2 * drivers/rtc/rtc-pl031.c
4 * Real Time Clock interface for ARM AMBA PrimeCell 031 RTC
6 * Author: Deepak Saxena <dsaxena@plexity.net>
8 * Copyright 2006 (c) MontaVista Software, Inc.
10 * Author: Mian Yousaf Kaukab <mian.yousaf.kaukab@stericsson.com>
11 * Copyright 2010 (c) ST-Ericsson AB
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
18 #include <linux/module.h>
19 #include <linux/rtc.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/amba/bus.h>
24 #include <linux/bcd.h>
25 #include <linux/delay.h>
26 #include <linux/slab.h>
29 * Register definitions
31 #define RTC_DR 0x00 /* Data read register */
32 #define RTC_MR 0x04 /* Match register */
33 #define RTC_LR 0x08 /* Data load register */
34 #define RTC_CR 0x0c /* Control register */
35 #define RTC_IMSC 0x10 /* Interrupt mask and set register */
36 #define RTC_RIS 0x14 /* Raw interrupt status register */
37 #define RTC_MIS 0x18 /* Masked interrupt status register */
38 #define RTC_ICR 0x1c /* Interrupt clear register */
39 /* ST variants have additional timer functionality */
40 #define RTC_TDR 0x20 /* Timer data read register */
41 #define RTC_TLR 0x24 /* Timer data load register */
42 #define RTC_TCR 0x28 /* Timer control register */
43 #define RTC_YDR 0x30 /* Year data read register */
44 #define RTC_YMR 0x34 /* Year match register */
45 #define RTC_YLR 0x38 /* Year data load register */
47 #define RTC_CR_CWEN (1 << 26) /* Clockwatch enable bit */
49 #define RTC_TCR_EN (1 << 1) /* Periodic timer enable bit */
51 /* Common bit definitions for Interrupt status and control registers */
52 #define RTC_BIT_AI (1 << 0) /* Alarm interrupt bit */
53 #define RTC_BIT_PI (1 << 1) /* Periodic interrupt bit. ST variants only. */
55 /* Common bit definations for ST v2 for reading/writing time */
56 #define RTC_SEC_SHIFT 0
57 #define RTC_SEC_MASK (0x3F << RTC_SEC_SHIFT) /* Second [0-59] */
58 #define RTC_MIN_SHIFT 6
59 #define RTC_MIN_MASK (0x3F << RTC_MIN_SHIFT) /* Minute [0-59] */
60 #define RTC_HOUR_SHIFT 12
61 #define RTC_HOUR_MASK (0x1F << RTC_HOUR_SHIFT) /* Hour [0-23] */
62 #define RTC_WDAY_SHIFT 17
63 #define RTC_WDAY_MASK (0x7 << RTC_WDAY_SHIFT) /* Day of Week [1-7] 1=Sunday */
64 #define RTC_MDAY_SHIFT 20
65 #define RTC_MDAY_MASK (0x1F << RTC_MDAY_SHIFT) /* Day of Month [1-31] */
66 #define RTC_MON_SHIFT 25
67 #define RTC_MON_MASK (0xF << RTC_MON_SHIFT) /* Month [1-12] 1=January */
69 #define RTC_TIMER_FREQ 32768
72 struct rtc_device
*rtc
;
78 static int pl031_alarm_irq_enable(struct device
*dev
,
81 struct pl031_local
*ldata
= dev_get_drvdata(dev
);
84 /* Clear any pending alarm interrupts. */
85 writel(RTC_BIT_AI
, ldata
->base
+ RTC_ICR
);
87 imsc
= readl(ldata
->base
+ RTC_IMSC
);
90 writel(imsc
| RTC_BIT_AI
, ldata
->base
+ RTC_IMSC
);
92 writel(imsc
& ~RTC_BIT_AI
, ldata
->base
+ RTC_IMSC
);
98 * Convert Gregorian date to ST v2 RTC format.
