /* Enable Half Period to support 8,32,128Hz */
72 #define PF_COUNT 0x200 /* Half periodic counter */
73 #define PF_OXS 0x400 /* Periodic One x Second */
74 #define PF_KOU 0x800 /* Kernel or User periodic request 1=kernel */
75 #define PF_MASK 0xf00
77 /* RCR1 Bits */
78 #define RCR1_CF 0x80 /* Carry Flag */
79 #define RCR1_CIE 0x10 /* Carry Interrupt Enable */
80 #define RCR1_AIE 0x08 /* Alarm Interrupt Enable */
81 #define RCR1_AF 0x01 /* Alarm Flag */
83 /* RCR2 Bits */
84 #define RCR2_PEF 0x80 /* PEriodic interrupt Flag */
85 #define RCR2_PESMASK 0x70 /* Periodic interrupt Set */
86 #define RCR2_RTCEN 0x08 /* ENable RTC */
87 #define RCR2_ADJ 0x04 /* ADJustment (30-second) */
88 #define RCR2_RESET 0x02 /* Reset bit */
89 #define RCR2_START 0x01 /* Start bit */
91 struct sh_rtc {
92 void __iomem *regbase;
93 unsigned long regsize;
94 struct resource *res;
95 int alarm_irq;
96 int periodic_irq;
97 int carry_irq;
98 struct clk *clk;
99 struct rtc_device *rtc_dev;
100 spinlock_t lock;
101 unsigned long capabilities; /* See asm/rtc.h for cap bits */
102 unsigned short periodic_freq;
105 static int __sh_rtc_interrupt(struct sh_rtc *rtc)
107 unsigned int tmp, pending;
109 tmp = readb(rtc->regbase + RCR1);
110 pending = tmp & RCR1_CF;
111 tmp &= ~RCR1_CF;
112 writeb(tmp, rtc->regbase + RCR1);
114 /* Users have requested One x Second IRQ */
115 if (pending && rtc->periodic_freq & PF_OXS)
116 rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF);
118 return pending;
121 static int __sh_rtc_alarm(struct sh_rtc *rtc)
123 unsigned int tmp, pending;
125 tmp = readb(rtc->regbase + RCR1);
126 pending = tmp & RCR1_AF;
127 tmp &= ~(RCR1_AF | RCR1_AIE);
128 writeb(tmp, rtc->regbase + RCR1);
130 if (pending)
131 rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
133 return pending;
136 static int __sh_rtc_periodic(struct sh_rtc *rtc)
138 struct rtc_device *rtc_dev = rtc->rtc_dev;
139 struct rtc_task *irq_task;
140 unsigned int tmp, pending;
142 tmp = readb(rtc->regbase + RCR2);
143 pending = tmp & RCR2_PEF;
144 tmp &= ~RCR2_PEF;
145 writeb(tmp, rtc->regbase + RCR2);
147 if (!pending)
148 return 0;
150 /* Half period enabled than one skipped and the next notified */
151 if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT))
152 rtc->periodic_freq &= ~PF_COUNT;
153 else {
154 if (rtc->periodic_freq & PF_HP)
155 rtc->periodic_freq |= PF_COUNT;
156 if (rtc->periodic_freq & PF_KOU) {
157 spin_lock(&rtc_dev->irq_task_lock);
158 irq_task = rtc_dev->irq_task;
159 if (irq_task)
160 irq_task->func(irq_task->private_data);
161 spin_unlock(&rtc_dev->irq_task_lock);
162 } else
163 rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF);
166 return pending;
169 static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
171 struct sh_rtc *rtc = dev_id;
172 int ret;
174 spin_lock(&rtc->lock);
175 ret = __sh_rtc_interrupt(rtc);
176 spin_unlock(&rtc->lock);
178 return IRQ_RETVAL(ret);
181 static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
183 struct sh_rtc *rtc = dev_id;
184 int ret;
186 spin_lock(&rtc->lock);
187 ret = __sh_rtc_alarm(rtc);
188 spin_unlock(&rtc->lock);
190 return IRQ_RETVAL(ret);
193 static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
195 struct sh_rtc *rtc = dev_id;
196 int ret;
198 spin_lock(&rtc->lock);
