ipw2x00: relocate ipw2100/ipw2200 to common directory
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / wireless / ipw2x00 / ipw2200.c
blobd2a2b7586d08b8ca8c59029747b00bbd33f06c06
1 /******************************************************************************
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 802.11 status code portion of this file from ethereal-0.10.6:
6 Copyright 2000, Axis Communications AB
7 Ethereal - Network traffic analyzer
8 By Gerald Combs <gerald@ethereal.com>
9 Copyright 1998 Gerald Combs
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of version 2 of the GNU General Public License as
13 published by the Free Software Foundation.
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 more details.
20 You should have received a copy of the GNU General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59
22 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 The full GNU General Public License is included in this distribution in the
25 file called LICENSE.
27 Contact Information:
28 James P. Ketrenos <ipw2100-admin@linux.intel.com>
29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31 ******************************************************************************/
33 #include "ipw2200.h"
36 #ifndef KBUILD_EXTMOD
37 #define VK "k"
38 #else
39 #define VK
40 #endif
42 #ifdef CONFIG_IPW2200_DEBUG
43 #define VD "d"
44 #else
45 #define VD
46 #endif
48 #ifdef CONFIG_IPW2200_MONITOR
49 #define VM "m"
50 #else
51 #define VM
52 #endif
54 #ifdef CONFIG_IPW2200_PROMISCUOUS
55 #define VP "p"
56 #else
57 #define VP
58 #endif
60 #ifdef CONFIG_IPW2200_RADIOTAP
61 #define VR "r"
62 #else
63 #define VR
64 #endif
66 #ifdef CONFIG_IPW2200_QOS
67 #define VQ "q"
68 #else
69 #define VQ
70 #endif
72 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
73 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
74 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
75 #define DRV_VERSION IPW2200_VERSION
77 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
79 MODULE_DESCRIPTION(DRV_DESCRIPTION);
80 MODULE_VERSION(DRV_VERSION);
81 MODULE_AUTHOR(DRV_COPYRIGHT);
82 MODULE_LICENSE("GPL");
84 static int cmdlog = 0;
85 static int debug = 0;
86 static int channel = 0;
87 static int mode = 0;
89 static u32 ipw_debug_level;
90 static int associate;
91 static int auto_create = 1;
92 static int led = 0;
93 static int disable = 0;
94 static int bt_coexist = 0;
95 static int hwcrypto = 0;
96 static int roaming = 1;
97 static const char ipw_modes[] = {
98 'a', 'b', 'g', '?'
100 static int antenna = CFG_SYS_ANTENNA_BOTH;
102 #ifdef CONFIG_IPW2200_PROMISCUOUS
103 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */
104 #endif
107 #ifdef CONFIG_IPW2200_QOS
108 static int qos_enable = 0;
109 static int qos_burst_enable = 0;
110 static int qos_no_ack_mask = 0;
111 static int burst_duration_CCK = 0;
112 static int burst_duration_OFDM = 0;
114 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
115 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
116 QOS_TX3_CW_MIN_OFDM},
117 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
118 QOS_TX3_CW_MAX_OFDM},
119 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
120 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
121 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
122 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
125 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
126 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
127 QOS_TX3_CW_MIN_CCK},
128 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
129 QOS_TX3_CW_MAX_CCK},
130 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
131 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
132 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
133 QOS_TX3_TXOP_LIMIT_CCK}
136 static struct ieee80211_qos_parameters def_parameters_OFDM = {
137 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
138 DEF_TX3_CW_MIN_OFDM},
139 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
140 DEF_TX3_CW_MAX_OFDM},
141 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
142 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
143 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
144 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
147 static struct ieee80211_qos_parameters def_parameters_CCK = {
148 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
149 DEF_TX3_CW_MIN_CCK},
150 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
151 DEF_TX3_CW_MAX_CCK},
152 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
153 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
154 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
155 DEF_TX3_TXOP_LIMIT_CCK}
158 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
160 static int from_priority_to_tx_queue[] = {
161 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
162 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
165 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
167 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
168 *qos_param);
169 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
170 *qos_param);
171 #endif /* CONFIG_IPW2200_QOS */
173 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
174 static void ipw_remove_current_network(struct ipw_priv *priv);
175 static void ipw_rx(struct ipw_priv *priv);
176 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
177 struct clx2_tx_queue *txq, int qindex);
178 static int ipw_queue_reset(struct ipw_priv *priv);
180 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
181 int len, int sync);
183 static void ipw_tx_queue_free(struct ipw_priv *);
185 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
186 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
187 static void ipw_rx_queue_replenish(void *);
188 static int ipw_up(struct ipw_priv *);
189 static void ipw_bg_up(struct work_struct *work);
190 static void ipw_down(struct ipw_priv *);
191 static void ipw_bg_down(struct work_struct *work);
192 static int ipw_config(struct ipw_priv *);
193 static int init_supported_rates(struct ipw_priv *priv,
194 struct ipw_supported_rates *prates);
195 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
196 static void ipw_send_wep_keys(struct ipw_priv *, int);
198 static int snprint_line(char *buf, size_t count,
199 const u8 * data, u32 len, u32 ofs)
201 int out, i, j, l;
202 char c;
204 out = snprintf(buf, count, "%08X", ofs);
206 for (l = 0, i = 0; i < 2; i++) {
207 out += snprintf(buf + out, count - out, " ");
208 for (j = 0; j < 8 && l < len; j++, l++)
209 out += snprintf(buf + out, count - out, "%02X ",
210 data[(i * 8 + j)]);
211 for (; j < 8; j++)
212 out += snprintf(buf + out, count - out, " ");
215 out += snprintf(buf + out, count - out, " ");
216 for (l = 0, i = 0; i < 2; i++) {
217 out += snprintf(buf + out, count - out, " ");
218 for (j = 0; j < 8 && l < len; j++, l++) {
219 c = data[(i * 8 + j)];
220 if (!isascii(c) || !isprint(c))
221 c = '.';
223 out += snprintf(buf + out, count - out, "%c", c);
226 for (; j < 8; j++)
227 out += snprintf(buf + out, count - out, " ");
230 return out;
233 static void printk_buf(int level, const u8 * data, u32 len)
235 char line[81];
236 u32 ofs = 0;
237 if (!(ipw_debug_level & level))
238 return;
240 while (len) {
241 snprint_line(line, sizeof(line), &data[ofs],
242 min(len, 16U), ofs);
243 printk(KERN_DEBUG "%s\n", line);
244 ofs += 16;
245 len -= min(len, 16U);
249 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
251 size_t out = size;
252 u32 ofs = 0;
253 int total = 0;
255 while (size && len) {
256 out = snprint_line(output, size, &data[ofs],
257 min_t(size_t, len, 16U), ofs);
259 ofs += 16;
260 output += out;
261 size -= out;
262 len -= min_t(size_t, len, 16U);
263 total += out;
265 return total;
268 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
269 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
270 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
272 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
273 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
274 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
276 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
277 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
278 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
280 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
281 __LINE__, (u32) (b), (u32) (c));
282 _ipw_write_reg8(a, b, c);
285 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
286 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
287 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
289 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
290 __LINE__, (u32) (b), (u32) (c));
291 _ipw_write_reg16(a, b, c);
294 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
295 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
296 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
298 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
299 __LINE__, (u32) (b), (u32) (c));
300 _ipw_write_reg32(a, b, c);
303 /* 8-bit direct write (low 4K) */
304 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
306 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
307 #define ipw_write8(ipw, ofs, val) do { \
308 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
309 _ipw_write8(ipw, ofs, val); \
310 } while (0)
312 /* 16-bit direct write (low 4K) */
313 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
315 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
316 #define ipw_write16(ipw, ofs, val) \
317 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
318 _ipw_write16(ipw, ofs, val)
320 /* 32-bit direct write (low 4K) */
321 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
323 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
324 #define ipw_write32(ipw, ofs, val) \
325 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
326 _ipw_write32(ipw, ofs, val)
328 /* 8-bit direct read (low 4K) */
329 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
331 /* 8-bit direct read (low 4K), with debug wrapper */
332 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
334 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
335 return _ipw_read8(ipw, ofs);
338 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
339 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
341 /* 16-bit direct read (low 4K) */
342 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
344 /* 16-bit direct read (low 4K), with debug wrapper */
345 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
347 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
348 return _ipw_read16(ipw, ofs);
351 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
352 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
354 /* 32-bit direct read (low 4K) */
355 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
357 /* 32-bit direct read (low 4K), with debug wrapper */
358 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