100 static int pl031_stv2_tm_to_time(struct device
*dev
,
101 struct rtc_time
*tm
, unsigned long *st_time
,
102 unsigned long *bcd_year
)
104 int year
= tm
->tm_year
+ 1900;
105 int wday
= tm
->tm_wday
;
107 /* wday masking is not working in hardware so wday must be valid */
108 if (wday
< -1 || wday
> 6) {
109 dev_err(dev
, "invalid wday value %d\n", tm
->tm_wday
);
111 } else if (wday
== -1) {
112 /* wday is not provided, calculate it here */
114 struct rtc_time calc_tm
;
116 rtc_tm_to_time(tm
, &time
);
117 rtc_time_to_tm(time
, &calc_tm
);
118 wday
= calc_tm
.tm_wday
;
121 *bcd_year
= (bin2bcd(year
% 100) | bin2bcd(year
/ 100) << 8);
123 *st_time
= ((tm
->tm_mon
+ 1) << RTC_MON_SHIFT
)
124 | (tm
->tm_mday
<< RTC_MDAY_SHIFT
)
125 | ((wday
+ 1) << RTC_WDAY_SHIFT
)
126 | (tm
->tm_hour
<< RTC_HOUR_SHIFT
)
127 | (tm
->tm_min
<< RTC_MIN_SHIFT
)
128 | (tm
->tm_sec
<< RTC_SEC_SHIFT
);
134 * Convert ST v2 RTC format to Gregorian date.
136 static int pl031_stv2_time_to_tm(unsigned long st_time
, unsigned long bcd_year
,
139 tm
->tm_year
= bcd2bin(bcd_year
) + (bcd2bin(bcd_year
>> 8) * 100);
140 tm
->tm_mon
= ((st_time
& RTC_MON_MASK
) >> RTC_MON_SHIFT
) - 1;
141 tm
->tm_mday
= ((st_time
& RTC_MDAY_MASK
) >> RTC_MDAY_SHIFT
);
142 tm
->tm_wday
= ((st_time
& RTC_WDAY_MASK
) >> RTC_WDAY_SHIFT
) - 1;
143 tm
->tm_hour
= ((st_time
& RTC_HOUR_MASK
) >> RTC_HOUR_SHIFT
);
144 tm
->tm_min
= ((st_time
& RTC_MIN_MASK
) >> RTC_MIN_SHIFT
);
145 tm
->tm_sec
= ((st_time
& RTC_SEC_MASK
) >> RTC_SEC_SHIFT
);
147 tm
->tm_yday
= rtc_year_days(tm
->tm_mday
, tm
->tm_mon
, tm
->tm_year
);
153 static int pl031_stv2_read_time(struct device
*dev
, struct rtc_time
*tm
)
155 struct pl031_local
*ldata
= dev_get_drvdata(dev
);
157 pl031_stv2_time_to_tm(readl(ldata
->base
+ RTC_DR
),
158 readl(ldata
->base
+ RTC_YDR
), tm
);
163 static int pl031_stv2_set_time(struct device
*dev
, struct rtc_time
*tm
)
166 unsigned long bcd_year
;
167 struct pl031_local
*ldata
= dev_get_drvdata(dev
);
170 ret
= pl031_stv2_tm_to_time(dev
, tm
, &time
, &bcd_year
);
172 writel(bcd_year
, ldata
->base
+ RTC_YLR
);
173 writel(time
, ldata
->base
+ RTC_LR
);
179 static int pl031_stv2_read_alarm(struct device
*dev
, struct rtc_wkalrm
*alarm
)
181 struct pl031_local
*ldata
= dev_get_drvdata(dev
);
184 ret
= pl031_stv2_time_to_tm(readl(ldata
->base
+ RTC_MR
),
185 readl(ldata
->base
+ RTC_YMR
), &alarm
->time
);
187 alarm
->pending
= readl(ldata
->base
+ RTC_RIS
) & RTC_BIT_AI
;
188 alarm
->enabled
= readl(ldata
->base
+ RTC_IMSC
) & RTC_BIT_AI
;
193 static int pl031_stv2_set_alarm(struct device
*dev
, struct rtc_wkalrm
*alarm
)
195 struct pl031_local
*ldata
= dev_get_drvdata(dev
);
197 unsigned long bcd_year
;
200 /* At the moment, we can only deal with non-wildcarded alarm times. */
201 ret
= rtc_valid_tm(&alarm
->time
);
203 ret
= pl031_stv2_tm_to_time(dev
, &alarm
->time
,
206 writel(bcd_year
, ldata
->base
+ RTC_YMR
);
207 writel(time
, ldata
->base
+ RTC_MR
);
