4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20 #include <linux/writeback.h>
21 #include <linux/compaction.h>
23 #ifdef CONFIG_VM_EVENT_COUNTERS
24 DEFINE_PER_CPU(struct vm_event_state
, vm_event_states
) = {{0}};
25 EXPORT_PER_CPU_SYMBOL(vm_event_states
);
27 static void sum_vm_events(unsigned long *ret
)
32 memset(ret
, 0, NR_VM_EVENT_ITEMS
* sizeof(unsigned long));
34 for_each_online_cpu(cpu
) {
35 struct vm_event_state
*this = &per_cpu(vm_event_states
, cpu
);
37 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++)
38 ret
[i
] += this->event
[i
];
43 * Accumulate the vm event counters across all CPUs.
44 * The result is unavoidably approximate - it can change
45 * during and after execution of this function.
47 void all_vm_events(unsigned long *ret
)
53 EXPORT_SYMBOL_GPL(all_vm_events
);
57 * Fold the foreign cpu events into our own.
59 * This is adding to the events on one processor
60 * but keeps the global counts constant.
62 void vm_events_fold_cpu(int cpu
)
64 struct vm_event_state
*fold_state
= &per_cpu(vm_event_states
, cpu
);
67 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++) {
68 count_vm_events(i
, fold_state
->event
[i
]);
69 fold_state
->event
[i
] = 0;
72 #endif /* CONFIG_HOTPLUG */
74 #endif /* CONFIG_VM_EVENT_COUNTERS */
77 * Manage combined zone based / global counters
79 * vm_stat contains the global counters
81 atomic_long_t vm_stat
[NR_VM_ZONE_STAT_ITEMS
];
82 EXPORT_SYMBOL(vm_stat
);
86 static int calculate_threshold(struct zone
*zone
)
89 int mem
; /* memory in 128 MB units */
92 * The threshold scales with the number of processors and the amount
93 * of memory per zone. More memory means that we can defer updates for
94 * longer, more processors could lead to more contention.
95 * fls() is used to have a cheap way of logarithmic scaling.
97 * Some sample thresholds:
99 * Threshold Processors (fls) Zonesize fls(mem+1)
100 * ------------------------------------------------------------------
117 * 125 1024 10 8-16 GB 8
118 * 125 1024 10 16-32 GB 9
121 mem
= zone
->present_pages
>> (27 - PAGE_SHIFT
);
123 threshold
= 2 * fls(num_online_cpus()) * (1 + fls(mem
));
126 * Maximum threshold is 125
128 threshold
= min(125, threshold
);
134 * Refresh the thresholds for each zone.
136 static void refresh_zone_stat_thresholds(void)
142 for_each_populated_zone(zone
) {
143 unsigned long max_drift
, tolerate_drift
;
145 threshold
= calculate_threshold(zone
);
147 for_each_online_cpu(cpu
)
148 per_cpu_ptr(zone
->pageset
, cpu
)->stat_threshold
152 * Only set percpu_drift_mark if there is a danger that
153 * NR_FREE_PAGES reports the low watermark is ok when in fact
154 * the min watermark could be breached by an allocation
156 tolerate_drift
= low_wmark_pages(zone
) - min_wmark_pages(zone
);
157 max_drift
= num_online_cpus() * threshold
;
158 if (max_drift
> tolerate_drift
)
159 zone
->percpu_drift_mark
= high_wmark_pages(zone
) +
165 * For use when we know that interrupts are disabled.
167 void __mod_zone_page_state(struct zone
*zone
, enum zone_stat_item item
,
170 struct per_cpu_pageset
*pcp
= this_cpu_ptr(zone
->pageset
);
172 s8
*p
= pcp
->vm_stat_diff
+ item
;
177 if (unlikely(x
> pcp
->stat_threshold
|| x
< -pcp
->stat_threshold
)) {
178 zone_page_state_add(x
, zone
, item
);
183 EXPORT_SYMBOL(__mod_zone_page_state
);
186 * For an unknown interrupt state
188 void mod_zone_page_state(struct zone
*zone
, enum zone_stat_item item
,
193 local_irq_save(flags
);
194 __mod_zone_page_state(zone
, item
, delta
);
195 local_irq_restore(flags
);
197 EXPORT_SYMBOL(mod_zone_page_state
);
200 * Optimized increment and decrement functions.