199 ret = __sh_rtc_periodic(rtc);
200 spin_unlock(&rtc->lock);
202 return IRQ_RETVAL(ret);
205 static irqreturn_t sh_rtc_shared(int irq, void *dev_id)
207 struct sh_rtc *rtc = dev_id;
208 int ret;
210 spin_lock(&rtc->lock);
211 ret = __sh_rtc_interrupt(rtc);
212 ret |= __sh_rtc_alarm(rtc);
213 ret |= __sh_rtc_periodic(rtc);
214 spin_unlock(&rtc->lock);
216 return IRQ_RETVAL(ret);
219 static int sh_rtc_irq_set_state(struct device *dev, int enable)
221 struct sh_rtc *rtc = dev_get_drvdata(dev);
222 unsigned int tmp;
224 spin_lock_irq(&rtc->lock);
226 tmp = readb(rtc->regbase + RCR2);
228 if (enable) {
229 rtc->periodic_freq |= PF_KOU;
230 tmp &= ~RCR2_PEF; /* Clear PES bit */
231 tmp |= (rtc->periodic_freq & ~PF_HP); /* Set PES2-0 */
232 } else {
233 rtc->periodic_freq &= ~PF_KOU;
234 tmp &= ~(RCR2_PESMASK | RCR2_PEF);
237 writeb(tmp, rtc->regbase + RCR2);
239 spin_unlock_irq(&rtc->lock);
241 return 0;
244 static int sh_rtc_irq_set_freq(struct device *dev, int freq)
246 struct sh_rtc *rtc = dev_get_drvdata(dev);
247 int tmp, ret = 0;
249 spin_lock_irq(&rtc->lock);
250 tmp = rtc->periodic_freq & PF_MASK;
252 switch (freq) {
253 case 0:
254 rtc->periodic_freq = 0x00;
255 break;
256 case 1:
257 rtc->periodic_freq = 0x60;
258 break;
259 case 2:
260 rtc->periodic_freq = 0x50;
261 break;
262 case 4:
263 rtc->periodic_freq = 0x40;
264 break;
265 case 8:
266 rtc->periodic_freq = 0x30 | PF_HP;
267 break;
268 case 16:
269 rtc->periodic_freq = 0x30;
270 break;
271 case 32:
272 rtc->periodic_freq = 0x20 | PF_HP;
273 break;
274 case 64:
275 rtc->periodic_freq = 0x20;
276 break;
277 case 128:
278 rtc->periodic_freq = 0x10 | PF_HP;
279 break;
280 case 256:
281 rtc->periodic_freq = 0x10;
282 break;
283 default:
284 ret = -ENOTSUPP;
287 if (ret == 0)
288 rtc->periodic_freq |= tmp;
290 spin_unlock_irq(&rtc->lock);
291 return ret;
294 static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
296 struct sh_rtc *rtc = dev_get_drvdata(dev);
297 unsigned int tmp;
299 spin_lock_irq(&rtc->lock);
301 tmp = readb(rtc->regbase + RCR1);
303 if (enable)
304 tmp |= RCR1_AIE;
305 else
306 tmp &= ~RCR1_AIE;
308 writeb(tmp, rtc->regbase + RCR1);
310 spin_unlock_irq(&rtc->lock);
313 static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
315 struct sh_rtc *rtc = dev_get_drvdata(dev);
316 unsigned int tmp;
318 tmp = readb(rtc->regbase + RCR1);
319 seq_printf(seq, "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no");
321 tmp = readb(rtc->regbase + RCR2);
322 seq_printf(seq, "periodic_IRQ\t: %s\n",
323 (tmp & RCR2_PESMASK) ? "yes" : "no");
325 return 0;
328 static inline void sh_rtc_setcie(struct device *dev, unsigned int enable)
330 struct sh_rtc *rtc = dev_get_drvdata(dev);
331 unsigned int tmp;
333 spin_lock_irq(&rtc->lock);
335 tmp = readb(rtc->regbase + RCR1);
337 if (!enable)
338 tmp &= ~RCR1_CIE;
339 else
340 tmp |= RCR1_CIE;
342 writeb(tmp, rtc->regbase + RCR1);
344 spin_unlock_irq(&rtc->lock);
347 static int sh_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
349 struct sh_rtc *rtc = dev_get_drvdata(dev);
350 unsigned int ret = 0;
352 switch (cmd) {
353 case RTC_AIE_OFF:
354 case RTC_AIE_ON:
355 sh_rtc_setaie(dev, cmd == RTC_AIE_ON);
356 break;
357 case RTC_UIE_OFF:
358 rtc->periodic_freq &= ~PF_OXS;