209 pl031_alarm_irq_enable(dev
, alarm
->enabled
);
216 static irqreturn_t
pl031_interrupt(int irq
, void *dev_id
)
218 struct pl031_local
*ldata
= dev_id
;
219 unsigned long rtcmis
;
220 unsigned long events
= 0;
222 rtcmis
= readl(ldata
->base
+ RTC_MIS
);
224 writel(rtcmis
, ldata
->base
+ RTC_ICR
);
226 if (rtcmis
& RTC_BIT_AI
)
227 events
|= (RTC_AF
| RTC_IRQF
);
229 /* Timer interrupt is only available in ST variants */
230 if ((rtcmis
& RTC_BIT_PI
) &&
231 (ldata
->hw_designer
== AMBA_VENDOR_ST
))
232 events
|= (RTC_PF
| RTC_IRQF
);
234 rtc_update_irq(ldata
->rtc
, 1, events
);
242 static int pl031_read_time(struct device
*dev
, struct rtc_time
*tm
)
244 struct pl031_local
*ldata
= dev_get_drvdata(dev
);
246 rtc_time_to_tm(readl(ldata
->base
+ RTC_DR
), tm
);
251 static int pl031_set_time(struct device
*dev
, struct rtc_time
*tm
)
254 struct pl031_local
*ldata
= dev_get_drvdata(dev
);
257 ret
= rtc_tm_to_time(tm
, &time
);
260 writel(time
, ldata
->base
+ RTC_LR
);
265 static int pl031_read_alarm(struct device
*dev
, struct rtc_wkalrm
*alarm
)
267 struct pl031_local
*ldata
= dev_get_drvdata(dev
);
269 rtc_time_to_tm(readl(ldata
->base
+ RTC_MR
), &alarm
->time
);
271 alarm
->pending
= readl(ldata
->base
+ RTC_RIS
) & RTC_BIT_AI
;
272 alarm
->enabled
= readl(ldata
->base
+ RTC_IMSC
) & RTC_BIT_AI
;
277 static int pl031_set_alarm(struct device
*dev
, struct rtc_wkalrm
*alarm
)
279 struct pl031_local
*ldata
= dev_get_drvdata(dev
);
283 /* At the moment, we can only deal with non-wildcarded alarm times. */
284 ret
= rtc_valid_tm(&alarm
->time
);
286 ret
= rtc_tm_to_time(&alarm
->time
, &time
);
288 writel(time
, ldata
->base
+ RTC_MR
);
289 pl031_alarm_irq_enable(dev
, alarm
->enabled
);
296 /* Periodic interrupt is only available in ST variants. */
297 static int pl031_irq_set_state(struct device
*dev
, int enabled
)
299 struct pl031_local
*ldata
= dev_get_drvdata(dev
);
302 /* Clear any pending timer interrupt. */
303 writel(RTC_BIT_PI
, ldata
->base
+ RTC_ICR
);
305 writel(readl(ldata
->base
+ RTC_IMSC
) | RTC_BIT_PI
,
306 ldata
->base
+ RTC_IMSC
);
308 /* Now start the timer */
309 writel(readl(ldata
->base
+ RTC_TCR
) | RTC_TCR_EN
,
310 ldata
->base
+ RTC_TCR
);
313 writel(readl(ldata
->base
+ RTC_IMSC
) & (~RTC_BIT_PI
),
314 ldata
->base
+ RTC_IMSC
);
316 /* Also stop the timer */
317 writel(readl(ldata
->base
+ RTC_TCR
) & (~RTC_TCR_EN
),
318 ldata
->base
+ RTC_TCR
);
320 /* Wait at least 1 RTC32 clock cycle to ensure next access
321 * to RTC_TCR will succeed.
328 static int pl031_irq_set_freq(struct device
*dev
, int freq
)
330 struct pl031_local
*ldata
= dev_get_drvdata(dev
);
332 /* Cant set timer if it is already enabled */
333 if (readl(ldata
->base
+ RTC_TCR
) & RTC_TCR_EN
) {
334 dev_err(dev
, "can't change frequency while timer enabled\n");
338 /* If self start bit in RTC_TCR is set timer will start here,
339 * but we never set that bit. Instead we start the timer when
340 * set_state is called with enabled == 1.