202 * These are only for a single page and therefore can take a struct page *
203 * argument instead of struct zone *. This allows the inclusion of the code
204 * generated for page_zone(page) into the optimized functions.
206 * No overflow check is necessary and therefore the differential can be
207 * incremented or decremented in place which may allow the compilers to
208 * generate better code.
209 * The increment or decrement is known and therefore one boundary check can
212 * NOTE: These functions are very performance sensitive. Change only
215 * Some processors have inc/dec instructions that are atomic vs an interrupt.
216 * However, the code must first determine the differential location in a zone
217 * based on the processor number and then inc/dec the counter. There is no
218 * guarantee without disabling preemption that the processor will not change
219 * in between and therefore the atomicity vs. interrupt cannot be exploited
220 * in a useful way here.
222 void __inc_zone_state(struct zone
*zone
, enum zone_stat_item item
)
224 struct per_cpu_pageset
*pcp
= this_cpu_ptr(zone
->pageset
);
225 s8
*p
= pcp
->vm_stat_diff
+ item
;
229 if (unlikely(*p
> pcp
->stat_threshold
)) {
230 int overstep
= pcp
->stat_threshold
/ 2;
232 zone_page_state_add(*p
+ overstep
, zone
, item
);
237 void __inc_zone_page_state(struct page
*page
, enum zone_stat_item item
)
239 __inc_zone_state(page_zone(page
), item
);
241 EXPORT_SYMBOL(__inc_zone_page_state
);
243 void __dec_zone_state(struct zone
*zone
, enum zone_stat_item item
)
245 struct per_cpu_pageset
*pcp
= this_cpu_ptr(zone
->pageset
);
246 s8
*p
= pcp
->vm_stat_diff
+ item
;
250 if (unlikely(*p
< - pcp
->stat_threshold
)) {
251 int overstep
= pcp
->stat_threshold
/ 2;
253 zone_page_state_add(*p
- overstep
, zone
, item
);
258 void __dec_zone_page_state(struct page
*page
, enum zone_stat_item item
)
260 __dec_zone_state(page_zone(page
), item
);
262 EXPORT_SYMBOL(__dec_zone_page_state
);
264 void inc_zone_state(struct zone
*zone
, enum zone_stat_item item
)
268 local_irq_save(flags
);
269 __inc_zone_state(zone
, item
);
270 local_irq_restore(flags
);
273 void inc_zone_page_state(struct page
*page
, enum zone_stat_item item
)
278 zone
= page_zone(page
);
279 local_irq_save(flags
);
280 __inc_zone_state(zone
, item
);
281 local_irq_restore(flags
);
283 EXPORT_SYMBOL(inc_zone_page_state
);
285 void dec_zone_page_state(struct page
*page
, enum zone_stat_item item
)
289 local_irq_save(flags
);
290 __dec_zone_page_state(page
, item
);
291 local_irq_restore(flags
);
293 EXPORT_SYMBOL(dec_zone_page_state
);
296 * Update the zone counters for one cpu.
298 * The cpu specified must be either the current cpu or a processor that
299 * is not online. If it is the current cpu then the execution thread must
300 * be pinned to the current cpu.
302 * Note that refresh_cpu_vm_stats strives to only access
303 * node local memory. The per cpu pagesets on remote zones are placed
304 * in the memory local to the processor using that pageset. So the
305 * loop over all zones will access a series of cachelines local to
308 * The call to zone_page_state_add updates the cachelines with the
309 * statistics in the remote zone struct as well as the global cachelines
310 * with the global counters. These could cause remote node cache line
311 * bouncing and will have to be only done when necessary.
313 void refresh_cpu_vm_stats(int cpu
)
317 int global_diff
[NR_VM_ZONE_STAT_ITEMS
] = { 0, };
319 for_each_populated_zone(zone
) {
320 struct per_cpu_pageset
*p
;
322 p
= per_cpu_ptr(zone
->pageset
, cpu
);
324 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
325 if (p
->vm_stat_diff
[i
]) {
329 local_irq_save(flags
);
330 v
= p
->vm_stat_diff
[i
];
331 p
->vm_stat_diff
[i
] = 0;
332 local_irq_restore(flags
);
333 atomic_long_add(v
, &zone
->vm_stat
[i
]);
336 /* 3 seconds idle till flush */
343 * Deal with draining the remote pageset of this
346 * Check if there are pages remaining in this pageset
347 * if not then there is nothing to expire.