360 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
361 return _ipw_read32(ipw, ofs);
364 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
365 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
367 /* multi-byte read (above 4K), with debug wrapper */
368 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
369 static inline void __ipw_read_indirect(const char *f, int l,
370 struct ipw_priv *a, u32 b, u8 * c, int d)
372 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
374 _ipw_read_indirect(a, b, c, d);
377 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
378 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
380 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
381 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
382 int num);
383 #define ipw_write_indirect(a, b, c, d) \
384 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
385 _ipw_write_indirect(a, b, c, d)
387 /* 32-bit indirect write (above 4K) */
388 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
390 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
391 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
392 _ipw_write32(priv, IPW_INDIRECT_DATA, value);
395 /* 8-bit indirect write (above 4K) */
396 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
398 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
399 u32 dif_len = reg - aligned_addr;
401 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
402 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
403 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
406 /* 16-bit indirect write (above 4K) */
407 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
409 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
410 u32 dif_len = (reg - aligned_addr) & (~0x1ul);
412 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
413 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
414 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
417 /* 8-bit indirect read (above 4K) */
418 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
420 u32 word;
421 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
422 IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
423 word = _ipw_read32(priv, IPW_INDIRECT_DATA);
424 return (word >> ((reg & 0x3) * 8)) & 0xff;
427 /* 32-bit indirect read (above 4K) */
428 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
430 u32 value;
432 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
434 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
435 value = _ipw_read32(priv, IPW_INDIRECT_DATA);
436 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
437 return value;
440 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
441 /* for area above 1st 4K of SRAM/reg space */
442 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
443 int num)
445 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
446 u32 dif_len = addr - aligned_addr;
447 u32 i;
449 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
451 if (num <= 0) {
452 return;
455 /* Read the first dword (or portion) byte by byte */
456 if (unlikely(dif_len)) {
457 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
458 /* Start reading at aligned_addr + dif_len */
459 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
460 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
461 aligned_addr += 4;
464 /* Read all of the middle dwords as dwords, with auto-increment */
465 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
466 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
467 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
469 /* Read the last dword (or portion) byte by byte */
470 if (unlikely(num)) {
471 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
472 for (i = 0; num > 0; i++, num--)
473 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
477 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
478 /* for area above 1st 4K of SRAM/reg space */
479 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
480 int num)
482 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
483 u32 dif_len = addr - aligned_addr;
484 u32 i;
486 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
488 if (num <= 0) {
489 return;
492 /* Write the first dword (or portion) byte by byte */
493 if (unlikely(dif_len)) {
494 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
495 /* Start writing at aligned_addr + dif_len */
496 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
497 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
498 aligned_addr += 4;
501 /* Write all of the middle dwords as dwords, with auto-increment */
502 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
503 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
504 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
506 /* Write the last dword (or portion) byte by byte */
507 if (unlikely(num)) {
508 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
509 for (i = 0; num > 0; i++, num--, buf++)
510 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
514 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
515 /* for 1st 4K of SRAM/regs space */
516 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
517 int num)
519 memcpy_toio((priv->hw_base + addr), buf, num);
522 /* Set bit(s) in low 4K of SRAM/regs */
523 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
525 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
528 /* Clear bit(s) in low 4K of SRAM/regs */
529 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
531 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
534 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
536 if (priv->status & STATUS_INT_ENABLED)
537 return;
538 priv->status |= STATUS_INT_ENABLED;
539 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
542 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
544 if (!(priv->status & STATUS_INT_ENABLED))
545 return;
546 priv->status &= ~STATUS_INT_ENABLED;
547 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
550 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
552 unsigned long flags;
554 spin_lock_irqsave(&priv->irq_lock, flags);
555 __ipw_enable_interrupts(priv);
556 spin_unlock_irqrestore(&priv->irq_lock, flags);
559 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
561 unsigned long flags;
563 spin_lock_irqsave(&priv->irq_lock, flags);
564 __ipw_disable_interrupts(priv);
565 spin_unlock_irqrestore(&priv->irq_lock, flags);
568 static char *ipw_error_desc(u32 val)
570 switch (val) {
571 case IPW_FW_ERROR_OK:
572 return "ERROR_OK";
573 case IPW_FW_ERROR_FAIL:
574 return "ERROR_FAIL";
575 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
576 return "MEMORY_UNDERFLOW";
577 case IPW_FW_ERROR_MEMORY_OVERFLOW:
578 return "MEMORY_OVERFLOW";
579 case IPW_FW_ERROR_BAD_PARAM:
580 return "BAD_PARAM";
581 case IPW_FW_ERROR_BAD_CHECKSUM:
582 return "BAD_CHECKSUM";
583 case IPW_FW_ERROR_NMI_INTERRUPT:
584 return "NMI_INTERRUPT";
585 case IPW_FW_ERROR_BAD_DATABASE:
586 return "BAD_DATABASE";
587 case IPW_FW_ERROR_ALLOC_FAIL:
588 return "ALLOC_FAIL";
589 case IPW_FW_ERROR_DMA_UNDERRUN:
590 return "DMA_UNDERRUN";
591 case IPW_FW_ERROR_DMA_STATUS:
592 return "DMA_STATUS";
593 case IPW_FW_ERROR_DINO_ERROR:
594 return "DINO_ERROR";
595 case IPW_FW_ERROR_EEPROM_ERROR:
596 return "EEPROM_ERROR";
597 case IPW_FW_ERROR_SYSASSERT:
598 return "SYSASSERT";
599 case IPW_FW_ERROR_FATAL_ERROR:
600 return "FATAL_ERROR";
601 default:
602 return "UNKNOWN_ERROR";
606 static void ipw_dump_error_log(struct ipw_priv *priv,
607 struct ipw_fw_error *error)
609 u32 i;
611 if (!error) {
612 IPW_ERROR("Error allocating and capturing error log. "
613 "Nothing to dump.\n");
614 return;
617 IPW_ERROR("Start IPW Error Log Dump:\n");
618 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
619 error->status, error->config);
621 for (i = 0; i < error->elem_len; i++)
622 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
623 ipw_error_desc(error->elem[i].desc),
624 error->elem[i].time,
625 error->elem[i].blink1,
626 error->elem[i].blink2,
627 error->elem[i].link1,
628 error->elem[i].link2, error->elem[i].data);
629 for (i = 0; i < error->log_len; i++)
630 IPW_ERROR("%i\t0x%08x\t%i\n",
631 error->log[i].time,
632 error->log[i].data, error->log[i].event);
635 static inline int ipw_is_init(struct ipw_priv *priv)
637 return (priv->status & STATUS_INIT) ? 1 : 0;
640 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
642 u32 addr, field_info, field_len, field_count, total_len;
644 IPW_DEBUG_ORD("ordinal = %i\n", ord);
646 if (!priv || !val || !len) {
647 IPW_DEBUG_ORD("Invalid argument\n");
648 return -EINVAL;
651 /* verify device ordinal tables have been initialized */
652 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
653 IPW_DEBUG_ORD("Access ordinals before initialization\n");
654 return -EINVAL;
657 switch (IPW_ORD_TABLE_ID_MASK & ord) {
658 case IPW_ORD_TABLE_0_MASK:
660 * TABLE 0: Direct access to a table of 32 bit values
662 * This is a very simple table with the data directly
663 * read from the table
666 /* remove the table id from the ordinal */
667 ord &= IPW_ORD_TABLE_VALUE_MASK;
669 /* boundary check */
670 if (ord > priv->table0_len) {
671 IPW_DEBUG_ORD("ordinal value (%i) longer then "
672 "max (%i)\n", ord, priv->table0_len);
673 return -EINVAL;
676 /* verify we have enough room to store the value */
677 if (*len < sizeof(u32)) {
678 IPW_DEBUG_ORD("ordinal buffer length too small, "
679 "need %zd\n", sizeof(u32));
680 return -EINVAL;
683 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
684 ord, priv->table0_addr + (ord << 2));
686 *len = sizeof(u32);
687 ord <<= 2;
688 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
689 break;
691 case IPW_ORD_TABLE_1_MASK:
693 * TABLE 1: Indirect access to a table of 32 bit values
695 * This is a fairly large table of u32 values each
696 * representing starting addr for the data (which is
697 * also a u32)
700 /* remove the table id from the ordinal */
701 ord &= IPW_ORD_TABLE_VALUE_MASK;
703 /* boundary check */
704 if (ord > priv->table1_len) {
705 IPW_DEBUG_ORD("ordinal value too long\n");
706 return -EINVAL;
709 /* verify we have enough room to store the value */
710 if (*len < sizeof(u32)) {
711 IPW_DEBUG_ORD("ordinal buffer length too small, "
712 "need %zd\n", sizeof(u32));
713 return -EINVAL;
716 *((u32 *) val) =
717 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
718 *len = sizeof(u32);
719 break;
721 case IPW_ORD_TABLE_2_MASK:
723 * TABLE 2: Indirect access to a table of variable sized values
725 * This table consist of six values, each containing
726 * - dword containing the starting offset of the data
727 * - dword containing the lengh in the first 16bits
728 * and the count in the second 16bits
731 /* remove the table id from the ordinal */
732 ord &= IPW_ORD_TABLE_VALUE_MASK;
734 /* boundary check */
735 if (ord > priv->table2_len) {
736 IPW_DEBUG_ORD("ordinal value too long\n");