359 sh_rtc_setcie(dev, 0);
360 break;
361 case RTC_UIE_ON:
362 rtc->periodic_freq |= PF_OXS;
363 sh_rtc_setcie(dev, 1);
364 break;
365 default:
366 ret = -ENOIOCTLCMD;
369 return ret;
372 static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
374 struct platform_device *pdev = to_platform_device(dev);
375 struct sh_rtc *rtc = platform_get_drvdata(pdev);
376 unsigned int sec128, sec2, yr, yr100, cf_bit;
378 do {
379 unsigned int tmp;
381 spin_lock_irq(&rtc->lock);
383 tmp = readb(rtc->regbase + RCR1);
384 tmp &= ~RCR1_CF; /* Clear CF-bit */
385 tmp |= RCR1_CIE;
386 writeb(tmp, rtc->regbase + RCR1);
388 sec128 = readb(rtc->regbase + R64CNT);
390 tm->tm_sec = bcd2bin(readb(rtc->regbase + RSECCNT));
391 tm->tm_min = bcd2bin(readb(rtc->regbase + RMINCNT));
392 tm->tm_hour = bcd2bin(readb(rtc->regbase + RHRCNT));
393 tm->tm_wday = bcd2bin(readb(rtc->regbase + RWKCNT));
394 tm->tm_mday = bcd2bin(readb(rtc->regbase + RDAYCNT));
395 tm->tm_mon = bcd2bin(readb(rtc->regbase + RMONCNT)) - 1;
397 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
398 yr = readw(rtc->regbase + RYRCNT);
399 yr100 = bcd2bin(yr >> 8);
400 yr &= 0xff;
401 } else {
402 yr = readb(rtc->regbase + RYRCNT);
403 yr100 = bcd2bin((yr == 0x99) ? 0x19 : 0x20);
406 tm->tm_year = (yr100 * 100 + bcd2bin(yr)) - 1900;
408 sec2 = readb(rtc->regbase + R64CNT);
409 cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
411 spin_unlock_irq(&rtc->lock);
412 } while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
414 #if RTC_BIT_INVERTED != 0
415 if ((sec128 & RTC_BIT_INVERTED))
416 tm->tm_sec--;
417 #endif
419 /* only keep the carry interrupt enabled if UIE is on */
420 if (!(rtc->periodic_freq & PF_OXS))
421 sh_rtc_setcie(dev, 0);
423 dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
424 "mday=%d, mon=%d, year=%d, wday=%d\n",
425 __func__,
426 tm->tm_sec, tm->tm_min, tm->tm_hour,
427 tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
429 return rtc_valid_tm(tm);
432 static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
434 struct platform_device *pdev = to_platform_device(dev);
435 struct sh_rtc *rtc = platform_get_drvdata(pdev);
436 unsigned int tmp;
437 int year;
439 spin_lock_irq(&rtc->lock);
441 /* Reset pre-scaler & stop RTC */
442 tmp = readb(rtc->regbase + RCR2);
443 tmp |= RCR2_RESET;
444 tmp &= ~RCR2_START;
445 writeb(tmp, rtc->regbase + RCR2);
447 writeb(bin2bcd(tm->tm_sec), rtc->regbase + RSECCNT);
448 writeb(bin2bcd(tm->tm_min), rtc->regbase + RMINCNT);
449 writeb(bin2bcd(tm->tm_hour), rtc->regbase + RHRCNT);
450 writeb(bin2bcd(tm->tm_wday), rtc->regbase + RWKCNT);
451 writeb(bin2bcd(tm->tm_mday), rtc->regbase + RDAYCNT);
452 writeb(bin2bcd(tm->tm_mon + 1), rtc->regbase + RMONCNT);
454 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
455 year = (bin2bcd((tm->tm_year + 1900) / 100) << 8) |
456 bin2bcd(tm->tm_year % 100);
457 writew(year, rtc->regbase + RYRCNT);
458 } else {
459 year = tm->tm_year % 100;
460 writeb(bin2bcd(year), rtc->regbase + RYRCNT);
463 /* Start RTC */
464 tmp = readb(rtc->regbase + RCR2);
465 tmp &= ~RCR2_RESET;
466 tmp |= RCR2_RTCEN | RCR2_START;
467 writeb(tmp, rtc->regbase + RCR2);
469 spin_unlock_irq(&rtc->lock);
471 return 0;
474 static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