349 if (!p
->expire
|| !p
->pcp
.count
)
353 * We never drain zones local to this processor.
355 if (zone_to_nid(zone
) == numa_node_id()) {
365 drain_zone_pages(zone
, &p
->pcp
);
369 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
371 atomic_long_add(global_diff
[i
], &vm_stat
[i
]);
378 * zonelist = the list of zones passed to the allocator
379 * z = the zone from which the allocation occurred.
381 * Must be called with interrupts disabled.
383 void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
)
385 if (z
->zone_pgdat
== preferred_zone
->zone_pgdat
) {
386 __inc_zone_state(z
, NUMA_HIT
);
388 __inc_zone_state(z
, NUMA_MISS
);
389 __inc_zone_state(preferred_zone
, NUMA_FOREIGN
);
391 if (z
->node
== numa_node_id())
392 __inc_zone_state(z
, NUMA_LOCAL
);
394 __inc_zone_state(z
, NUMA_OTHER
);
398 #ifdef CONFIG_COMPACTION
400 struct contig_page_info
{
401 unsigned long free_pages
;
402 unsigned long free_blocks_total
;
403 unsigned long free_blocks_suitable
;
407 * Calculate the number of free pages in a zone, how many contiguous
408 * pages are free and how many are large enough to satisfy an allocation of
409 * the target size. Note that this function makes no attempt to estimate
410 * how many suitable free blocks there *might* be if MOVABLE pages were
411 * migrated. Calculating that is possible, but expensive and can be
412 * figured out from userspace
414 static void fill_contig_page_info(struct zone
*zone
,
415 unsigned int suitable_order
,
416 struct contig_page_info
*info
)
420 info
->free_pages
= 0;
421 info
->free_blocks_total
= 0;
422 info
->free_blocks_suitable
= 0;
424 for (order
= 0; order
< MAX_ORDER
; order
++) {
425 unsigned long blocks
;
427 /* Count number of free blocks */
428 blocks
= zone
->free_area
[order
].nr_free
;
429 info
->free_blocks_total
+= blocks
;
431 /* Count free base pages */
432 info
->free_pages
+= blocks
<< order
;
434 /* Count the suitable free blocks */
435 if (order
>= suitable_order
)
436 info
->free_blocks_suitable
+= blocks
<<
437 (order
- suitable_order
);
442 * A fragmentation index only makes sense if an allocation of a requested
443 * size would fail. If that is true, the fragmentation index indicates
444 * whether external fragmentation or a lack of memory was the problem.
445 * The value can be used to determine if page reclaim or compaction
448 static int __fragmentation_index(unsigned int order
, struct contig_page_info
*info
)
450 unsigned long requested
= 1UL << order
;
452 if (!info
->free_blocks_total
)
455 /* Fragmentation index only makes sense when a request would fail */
456 if (info
->free_blocks_suitable
)
460 * Index is between 0 and 1 so return within 3 decimal places
462 * 0 => allocation would fail due to lack of memory
463 * 1 => allocation would fail due to fragmentation
465 return 1000 - div_u64( (1000+(div_u64(info
->free_pages
* 1000ULL, requested
))), info
->free_blocks_total
);
468 /* Same as __fragmentation index but allocs contig_page_info on stack */
469 int fragmentation_index(struct zone
*zone
, unsigned int order
)
471 struct contig_page_info info
;
473 fill_contig_page_info(zone
, order
, &info
);
474 return __fragmentation_index(order
, &info
);
478 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
479 #include <linux/proc_fs.h>
480 #include <linux/seq_file.h>
482 static char * const migratetype_names
[MIGRATE_TYPES
] = {
490 static void *frag_start(struct seq_file
*m
, loff_t
*pos
)
494 for (pgdat
= first_online_pgdat();
496 pgdat
= next_online_pgdat(pgdat
))
502 static void *frag_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
504 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
507 return next_online_pgdat(pgdat
);
510 static void frag_stop(struct seq_file
*m
, void *arg
)
514 /* Walk all the zones in a node and print using a callback */
515 static void walk_zones_in_node(struct seq_file
*m
, pg_data_t
*pgdat
,
516 void (*print
)(struct seq_file
*m
, pg_data_t
*, struct zone
*))
519 struct zone
*node_zones
= pgdat
->node_zones
;
522 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
523 if (!populated_zone(zone
))
526 spin_lock_irqsave(&zone
->lock
, flags
);
527 print(m
, pgdat
, zone
);
528 spin_unlock_irqrestore(&zone
->lock
, flags
);
533 #ifdef CONFIG_PROC_FS
534 static void frag_show_print(struct seq_file
*m
, pg_data_t
*pgdat
,
539 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
540 for (order
= 0; order
< MAX_ORDER
; ++order
)
541 seq_printf(m
, "%6lu ", zone
->free_area
[order
].nr_free
);
546 * This walks the free areas for each zone.