737 return -EINVAL;
740 /* get the address of statistic */
741 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
743 /* get the second DW of statistics ;
744 * two 16-bit words - first is length, second is count */
745 field_info =
746 ipw_read_reg32(priv,
747 priv->table2_addr + (ord << 3) +
748 sizeof(u32));
750 /* get each entry length */
751 field_len = *((u16 *) & field_info);
753 /* get number of entries */
754 field_count = *(((u16 *) & field_info) + 1);
756 /* abort if not enought memory */
757 total_len = field_len * field_count;
758 if (total_len > *len) {
759 *len = total_len;
760 return -EINVAL;
763 *len = total_len;
764 if (!total_len)
765 return 0;
767 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
768 "field_info = 0x%08x\n",
769 addr, total_len, field_info);
770 ipw_read_indirect(priv, addr, val, total_len);
771 break;
773 default:
774 IPW_DEBUG_ORD("Invalid ordinal!\n");
775 return -EINVAL;
779 return 0;
782 static void ipw_init_ordinals(struct ipw_priv *priv)
784 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
785 priv->table0_len = ipw_read32(priv, priv->table0_addr);
787 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
788 priv->table0_addr, priv->table0_len);
790 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
791 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
793 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
794 priv->table1_addr, priv->table1_len);
796 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
797 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
798 priv->table2_len &= 0x0000ffff; /* use first two bytes */
800 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
801 priv->table2_addr, priv->table2_len);
805 static u32 ipw_register_toggle(u32 reg)
807 reg &= ~IPW_START_STANDBY;
808 if (reg & IPW_GATE_ODMA)
809 reg &= ~IPW_GATE_ODMA;
810 if (reg & IPW_GATE_IDMA)
811 reg &= ~IPW_GATE_IDMA;
812 if (reg & IPW_GATE_ADMA)
813 reg &= ~IPW_GATE_ADMA;
814 return reg;
818 * LED behavior:
819 * - On radio ON, turn on any LEDs that require to be on during start
820 * - On initialization, start unassociated blink
821 * - On association, disable unassociated blink
822 * - On disassociation, start unassociated blink
823 * - On radio OFF, turn off any LEDs started during radio on
826 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
827 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
828 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
830 static void ipw_led_link_on(struct ipw_priv *priv)
832 unsigned long flags;
833 u32 led;
835 /* If configured to not use LEDs, or nic_type is 1,
836 * then we don't toggle a LINK led */
837 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
838 return;
840 spin_lock_irqsave(&priv->lock, flags);
842 if (!(priv->status & STATUS_RF_KILL_MASK) &&
843 !(priv->status & STATUS_LED_LINK_ON)) {
844 IPW_DEBUG_LED("Link LED On\n");
845 led = ipw_read_reg32(priv, IPW_EVENT_REG);
846 led |= priv->led_association_on;
848 led = ipw_register_toggle(led);
850 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
851 ipw_write_reg32(priv, IPW_EVENT_REG, led);
853 priv->status |= STATUS_LED_LINK_ON;
855 /* If we aren't associated, schedule turning the LED off */
856 if (!(priv->status & STATUS_ASSOCIATED))
857 queue_delayed_work(priv->workqueue,
858 &priv->led_link_off,
859 LD_TIME_LINK_ON);
862 spin_unlock_irqrestore(&priv->lock, flags);
865 static void ipw_bg_led_link_on(struct work_struct *work)
867 struct ipw_priv *priv =
868 container_of(work, struct ipw_priv, led_link_on.work);
869 mutex_lock(&priv->mutex);
870 ipw_led_link_on(priv);
871 mutex_unlock(&priv->mutex);
874 static void ipw_led_link_off(struct ipw_priv *priv)
876 unsigned long flags;
877 u32 led;
879 /* If configured not to use LEDs, or nic type is 1,
880 * then we don't goggle the LINK led. */
881 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
882 return;
884 spin_lock_irqsave(&priv->lock, flags);
886 if (priv->status & STATUS_LED_LINK_ON) {
887 led = ipw_read_reg32(priv, IPW_EVENT_REG);
888 led &= priv->led_association_off;
889 led = ipw_register_toggle(led);
891 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
892 ipw_write_reg32(priv, IPW_EVENT_REG, led);
894 IPW_DEBUG_LED("Link LED Off\n");
896 priv->status &= ~STATUS_LED_LINK_ON;
898 /* If we aren't associated and the radio is on, schedule
899 * turning the LED on (blink while unassociated) */
900 if (!(priv->status & STATUS_RF_KILL_MASK) &&
901 !(priv->status & STATUS_ASSOCIATED))
902 queue_delayed_work(priv->workqueue, &priv->led_link_on,
903 LD_TIME_LINK_OFF);
907 spin_unlock_irqrestore(&priv->lock, flags);
910 static void ipw_bg_led_link_off(struct work_struct *work)
912 struct ipw_priv *priv =
913 container_of(work, struct ipw_priv, led_link_off.work);
914 mutex_lock(&priv->mutex);
915 ipw_led_link_off(priv);
916 mutex_unlock(&priv->mutex);
919 static void __ipw_led_activity_on(struct ipw_priv *priv)
921 u32 led;
923 if (priv->config & CFG_NO_LED)
924 return;
926 if (priv->status & STATUS_RF_KILL_MASK)
927 return;
929 if (!(priv->status & STATUS_LED_ACT_ON)) {
930 led = ipw_read_reg32(priv, IPW_EVENT_REG);
931 led |= priv->led_activity_on;
933 led = ipw_register_toggle(led);
935 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
936 ipw_write_reg32(priv, IPW_EVENT_REG, led);
938 IPW_DEBUG_LED("Activity LED On\n");
940 priv->status |= STATUS_LED_ACT_ON;
942 cancel_delayed_work(&priv->led_act_off);
943 queue_delayed_work(priv->workqueue, &priv->led_act_off,
944 LD_TIME_ACT_ON);
945 } else {
946 /* Reschedule LED off for full time period */
947 cancel_delayed_work(&priv->led_act_off);
948 queue_delayed_work(priv->workqueue, &priv->led_act_off,
949 LD_TIME_ACT_ON);
953 #if 0
954 void ipw_led_activity_on(struct ipw_priv *priv)
956 unsigned long flags;
957 spin_lock_irqsave(&priv->lock, flags);
958 __ipw_led_activity_on(priv);
959 spin_unlock_irqrestore(&priv->lock, flags);
961 #endif /* 0 */
963 static void ipw_led_activity_off(struct ipw_priv *priv)
965 unsigned long flags;
966 u32 led;
968 if (priv->config & CFG_NO_LED)
969 return;
971 spin_lock_irqsave(&priv->lock, flags);
973 if (priv->status & STATUS_LED_ACT_ON) {
974 led = ipw_read_reg32(priv, IPW_EVENT_REG);
975 led &= priv->led_activity_off;
977 led = ipw_register_toggle(led);
979 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
980 ipw_write_reg32(priv, IPW_EVENT_REG, led);
982 IPW_DEBUG_LED("Activity LED Off\n");
984 priv->status &= ~STATUS_LED_ACT_ON;
987 spin_unlock_irqrestore(&priv->lock, flags);
990 static void ipw_bg_led_activity_off(struct work_struct *work)
992 struct ipw_priv *priv =
993 container_of(work, struct ipw_priv, led_act_off.work);
994 mutex_lock(&priv->mutex);
995 ipw_led_activity_off(priv);
996 mutex_unlock(&priv->mutex);
999 static void ipw_led_band_on(struct ipw_priv *priv)
1001 unsigned long flags;
1002 u32 led;
1004 /* Only nic type 1 supports mode LEDs */
1005 if (priv->config & CFG_NO_LED ||
1006 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1007 return;
1009 spin_lock_irqsave(&priv->lock, flags);
1011 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1012 if (priv->assoc_network->mode == IEEE_A) {
1013 led |= priv->led_ofdm_on;
1014 led &= priv->led_association_off;
1015 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1016 } else if (priv->assoc_network->mode == IEEE_G) {
1017 led |= priv->led_ofdm_on;
1018 led |= priv->led_association_on;
1019 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1020 } else {
1021 led &= priv->led_ofdm_off;
1022 led |= priv->led_association_on;
1023 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1026 led = ipw_register_toggle(led);
1028 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1029 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1031 spin_unlock_irqrestore(&priv->lock, flags);
1034 static void ipw_led_band_off(struct ipw_priv *priv)
1036 unsigned long flags;
1037 u32 led;
1039 /* Only nic type 1 supports mode LEDs */
1040 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1041 return;
1043 spin_lock_irqsave(&priv->lock, flags);
1045 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1046 led &= priv->led_ofdm_off;
1047 led &= priv->led_association_off;
1049 led = ipw_register_toggle(led);
1051 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1052 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1054 spin_unlock_irqrestore(&priv->lock, flags);
1057 static void ipw_led_radio_on(struct ipw_priv *priv)
1059 ipw_led_link_on(priv);
1062 static void ipw_led_radio_off(struct ipw_priv *priv)
1064 ipw_led_activity_off(priv);
1065 ipw_led_link_off(priv);
1068 static void ipw_led_link_up(struct ipw_priv *priv)
1070 /* Set the Link Led on for all nic types */
1071 ipw_led_link_on(priv);
1074 static void ipw_led_link_down(struct ipw_priv *priv)
1076 ipw_led_activity_off(priv);
1077 ipw_led_link_off(priv);
1079 if (priv->status & STATUS_RF_KILL_MASK)
1080 ipw_led_radio_off(priv);
1083 static void ipw_led_init(struct ipw_priv *priv)
1085 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1087 /* Set the default PINs for the link and activity leds */
1088 priv->led_activity_on = IPW_ACTIVITY_LED;
1089 priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1091 priv->led_association_on = IPW_ASSOCIATED_LED;
1092 priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1094 /* Set the default PINs for the OFDM leds */
1095 priv->led_ofdm_on = IPW_OFDM_LED;
1096 priv->led_ofdm_off = ~(IPW_OFDM_LED);
1098 switch (priv->nic_type) {
1099 case EEPROM_NIC_TYPE_1:
1100 /* In this NIC type, the LEDs are reversed.... */
1101 priv->led_activity_on = IPW_ASSOCIATED_LED;
1102 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1103 priv->led_association_on = IPW_ACTIVITY_LED;
1104 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1106 if (!(priv->config & CFG_NO_LED))
1107 ipw_led_band_on(priv);
1109 /* And we don't blink link LEDs for this nic, so
1110 * just return here */
1111 return;
1113 case EEPROM_NIC_TYPE_3:
1114 case EEPROM_NIC_TYPE_2:
1115 case EEPROM_NIC_TYPE_4:
1116 case EEPROM_NIC_TYPE_0:
1117 break;
1119 default:
1120 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1121 priv->nic_type);
1122 priv->nic_type = EEPROM_NIC_TYPE_0;
1123 break;
1126 if (!(priv->config & CFG_NO_LED)) {
1127 if (priv->status & STATUS_ASSOCIATED)
1128 ipw_led_link_on(priv);
1129 else
1130 ipw_led_link_off(priv);
1134 static void ipw_led_shutdown(struct ipw_priv *priv)
1136 ipw_led_activity_off(priv);
1137 ipw_led_link_off(priv);
1138 ipw_led_band_off(priv);
1139 cancel_delayed_work(&priv->led_link_on);
1140 cancel_delayed_work(&priv->led_link_off);
1141 cancel_delayed_work(&priv->led_act_off);
1145 * The following adds a new attribute to the sysfs representation
1146 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1147 * used for controling the debug level.
1149 * See the level definitions in ipw for details.