476 unsigned int byte;
477 int value = 0xff; /* return 0xff for ignored values */
479 byte = readb(rtc->regbase + reg_off);
480 if (byte & AR_ENB) {
481 byte &= ~AR_ENB; /* strip the enable bit */
482 value = bcd2bin(byte);
485 return value;
488 static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
490 struct platform_device *pdev = to_platform_device(dev);
491 struct sh_rtc *rtc = platform_get_drvdata(pdev);
492 struct rtc_time *tm = &wkalrm->time;
494 spin_lock_irq(&rtc->lock);
496 tm->tm_sec = sh_rtc_read_alarm_value(rtc, RSECAR);
497 tm->tm_min = sh_rtc_read_alarm_value(rtc, RMINAR);
498 tm->tm_hour = sh_rtc_read_alarm_value(rtc, RHRAR);
499 tm->tm_wday = sh_rtc_read_alarm_value(rtc, RWKAR);
500 tm->tm_mday = sh_rtc_read_alarm_value(rtc, RDAYAR);
501 tm->tm_mon = sh_rtc_read_alarm_value(rtc, RMONAR);
502 if (tm->tm_mon > 0)
503 tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
504 tm->tm_year = 0xffff;
506 wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
508 spin_unlock_irq(&rtc->lock);
510 return 0;
513 static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
514 int value, int reg_off)
516 /* < 0 for a value that is ignored */
517 if (value < 0)
518 writeb(0, rtc->regbase + reg_off);
519 else
520 writeb(bin2bcd(value) | AR_ENB, rtc->regbase + reg_off);
523 static int sh_rtc_check_alarm(struct rtc_time *tm)
526 * The original rtc says anything > 0xc0 is "don't care" or "match
527 * all" - most users use 0xff but rtc-dev uses -1 for the same thing.
528 * The original rtc doesn't support years - some things use -1 and
529 * some 0xffff. We use -1 to make out tests easier.
531 if (tm->tm_year == 0xffff)
532 tm->tm_year = -1;
533 if (tm->tm_mon >= 0xff)
534 tm->tm_mon = -1;
535 if (tm->tm_mday >= 0xff)
536 tm->tm_mday = -1;
537 if (tm->tm_wday >= 0xff)
538 tm->tm_wday = -1;
539 if (tm->tm_hour >= 0xff)
540 tm->tm_hour = -1;
541 if (tm->tm_min >= 0xff)
542 tm->tm_min = -1;
543 if (tm->tm_sec >= 0xff)
544 tm->tm_sec = -1;
546 if (tm->tm_year > 9999 ||
547 tm->tm_mon >= 12 ||
548 tm->tm_mday == 0 || tm->tm_mday >= 32 ||
549 tm->tm_wday >= 7 ||
550 tm->tm_hour >= 24 ||
551 tm->tm_min >= 60 ||
552 tm->tm_sec >= 60)
553 return -EINVAL;
555 return 0;
558 static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
560 struct platform_device *pdev = to_platform_device(dev);
561 struct sh_rtc *rtc = platform_get_drvdata(pdev);
562 unsigned int rcr1;
563 struct rtc_time *tm = &wkalrm->time;
564 int mon, err;
566 err = sh_rtc_check_alarm(tm);
567 if (unlikely(err < 0))
568 return err;
570 spin_lock_irq(&rtc->lock);
572 /* disable alarm interrupt and clear the alarm flag */
573 rcr1 = readb(rtc->regbase + RCR1);
574 rcr1 &= ~(RCR1_AF | RCR1_AIE);
575 writeb(rcr1, rtc->regbase + RCR1);
577 /* set alarm time */
578 sh_rtc_write_alarm_value(rtc, tm->tm_sec, RSECAR);
579 sh_rtc_write_alarm_value(rtc, tm->tm_min, RMINAR);
580 sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
581 sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
582 sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
583 mon = tm->tm_mon;
584 if (mon >= 0)
585 mon += 1;
586 sh_rtc_write_alarm_value(rtc, mon, RMONAR);
588 if (wkalrm->enabled) {
589 rcr1 |= RCR1_AIE;
590 writeb(rcr1, rtc->regbase + RCR1);
593 spin_unlock_irq(&rtc->lock);