548 static int frag_show(struct seq_file
*m
, void *arg
)
550 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
551 walk_zones_in_node(m
, pgdat
, frag_show_print
);
555 static void pagetypeinfo_showfree_print(struct seq_file
*m
,
556 pg_data_t
*pgdat
, struct zone
*zone
)
560 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++) {
561 seq_printf(m
, "Node %4d, zone %8s, type %12s ",
564 migratetype_names
[mtype
]);
565 for (order
= 0; order
< MAX_ORDER
; ++order
) {
566 unsigned long freecount
= 0;
567 struct free_area
*area
;
568 struct list_head
*curr
;
570 area
= &(zone
->free_area
[order
]);
572 list_for_each(curr
, &area
->free_list
[mtype
])
574 seq_printf(m
, "%6lu ", freecount
);
580 /* Print out the free pages at each order for each migatetype */
581 static int pagetypeinfo_showfree(struct seq_file
*m
, void *arg
)
584 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
587 seq_printf(m
, "%-43s ", "Free pages count per migrate type at order");
588 for (order
= 0; order
< MAX_ORDER
; ++order
)
589 seq_printf(m
, "%6d ", order
);
592 walk_zones_in_node(m
, pgdat
, pagetypeinfo_showfree_print
);
597 static void pagetypeinfo_showblockcount_print(struct seq_file
*m
,
598 pg_data_t
*pgdat
, struct zone
*zone
)
602 unsigned long start_pfn
= zone
->zone_start_pfn
;
603 unsigned long end_pfn
= start_pfn
+ zone
->spanned_pages
;
604 unsigned long count
[MIGRATE_TYPES
] = { 0, };
606 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
612 page
= pfn_to_page(pfn
);
614 /* Watch for unexpected holes punched in the memmap */
615 if (!memmap_valid_within(pfn
, page
, zone
))
618 mtype
= get_pageblock_migratetype(page
);
620 if (mtype
< MIGRATE_TYPES
)
625 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
626 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++)
627 seq_printf(m
, "%12lu ", count
[mtype
]);
631 /* Print out the free pages at each order for each migratetype */
632 static int pagetypeinfo_showblockcount(struct seq_file
*m
, void *arg
)
635 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
637 seq_printf(m
, "\n%-23s", "Number of blocks type ");
638 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++)
639 seq_printf(m
, "%12s ", migratetype_names
[mtype
]);
641 walk_zones_in_node(m
, pgdat
, pagetypeinfo_showblockcount_print
);
647 * This prints out statistics in relation to grouping pages by mobility.
648 * It is expensive to collect so do not constantly read the file.
650 static int pagetypeinfo_show(struct seq_file
*m
, void *arg
)
652 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
654 /* check memoryless node */
655 if (!node_state(pgdat
->node_id
, N_HIGH_MEMORY
))
658 seq_printf(m
, "Page block order: %d\n", pageblock_order
);
659 seq_printf(m
, "Pages per block: %lu\n", pageblock_nr_pages
);
661 pagetypeinfo_showfree(m
, pgdat
);
662 pagetypeinfo_showblockcount(m
, pgdat
);
667 static const struct seq_operations fragmentation_op
= {
674 static int fragmentation_open(struct inode
*inode