1151 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1153 return sprintf(buf, "0x%08X\n", ipw_debug_level);
1156 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1157 size_t count)
1159 char *p = (char *)buf;
1160 u32 val;
1162 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1163 p++;
1164 if (p[0] == 'x' || p[0] == 'X')
1165 p++;
1166 val = simple_strtoul(p, &p, 16);
1167 } else
1168 val = simple_strtoul(p, &p, 10);
1169 if (p == buf)
1170 printk(KERN_INFO DRV_NAME
1171 ": %s is not in hex or decimal form.\n", buf);
1172 else
1173 ipw_debug_level = val;
1175 return strnlen(buf, count);
1178 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1179 show_debug_level, store_debug_level);
1181 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1183 /* length = 1st dword in log */
1184 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1187 static void ipw_capture_event_log(struct ipw_priv *priv,
1188 u32 log_len, struct ipw_event *log)
1190 u32 base;
1192 if (log_len) {
1193 base = ipw_read32(priv, IPW_EVENT_LOG);
1194 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1195 (u8 *) log, sizeof(*log) * log_len);
1199 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1201 struct ipw_fw_error *error;
1202 u32 log_len = ipw_get_event_log_len(priv);
1203 u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1204 u32 elem_len = ipw_read_reg32(priv, base);
1206 error = kmalloc(sizeof(*error) +
1207 sizeof(*error->elem) * elem_len +
1208 sizeof(*error->log) * log_len, GFP_ATOMIC);
1209 if (!error) {
1210 IPW_ERROR("Memory allocation for firmware error log "
1211 "failed.\n");
1212 return NULL;
1214 error->jiffies = jiffies;
1215 error->status = priv->status;
1216 error->config = priv->config;
1217 error->elem_len = elem_len;
1218 error->log_len = log_len;
1219 error->elem = (struct ipw_error_elem *)error->payload;
1220 error->log = (struct ipw_event *)(error->elem + elem_len);
1222 ipw_capture_event_log(priv, log_len, error->log);
1224 if (elem_len)
1225 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1226 sizeof(*error->elem) * elem_len);
1228 return error;
1231 static ssize_t show_event_log(struct device *d,
1232 struct device_attribute *attr, char *buf)
1234 struct ipw_priv *priv = dev_get_drvdata(d);
1235 u32 log_len = ipw_get_event_log_len(priv);
1236 u32 log_size;
1237 struct ipw_event *log;
1238 u32 len = 0, i;
1240 /* not using min() because of its strict type checking */
1241 log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1242 sizeof(*log) * log_len : PAGE_SIZE;
1243 log = kzalloc(log_size, GFP_KERNEL);
1244 if (!log) {
1245 IPW_ERROR("Unable to allocate memory for log\n");
1246 return 0;
1248 log_len = log_size / sizeof(*log);
1249 ipw_capture_event_log(priv, log_len, log);
1251 len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1252 for (i = 0; i < log_len; i++)
1253 len += snprintf(buf + len, PAGE_SIZE - len,
1254 "\n%08X%08X%08X",
1255 log[i].time, log[i].event, log[i].data);
1256 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1257 kfree(log);
1258 return len;
1261 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1263 static ssize_t show_error(struct device *d,
1264 struct device_attribute *attr, char *buf)
1266 struct ipw_priv *priv = dev_get_drvdata(d);
1267 u32 len = 0, i;
1268 if (!priv->error)
1269 return 0;
1270 len += snprintf(buf + len, PAGE_SIZE - len,
1271 "%08lX%08X%08X%08X",
1272 priv->error->jiffies,
1273 priv->error->status,
1274 priv->error->config, priv->error->elem_len);
1275 for (i = 0; i < priv->error->elem_len; i++)
1276 len += snprintf(buf + len, PAGE_SIZE - len,
1277 "\n%08X%08X%08X%08X%08X%08X%08X",
1278 priv->error->elem[i].time,
1279 priv->error->elem[i].desc,
1280 priv->error->elem[i].blink1,
1281 priv->error->elem[i].blink2,
1282 priv->error->elem[i].link1,
1283 priv->error->elem[i].link2,
1284 priv->error->elem[i].data);
1286 len += snprintf(buf + len, PAGE_SIZE - len,
1287 "\n%08X", priv->error->log_len);
1288 for (i = 0; i < priv->error->log_len; i++)
1289 len += snprintf(buf + len, PAGE_SIZE - len,
1290 "\n%08X%08X%08X",
1291 priv->error->log[i].time,
1292 priv->error->log[i].event,
1293 priv->error->log[i].data);
1294 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1295 return len;
1298 static ssize_t clear_error(struct device *d,
1299 struct device_attribute *attr,
1300 const char *buf, size_t count)
1302 struct ipw_priv *priv = dev_get_drvdata(d);
1304 kfree(priv->error);
1305 priv->error = NULL;
1306 return count;
1309 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1311 static ssize_t show_cmd_log(struct device *d,
1312 struct device_attribute *attr, char *buf)
1314 struct ipw_priv *priv = dev_get_drvdata(d);
1315 u32 len = 0, i;
1316 if (!priv->cmdlog)
1317 return 0;
1318 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1319 (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1320 i = (i + 1) % priv->cmdlog_len) {
1321 len +=
1322 snprintf(buf + len, PAGE_SIZE - len,
1323 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1324 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1325 priv->cmdlog[i].cmd.len);
1326 len +=
1327 snprintk_buf(buf + len, PAGE_SIZE - len,
1328 (u8 *) priv->cmdlog[i].cmd.param,
1329 priv->cmdlog[i].cmd.len);
1330 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1332 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1333 return len;
1336 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1338 #ifdef CONFIG_IPW2200_PROMISCUOUS
1339 static void ipw_prom_free(struct ipw_priv *priv);
1340 static int ipw_prom_alloc(struct ipw_priv *priv);
1341 static ssize_t store_rtap_iface(struct device *d,
1342 struct device_attribute *attr,
1343 const char *buf, size_t count)
1345 struct ipw_priv *priv = dev_get_drvdata(d);
1346 int rc = 0;
1348 if (count < 1)
1349 return -EINVAL;
1351 switch (buf[0]) {
1352 case '0':
1353 if (!rtap_iface)
1354 return count;
1356 if (netif_running(priv->prom_net_dev)) {
1357 IPW_WARNING("Interface is up. Cannot unregister.\n");
1358 return count;
1361 ipw_prom_free(priv);
1362 rtap_iface = 0;
1363 break;
1365 case '1':
1366 if (rtap_iface)
1367 return count;
1369 rc = ipw_prom_alloc(priv);
1370 if (!rc)
1371 rtap_iface = 1;
1372 break;
1374 default:
1375 return -EINVAL;
1378 if (rc) {
1379 IPW_ERROR("Failed to register promiscuous network "
1380 "device (error %d).\n", rc);
1383 return count;
1386 static ssize_t show_rtap_iface(struct device *d,
1387 struct device_attribute *attr,
1388 char *buf)
1390 struct ipw_priv *priv = dev_get_drvdata(d);
1391 if (rtap_iface)
1392 return sprintf(buf, "%s", priv->prom_net_dev->name);
1393 else {
1394 buf[0] = '-';
1395 buf[1] = '1';
1396 buf[2] = '\0';
1397 return 3;
1401 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1402 store_rtap_iface);
1404 static ssize_t store_rtap_filter(struct device *d,
1405 struct device_attribute *attr,
1406 const char *buf, size_t count)
1408 struct ipw_priv *priv = dev_get_drvdata(d);
1410 if (!priv->prom_priv) {
1411 IPW_ERROR("Attempting to set filter without "
1412 "rtap_iface enabled.\n");
1413 return -EPERM;
1416 priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1418 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1419 BIT_ARG16(priv->prom_priv->filter));
1421 return count;
1424 static ssize_t show_rtap_filter(struct device *d,
1425 struct device_attribute *attr,
1426 char *buf)
1428 struct ipw_priv *priv = dev_get_drvdata(d);
1429 return sprintf(buf, "0x%04X",
1430 priv->prom_priv ? priv->prom_priv->filter : 0);
1433 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1434 store_rtap_filter);
1435 #endif
1437 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1438 char *buf)
1440 struct ipw_priv *priv = dev_get_drvdata(d);
1441 return sprintf(buf, "%d\n", priv->ieee->scan_age);
1444 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1445 const char *buf, size_t count)
1447 struct ipw_priv *priv = dev_get_drvdata(d);
1448 struct net_device *dev = priv->net_dev;
1449 char buffer[] = "00000000";
1450 unsigned long len =
1451 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1452 unsigned long val;
1453 char *p = buffer;
1455 IPW_DEBUG_INFO("enter\n");
1457 strncpy(buffer, buf, len);
1458 buffer[len] = 0;
1460 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1461 p++;
1462 if (p[0] == 'x' || p[0] == 'X')
1463 p++;
1464 val = simple_strtoul(p, &p, 16);
1465 } else
1466 val = simple_strtoul(p, &p, 10);
1467 if (p == buffer) {
1468 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1469 } else {
1470 priv->ieee->scan_age = val;
1471 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1474 IPW_DEBUG_INFO("exit\n");
1475 return len;
1478 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1480 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1481 char *buf)
1483 struct ipw_priv *priv = dev_get_drvdata(d);
1484 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1487 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1488 const char *buf, size_t count)
1490 struct ipw_priv *priv = dev_get_drvdata(d);
1492 IPW_DEBUG_INFO("enter\n");
1494 if (count == 0)
1495 return 0;
1497 if (*buf == 0) {
1498 IPW_DEBUG_LED("Disabling LED control.\n");
1499 priv->config |= CFG_NO_LED;
1500 ipw_led_shutdown(priv);
1501 } else {
1502 IPW_DEBUG_LED("Enabling LED control.\n");
1503 priv->config &= ~CFG_NO_LED;
1504 ipw_led_init(priv);
1507 IPW_DEBUG_INFO("exit\n");
1508 return count;
1511 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1513 static ssize_t show_status(struct device *d,
1514 struct device_attribute *attr, char *buf)
1516 struct ipw_priv *p = d->driver_data;
1517 return sprintf(buf, "0x%08x\n", (int)p->status);
1520 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1522 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1523 char *buf)
1525 struct ipw_priv *p = d->driver_data;
1526 return sprintf(buf, "0x%08x\n", (int)p->config);
1529 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1531 static ssize_t show_nic_type(struct device *d,
1532 struct device_attribute *attr, char *buf)
1534 struct ipw_priv *priv = d->driver_data;
1535 return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1538 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1540 static ssize_t show_ucode_version(struct device *d,
1541 struct device_attribute *attr, char *buf)
1543 u32 len = sizeof(u32), tmp = 0;
1544 struct ipw_priv *p = d->driver_data;
1546 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1547 return 0;
1549 return sprintf(buf, "0x%08x\n", tmp);
1552 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1554 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1555 char *buf)
1557 u32 len = sizeof(u32), tmp = 0;
1558 struct ipw_priv *p = d->driver_data;
1560 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1561 return 0;
1563 return sprintf(buf, "0x%08x\n", tmp);
1566 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1569 * Add a device attribute to view/control the delay between eeprom
1570 * operations.