595 return 0;
598 static struct rtc_class_ops sh_rtc_ops = {
599 .ioctl = sh_rtc_ioctl,
600 .read_time = sh_rtc_read_time,
601 .set_time = sh_rtc_set_time,
602 .read_alarm = sh_rtc_read_alarm,
603 .set_alarm = sh_rtc_set_alarm,
604 .irq_set_state = sh_rtc_irq_set_state,
605 .irq_set_freq = sh_rtc_irq_set_freq,
606 .proc = sh_rtc_proc,
609 static int __init sh_rtc_probe(struct platform_device *pdev)
611 struct sh_rtc *rtc;
612 struct resource *res;
613 struct rtc_time r;
614 char clk_name[6];
615 int clk_id, ret;
617 rtc = kzalloc(sizeof(struct sh_rtc), GFP_KERNEL);
618 if (unlikely(!rtc))
619 return -ENOMEM;
621 spin_lock_init(&rtc->lock);
623 /* get periodic/carry/alarm irqs */
624 ret = platform_get_irq(pdev, 0);
625 if (unlikely(ret <= 0)) {
626 ret = -ENOENT;
627 dev_err(&pdev->dev, "No IRQ resource\n");
628 goto err_badres;
631 rtc->periodic_irq = ret;
632 rtc->carry_irq = platform_get_irq(pdev, 1);
633 rtc->alarm_irq = platform_get_irq(pdev, 2);
635 res = platform_get_resource(pdev, IORESOURCE_IO, 0);
636 if (unlikely(res == NULL)) {
637 ret = -ENOENT;
638 dev_err(&pdev->dev, "No IO resource\n");
639 goto err_badres;
642 rtc->regsize = resource_size(res);
644 rtc->res = request_mem_region(res->start, rtc->regsize, pdev->name);
645 if (unlikely(!rtc->res)) {
646 ret = -EBUSY;
647 goto err_badres;
650 rtc->regbase = ioremap_nocache(rtc->res->start, rtc->regsize);
651 if (unlikely(!rtc->regbase)) {
652 ret = -EINVAL;
653 goto err_badmap;
656 clk_id = pdev->id;
657 /* With a single device, the clock id is still "rtc0" */
658 if (clk_id < 0)
659 clk_id = 0;
661 snprintf(clk_name, sizeof(clk_name), "rtc%d", clk_id);
663 rtc->clk = clk_get(&pdev->dev, clk_name);
664 if (IS_ERR(rtc->clk)) {
666 * No error handling for rtc->clk intentionally, not all
667 * platforms will have a unique clock for the RTC, and
668 * the clk API can handle the struct clk pointer being
669 * NULL.
671 rtc->clk = NULL;
674 clk_enable(rtc->clk);
676 rtc->capabilities = RTC_DEF_CAPABILITIES;
677 if (pdev->dev.platform_data) {
678 struct sh_rtc_platform_info *pinfo = pdev->dev.platform_data;
681 * Some CPUs have special capabilities in addition to the
682 * default set. Add those in here.
684 rtc->capabilities |= pinfo->capabilities;
687 if (rtc->carry_irq <= 0) {
688 /* register shared periodic/carry/alarm irq */
689 ret = request_irq(rtc->periodic_irq, sh_rtc_shared,
690 IRQF_DISABLED, "sh-rtc", rtc);
691 if (unlikely(ret)) {
692 dev_err(&pdev->dev,
693 "request IRQ failed with %d, IRQ %d\n", ret,
694 rtc->periodic_irq);
695 goto err_unmap;
697 } else {
698 /* register periodic/carry/alarm irqs */
699 ret = request_irq(rtc->periodic_irq, sh_rtc_periodic,
700 IRQF_DISABLED, "sh-rtc period", rtc);
701 if (unlikely(ret)) {
702 dev_err(&pdev->dev,
703 "request period IRQ failed with %d, IRQ %d\n",
704 ret, rtc->periodic_irq);
705 goto err_unmap;
708 ret = request_irq(rtc->carry_irq, sh_rtc_interrupt,
709 IRQF_DISABLED, "sh-rtc carry", rtc);
710 if (unlikely(ret)) {
711 dev_err(&pdev->dev,
712 "request carry IRQ failed with %d, IRQ %d\n",
713 ret, rtc->carry_irq);
714 free_irq(rtc->periodic_irq, rtc);
715 goto err_unmap;
718 ret = request_irq(rtc->alarm_irq, sh_rtc_alarm,
719 IRQF_DISABLED, "sh-rtc alarm", rtc);
720 if (unlikely(ret)) {
