2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
44 static kmem_zone_t
*xfs_buf_zone
;
45 STATIC
int xfsbufd(void *);
47 static struct workqueue_struct
*xfslogd_workqueue
;
48 struct workqueue_struct
*xfsdatad_workqueue
;
49 struct workqueue_struct
*xfsconvertd_workqueue
;
51 #ifdef XFS_BUF_LOCK_TRACKING
52 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
53 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
54 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
56 # define XB_SET_OWNER(bp) do { } while (0)
57 # define XB_CLEAR_OWNER(bp) do { } while (0)
58 # define XB_GET_OWNER(bp) do { } while (0)
61 #define xb_to_gfp(flags) \
62 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
63 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
65 #define xb_to_km(flags) \
66 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
74 * Return true if the buffer is vmapped.
76 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
77 * code is clever enough to know it doesn't have to map a single page,
78 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
80 return (bp
->b_flags
& XBF_MAPPED
) && bp
->b_page_count
> 1;
87 return (bp
->b_page_count
* PAGE_SIZE
) - bp
->b_offset
;
91 * xfs_buf_lru_add - add a buffer to the LRU.
93 * The LRU takes a new reference to the buffer so that it will only be freed
94 * once the shrinker takes the buffer off the LRU.
100 struct xfs_buftarg
*btp
= bp
->b_target
;
102 spin_lock(&btp
->bt_lru_lock
);
103 if (list_empty(&bp
->b_lru
)) {
104 atomic_inc(&bp
->b_hold
);
105 list_add_tail(&bp
->b_lru
, &btp
->bt_lru
);
108 spin_unlock(&btp
->bt_lru_lock
);
112 * xfs_buf_lru_del - remove a buffer from the LRU
114 * The unlocked check is safe here because it only occurs when there are not
115 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
116 * to optimise the shrinker removing the buffer from the LRU and calling
117 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
124 struct xfs_buftarg
*btp
= bp
->b_target
;
126 if (list_empty(&bp
->b_lru
))
129 spin_lock(&btp
->bt_lru_lock
);
130 if (!list_empty(&bp
->b_lru
)) {
131 list_del_init(&bp
->b_lru
);
134 spin_unlock(&btp
->bt_lru_lock
);
138 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
139 * b_lru_ref count so that the buffer is freed immediately when the buffer
140 * reference count falls to zero. If the buffer is already on the LRU, we need
141 * to remove the reference that LRU holds on the buffer.
143 * This prevents build-up of stale buffers on the LRU.
149 bp
->b_flags
|= XBF_STALE
;
150 xfs_buf_delwri_dequeue(bp
);
151 atomic_set(&(bp
)->b_lru_ref
, 0);
152 if (!list_empty(&bp
->b_lru
)) {
153 struct xfs_buftarg
*btp
= bp
->b_target
;
155 spin_lock(&btp
->bt_lru_lock
);
156 if (!list_empty(&bp
->b_lru
)) {
157 list_del_init(&bp
->b_lru
);
159 atomic_dec(&bp
->b_hold
);
161 spin_unlock(&btp
->bt_lru_lock
);
163 ASSERT(atomic_read(&bp
->b_hold
) >= 1);
168 struct xfs_buftarg
*target
,
169 xfs_off_t range_base
,
171 xfs_buf_flags_t flags
)
175 bp
= kmem_zone_alloc(xfs_buf_zone
, xb_to_km(flags
));
180 * We don't want certain flags to appear in b_flags.
182 flags
&= ~(XBF_LOCK
|XBF_MAPPED
|XBF_DONT_BLOCK
|XBF_READ_AHEAD
);
184 memset(bp
, 0, sizeof(xfs_buf_t
));
185 atomic_set(&bp
->b_hold
, 1);
186 atomic_set(&bp
->b_lru_ref
, 1);
187 init_completion(&bp
->b_iowait
);
188 INIT_LIST_HEAD(&bp
->b_lru
);
189 INIT_LIST_HEAD(&bp
->b_list
);
190 RB_CLEAR_NODE(&bp
->b_rbnode
);
191 sema_init(&bp
->b_sema
, 0); /* held, no waiters */
193 bp
->b_target
= target
;
194 bp
->b_file_offset
= range_base
;
196 * Set buffer_length and count_desired to the same value initially.
197 * I/O routines should use count_desired, which will be the same in
198 * most cases but may be reset (e.g. XFS recovery).
200 bp
->b_buffer_length
= bp
->b_count_desired
= range_length
;
202 bp
->b_bn
= XFS_BUF_DADDR_NULL
;
203 atomic_set(&bp
->b_pin_count
, 0);
204 init_waitqueue_head(&bp
->b_waiters
);
206 XFS_STATS_INC(xb_create
);
207 trace_xfs_buf_init(bp
, _RET_IP_
);
213 * Allocate a page array capable of holding a specified number
214 * of pages, and point the page buf at it.
220 xfs_buf_flags_t flags
)
222 /* Make sure that we have a page list */
223 if (bp
->b_pages
== NULL
) {
224 bp
->b_offset
= xfs_buf_poff(bp
->b_file_offset
);
225 bp
->b_page_count
= page_count
;
226 if (page_count
<= XB_PAGES
) {
227 bp
->b_pages
= bp
->b_page_array
;
229 bp
->b_pages
= kmem_alloc(sizeof(struct page
*) *
230 page_count
, xb_to_km(flags
));
231 if (bp
->b_pages
== NULL
)
234 memset(bp
->b_pages
, 0, sizeof(struct page
*) * page_count
);
240 * Frees b_pages if it was allocated.
246 if (bp
->b_pages
!= bp
->b_page_array
) {
247 kmem_free(bp
->b_pages
);
253 * Releases the specified buffer.
255 * The modification state of any associated pages is left unchanged.