, struct file
*file
)
676 return seq_open(file
, &fragmentation_op
);
679 static const struct file_operations fragmentation_file_operations
= {
680 .open
= fragmentation_open
,
683 .release
= seq_release
,
686 static const struct seq_operations pagetypeinfo_op
= {
690 .show
= pagetypeinfo_show
,
693 static int pagetypeinfo_open(struct inode
*inode
, struct file
*file
)
695 return seq_open(file
, &pagetypeinfo_op
);
698 static const struct file_operations pagetypeinfo_file_ops
= {
699 .open
= pagetypeinfo_open
,
702 .release
= seq_release
,
705 #ifdef CONFIG_ZONE_DMA
706 #define TEXT_FOR_DMA(xx) xx "_dma",
708 #define TEXT_FOR_DMA(xx)
711 #ifdef CONFIG_ZONE_DMA32
712 #define TEXT_FOR_DMA32(xx) xx "_dma32",
714 #define TEXT_FOR_DMA32(xx)
717 #ifdef CONFIG_HIGHMEM
718 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
720 #define TEXT_FOR_HIGHMEM(xx)
723 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
724 TEXT_FOR_HIGHMEM(xx) xx "_movable",
726 static const char * const vmstat_text
[] = {
727 /* Zoned VM counters */
740 "nr_slab_reclaimable",
741 "nr_slab_unreclaimable",
742 "nr_page_table_pages",
753 "nr_dirty_threshold",
754 "nr_dirty_background_threshold",
765 #ifdef CONFIG_VM_EVENT_COUNTERS
771 TEXTS_FOR_ZONES("pgalloc")
780 TEXTS_FOR_ZONES("pgrefill")
781 TEXTS_FOR_ZONES("pgsteal")
782 TEXTS_FOR_ZONES("pgscan_kswapd")
783 TEXTS_FOR_ZONES("pgscan_direct")
786 "zone_reclaim_failed",
792 "kswapd_low_wmark_hit_quickly",
793 "kswapd_high_wmark_hit_quickly",
794 "kswapd_skip_congestion_wait",
800 #ifdef CONFIG_COMPACTION
801 "compact_blocks_moved",
802 "compact_pages_moved",
803 "compact_pagemigrate_failed",
809 #ifdef CONFIG_HUGETLB_PAGE
810 "htlb_buddy_alloc_success",
811 "htlb_buddy_alloc_fail",
813 "unevictable_pgs_culled",
814 "unevictable_pgs_scanned",
815 "unevictable_pgs_rescued",
816 "unevictable_pgs_mlocked",
817 "unevictable_pgs_munlocked",
818 "unevictable_pgs_cleared",
819 "unevictable_pgs_stranded",
820 "unevictable_pgs_mlockfreed",
824 static void zoneinfo_show_print(struct seq_file
*m
, pg_data_t
*pgdat
,
828 seq_printf(m
, "Node %d, zone %8s", pgdat
->node_id
, zone
->name
);
837 zone_nr_free_pages(zone
),
838 min_wmark_pages(zone
),
839 low_wmark_pages(zone
),
840 high_wmark_pages(zone
),
843 zone
->present_pages
);
845 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
846 seq_printf(m
, "\n %-12s %lu", vmstat_text
[i
],
847 zone_page_state(zone
, i
));
850 "\n protection: (%lu",
851 zone
->lowmem_reserve
[0]);
852 for (i
= 1; i
< ARRAY_SIZE(zone
->lowmem_reserve
); i
++)
853 seq_printf(m
, ", %lu", zone
->lowmem_reserve
[i
]);
857 for_each_online_cpu(i
) {
858 struct per_cpu_pageset
*pageset
;
860 pageset
= per_cpu_ptr(zone
->pageset
, i
);
871 seq_printf(m
, "\n vm stats threshold: %d",
872 pageset
->stat_threshold
);
876 "\n all_unreclaimable: %u"
878 "\n inactive_ratio: %u",
879 zone
->all_unreclaimable
,
880 zone
->zone_start_pfn
,
881 zone
->inactive_ratio
);
886 * Output information about zones in @pgdat.