1572 static ssize_t show_eeprom_delay(struct device *d,
1573 struct device_attribute *attr, char *buf)
1575 int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1576 return sprintf(buf, "%i\n", n);
1578 static ssize_t store_eeprom_delay(struct device *d,
1579 struct device_attribute *attr,
1580 const char *buf, size_t count)
1582 struct ipw_priv *p = d->driver_data;
1583 sscanf(buf, "%i", &p->eeprom_delay);
1584 return strnlen(buf, count);
1587 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1588 show_eeprom_delay, store_eeprom_delay);
1590 static ssize_t show_command_event_reg(struct device *d,
1591 struct device_attribute *attr, char *buf)
1593 u32 reg = 0;
1594 struct ipw_priv *p = d->driver_data;
1596 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1597 return sprintf(buf, "0x%08x\n", reg);
1599 static ssize_t store_command_event_reg(struct device *d,
1600 struct device_attribute *attr,
1601 const char *buf, size_t count)
1603 u32 reg;
1604 struct ipw_priv *p = d->driver_data;
1606 sscanf(buf, "%x", &reg);
1607 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1608 return strnlen(buf, count);
1611 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1612 show_command_event_reg, store_command_event_reg);
1614 static ssize_t show_mem_gpio_reg(struct device *d,
1615 struct device_attribute *attr, char *buf)
1617 u32 reg = 0;
1618 struct ipw_priv *p = d->driver_data;
1620 reg = ipw_read_reg32(p, 0x301100);
1621 return sprintf(buf, "0x%08x\n", reg);
1623 static ssize_t store_mem_gpio_reg(struct device *d,
1624 struct device_attribute *attr,
1625 const char *buf, size_t count)
1627 u32 reg;
1628 struct ipw_priv *p = d->driver_data;
1630 sscanf(buf, "%x", &reg);
1631 ipw_write_reg32(p, 0x301100, reg);
1632 return strnlen(buf, count);
1635 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1636 show_mem_gpio_reg, store_mem_gpio_reg);
1638 static ssize_t show_indirect_dword(struct device *d,
1639 struct device_attribute *attr, char *buf)
1641 u32 reg = 0;
1642 struct ipw_priv *priv = d->driver_data;
1644 if (priv->status & STATUS_INDIRECT_DWORD)
1645 reg = ipw_read_reg32(priv, priv->indirect_dword);
1646 else
1647 reg = 0;
1649 return sprintf(buf, "0x%08x\n", reg);
1651 static ssize_t store_indirect_dword(struct device *d,
1652 struct device_attribute *attr,
1653 const char *buf, size_t count)
1655 struct ipw_priv *priv = d->driver_data;
1657 sscanf(buf, "%x", &priv->indirect_dword);
1658 priv->status |= STATUS_INDIRECT_DWORD;
1659 return strnlen(buf, count);
1662 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1663 show_indirect_dword, store_indirect_dword);
1665 static ssize_t show_indirect_byte(struct device *d,
1666 struct device_attribute *attr, char *buf)
1668 u8 reg = 0;
1669 struct ipw_priv *priv = d->driver_data;
1671 if (priv->status & STATUS_INDIRECT_BYTE)
1672 reg = ipw_read_reg8(priv, priv->indirect_byte);
1673 else
1674 reg = 0;
1676 return sprintf(buf, "0x%02x\n", reg);
1678 static ssize_t store_indirect_byte(struct device *d,
1679 struct device_attribute *attr,
1680 const char *buf, size_t count)
1682 struct ipw_priv *priv = d->driver_data;
1684 sscanf(buf, "%x", &priv->indirect_byte);
1685 priv->status |= STATUS_INDIRECT_BYTE;
1686 return strnlen(buf, count);
1689 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1690 show_indirect_byte, store_indirect_byte);
1692 static ssize_t show_direct_dword(struct device *d,
1693 struct device_attribute *attr, char *buf)
1695 u32 reg = 0;
1696 struct ipw_priv *priv = d->driver_data;
1698 if (priv->status & STATUS_DIRECT_DWORD)
1699 reg = ipw_read32(priv, priv->direct_dword);
1700 else
1701 reg = 0;
1703 return sprintf(buf, "0x%08x\n", reg);
1705 static ssize_t store_direct_dword(struct device *d,
1706 struct device_attribute *attr,
1707 const char *buf, size_t count)
1709 struct ipw_priv *priv = d->driver_data;
1711 sscanf(buf, "%x", &priv->direct_dword);
1712 priv->status |= STATUS_DIRECT_DWORD;
1713 return strnlen(buf, count);
1716 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1717 show_direct_dword, store_direct_dword);
1719 static int rf_kill_active(struct ipw_priv *priv)
1721 if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1722 priv->status |= STATUS_RF_KILL_HW;
1723 else
1724 priv->status &= ~STATUS_RF_KILL_HW;
1726 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1729 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1730 char *buf)
1732 /* 0 - RF kill not enabled
1733 1 - SW based RF kill active (sysfs)
1734 2 - HW based RF kill active
1735 3 - Both HW and SW baed RF kill active */
1736 struct ipw_priv *priv = d->driver_data;
1737 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1738 (rf_kill_active(priv) ? 0x2 : 0x0);
1739 return sprintf(buf, "%i\n", val);
1742 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1744 if ((disable_radio ? 1 : 0) ==
1745 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1746 return 0;
1748 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1749 disable_radio ? "OFF" : "ON");
1751 if (disable_radio) {
1752 priv->status |= STATUS_RF_KILL_SW;
1754 if (priv->workqueue) {
1755 cancel_delayed_work(&priv->request_scan);
1756 cancel_delayed_work(&priv->request_direct_scan);
1757 cancel_delayed_work(&priv->request_passive_scan);
1758 cancel_delayed_work(&priv->scan_event);
1760 queue_work(priv->workqueue, &priv->down);
1761 } else {
1762 priv->status &= ~STATUS_RF_KILL_SW;
1763 if (rf_kill_active(priv)) {
1764 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1765 "disabled by HW switch\n");
1766 /* Make sure the RF_KILL check timer is running */
1767 cancel_delayed_work(&priv->rf_kill);
1768 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1769 round_jiffies_relative(2 * HZ));
1770 } else
1771 queue_work(priv->workqueue, &priv->up);
1774 return 1;
1777 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1778 const char *buf, size_t count)
1780 struct ipw_priv *priv = d->driver_data;
1782 ipw_radio_kill_sw(priv, buf[0] == '1');
1784 return count;
1787 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1789 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1790 char *buf)
1792 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1793 int pos = 0, len = 0;
1794 if (priv->config & CFG_SPEED_SCAN) {
1795 while (priv->speed_scan[pos] != 0)
1796 len += sprintf(&buf[len], "%d ",
1797 priv->speed_scan[pos++]);
1798 return len + sprintf(&buf[len], "\n");
1801 return sprintf(buf, "0\n");
1804 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1805 const char *buf, size_t count)
1807 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1808 int channel, pos = 0;
1809 const char *p = buf;
1811 /* list of space separated channels to scan, optionally ending with 0 */
1812 while ((channel = simple_strtol(p, NULL, 0))) {
1813 if (pos == MAX_SPEED_SCAN - 1) {
1814 priv->speed_scan[pos] = 0;
1815 break;
1818 if (ieee80211_is_valid_channel(priv->ieee, channel))
1819 priv->speed_scan[pos++] = channel;
1820 else
1821 IPW_WARNING("Skipping invalid channel request: %d\n",
1822 channel);
1823 p = strchr(p, ' ');
1824 if (!p)
1825 break;
1826 while (*p == ' ' || *p == '\t')
1827 p++;
1830 if (pos == 0)
1831 priv->config &= ~CFG_SPEED_SCAN;
1832 else {
1833 priv->speed_scan_pos = 0;
1834 priv->config |= CFG_SPEED_SCAN;
1837 return count;
1840 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1841 store_speed_scan);
1843 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1844 char *buf)
1846 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1847 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1850 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1851 const char *buf, size_t count)
1853 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1854 if (buf[0] == '1')
1855 priv->config |= CFG_NET_STATS;
1856 else
1857 priv->config &= ~CFG_NET_STATS;
1859 return count;
1862 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1863 show_net_stats, store_net_stats);
1865 static ssize_t show_channels(struct device *d,
1866 struct device_attribute *attr,
1867 char *buf)
1869 struct ipw_priv *priv = dev_get_drvdata(d);
1870 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
1871 int len = 0, i;
1873 len = sprintf(&buf[len],
1874 "Displaying %d channels in 2.4Ghz band "
1875 "(802.11bg):\n", geo->bg_channels);
1877 for (i = 0; i < geo->bg_channels; i++) {
1878 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1879 geo->bg[i].channel,
1880 geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT ?
1881 " (radar spectrum)" : "",
1882 ((geo->bg[i].flags & IEEE80211_CH_NO_IBSS) ||
1883 (geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT))
1884 ? "" : ", IBSS",
1885 geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1886 "passive only" : "active/passive",
1887 geo->bg[i].flags & IEEE80211_CH_B_ONLY ?
1888 "B" : "B/G");
1891 len += sprintf(&buf[len],
1892 "Displaying %d channels in 5.2Ghz band "
1893 "(802.11a):\n", geo->a_channels);
1894 for (i = 0; i < geo->a_channels; i++) {
1895 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1896 geo->a[i].channel,
1897 geo->a[i].flags & IEEE80211_CH_RADAR_DETECT ?