256 * The buffer most not be on any hash - use xfs_buf_rele instead for
257 * hashed and refcounted buffers
263 trace_xfs_buf_free(bp
, _RET_IP_
);
265 ASSERT(list_empty(&bp
->b_lru
));
267 if (bp
->b_flags
& _XBF_PAGES
) {
270 if (xfs_buf_is_vmapped(bp
))
271 vm_unmap_ram(bp
->b_addr
- bp
->b_offset
,
274 for (i
= 0; i
< bp
->b_page_count
; i
++) {
275 struct page
*page
= bp
->b_pages
[i
];
279 } else if (bp
->b_flags
& _XBF_KMEM
)
280 kmem_free(bp
->b_addr
);
281 _xfs_buf_free_pages(bp
);
282 kmem_zone_free(xfs_buf_zone
, bp
);
286 * Allocates all the pages for buffer in question and builds it's page list.
289 xfs_buf_allocate_memory(
293 size_t size
= bp
->b_count_desired
;
294 size_t nbytes
, offset
;
295 gfp_t gfp_mask
= xb_to_gfp(flags
);
296 unsigned short page_count
, i
;
301 * for buffers that are contained within a single page, just allocate
302 * the memory from the heap - there's no need for the complexity of
303 * page arrays to keep allocation down to order 0.
305 if (bp
->b_buffer_length
< PAGE_SIZE
) {
306 bp
->b_addr
= kmem_alloc(bp
->b_buffer_length
, xb_to_km(flags
));
308 /* low memory - use alloc_page loop instead */
312 if (((unsigned long)(bp
->b_addr
+ bp
->b_buffer_length
- 1) &
314 ((unsigned long)bp
->b_addr
& PAGE_MASK
)) {
315 /* b_addr spans two pages - use alloc_page instead */
316 kmem_free(bp
->b_addr
);
320 bp
->b_offset
= offset_in_page(bp
->b_addr
);
321 bp
->b_pages
= bp
->b_page_array
;
322 bp
->b_pages
[0] = virt_to_page(bp
->b_addr
);
323 bp
->b_page_count
= 1;
324 bp
->b_flags
|= XBF_MAPPED
| _XBF_KMEM
;
329 end
= bp
->b_file_offset
+ bp
->b_buffer_length
;
330 page_count
= xfs_buf_btoc(end
) - xfs_buf_btoct(bp
->b_file_offset
);
331 error
= _xfs_buf_get_pages(bp
, page_count
, flags
);
335 offset
= bp
->b_offset
;
336 bp
->b_flags
|= _XBF_PAGES
;
338 for (i
= 0; i
< bp
->b_page_count
; i
++) {
342 page
= alloc_page(gfp_mask
);
343 if (unlikely(page
== NULL
)) {
344 if (flags
& XBF_READ_AHEAD
) {
345 bp
->b_page_count
= i
;
351 * This could deadlock.
353 * But until all the XFS lowlevel code is revamped to
354 * handle buffer allocation failures we can't do much.
356 if (!(++retries
% 100))
358 "possible memory allocation deadlock in %s (mode:0x%x)",
361 XFS_STATS_INC(xb_page_retries
);
362 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
366 XFS_STATS_INC(xb_page_found
);
368 nbytes
= min_t(size_t, size
, PAGE_SIZE
- offset
);
370 bp
->b_pages
[i
] = page
;
376 for (i
= 0; i
< bp
->b_page_count
; i
++)
377 __free_page(bp
->b_pages
[i
]);
382 * Map buffer into kernel address-space if necessary.
389 ASSERT(bp
->b_flags
& _XBF_PAGES
);
390 if (bp
->b_page_count
== 1) {
391 /* A single page buffer is always mappable */
392 bp
->b_addr
= page_address(bp
->b_pages
[0]) + bp
->b_offset
;
393 bp
->b_flags
|= XBF_MAPPED
;
394 } else if (flags
& XBF_MAPPED
) {
398 bp
->b_addr
= vm_map_ram(bp
->b_pages
, bp
->b_page_count
,
403 } while (retried
++ <= 1);
407 bp
->b_addr
+= bp
->b_offset
;
408 bp
->b_flags
|= XBF_MAPPED
;
415 * Finding and Reading Buffers
419 * Look up, and creates if absent, a lockable buffer for
420 * a given range of an inode. The buffer is returned
421 * locked. No I/O is implied by this call.
425 xfs_buftarg_t
*btp
, /* block device target */
426 xfs_off_t ioff
, /* starting offset of range */
427 size_t isize
, /* length of range */
428 xfs_buf_flags_t flags
,
431 xfs_off_t range_base
;
433 struct xfs_perag
*pag
;
434 struct rb_node
**rbp
;
435 struct rb_node
*parent
;
438 range_base
= (ioff
<< BBSHIFT
);
439 range_length
= (isize
<< BBSHIFT
);
441 /* Check for IOs smaller than the sector size / not sector aligned */
442 ASSERT(!(range_length
< (1 << btp
->bt_sshift
)));
443 ASSERT(!(range_base
& (xfs_off_t
)btp
->bt_smask
));
446 pag
= xfs_perag_get(btp
->bt_mount
,
447 xfs_daddr_to_agno(btp
->bt_mount
, ioff
));
450 spin_lock(&pag
->pag_buf_lock
);
451 rbp
= &pag
->pag_buf_tree
.rb_node
;
456 bp
= rb_entry(parent
, struct xfs_buf
, b_rbnode
);
458 if (range_base
< bp
->b_file_offset
)
459 rbp
= &(*rbp
)->rb_left
;
460 else if (range_base
> bp
->b_file_offset
)
461 rbp
= &(*rbp
)->rb_right
;
464 * found a block offset match. If the range doesn't
465 * match, the only way this is allowed is if the buffer
466 * in the cache is stale and the transaction that made
467 * it stale has not yet committed. i.e. we are
468 * reallocating a busy extent. Skip this buffer and
469 * continue searching to the right for an exact match.