888 static int zoneinfo_show(struct seq_file
*m
, void *arg
)
890 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
891 walk_zones_in_node(m
, pgdat
, zoneinfo_show_print
);
895 static const struct seq_operations zoneinfo_op
= {
896 .start
= frag_start
, /* iterate over all zones. The same as in
900 .show
= zoneinfo_show
,
903 static int zoneinfo_open(struct inode
*inode
, struct file
*file
)
905 return seq_open(file
, &zoneinfo_op
);
908 static const struct file_operations proc_zoneinfo_file_operations
= {
909 .open
= zoneinfo_open
,
912 .release
= seq_release
,
915 enum writeback_stat_item
{
917 NR_DIRTY_BG_THRESHOLD
,
918 NR_VM_WRITEBACK_STAT_ITEMS
,
921 static void *vmstat_start(struct seq_file
*m
, loff_t
*pos
)
924 int i
, stat_items_size
;
926 if (*pos
>= ARRAY_SIZE(vmstat_text
))
928 stat_items_size
= NR_VM_ZONE_STAT_ITEMS
* sizeof(unsigned long) +
929 NR_VM_WRITEBACK_STAT_ITEMS
* sizeof(unsigned long);
931 #ifdef CONFIG_VM_EVENT_COUNTERS
932 stat_items_size
+= sizeof(struct vm_event_state
);
935 v
= kmalloc(stat_items_size
, GFP_KERNEL
);
938 return ERR_PTR(-ENOMEM
);
939 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
940 v
[i
] = global_page_state(i
);
941 v
+= NR_VM_ZONE_STAT_ITEMS
;
943 global_dirty_limits(v
+ NR_DIRTY_BG_THRESHOLD
,
944 v
+ NR_DIRTY_THRESHOLD
);
945 v
+= NR_VM_WRITEBACK_STAT_ITEMS
;
947 #ifdef CONFIG_VM_EVENT_COUNTERS
949 v
[PGPGIN
] /= 2; /* sectors -> kbytes */
952 return m
->private + *pos
;
955 static void *vmstat_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
958 if (*pos
>= ARRAY_SIZE(vmstat_text
))
960 return (unsigned long *)m
->private + *pos
;
963 static int vmstat_show(struct seq_file
*m
, void *arg
)
965 unsigned long *l
= arg
;
966 unsigned long off
= l
- (unsigned long *)m
->private;
968 seq_printf(m
, "%s %lu\n", vmstat_text
[off
], *l
);
972 static void vmstat_stop(struct seq_file
*m
, void *arg
)
978 static const struct seq_operations vmstat_op
= {
979 .start
= vmstat_start
,
985 static int vmstat_open(struct inode
*inode
, struct file
*file
)
987 return seq_open(file
, &vmstat_op
);
990 static const struct file_operations proc_vmstat_file_operations
= {
994 .release
= seq_release
,
996 #endif /* CONFIG_PROC_FS */
999 static DEFINE_PER_CPU(struct delayed_work
, vmstat_work
);
1000 int sysctl_stat_interval __read_mostly
= HZ
;
1002 static void vmstat_update(struct work_struct
*w
)
1004 refresh_cpu_vm_stats(smp_processor_id());
1005 schedule_delayed_work(&__get_cpu_var(vmstat_work
),
1006 round_jiffies_relative(sysctl_stat_interval
));
1009 static void __cpuinit
start_cpu_timer(int cpu
)
1011 struct delayed_work
*work
= &per_cpu(vmstat_work
, cpu
);
1013 INIT_DELAYED_WORK_DEFERRABLE(work
, vmstat_update
);
1014 schedule_delayed_work_on(cpu
, work
, __round_jiffies_relative(HZ
, cpu
));
1018 * Use the cpu notifier to insure that the thresholds are recalculated
1021 static int __cpuinit
vmstat_cpuup_callback(struct notifier_block
*nfb
,
1022 unsigned long action
,
1025 long cpu
= (long)hcpu
;
1029 case CPU_ONLINE_FROZEN
:
1030 refresh_zone_stat_thresholds();
1031 start_cpu_timer(cpu
);
1032 node_set_state(cpu_to_node(cpu
), N_CPU
);
1034 case CPU_DOWN_PREPARE
:
1035 case CPU_DOWN_PREPARE_FROZEN
:
1036 cancel_rearming_delayed_work(&per_cpu(vmstat_work
, cpu
));
1037 per_cpu(vmstat_work
, cpu
).work
.func
= NULL
;
1039 case CPU_DOWN_FAILED
:
1040 case CPU_DOWN_FAILED_FROZEN
:
1041 start_cpu_timer(cpu
);
1044 case CPU_DEAD_FROZEN
:
1045 refresh_zone_stat_thresholds();
1053 static struct notifier_block __cpuinitdata vmstat_notifier
=
1054 { &vmstat_cpuup_callback
, NULL
, 0 };
1057 static int __init
setup_vmstat(void)
1062 refresh_zone_stat_thresholds();
1063 register_cpu_notifier(&vmstat_notifier
);
1065 for_each_online_cpu(cpu
)
1066 start_cpu_timer(cpu
);
1068 #ifdef CONFIG_PROC_FS
1069 proc_create("buddyinfo", S_IRUGO
, NULL
, &fragmentation_file_operations
);
1070 proc_create("pagetypeinfo", S_IRUGO
, NULL
, &pagetypeinfo_file_ops
);
1071 proc_create("vmstat", S_IRUGO
, NULL
, &proc_vmstat_file_operations
);
1072 proc_create("zoneinfo", S_IRUGO
, NULL
, &proc_zoneinfo_file_operations
);
1076 module_init(setup_vmstat
)
1078 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1079 #include <linux/debugfs.h>
1081 static struct dentry
*extfrag_debug_root
;
1084 * Return an index indicating how much of the available free memory is
1085 * unusable for an allocation of the requested size.