342 writel(RTC_TIMER_FREQ
/ freq
, ldata
->base
+ RTC_TLR
);
347 static int pl031_remove(struct amba_device
*adev
)
349 struct pl031_local
*ldata
= dev_get_drvdata(&adev
->dev
);
351 amba_set_drvdata(adev
, NULL
);
352 free_irq(adev
->irq
[0], ldata
->rtc
);
353 rtc_device_unregister(ldata
->rtc
);
354 iounmap(ldata
->base
);
356 amba_release_regions(adev
);
361 static int pl031_probe(struct amba_device
*adev
, struct amba_id
*id
)
364 struct pl031_local
*ldata
;
365 struct rtc_class_ops
*ops
= id
->data
;
367 ret
= amba_request_regions(adev
, NULL
);
371 ldata
= kzalloc(sizeof(struct pl031_local
), GFP_KERNEL
);
377 ldata
->base
= ioremap(adev
->res
.start
, resource_size(&adev
->res
));
384 amba_set_drvdata(adev
, ldata
);
386 ldata
->hw_designer
= amba_manf(adev
);
387 ldata
->hw_revision
= amba_rev(adev
);
389 dev_dbg(&adev
->dev
, "designer ID = 0x%02x\n", ldata
->hw_designer
);
390 dev_dbg(&adev
->dev
, "revision = 0x%01x\n", ldata
->hw_revision
);
392 /* Enable the clockwatch on ST Variants */
393 if ((ldata
->hw_designer
== AMBA_VENDOR_ST
) &&
394 (ldata
->hw_revision
> 1))
395 writel(readl(ldata
->base
+ RTC_CR
) | RTC_CR_CWEN
,
396 ldata
->base
+ RTC_CR
);
398 ldata
->rtc
= rtc_device_register("pl031", &adev
->dev
, ops
,
400 if (IS_ERR(ldata
->rtc
)) {
401 ret
= PTR_ERR(ldata
->rtc
);
405 if (request_irq(adev
->irq
[0], pl031_interrupt
,
406 IRQF_DISABLED
, "rtc-pl031", ldata
)) {
414 rtc_device_unregister(ldata
->rtc
);
416 iounmap(ldata
->base
);
417 amba_set_drvdata(adev
, NULL
);
421 amba_release_regions(adev
);
427 /* Operations for the original ARM version */
428 static struct rtc_class_ops arm_pl031_ops
= {
429 .read_time
= pl031_read_time
,
430 .set_time
= pl031_set_time
,
431 .read_alarm
= pl031_read_alarm
,
432 .set_alarm
= pl031_set_alarm
,
433 .alarm_irq_enable
= pl031_alarm_irq_enable
,
436 /* The First ST derivative */
437 static struct rtc_class_ops stv1_pl031_ops
= {
438 .read_time
= pl031_read_time
,
439 .set_time
= pl031_set_time
,
440 .read_alarm
= pl031_read_alarm
,
441 .set_alarm
= pl031_set_alarm
,
442 .alarm_irq_enable
= pl031_alarm_irq_enable
,
443 .irq_set_state
= pl031_irq_set_state
,
444 .irq_set_freq
= pl031_irq_set_freq
,
447 /* And the second ST derivative */
448 static struct rtc_class_ops stv2_pl031_ops
= {
449 .read_time
= pl031_stv2_read_time
,
450 .set_time
= pl031_stv2_set_time
,
451 .read_alarm
= pl031_stv2_read_alarm
,
452 .set_alarm
= pl031_stv2_set_alarm
,
453 .alarm_irq_enable
= pl031_alarm_irq_enable
,
454 .irq_set_state
= pl031_irq_set_state
,
455 .irq_set_freq
= pl031_irq_set_freq
,
458 static struct amba_id pl031_ids
[] = {
462 .data
= &arm_pl031_ops
,
464 /* ST Micro variants */
468 .data
= &stv1_pl031_ops
,
473 .data
= &stv2_pl031_ops
,
478 static struct amba_driver pl031_driver
= {
482 .id_table
= pl031_ids
,
483 .probe
= pl031_probe
,
484 .remove
= pl031_remove
,
487 static int __init
pl031_init(void)
489 return amba_driver_register(&pl031_driver
);
492 static void __exit
pl031_exit(void)
494 amba_driver_unregister(&pl031_driver
);
497 module_init(pl031_init
);
498 module_exit(pl031_exit
);
500 MODULE_AUTHOR("Deepak Saxena <dsaxena@plexity.net");
501 MODULE_DESCRIPTION("ARM AMBA PL031 RTC Driver");
502 MODULE_LICENSE("GPL");