471 if (bp
->b_buffer_length
!= range_length
) {
472 ASSERT(bp
->b_flags
& XBF_STALE
);
473 rbp
= &(*rbp
)->rb_right
;
476 atomic_inc(&bp
->b_hold
);
483 rb_link_node(&new_bp
->b_rbnode
, parent
, rbp
);
484 rb_insert_color(&new_bp
->b_rbnode
, &pag
->pag_buf_tree
);
485 /* the buffer keeps the perag reference until it is freed */
487 spin_unlock(&pag
->pag_buf_lock
);
489 XFS_STATS_INC(xb_miss_locked
);
490 spin_unlock(&pag
->pag_buf_lock
);
496 spin_unlock(&pag
->pag_buf_lock
);
499 if (!xfs_buf_trylock(bp
)) {
500 if (flags
& XBF_TRYLOCK
) {
502 XFS_STATS_INC(xb_busy_locked
);
506 XFS_STATS_INC(xb_get_locked_waited
);
510 * if the buffer is stale, clear all the external state associated with
511 * it. We need to keep flags such as how we allocated the buffer memory
514 if (bp
->b_flags
& XBF_STALE
) {
515 ASSERT((bp
->b_flags
& _XBF_DELWRI_Q
) == 0);
516 bp
->b_flags
&= XBF_MAPPED
| _XBF_KMEM
| _XBF_PAGES
;
519 trace_xfs_buf_find(bp
, flags
, _RET_IP_
);
520 XFS_STATS_INC(xb_get_locked
);
525 * Assembles a buffer covering the specified range. The code is optimised for
526 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
527 * more hits than misses.
531 xfs_buftarg_t
*target
,/* target for buffer */
532 xfs_off_t ioff
, /* starting offset of range */
533 size_t isize
, /* length of range */
534 xfs_buf_flags_t flags
)
537 struct xfs_buf
*new_bp
;
540 bp
= _xfs_buf_find(target
, ioff
, isize
, flags
, NULL
);
544 new_bp
= xfs_buf_alloc(target
, ioff
<< BBSHIFT
, isize
<< BBSHIFT
,
546 if (unlikely(!new_bp
))
549 bp
= _xfs_buf_find(target
, ioff
, isize
, flags
, new_bp
);
551 kmem_zone_free(xfs_buf_zone
, new_bp
);
556 error
= xfs_buf_allocate_memory(bp
, flags
);
560 kmem_zone_free(xfs_buf_zone
, new_bp
);
563 * Now we have a workable buffer, fill in the block number so
564 * that we can do IO on it.
567 bp
->b_count_desired
= bp
->b_buffer_length
;
570 if (!(bp
->b_flags
& XBF_MAPPED
)) {
571 error
= _xfs_buf_map_pages(bp
, flags
);
572 if (unlikely(error
)) {
573 xfs_warn(target
->bt_mount
,
574 "%s: failed to map pages\n", __func__
);
579 XFS_STATS_INC(xb_get
);
580 trace_xfs_buf_get(bp
, flags
, _RET_IP_
);
584 if (flags
& (XBF_LOCK
| XBF_TRYLOCK
))
593 xfs_buf_flags_t flags
)
597 ASSERT(!(flags
& (XBF_DELWRI
|XBF_WRITE
)));
598 ASSERT(bp
->b_bn
!= XFS_BUF_DADDR_NULL
);
600 bp
->b_flags
&= ~(XBF_WRITE
| XBF_ASYNC
| XBF_DELWRI
| XBF_READ_AHEAD
);
601 bp
->b_flags
|= flags
& (XBF_READ
| XBF_ASYNC
| XBF_READ_AHEAD
);
603 status
= xfs_buf_iorequest(bp
);
604 if (status
|| bp
->b_error
|| (flags
& XBF_ASYNC
))
606 return xfs_buf_iowait(bp
);
611 xfs_buftarg_t
*target
,
614 xfs_buf_flags_t flags
)
620 bp
= xfs_buf_get(target
, ioff
, isize
, flags
);
622 trace_xfs_buf_read(bp
, flags
, _RET_IP_
);
624 if (!XFS_BUF_ISDONE(bp
)) {
625 XFS_STATS_INC(xb_get_read
);
626 _xfs_buf_read(bp
, flags
);
627 } else if (flags
& XBF_ASYNC
) {
629 * Read ahead call which is already satisfied,
634 /* We do not want read in the flags */
635 bp
->b_flags
&= ~XBF_READ
;
642 if (flags
& (XBF_LOCK
| XBF_TRYLOCK
))
649 * If we are not low on memory then do the readahead in a deadlock
654 xfs_buftarg_t
*target
,
658 if (bdi_read_congested(target
->bt_bdi
))
661 xfs_buf_read(target
, ioff
, isize
,
662 XBF_TRYLOCK
|XBF_ASYNC
|XBF_READ_AHEAD
|XBF_DONT_BLOCK
);
666 * Read an uncached buffer from disk. Allocates and returns a locked
667 * buffer containing the disk contents or nothing.
670 xfs_buf_read_uncached(
671 struct xfs_mount
*mp
,
672 struct xfs_buftarg
*target
,
680 bp
= xfs_buf_get_uncached(target
, length
, flags
);
684 /* set up the buffer for a read IO */
685 XFS_BUF_SET_ADDR(bp
, daddr
);
689 error
= xfs_buf_iowait(bp
);
690 if (error
|| bp
->b_error
) {
698 * Return a buffer allocated as an empty buffer and associated to external
699 * memory via xfs_buf_associate_memory() back to it's empty state.