1898 " (radar spectrum)" : "",
1899 ((geo->a[i].flags & IEEE80211_CH_NO_IBSS) ||
1900 (geo->a[i].flags & IEEE80211_CH_RADAR_DETECT))
1901 ? "" : ", IBSS",
1902 geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1903 "passive only" : "active/passive");
1906 return len;
1909 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1911 static void notify_wx_assoc_event(struct ipw_priv *priv)
1913 union iwreq_data wrqu;
1914 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1915 if (priv->status & STATUS_ASSOCIATED)
1916 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1917 else
1918 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1919 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1922 static void ipw_irq_tasklet(struct ipw_priv *priv)
1924 u32 inta, inta_mask, handled = 0;
1925 unsigned long flags;
1926 int rc = 0;
1928 spin_lock_irqsave(&priv->irq_lock, flags);
1930 inta = ipw_read32(priv, IPW_INTA_RW);
1931 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1932 inta &= (IPW_INTA_MASK_ALL & inta_mask);
1934 /* Add any cached INTA values that need to be handled */
1935 inta |= priv->isr_inta;
1937 spin_unlock_irqrestore(&priv->irq_lock, flags);
1939 spin_lock_irqsave(&priv->lock, flags);
1941 /* handle all the justifications for the interrupt */
1942 if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1943 ipw_rx(priv);
1944 handled |= IPW_INTA_BIT_RX_TRANSFER;
1947 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1948 IPW_DEBUG_HC("Command completed.\n");
1949 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1950 priv->status &= ~STATUS_HCMD_ACTIVE;
1951 wake_up_interruptible(&priv->wait_command_queue);
1952 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1955 if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1956 IPW_DEBUG_TX("TX_QUEUE_1\n");
1957 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1958 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1961 if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1962 IPW_DEBUG_TX("TX_QUEUE_2\n");
1963 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1964 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1967 if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1968 IPW_DEBUG_TX("TX_QUEUE_3\n");
1969 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1970 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1973 if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1974 IPW_DEBUG_TX("TX_QUEUE_4\n");
1975 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1976 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1979 if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1980 IPW_WARNING("STATUS_CHANGE\n");
1981 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1984 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1985 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1986 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1989 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1990 IPW_WARNING("HOST_CMD_DONE\n");
1991 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1994 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1995 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1996 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1999 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2000 IPW_WARNING("PHY_OFF_DONE\n");
2001 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2004 if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2005 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2006 priv->status |= STATUS_RF_KILL_HW;
2007 wake_up_interruptible(&priv->wait_command_queue);
2008 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2009 cancel_delayed_work(&priv->request_scan);
2010 cancel_delayed_work(&priv->request_direct_scan);
2011 cancel_delayed_work(&priv->request_passive_scan);
2012 cancel_delayed_work(&priv->scan_event);
2013 schedule_work(&priv->link_down);
2014 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
2015 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2018 if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2019 IPW_WARNING("Firmware error detected. Restarting.\n");
2020 if (priv->error) {
2021 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2022 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2023 struct ipw_fw_error *error =
2024 ipw_alloc_error_log(priv);
2025 ipw_dump_error_log(priv, error);
2026 kfree(error);
2028 } else {
2029 priv->error = ipw_alloc_error_log(priv);
2030 if (priv->error)
2031 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2032 else
2033 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2034 "log.\n");
2035 if (ipw_debug_level & IPW_DL_FW_ERRORS)
2036 ipw_dump_error_log(priv, priv->error);
2039 /* XXX: If hardware encryption is for WPA/WPA2,
2040 * we have to notify the supplicant. */
2041 if (priv->ieee->sec.encrypt) {
2042 priv->status &= ~STATUS_ASSOCIATED;
2043 notify_wx_assoc_event(priv);
2046 /* Keep the restart process from trying to send host
2047 * commands by clearing the INIT status bit */
2048 priv->status &= ~STATUS_INIT;
2050 /* Cancel currently queued command. */
2051 priv->status &= ~STATUS_HCMD_ACTIVE;
2052 wake_up_interruptible(&priv->wait_command_queue);
2054 queue_work(priv->workqueue, &priv->adapter_restart);
2055 handled |= IPW_INTA_BIT_FATAL_ERROR;
2058 if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2059 IPW_ERROR("Parity error\n");
2060 handled |= IPW_INTA_BIT_PARITY_ERROR;
2063 if (handled != inta) {
2064 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2067 spin_unlock_irqrestore(&priv->lock, flags);
2069 /* enable all interrupts */
2070 ipw_enable_interrupts(priv);
2073 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2074 static char *get_cmd_string(u8 cmd)
2076 switch (cmd) {
2077 IPW_CMD(HOST_COMPLETE);
2078 IPW_CMD(POWER_DOWN);
2079 IPW_CMD(SYSTEM_CONFIG);
2080 IPW_CMD(MULTICAST_ADDRESS);
2081 IPW_CMD(SSID);
2082 IPW_CMD(ADAPTER_ADDRESS);
2083 IPW_CMD(PORT_TYPE);
2084 IPW_CMD(RTS_THRESHOLD);
2085 IPW_CMD(FRAG_THRESHOLD);
2086 IPW_CMD(POWER_MODE);
2087 IPW_CMD(WEP_KEY);
2088 IPW_CMD(TGI_TX_KEY);
2089 IPW_CMD(SCAN_REQUEST);
2090 IPW_CMD(SCAN_REQUEST_EXT);
2091 IPW_CMD(ASSOCIATE);
2092 IPW_CMD(SUPPORTED_RATES);
2093 IPW_CMD(SCAN_ABORT);
2094 IPW_CMD(TX_FLUSH);
2095 IPW_CMD(QOS_PARAMETERS);
2096 IPW_CMD(DINO_CONFIG);
2097 IPW_CMD(RSN_CAPABILITIES);
2098 IPW_CMD(RX_KEY);
2099 IPW_CMD(CARD_DISABLE);
2100 IPW_CMD(SEED_NUMBER);
2101 IPW_CMD(TX_POWER);
2102 IPW_CMD(COUNTRY_INFO);
2103 IPW_CMD(AIRONET_INFO);
2104 IPW_CMD(AP_TX_POWER);
2105 IPW_CMD(CCKM_INFO);
2106 IPW_CMD(CCX_VER_INFO);
2107 IPW_CMD(SET_CALIBRATION);
2108 IPW_CMD(SENSITIVITY_CALIB);
2109 IPW_CMD(RETRY_LIMIT);
2110 IPW_CMD(IPW_PRE_POWER_DOWN);
2111 IPW_CMD(VAP_BEACON_TEMPLATE);
2112 IPW_CMD(VAP_DTIM_PERIOD);
2113 IPW_CMD(EXT_SUPPORTED_RATES);
2114 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2115 IPW_CMD(VAP_QUIET_INTERVALS);
2116 IPW_CMD(VAP_CHANNEL_SWITCH);
2117 IPW_CMD(VAP_MANDATORY_CHANNELS);
2118 IPW_CMD(VAP_CELL_PWR_LIMIT);
2119 IPW_CMD(VAP_CF_PARAM_SET);
2120 IPW_CMD(VAP_SET_BEACONING_STATE);
2121 IPW_CMD(MEASUREMENT);
2122 IPW_CMD(POWER_CAPABILITY);
2123 IPW_CMD(SUPPORTED_CHANNELS);
2124 IPW_CMD(TPC_REPORT);
2125 IPW_CMD(WME_INFO);
2126 IPW_CMD(PRODUCTION_COMMAND);
2127 default:
2128 return "UNKNOWN";
2132 #define HOST_COMPLETE_TIMEOUT HZ
2134 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2136 int rc = 0;
2137 unsigned long flags;
2139 spin_lock_irqsave(&priv->lock, flags);
2140 if (priv->status & STATUS_HCMD_ACTIVE) {
2141 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2142 get_cmd_string(cmd->cmd));
2143 spin_unlock_irqrestore(&priv->lock, flags);
2144 return -EAGAIN;
2147 priv->status |= STATUS_HCMD_ACTIVE;
2149 if (priv->cmdlog) {
2150 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2151 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2152 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2153 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2154 cmd->len);
2155 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2158 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2159 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2160 priv->status);
2162 #ifndef DEBUG_CMD_WEP_KEY
2163 if (cmd->cmd == IPW_CMD_WEP_KEY)
2164 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2165 else
2166 #endif
2167 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2169 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2170 if (rc) {
2171 priv->status &= ~STATUS_HCMD_ACTIVE;
2172 IPW_ERROR("Failed to send %s: Reason %d\n",
2173 get_cmd_string(cmd->cmd), rc);
2174 spin_unlock_irqrestore(&priv->lock, flags);
2175 goto exit;
2177 spin_unlock_irqrestore(&priv->lock, flags);
2179 rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2180 !(priv->
2181 status & STATUS_HCMD_ACTIVE),
2182 HOST_COMPLETE_TIMEOUT);
2183 if (rc == 0) {
2184 spin_lock_irqsave(&priv->lock, flags);
2185 if (priv->status & STATUS_HCMD_ACTIVE) {
2186 IPW_ERROR("Failed to send %s: Command timed out.\n",
2187 get_cmd_string(cmd->cmd));
2188 priv->status &= ~STATUS_HCMD_ACTIVE;
2189 spin_unlock_irqrestore(&priv->lock, flags);
2190 rc = -EIO;
2191 goto exit;
2193 spin_unlock_irqrestore(&priv->lock, flags);
2194 } else
2195 rc = 0;
2197 if (priv->status & STATUS_RF_KILL_HW) {
2198 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2199 get_cmd_string(cmd->cmd));
2200 rc = -EIO;
2201 goto exit;
2204 exit:
2205 if (priv->cmdlog) {
2206 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2207 priv->cmdlog_pos %= priv->cmdlog_len;
2209 return rc;
2212 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2214 struct host_cmd cmd = {
2215 .cmd = command,
2218 return __ipw_send_cmd(priv, &cmd);
2221 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2222 void *data)
2224 struct host_cmd cmd = {
2225 .cmd = command,
2226 .len = len,
2227 .param = data,
2230 return __ipw_send_cmd(priv, &cmd);
2233 static int ipw_send_host_complete(struct ipw_priv *priv)
2235 if (!priv) {
2236 IPW_ERROR("Invalid args\n");
2237 return -1;
2240 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2243 static int ipw_send_system_config(struct ipw_priv *priv)
2245 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2246 sizeof(priv->sys_config),
2247 &priv->sys_config);
2250 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2252 if (!priv || !ssid) {
2253 IPW_ERROR("Invalid args\n");