1087 static int unusable_free_index(unsigned int order
,
1088 struct contig_page_info
*info
)
1090 /* No free memory is interpreted as all free memory is unusable */
1091 if (info
->free_pages
== 0)
1095 * Index should be a value between 0 and 1. Return a value to 3
1098 * 0 => no fragmentation
1099 * 1 => high fragmentation
1101 return div_u64((info
->free_pages
- (info
->free_blocks_suitable
<< order
)) * 1000ULL, info
->free_pages
);
1105 static void unusable_show_print(struct seq_file
*m
,
1106 pg_data_t
*pgdat
, struct zone
*zone
)
1110 struct contig_page_info info
;
1112 seq_printf(m
, "Node %d, zone %8s ",
1115 for (order
= 0; order
< MAX_ORDER
; ++order
) {
1116 fill_contig_page_info(zone
, order
, &info
);
1117 index
= unusable_free_index(order
, &info
);
1118 seq_printf(m
, "%d.%03d ", index
/ 1000, index
% 1000);
1125 * Display unusable free space index
1127 * The unusable free space index measures how much of the available free
1128 * memory cannot be used to satisfy an allocation of a given size and is a
1129 * value between 0 and 1. The higher the value, the more of free memory is
1130 * unusable and by implication, the worse the external fragmentation is. This
1131 * can be expressed as a percentage by multiplying by 100.
1133 static int unusable_show(struct seq_file
*m
, void *arg
)
1135 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1137 /* check memoryless node */
1138 if (!node_state(pgdat
->node_id
, N_HIGH_MEMORY
))
1141 walk_zones_in_node(m
, pgdat
, unusable_show_print
);
1146 static const struct seq_operations unusable_op
= {
1147 .start
= frag_start
,
1150 .show
= unusable_show
,
1153 static int unusable_open(struct inode
*inode
, struct file
*file
)
1155 return seq_open(file
, &unusable_op
);
1158 static const struct file_operations unusable_file_ops
= {
1159 .open
= unusable_open
,
1161 .llseek
= seq_lseek
,
1162 .release
= seq_release
,
1165 static void extfrag_show_print(struct seq_file
*m
,
1166 pg_data_t
*pgdat
, struct zone
*zone
)
1171 /* Alloc on stack as interrupts are disabled for zone walk */
1172 struct contig_page_info info
;
1174 seq_printf(m
, "Node %d, zone %8s ",
1177 for (order
= 0; order
< MAX_ORDER
; ++order
) {
1178 fill_contig_page_info(zone
, order
, &info
);
1179 index
= __fragmentation_index(order
, &info
);
1180 seq_printf(m
, "%d.%03d ", index
/ 1000, index
% 1000);
1187 * Display fragmentation index for orders that allocations would fail for
1189 static int extfrag_show(struct seq_file
*m
, void *arg
)
1191 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1193 walk_zones_in_node(m
, pgdat
, extfrag_show_print
);
1198 static const struct seq_operations extfrag_op
= {
1199 .start
= frag_start
,
1202 .show
= extfrag_show
,
1205 static int extfrag_open(struct inode
*inode
, struct file
*file
)
1207 return seq_open(file
, &extfrag_op
);
1210 static const struct file_operations extfrag_file_ops
= {
1211 .open
= extfrag_open
,
1213 .llseek
= seq_lseek
,
1214 .release
= seq_release
,
1217 static int __init
extfrag_debug_init(void)
1219 extfrag_debug_root
= debugfs_create_dir("extfrag", NULL
);
1220 if (!extfrag_debug_root
)
1223 if (!debugfs_create_file("unusable_index", 0444,
1224 extfrag_debug_root
, NULL
, &unusable_file_ops
))
1227 if (!debugfs_create_file("extfrag_index", 0444,
1228 extfrag_debug_root
, NULL
, &extfrag_file_ops
))
1234 module_init(extfrag_debug_init
);