707 _xfs_buf_free_pages(bp
);
710 bp
->b_page_count
= 0;
712 bp
->b_file_offset
= 0;
713 bp
->b_buffer_length
= bp
->b_count_desired
= len
;
714 bp
->b_bn
= XFS_BUF_DADDR_NULL
;
715 bp
->b_flags
&= ~XBF_MAPPED
;
718 static inline struct page
*
722 if ((!is_vmalloc_addr(addr
))) {
723 return virt_to_page(addr
);
725 return vmalloc_to_page(addr
);
730 xfs_buf_associate_memory(
737 unsigned long pageaddr
;
738 unsigned long offset
;
742 pageaddr
= (unsigned long)mem
& PAGE_MASK
;
743 offset
= (unsigned long)mem
- pageaddr
;
744 buflen
= PAGE_ALIGN(len
+ offset
);
745 page_count
= buflen
>> PAGE_SHIFT
;
747 /* Free any previous set of page pointers */
749 _xfs_buf_free_pages(bp
);
754 rval
= _xfs_buf_get_pages(bp
, page_count
, XBF_DONT_BLOCK
);
758 bp
->b_offset
= offset
;
760 for (i
= 0; i
< bp
->b_page_count
; i
++) {
761 bp
->b_pages
[i
] = mem_to_page((void *)pageaddr
);
762 pageaddr
+= PAGE_SIZE
;
765 bp
->b_count_desired
= len
;
766 bp
->b_buffer_length
= buflen
;
767 bp
->b_flags
|= XBF_MAPPED
;
773 xfs_buf_get_uncached(
774 struct xfs_buftarg
*target
,
778 unsigned long page_count
= PAGE_ALIGN(len
) >> PAGE_SHIFT
;
782 bp
= xfs_buf_alloc(target
, 0, len
, 0);
783 if (unlikely(bp
== NULL
))
786 error
= _xfs_buf_get_pages(bp
, page_count
, 0);
790 for (i
= 0; i
< page_count
; i
++) {
791 bp
->b_pages
[i
] = alloc_page(xb_to_gfp(flags
));
795 bp
->b_flags
|= _XBF_PAGES
;
797 error
= _xfs_buf_map_pages(bp
, XBF_MAPPED
);
798 if (unlikely(error
)) {
799 xfs_warn(target
->bt_mount
,
800 "%s: failed to map pages\n", __func__
);
804 trace_xfs_buf_get_uncached(bp
, _RET_IP_
);
809 __free_page(bp
->b_pages
[i
]);
810 _xfs_buf_free_pages(bp
);
812 kmem_zone_free(xfs_buf_zone
, bp
);
818 * Increment reference count on buffer, to hold the buffer concurrently
819 * with another thread which may release (free) the buffer asynchronously.
820 * Must hold the buffer already to call this function.
826 trace_xfs_buf_hold(bp
, _RET_IP_
);
827 atomic_inc(&bp
->b_hold
);
831 * Releases a hold on the specified buffer. If the
832 * the hold count is 1, calls xfs_buf_free.
838 struct xfs_perag
*pag
= bp
->b_pag
;
840 trace_xfs_buf_rele(bp
, _RET_IP_
);
843 ASSERT(list_empty(&bp
->b_lru
));
844 ASSERT(RB_EMPTY_NODE(&bp
->b_rbnode
));
845 if (atomic_dec_and_test(&bp
->b_hold
))
850 ASSERT(!RB_EMPTY_NODE(&bp
->b_rbnode
));
852 ASSERT(atomic_read(&bp
->b_hold
) > 0);
853 if (atomic_dec_and_lock(&bp
->b_hold
, &pag
->pag_buf_lock
)) {
854 if (!(bp
->b_flags
& XBF_STALE
) &&
855 atomic_read(&bp
->b_lru_ref
)) {
857 spin_unlock(&pag
->pag_buf_lock
);
860 ASSERT(!(bp
->b_flags
& (XBF_DELWRI
|_XBF_DELWRI_Q
)));
861 rb_erase(&bp
->b_rbnode
, &pag
->pag_buf_tree
);
862 spin_unlock(&pag
->pag_buf_lock
);
871 * Lock a buffer object, if it is not already locked.
873 * If we come across a stale, pinned, locked buffer, we know that we are
874 * being asked to lock a buffer that has been reallocated. Because it is
875 * pinned, we know that the log has not been pushed to disk and hence it
876 * will still be locked. Rather than continuing to have trylock attempts
877 * fail until someone else pushes the log, push it ourselves before
878 * returning. This means that the xfsaild will not get stuck trying
879 * to push on stale inode buffers.
887 locked
= down_trylock(&bp
->b_sema
) == 0;
890 else if (atomic_read(&bp
->b_pin_count
) && (bp
->b_flags
& XBF_STALE
))
891 xfs_log_force(bp
->b_target
->bt_mount
, 0);
893 trace_xfs_buf_trylock(bp
, _RET_IP_
);
898 * Lock a buffer object.
900 * If we come across a stale, pinned, locked buffer, we know that we
901 * are being asked to lock a buffer that has been reallocated. Because
902 * it is pinned, we know that the log has not been pushed to disk and
903 * hence it will still be locked. Rather than sleeping until someone
904 * else pushes the log, push it ourselves before trying to get the lock.
910 trace_xfs_buf_lock(bp
, _RET_IP_
);
912 if (atomic_read(&bp
->b_pin_count
) && (bp
->b_flags
& XBF_STALE
))
913 xfs_log_force(bp
->b_target
->bt_mount
, 0);
917 trace_xfs_buf_lock_done(bp
, _RET_IP_
);
921 * Releases the lock on the buffer object.
922 * If the buffer is marked delwri but is not queued, do so before we
923 * unlock the buffer as we need to set flags correctly. We also need to
924 * take a reference for the delwri queue because the unlocker is going to
925 * drop their's and they don't know we just queued it.