721 dev_err(&pdev->dev,
722 "request alarm IRQ failed with %d, IRQ %d\n",
723 ret, rtc->alarm_irq);
724 free_irq(rtc->carry_irq, rtc);
725 free_irq(rtc->periodic_irq, rtc);
726 goto err_unmap;
730 platform_set_drvdata(pdev, rtc);
732 /* everything disabled by default */
733 sh_rtc_irq_set_freq(&pdev->dev, 0);
734 sh_rtc_irq_set_state(&pdev->dev, 0);
735 sh_rtc_setaie(&pdev->dev, 0);
736 sh_rtc_setcie(&pdev->dev, 0);
738 rtc->rtc_dev = rtc_device_register("sh", &pdev->dev,
739 &sh_rtc_ops, THIS_MODULE);
740 if (IS_ERR(rtc->rtc_dev)) {
741 ret = PTR_ERR(rtc->rtc_dev);
742 free_irq(rtc->periodic_irq, rtc);
743 free_irq(rtc->carry_irq, rtc);
744 free_irq(rtc->alarm_irq, rtc);
745 goto err_unmap;
748 rtc->rtc_dev->max_user_freq = 256;
750 /* reset rtc to epoch 0 if time is invalid */
751 if (rtc_read_time(rtc->rtc_dev, &r) < 0) {
752 rtc_time_to_tm(0, &r);
753 rtc_set_time(rtc->rtc_dev, &r);
756 device_init_wakeup(&pdev->dev, 1);
757 return 0;
759 err_unmap:
760 clk_disable(rtc->clk);
761 clk_put(rtc->clk);
762 iounmap(rtc->regbase);
763 err_badmap:
764 release_mem_region(rtc->res->start, rtc->regsize);
765 err_badres:
766 kfree(rtc);
768 return ret;
771 static int __exit sh_rtc_remove(struct platform_device *pdev)
773 struct sh_rtc *rtc = platform_get_drvdata(pdev);
775 rtc_device_unregister(rtc->rtc_dev);
776 sh_rtc_irq_set_state(&pdev->dev, 0);
778 sh_rtc_setaie(&pdev->dev, 0);
779 sh_rtc_setcie(&pdev->dev, 0);
781 free_irq(rtc->periodic_irq, rtc);
783 if (rtc->carry_irq > 0) {
784 free_irq(rtc->carry_irq, rtc);
785 free_irq(rtc->alarm_irq, rtc);
788 iounmap(rtc->regbase);
789 release_mem_region(rtc->res->start, rtc->regsize);
791 clk_disable(rtc->clk);
792 clk_put(rtc->clk);
794 platform_set_drvdata(pdev, NULL);
796 kfree(rtc);
798 return 0;
801 static void sh_rtc_set_irq_wake(struct device *dev, int enabled)
803 struct platform_device *pdev = to_platform_device(dev);
804 struct sh_rtc *rtc = platform_get_drvdata(pdev);
806 set_irq_wake(rtc->periodic_irq, enabled);
808 if (rtc->carry_irq > 0) {
809 set_irq_wake(rtc->carry_irq, enabled);
810 set_irq_wake(rtc->alarm_irq, enabled);
814 static int sh_rtc_suspend(struct device *dev)
816 if (device_may_wakeup(dev))
817 sh_rtc_set_irq_wake(dev, 1);
819 return 0;
822 static int sh_rtc_resume(struct device *dev)
824 if (device_may_wakeup(dev))
825 sh_rtc_set_irq_wake(dev, 0);
827 return 0;
830 static const struct dev_pm_ops sh_rtc_dev_pm_ops = {
831 .suspend = sh_rtc_suspend,
832 .resume = sh_rtc_resume,
835 static struct platform_driver sh_rtc_platform_driver = {
836 .driver = {
837 .name = DRV_NAME,
838 .owner = THIS_MODULE,
839 .pm = &sh_rtc_dev_pm_ops,
841 .remove = __exit_p(sh_rtc_remove),
844 static int __init sh_rtc_init(void)
846 return platform_driver_probe(&sh_rtc_platform_driver, sh_rtc_probe);
849 static void __exit sh_rtc_exit(void)
851 platform_driver_unregister(&sh_rtc_platform_driver);
854 module_init(sh_rtc_init);
855 module_exit(sh_rtc_exit);
857 MODULE_DESCRIPTION("SuperH on-chip RTC driver");
858 MODULE_VERSION(DRV_VERSION);
859 MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, "
860 "Jamie Lenehan <lenehan@twibble.org>, "
861 "Angelo Castello <angelo.castello@st.com>");
862 MODULE_LICENSE("GPL");
863 MODULE_ALIAS("platform:" DRV_NAME);