2254 return -1;
2257 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2258 ssid);
2261 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2263 if (!priv || !mac) {
2264 IPW_ERROR("Invalid args\n");
2265 return -1;
2268 IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2269 priv->net_dev->name, mac);
2271 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2275 * NOTE: This must be executed from our workqueue as it results in udelay
2276 * being called which may corrupt the keyboard if executed on default
2277 * workqueue
2279 static void ipw_adapter_restart(void *adapter)
2281 struct ipw_priv *priv = adapter;
2283 if (priv->status & STATUS_RF_KILL_MASK)
2284 return;
2286 ipw_down(priv);
2288 if (priv->assoc_network &&
2289 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2290 ipw_remove_current_network(priv);
2292 if (ipw_up(priv)) {
2293 IPW_ERROR("Failed to up device\n");
2294 return;
2298 static void ipw_bg_adapter_restart(struct work_struct *work)
2300 struct ipw_priv *priv =
2301 container_of(work, struct ipw_priv, adapter_restart);
2302 mutex_lock(&priv->mutex);
2303 ipw_adapter_restart(priv);
2304 mutex_unlock(&priv->mutex);
2307 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2309 static void ipw_scan_check(void *data)
2311 struct ipw_priv *priv = data;
2312 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2313 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2314 "adapter after (%dms).\n",
2315 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2316 queue_work(priv->workqueue, &priv->adapter_restart);
2320 static void ipw_bg_scan_check(struct work_struct *work)
2322 struct ipw_priv *priv =
2323 container_of(work, struct ipw_priv, scan_check.work);
2324 mutex_lock(&priv->mutex);
2325 ipw_scan_check(priv);
2326 mutex_unlock(&priv->mutex);
2329 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2330 struct ipw_scan_request_ext *request)
2332 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2333 sizeof(*request), request);
2336 static int ipw_send_scan_abort(struct ipw_priv *priv)
2338 if (!priv) {
2339 IPW_ERROR("Invalid args\n");
2340 return -1;
2343 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2346 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2348 struct ipw_sensitivity_calib calib = {
2349 .beacon_rssi_raw = cpu_to_le16(sens),
2352 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2353 &calib);
2356 static int ipw_send_associate(struct ipw_priv *priv,
2357 struct ipw_associate *associate)
2359 if (!priv || !associate) {
2360 IPW_ERROR("Invalid args\n");
2361 return -1;
2364 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2365 associate);
2368 static int ipw_send_supported_rates(struct ipw_priv *priv,
2369 struct ipw_supported_rates *rates)
2371 if (!priv || !rates) {
2372 IPW_ERROR("Invalid args\n");
2373 return -1;
2376 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2377 rates);
2380 static int ipw_set_random_seed(struct ipw_priv *priv)
2382 u32 val;
2384 if (!priv) {
2385 IPW_ERROR("Invalid args\n");
2386 return -1;
2389 get_random_bytes(&val, sizeof(val));
2391 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2394 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2396 __le32 v = cpu_to_le32(phy_off);
2397 if (!priv) {
2398 IPW_ERROR("Invalid args\n");
2399 return -1;
2402 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2405 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2407 if (!priv || !power) {
2408 IPW_ERROR("Invalid args\n");
2409 return -1;
2412 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2415 static int ipw_set_tx_power(struct ipw_priv *priv)
2417 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2418 struct ipw_tx_power tx_power;
2419 s8 max_power;
2420 int i;
2422 memset(&tx_power, 0, sizeof(tx_power));
2424 /* configure device for 'G' band */
2425 tx_power.ieee_mode = IPW_G_MODE;
2426 tx_power.num_channels = geo->bg_channels;
2427 for (i = 0; i < geo->bg_channels; i++) {
2428 max_power = geo->bg[i].max_power;
2429 tx_power.channels_tx_power[i].channel_number =
2430 geo->bg[i].channel;
2431 tx_power.channels_tx_power[i].tx_power = max_power ?
2432 min(max_power, priv->tx_power) : priv->tx_power;
2434 if (ipw_send_tx_power(priv, &tx_power))
2435 return -EIO;
2437 /* configure device to also handle 'B' band */
2438 tx_power.ieee_mode = IPW_B_MODE;
2439 if (ipw_send_tx_power(priv, &tx_power))
2440 return -EIO;
2442 /* configure device to also handle 'A' band */
2443 if (priv->ieee->abg_true) {
2444 tx_power.ieee_mode = IPW_A_MODE;
2445 tx_power.num_channels = geo->a_channels;
2446 for (i = 0; i < tx_power.num_channels; i++) {
2447 max_power = geo->a[i].max_power;
2448 tx_power.channels_tx_power[i].channel_number =
2449 geo->a[i].channel;
2450 tx_power.channels_tx_power[i].tx_power = max_power ?
2451 min(max_power, priv->tx_power) : priv->tx_power;
2453 if (ipw_send_tx_power(priv, &tx_power))
2454 return -EIO;
2456 return 0;
2459 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2461 struct ipw_rts_threshold rts_threshold = {
2462 .rts_threshold = cpu_to_le16(rts),
2465 if (!priv) {
2466 IPW_ERROR("Invalid args\n");
2467 return -1;
2470 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2471 sizeof(rts_threshold), &rts_threshold);
2474 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2476 struct ipw_frag_threshold frag_threshold = {
2477 .frag_threshold = cpu_to_le16(frag),
2480 if (!priv) {
2481 IPW_ERROR("Invalid args\n");
2482 return -1;
2485 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2486 sizeof(frag_threshold), &frag_threshold);
2489 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2491 __le32 param;
2493 if (!priv) {
2494 IPW_ERROR("Invalid args\n");
2495 return -1;
2498 /* If on battery, set to 3, if AC set to CAM, else user
2499 * level */
2500 switch (mode) {
2501 case IPW_POWER_BATTERY:
2502 param = cpu_to_le32(IPW_POWER_INDEX_3);
2503 break;
2504 case IPW_POWER_AC:
2505 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2506 break;
2507 default:
2508 param = cpu_to_le32(mode);
2509 break;
2512 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2513 &param);
2516 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2518 struct ipw_retry_limit retry_limit = {
2519 .short_retry_limit = slimit,
2520 .long_retry_limit = llimit
2523 if (!priv) {
2524 IPW_ERROR("Invalid args\n");
2525 return -1;
2528 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2529 &retry_limit);
2533 * The IPW device contains a Microwire compatible EEPROM that stores
2534 * various data like the MAC address. Usually the firmware has exclusive
2535 * access to the eeprom, but during device initialization (before the
2536 * device driver has sent the HostComplete command to the firmware) the
2537 * device driver has read access to the EEPROM by way of indirect addressing
2538 * through a couple of memory mapped registers.
2540 * The following is a simplified implementation for pulling data out of the
2541 * the eeprom, along with some helper functions to find information in
2542 * the per device private data's copy of the eeprom.
2544 * NOTE: To better understand how these functions work (i.e what is a chip
2545 * select and why do have to keep driving the eeprom clock?), read
2546 * just about any data sheet for a Microwire compatible EEPROM.
2549 /* write a 32 bit value into the indirect accessor register */
2550 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2552 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2554 /* the eeprom requires some time to complete the operation */
2555 udelay(p->eeprom_delay);
2557 return;
2560 /* perform a chip select operation */
2561 static void eeprom_cs(struct ipw_priv *priv)
2563 eeprom_write_reg(priv, 0);
2564 eeprom_write_reg(priv, EEPROM_BIT_CS);
2565 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2566 eeprom_write_reg(priv, EEPROM_BIT_CS);
2569 /* perform a chip select operation */
2570 static void eeprom_disable_cs(struct ipw_priv *priv)
2572 eeprom_write_reg(priv, EEPROM_BIT_CS);
2573 eeprom_write_reg(priv, 0);
2574 eeprom_write_reg(priv, EEPROM_BIT_SK);
2577 /* push a single bit down to the eeprom */
2578 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2580 int d = (bit ? EEPROM_BIT_DI : 0);
2581 eeprom_write_reg(p, EEPROM_BIT_CS | d);
2582 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2585 /* push an opcode followed by an address down to the eeprom */
2586 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2588 int i;
2590 eeprom_cs(priv);
2591 eeprom_write_bit(priv, 1);
2592 eeprom_write_bit(priv, op & 2);
2593 eeprom_write_bit(priv, op & 1);
2594 for (i = 7; i >= 0; i--) {
2595 eeprom_write_bit(priv, addr & (1 << i));
2599 /* pull 16 bits off the eeprom, one bit at a time */
2600 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2602 int i;
2603 u16 r = 0;
2605 /* Send READ Opcode */
2606 eeprom_op(priv, EEPROM_CMD_READ, addr);
2608 /* Send dummy bit */
2609 eeprom_write_reg(priv, EEPROM_BIT_CS);
2611 /* Read the byte off the eeprom one bit at a time */
2612 for (i = 0; i < 16; i++) {
2613 u32 data = 0;
2614 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2615 eeprom_write_reg(priv, EEPROM_BIT_CS);
2616 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2617 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2620 /* Send another dummy bit */
2621 eeprom_write_reg(priv, 0);
2622 eeprom_disable_cs(priv);
2624 return r;
2627 /* helper function for pulling the mac address out of the private */
2628 /* data's copy of the eeprom data */
2629 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2631 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2635 * Either the device driver (i.e. the host) or the firmware can
2636 * load eeprom data into the designated region in SRAM. If neither
2637 * happens then the FW will shutdown with a fatal error.
2639 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2640 * bit needs region of shared SRAM needs to be non-zero.
2642 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2644 int i;
2645 __le16 *eeprom = (__le16 *) priv->eeprom;
2647 IPW_DEBUG_TRACE(">>\n");
2649 /* read entire contents of eeprom into private buffer */
2650 for (i = 0; i < 128; i++)
2651 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2654 If the data looks correct, then copy it to our private
2655 copy. Otherwise let the firmware know to perform the operation
2656 on its own.