934 trace_xfs_buf_unlock(bp
, _RET_IP_
);
941 DECLARE_WAITQUEUE (wait
, current
);
943 if (atomic_read(&bp
->b_pin_count
) == 0)
946 add_wait_queue(&bp
->b_waiters
, &wait
);
948 set_current_state(TASK_UNINTERRUPTIBLE
);
949 if (atomic_read(&bp
->b_pin_count
) == 0)
953 remove_wait_queue(&bp
->b_waiters
, &wait
);
954 set_current_state(TASK_RUNNING
);
958 * Buffer Utility Routines
963 struct work_struct
*work
)
966 container_of(work
, xfs_buf_t
, b_iodone_work
);
969 (*(bp
->b_iodone
))(bp
);
970 else if (bp
->b_flags
& XBF_ASYNC
)
979 trace_xfs_buf_iodone(bp
, _RET_IP_
);
981 bp
->b_flags
&= ~(XBF_READ
| XBF_WRITE
| XBF_READ_AHEAD
);
982 if (bp
->b_error
== 0)
983 bp
->b_flags
|= XBF_DONE
;
985 if ((bp
->b_iodone
) || (bp
->b_flags
& XBF_ASYNC
)) {
987 INIT_WORK(&bp
->b_iodone_work
, xfs_buf_iodone_work
);
988 queue_work(xfslogd_workqueue
, &bp
->b_iodone_work
);
990 xfs_buf_iodone_work(&bp
->b_iodone_work
);
993 complete(&bp
->b_iowait
);
1002 ASSERT(error
>= 0 && error
<= 0xffff);
1003 bp
->b_error
= (unsigned short)error
;
1004 trace_xfs_buf_ioerror(bp
, error
, _RET_IP_
);
1008 xfs_buf_ioerror_alert(
1012 xfs_alert(bp
->b_target
->bt_mount
,
1013 "metadata I/O error: block 0x%llx (\"%s\") error %d buf count %zd",
1014 (__uint64_t
)XFS_BUF_ADDR(bp
), func
,
1015 bp
->b_error
, XFS_BUF_COUNT(bp
));
1024 bp
->b_flags
|= XBF_WRITE
;
1025 bp
->b_flags
&= ~(XBF_ASYNC
| XBF_READ
);
1027 xfs_buf_delwri_dequeue(bp
);
1030 error
= xfs_buf_iowait(bp
);
1032 xfs_force_shutdown(bp
->b_target
->bt_mount
,
1033 SHUTDOWN_META_IO_ERROR
);
1039 * Called when we want to stop a buffer from getting written or read.
1040 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1041 * so that the proper iodone callbacks get called.
1047 #ifdef XFSERRORDEBUG
1048 ASSERT(XFS_BUF_ISREAD(bp
) || bp
->b_iodone
);
1052 * No need to wait until the buffer is unpinned, we aren't flushing it.
1054 xfs_buf_ioerror(bp
, EIO
);
1057 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1063 xfs_buf_ioend(bp
, 0);
1069 * Same as xfs_bioerror, except that we are releasing the buffer
1070 * here ourselves, and avoiding the xfs_buf_ioend call.
1071 * This is meant for userdata errors; metadata bufs come with
1072 * iodone functions attached, so that we can track down errors.
1078 int64_t fl
= bp
->b_flags
;
1080 * No need to wait until the buffer is unpinned.
1081 * We aren't flushing it.
1083 * chunkhold expects B_DONE to be set, whether
1084 * we actually finish the I/O or not. We don't want to
1085 * change that interface.
1090 bp
->b_iodone
= NULL
;
1091 if (!(fl
& XBF_ASYNC
)) {
1093 * Mark b_error and B_ERROR _both_.
1094 * Lot's of chunkcache code assumes that.
1095 * There's no reason to mark error for
1098 xfs_buf_ioerror(bp
, EIO
);
1099 complete(&bp
->b_iowait
);
1109 * All xfs metadata buffers except log state machine buffers
1110 * get this attached as their b_bdstrat callback function.
1111 * This is so that we can catch a buffer
1112 * after prematurely unpinning it to forcibly shutdown the filesystem.
1118 if (XFS_FORCED_SHUTDOWN(bp
->b_target
->bt_mount
)) {
1119 trace_xfs_bdstrat_shut(bp
, _RET_IP_
);
1121 * Metadata write that didn't get logged but
1122 * written delayed anyway. These aren't associated
1123 * with a transaction, and can be ignored.
1125 if (!bp
->b_iodone
&& !XFS_BUF_ISREAD(bp
))
1126 return xfs_bioerror_relse(bp
);
1128 return xfs_bioerror(bp
);
1131 xfs_buf_iorequest(bp
);
1136 * Wrapper around bdstrat so that we can stop data from going to disk in case
1137 * we are shutting down the filesystem. Typically user data goes thru this
1138 * path; one of the exceptions is the superblock.
1142 struct xfs_mount
*mp
,
1145 if (XFS_FORCED_SHUTDOWN(mp
)) {
1146 trace_xfs_bdstrat_shut(bp
, _RET_IP_
);
1147 xfs_bioerror_relse(bp
);
1151 xfs_buf_iorequest(bp
);
1159 if (atomic_dec_and_test(&bp
->b_io_remaining
) == 1)
1160 xfs_buf_ioend(bp
, schedule
);
1168 xfs_buf_t
*bp
= (xfs_buf_t
*)bio
->bi_private
;
1170 xfs_buf_ioerror(bp
, -error
);
1172 if (!error
&& xfs_buf_is_vmapped(bp
) && (bp
->b_flags
& XBF_READ
))
1173 invalidate_kernel_vmap_range(bp
->b_addr
, xfs_buf_vmap_len(bp
));
1175 _xfs_buf_ioend(bp
, 1);
1183 int rw
, map_i
, total_nr_pages
, nr_pages
;
1185 int offset
= bp
->b_offset
;
1186 int size
= bp
->b_count_desired
;
1187 sector_t sector
= bp
->b_bn
;
1189 total_nr_pages
= bp
->b_page_count
;
1192 if (bp
->b_flags
& XBF_WRITE
) {
1193 if (bp
->b_flags
& XBF_SYNCIO
)
1197 if (bp
->b_flags
& XBF_FUA
)
1199 if (bp
->b_flags
& XBF_FLUSH
)
1201 } else if (bp
->b_flags
& XBF_READ_AHEAD
) {
1207 /* we only use the buffer cache for meta-data */
1211 atomic_inc(&bp
->b_io_remaining
);
1212 nr_pages
= BIO_MAX_SECTORS
>> (PAGE_SHIFT
- BBSHIFT
);
1213 if (nr_pages
> total_nr_pages
)
1214 nr_pages
= total_nr_pages
;
1216 bio
= bio_alloc(GFP_NOIO
, nr_pages
);
1217 bio
->bi_bdev
= bp
->b_target
->bt_bdev
;
1218 bio
->bi_sector
= sector
;
1219 bio
->bi_end_io
= xfs_buf_bio_end_io
;
1220 bio
->bi_private
= bp
;
1223 for (; size
&& nr_pages
; nr_pages
--, map_i
++) {
1224 int rbytes
, nbytes
= PAGE_SIZE
- offset
;
1229 rbytes
= bio_add_page(bio
, bp
->b_pages
[map_i
], nbytes
, offset
);
1230 if (rbytes
< nbytes
)
1234 sector
+= nbytes
>> BBSHIFT
;
1239 if (likely(bio
->bi_size
)) {
1240 if (xfs_buf_is_vmapped(bp
)) {
1241 flush_kernel_vmap_range(bp
->b_addr
,
1242 xfs_buf_vmap_len(bp
));
1244 submit_bio(rw
, bio
);
1248 xfs_buf_ioerror(bp
, EIO
);
1257 trace_xfs_buf_iorequest(bp
, _RET_IP_
);
1259 ASSERT(!(bp
->b_flags
& XBF_DELWRI
));
1261 if (bp
->b_flags
& XBF_WRITE
)
1262 xfs_buf_wait_unpin(bp
);
1265 /* Set the count to 1 initially, this will stop an I/O
1266 * completion callout which happens before we have started
1267 * all the I/O from calling xfs_buf_ioend too early.
1269 atomic_set(&bp
->b_io_remaining
, 1);
1270 _xfs_buf_ioapply(bp
);
1271 _xfs_buf_ioend(bp
, 0);
1278 * Waits for I/O to complete on the buffer supplied.
1279 * It returns immediately if no I/O is pending.
1280 * It returns the I/O error code, if any, or 0 if there was no error.
1286 trace_xfs_buf_iowait(bp
, _RET_IP_
);
1288 wait_for_completion(&bp
->b_iowait
);
1290 trace_xfs_buf_iowait_done(bp
, _RET_IP_
);
1301 if (bp
->b_flags
& XBF_MAPPED
)
1302 return bp
->b_addr
+ offset
;
1304 offset
+= bp
->b_offset
;
1305 page
= bp
->b_pages
[offset
>> PAGE_SHIFT
];
1306 return (xfs_caddr_t
)page_address(page
) + (offset
& (PAGE_SIZE
-1));
1310 * Move data into or out of a buffer.
1314 xfs_buf_t
*bp
, /* buffer to process */
1315 size_t boff
, /* starting buffer offset */
1316 size_t bsize
, /* length to copy */
1317 void *data
, /* data address */
1318 xfs_buf_rw_t mode
) /* read/write/zero flag */
1320 size_t bend
, cpoff
, csize
;
1323 bend
= boff
+ bsize
;
1324 while (boff
< bend
) {
1325 page
= bp
->b_pages
[xfs_buf_btoct(boff
+ bp
->b_offset
)];
1326 cpoff
= xfs_buf_poff(boff
+ bp
->b_offset
);
1327 csize
= min_t(size_t,
1328 PAGE_SIZE
-cpoff
, bp
->b_count_desired
-boff
);
1330 ASSERT(((csize
+ cpoff
) <= PAGE_SIZE
));
1334 memset(page_address(page
) + cpoff
, 0, csize
);
1337 memcpy(data
, page_address(page
) + cpoff
, csize
);
1340 memcpy(page_address(page
) + cpoff
, data
, csize
);
1349 * Handling of buffer targets (buftargs).
1353 * Wait for any bufs with callbacks that have been submitted but have not yet
1354 * returned. These buffers will have an elevated hold count, so wait on those
1355 * while freeing all the buffers only held by the LRU.
1359 struct xfs_buftarg
*btp
)
1364 spin_lock(&btp
->bt_lru_lock
);
1365 while (!list_empty(&btp
->bt_lru
)) {
1366 bp
= list_first_entry(&btp
->bt_lru
, struct xfs_buf
, b_lru
);
1367 if (atomic_read(&bp
->b_hold
) > 1) {
1368 spin_unlock(&btp
->bt_lru_lock
);
1373 * clear the LRU reference count so the bufer doesn't get
1374 * ignored in xfs_buf_rele().
1376 atomic_set(&bp
->b_lru_ref
, 0);
1377 spin_unlock(&btp
->bt_lru_lock
);
1379 spin_lock(&btp
->bt_lru_lock
);
1381 spin_unlock(&btp
->bt_lru_lock
);
1386 struct shrinker
*shrink
,
1387 struct shrink_control
*sc
)
1389 struct xfs_buftarg
*btp
= container_of(shrink
,
1390 struct xfs_buftarg
, bt_shrinker
);
1392 int nr_to_scan
= sc
->nr_to_scan
;
1396 return btp
->bt_lru_nr
;
1398 spin_lock(&btp
->bt_lru_lock
);
1399 while (!list_empty(&btp
->bt_lru
)) {
1400 if (nr_to_scan
-- <= 0)
1403 bp
= list_first_entry(&btp
->bt_lru
, struct xfs_buf
, b_lru
);
1406 * Decrement the b_lru_ref count unless the value is already
1407 * zero. If the value is already zero, we need to reclaim the
1408 * buffer, otherwise it gets another trip through the LRU.
1410 if (!atomic_add_unless(&bp
->b_lru_ref
, -1, 0)) {
1411 list_move_tail(&bp
->b_lru
, &btp
->bt_lru
);
1416 * remove the buffer from the LRU now to avoid needing another
1417 * lock round trip inside xfs_buf_rele().
1419 list_move(&bp
->b_lru
, &dispose
);
1422 spin_unlock(&btp
->bt_lru_lock
);
1424 while (!list_empty(&dispose
)) {
1425 bp
= list_first_entry(&dispose
, struct xfs_buf
, b_lru
);
1426 list_del_init(&bp
->b_lru
);
1430 return btp
->bt_lru_nr
;
1435 struct xfs_mount
*mp
,
1436 struct xfs_buftarg
*btp
)
1438 unregister_shrinker(&btp
->bt_shrinker
);
1440 xfs_flush_buftarg(btp
, 1);
1441 if (mp
->m_flags
& XFS_MOUNT_BARRIER
)
1442 xfs_blkdev_issue_flush(btp
);
1444 kthread_stop(btp
->bt_task
);
1449 xfs_setsize_buftarg_flags(
1451 unsigned int blocksize
,
1452 unsigned int sectorsize
,
1455 btp
->bt_bsize
= blocksize
;
1456 btp
->bt_sshift
= ffs(sectorsize
) - 1;
1457 btp
->bt_smask
= sectorsize
- 1;
1459 if (set_blocksize(btp
->bt_bdev
, sectorsize
)) {
1460 char name
[BDEVNAME_SIZE
];
1462 bdevname(btp
->bt_bdev
, name
);
1464 xfs_warn(btp
->bt_mount
,
1465 "Cannot set_blocksize to %u on device %s\n",
1474 * When allocating the initial buffer target we have not yet
1475 * read in the superblock, so don't know what sized sectors
1476 * are being used is at this early stage. Play safe.
1479 xfs_setsize_buftarg_early(
1481 struct block_device
*bdev
)
1483 return xfs_setsize_buftarg_flags(btp
,
1484 PAGE_SIZE
, bdev_logical_block_size(bdev
), 0);
1488 xfs_setsize_buftarg(
1490 unsigned int blocksize
,
1491 unsigned int sectorsize
)
1493 return xfs_setsize_buftarg_flags(btp
, blocksize
, sectorsize
, 1);
1497 xfs_alloc_delwri_queue(
1501 INIT_LIST_HEAD(&btp
->bt_delwri_queue
);
1502 spin_lock_init(&btp
->bt_delwri_lock
);
1504 btp
->bt_task
= kthread_run(xfsbufd
, btp
, "xfsbufd/%s", fsname
);
1505 if (IS_ERR(btp
->bt_task
))
1506 return PTR_ERR(btp
->bt_task
);
1512 struct xfs_mount
*mp
,
1513 struct block_device
*bdev
,
1519 btp
= kmem_zalloc(sizeof(*btp
), KM_SLEEP
);
1522 btp
->bt_dev
= bdev
->bd_dev
;
1523 btp
->bt_bdev
= bdev
;
1524 btp
->bt_bdi
= blk_get_backing_dev_info(bdev
);
1528 INIT_LIST_HEAD(&btp
->bt_lru
);
1529 spin_lock_init(&btp
->bt_lru_lock
);
1530 if (xfs_setsize_buftarg_early(btp
, bdev
))
1532 if (xfs_alloc_delwri_queue(btp
, fsname
))
1534 btp
->bt_shrinker
.shrink
= xfs_buftarg_shrink
;
1535 btp
->bt_shrinker
.seeks
= DEFAULT_SEEKS
;
1536 register_shrinker(&btp
->bt_shrinker
);
1546 * Delayed write buffer handling
1549 xfs_buf_delwri_queue(
1552 struct xfs_buftarg
*btp
= bp
->b_target
;
1554 trace_xfs_buf_delwri_queue(bp
, _RET_IP_
);
1556 ASSERT(!(bp
->b_flags
& XBF_READ
));
1558 spin_lock(&btp
->bt_delwri_lock
);
1559 if (!list_empty(&bp
->b_list
)) {
1560 /* if already in the queue, move it to the tail */
1561 ASSERT(bp
->b_flags
& _XBF_DELWRI_Q
);
1562 list_move_tail(&bp
->b_list
, &btp
->bt_delwri_queue
);
1564 /* start xfsbufd as it is about to have something to do */
1565 if (list_empty(&btp
->bt_delwri_queue
))
1566 wake_up_process(bp
->b_target
->bt_task
);
1568 atomic_inc(&bp
->b_hold
);
1569 bp
->b_flags
|= XBF_DELWRI
| _XBF_DELWRI_Q
| XBF_ASYNC
;
1570 list_add_tail(&bp
->b_list
, &btp
->bt_delwri_queue
);
1572 bp
->b_queuetime
= jiffies
;
1573 spin_unlock(&btp
->bt_delwri_lock
);
1577 xfs_buf_delwri_dequeue(
1582 spin_lock(&bp
->b_target
->bt_delwri_lock
);
1583 if ((bp
->b_flags
& XBF_DELWRI
) && !list_empty(&bp
->b_list
)) {
1584 ASSERT(bp
->b_flags
& _XBF_DELWRI_Q
);
1585 list_del_init(&bp
->b_list
);
1588 bp
->b_flags
&= ~(XBF_DELWRI
|_XBF_DELWRI_Q
);
1589 spin_unlock(&bp
->b_target
->bt_delwri_lock
);
1594 trace_xfs_buf_delwri_dequeue(bp
, _RET_IP_
);
1598 * If a delwri buffer needs to be pushed before it has aged out, then promote
1599 * it to the head of the delwri queue so that it will be flushed on the next
1600 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1601 * than the age currently needed to flush the buffer. Hence the next time the
1602 * xfsbufd sees it is guaranteed to be considered old enough to flush.
1605 xfs_buf_delwri_promote(
1608 struct xfs_buftarg
*btp
= bp
->b_target
;
1609 long age
= xfs_buf_age_centisecs
* msecs_to_jiffies(10) + 1;
1611 ASSERT(bp
->b_flags
& XBF_DELWRI
);
1612 ASSERT(bp
->b_flags
& _XBF_DELWRI_Q
);
1615 * Check the buffer age before locking the delayed write queue as we
1616 * don't need to promote buffers that are already past the flush age.
1618 if (bp
->b_queuetime
< jiffies
- age
)
1620 bp
->b_queuetime
= jiffies
- age
;
1621 spin_lock(&btp
->bt_delwri_lock
);
1622 list_move(&bp
->b_list
, &btp
->bt_delwri_queue
);
1623 spin_unlock(&btp
->bt_delwri_lock
);
1627 * Move as many buffers as specified to the supplied list
1628 * idicating if we skipped any buffers to prevent deadlocks.
1631 xfs_buf_delwri_split(
1632 xfs_buftarg_t
*target
,
1633 struct list_head
*list
,
1640 force
= test_and_clear_bit(XBT_FORCE_FLUSH
, &target
->bt_flags
);
1641 INIT_LIST_HEAD(list
);
1642 spin_lock(&target
->bt_delwri_lock
);
1643 list_for_each_entry_safe(bp
, n
, &target
->bt_delwri_queue
, b_list
) {
1644 ASSERT(bp
->b_flags
& XBF_DELWRI
);
1646 if (!xfs_buf_ispinned(bp
) && xfs_buf_trylock(bp
)) {
1648 time_before(jiffies
, bp
->b_queuetime
+ age
)) {
1653 bp
->b_flags
&= ~(XBF_DELWRI
| _XBF_DELWRI_Q
);
1654 bp
->b_flags
|= XBF_WRITE
;
1655 list_move_tail(&bp
->b_list
, list
);
1656 trace_xfs_buf_delwri_split(bp
, _RET_IP_
);
1661 spin_unlock(&target
->bt_delwri_lock
);
1666 * Compare function is more complex than it needs to be because
1667 * the return value is only 32 bits and we are doing comparisons
1673 struct list_head
*a
,
1674 struct list_head
*b
)
1676 struct xfs_buf
*ap
= container_of(a
, struct xfs_buf
, b_list
);
1677 struct xfs_buf
*bp
= container_of(b
, struct xfs_buf
, b_list
);
1680 diff
= ap
->b_bn
- bp
->b_bn
;
1692 xfs_buftarg_t
*target
= (xfs_buftarg_t
*)data
;
1694 current
->flags
|= PF_MEMALLOC
;
1699 long age
= xfs_buf_age_centisecs
* msecs_to_jiffies(10);
1700 long tout
= xfs_buf_timer_centisecs
* msecs_to_jiffies(10);
1701 struct list_head tmp
;
1702 struct blk_plug plug
;
1704 if (unlikely(freezing(current
))) {
1705 set_bit(XBT_FORCE_SLEEP
, &target
->bt_flags
);
1708 clear_bit(XBT_FORCE_SLEEP
, &target
->bt_flags
);
1711 /* sleep for a long time if there is nothing to do. */
1712 if (list_empty(&target
->bt_delwri_queue
))
1713 tout
= MAX_SCHEDULE_TIMEOUT
;
1714 schedule_timeout_interruptible(tout
);
1716 xfs_buf_delwri_split(target
, &tmp
, age
);
1717 list_sort(NULL
, &tmp
, xfs_buf_cmp
);
1719 blk_start_plug(&plug
);
1720 while (!list_empty(&tmp
)) {
1722 bp
= list_first_entry(&tmp
, struct xfs_buf
, b_list
);
1723 list_del_init(&bp
->b_list
);
1726 blk_finish_plug(&plug
);
1727 } while (!kthread_should_stop());
1733 * Go through all incore buffers, and release buffers if they belong to
1734 * the given device. This is used in filesystem error handling to
1735 * preserve the consistency of its metadata.
1739 xfs_buftarg_t
*target
,
1744 LIST_HEAD(tmp_list
);
1745 LIST_HEAD(wait_list
);
1746 struct blk_plug plug
;
1748 flush_workqueue(xfslogd_workqueue
);
1750 set_bit(XBT_FORCE_FLUSH
, &target
->bt_flags
);
1751 pincount
= xfs_buf_delwri_split(target
, &tmp_list
, 0);
1754 * Dropped the delayed write list lock, now walk the temporary list.
1755 * All I/O is issued async and then if we need to wait for completion
1756 * we do that after issuing all the IO.
1758 list_sort(NULL
, &tmp_list
, xfs_buf_cmp
);
1760 blk_start_plug(&plug
);
1761 while (!list_empty(&tmp_list
)) {
1762 bp
= list_first_entry(&tmp_list
, struct xfs_buf
, b_list
);
1763 ASSERT(target
== bp
->b_target
);
1764 list_del_init(&bp
->b_list
);
1766 bp
->b_flags
&= ~XBF_ASYNC
;
1767 list_add(&bp
->b_list
, &wait_list
);
1771 blk_finish_plug(&plug
);
1774 /* Wait for IO to complete. */
1775 while (!list_empty(&wait_list
)) {
1776 bp
= list_first_entry(&wait_list
, struct xfs_buf
, b_list
);
1778 list_del_init(&bp
->b_list
);
1790 xfs_buf_zone
= kmem_zone_init_flags(sizeof(xfs_buf_t
), "xfs_buf",
1791 KM_ZONE_HWALIGN
, NULL
);
1795 xfslogd_workqueue
= alloc_workqueue("xfslogd",
1796 WQ_MEM_RECLAIM
| WQ_HIGHPRI
, 1);
1797 if (!xfslogd_workqueue
)
1798 goto out_free_buf_zone
;
1800 xfsdatad_workqueue
= alloc_workqueue("xfsdatad", WQ_MEM_RECLAIM
, 1);
1801 if (!xfsdatad_workqueue
)
1802 goto out_destroy_xfslogd_workqueue
;
1804 xfsconvertd_workqueue
= alloc_workqueue("xfsconvertd",
1806 if (!xfsconvertd_workqueue
)
1807 goto out_destroy_xfsdatad_workqueue
;
1811 out_destroy_xfsdatad_workqueue
:
1812 destroy_workqueue(xfsdatad_workqueue
);
1813 out_destroy_xfslogd_workqueue
:
1814 destroy_workqueue(xfslogd_workqueue
);
1816 kmem_zone_destroy(xfs_buf_zone
);
1822 xfs_buf_terminate(void)
1824 destroy_workqueue(xfsconvertd_workqueue
);
1825 destroy_workqueue(xfsdatad_workqueue
);
1826 destroy_workqueue(xfslogd_workqueue
);
1827 kmem_zone_destroy(xfs_buf_zone
);