2658 if (priv->eeprom[EEPROM_VERSION] != 0) {
2659 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2661 /* write the eeprom data to sram */
2662 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2663 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2665 /* Do not load eeprom data on fatal error or suspend */
2666 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2667 } else {
2668 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2670 /* Load eeprom data on fatal error or suspend */
2671 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2674 IPW_DEBUG_TRACE("<<\n");
2677 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2679 count >>= 2;
2680 if (!count)
2681 return;
2682 _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2683 while (count--)
2684 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2687 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2689 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2690 CB_NUMBER_OF_ELEMENTS_SMALL *
2691 sizeof(struct command_block));
2694 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2695 { /* start dma engine but no transfers yet */
2697 IPW_DEBUG_FW(">> : \n");
2699 /* Start the dma */
2700 ipw_fw_dma_reset_command_blocks(priv);
2702 /* Write CB base address */
2703 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2705 IPW_DEBUG_FW("<< : \n");
2706 return 0;
2709 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2711 u32 control = 0;
2713 IPW_DEBUG_FW(">> :\n");
2715 /* set the Stop and Abort bit */
2716 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2717 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2718 priv->sram_desc.last_cb_index = 0;
2720 IPW_DEBUG_FW("<< \n");
2723 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2724 struct command_block *cb)
2726 u32 address =
2727 IPW_SHARED_SRAM_DMA_CONTROL +
2728 (sizeof(struct command_block) * index);
2729 IPW_DEBUG_FW(">> :\n");
2731 ipw_write_indirect(priv, address, (u8 *) cb,
2732 (int)sizeof(struct command_block));
2734 IPW_DEBUG_FW("<< :\n");
2735 return 0;
2739 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2741 u32 control = 0;
2742 u32 index = 0;
2744 IPW_DEBUG_FW(">> :\n");
2746 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2747 ipw_fw_dma_write_command_block(priv, index,
2748 &priv->sram_desc.cb_list[index]);
2750 /* Enable the DMA in the CSR register */
2751 ipw_clear_bit(priv, IPW_RESET_REG,
2752 IPW_RESET_REG_MASTER_DISABLED |
2753 IPW_RESET_REG_STOP_MASTER);
2755 /* Set the Start bit. */
2756 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2757 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2759 IPW_DEBUG_FW("<< :\n");
2760 return 0;
2763 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2765 u32 address;
2766 u32 register_value = 0;
2767 u32 cb_fields_address = 0;
2769 IPW_DEBUG_FW(">> :\n");
2770 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2771 IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2773 /* Read the DMA Controlor register */
2774 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2775 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2777 /* Print the CB values */
2778 cb_fields_address = address;
2779 register_value = ipw_read_reg32(priv, cb_fields_address);
2780 IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2782 cb_fields_address += sizeof(u32);
2783 register_value = ipw_read_reg32(priv, cb_fields_address);
2784 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2786 cb_fields_address += sizeof(u32);
2787 register_value = ipw_read_reg32(priv, cb_fields_address);
2788 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2789 register_value);
2791 cb_fields_address += sizeof(u32);
2792 register_value = ipw_read_reg32(priv, cb_fields_address);
2793 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2795 IPW_DEBUG_FW(">> :\n");
2798 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2800 u32 current_cb_address = 0;
2801 u32 current_cb_index = 0;
2803 IPW_DEBUG_FW("<< :\n");
2804 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2806 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2807 sizeof(struct command_block);
2809 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2810 current_cb_index, current_cb_address);
2812 IPW_DEBUG_FW(">> :\n");
2813 return current_cb_index;
2817 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2818 u32 src_address,
2819 u32 dest_address,
2820 u32 length,
2821 int interrupt_enabled, int is_last)
2824 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2825 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2826 CB_DEST_SIZE_LONG;
2827 struct command_block *cb;
2828 u32 last_cb_element = 0;
2830 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2831 src_address, dest_address, length);
2833 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2834 return -1;
2836 last_cb_element = priv->sram_desc.last_cb_index;
2837 cb = &priv->sram_desc.cb_list[last_cb_element];
2838 priv->sram_desc.last_cb_index++;
2840 /* Calculate the new CB control word */
2841 if (interrupt_enabled)
2842 control |= CB_INT_ENABLED;
2844 if (is_last)
2845 control |= CB_LAST_VALID;
2847 control |= length;
2849 /* Calculate the CB Element's checksum value */
2850 cb->status = control ^ src_address ^ dest_address;
2852 /* Copy the Source and Destination addresses */
2853 cb->dest_addr = dest_address;
2854 cb->source_addr = src_address;
2856 /* Copy the Control Word last */
2857 cb->control = control;
2859 return 0;
2862 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2863 u32 src_phys, u32 dest_address, u32 length)
2865 u32 bytes_left = length;
2866 u32 src_offset = 0;
2867 u32 dest_offset = 0;
2868 int status = 0;
2869 IPW_DEBUG_FW(">> \n");
2870 IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2871 src_phys, dest_address, length);
2872 while (bytes_left > CB_MAX_LENGTH) {
2873 status = ipw_fw_dma_add_command_block(priv,
2874 src_phys + src_offset,
2875 dest_address +
2876 dest_offset,
2877 CB_MAX_LENGTH, 0, 0);
2878 if (status) {
2879 IPW_DEBUG_FW_INFO(": Failed\n");
2880 return -1;
2881 } else
2882 IPW_DEBUG_FW_INFO(": Added new cb\n");
2884 src_offset += CB_MAX_LENGTH;
2885 dest_offset += CB_MAX_LENGTH;
2886 bytes_left -= CB_MAX_LENGTH;
2889 /* add the buffer tail */
2890 if (bytes_left > 0) {
2891 status =
2892 ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2893 dest_address + dest_offset,
2894 bytes_left, 0, 0);
2895 if (status) {
2896 IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2897 return -1;
2898 } else
2899 IPW_DEBUG_FW_INFO
2900 (": Adding new cb - the buffer tail\n");
2903 IPW_DEBUG_FW("<< \n");
2904 return 0;
2907 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2909 u32 current_index = 0, previous_index;
2910 u32 watchdog = 0;
2912 IPW_DEBUG_FW(">> : \n");
2914 current_index = ipw_fw_dma_command_block_index(priv);
2915 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2916 (int)priv->sram_desc.last_cb_index);
2918 while (current_index < priv->sram_desc.last_cb_index) {
2919 udelay(50);
2920 previous_index = current_index;
2921 current_index = ipw_fw_dma_command_block_index(priv);
2923 if (previous_index < current_index) {
2924 watchdog = 0;
2925 continue;
2927 if (++watchdog > 400) {
2928 IPW_DEBUG_FW_INFO("Timeout\n");
2929 ipw_fw_dma_dump_command_block(priv);
2930 ipw_fw_dma_abort(priv);
2931 return -1;
2935 ipw_fw_dma_abort(priv);
2937 /*Disable the DMA in the CSR register */
2938 ipw_set_bit(priv, IPW_RESET_REG,
2939 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2941 IPW_DEBUG_FW("<< dmaWaitSync \n");
2942 return 0;
2945 static void ipw_remove_current_network(struct ipw_priv *priv)
2947 struct list_head *element, *safe;
2948 struct ieee80211_network *network = NULL;
2949 unsigned long flags;
2951 spin_lock_irqsave(&priv->ieee->lock, flags);
2952 list_for_each_safe(element, safe, &priv->ieee->network_list) {
2953 network = list_entry(element, struct ieee80211_network, list);
2954 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2955 list_del(element);
2956 list_add_tail(&network->list,
2957 &priv->ieee->network_free_list);
2960 spin_unlock_irqrestore(&priv->ieee->lock, flags);
2964 * Check that card is still alive.
2965 * Reads debug register from domain0.
2966 * If card is present, pre-defined value should
2967 * be found there.
2969 * @param priv
2970 * @return 1 if card is present, 0 otherwise
2972 static inline int ipw_alive(struct ipw_priv *priv)
2974 return ipw_read32(priv, 0x90) == 0xd55555d5;
2977 /* timeout in msec, attempted in 10-msec quanta */
2978 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2979 int timeout)
2981 int i = 0;
2983 do {
2984 if ((ipw_read32(priv, addr) & mask) == mask)
2985 return i;
2986 mdelay(10);
2987 i += 10;
2988 } while (i < timeout);
2990 return -ETIME;
2993 /* These functions load the firmware and micro code for the operation of
2994 * the ipw hardware. It assumes the buffer has all the bits for the
2995 * image and the caller is handling the memory allocation and clean up.
2998 static int ipw_stop_master(struct ipw_priv *priv)
3000 int rc;
3002 IPW_DEBUG_TRACE(">> \n");
3003 /* stop master. typical delay - 0 */
3004 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3006 /* timeout is in msec, polled in 10-msec quanta */
3007 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3008 IPW_RESET_REG_MASTER_DISABLED, 100);
3009 if (rc < 0) {
3010 IPW_ERROR("wait for stop master failed after 100ms\n");
3011 return -1;
3014 IPW_DEBUG_INFO("stop master %dms\n", rc);
3016 return rc;
3019 static void ipw_arc_release(struct ipw_priv *priv)
3021 IPW_DEBUG_TRACE(">> \n");
3022 mdelay(5);
3024 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3026 /* no one knows timing, for safety add some delay */
3027 mdelay(5);
3030 struct fw_chunk {
3031 __le32 address;
3032 __le32 length;
3035 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3037 int rc = 0, i, addr;
3038 u8 cr = 0;
3039 __le16 *image;
3041 image = (__le16 *) data;
3043 IPW_DEBUG_TRACE(">> \n");
3045 rc = ipw_stop_master(priv);
3047 if (rc < 0)
3048 return rc;
3050 for (addr = IPW_SHARED_LOWER_BOUND;
3051 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3052 ipw_write32(priv, addr, 0);
3055 /* no ucode (yet) */
3056 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3057 /* destroy DMA queues */
3058 /* reset sequence */
3060 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3061 ipw_arc_release(priv);
3062 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3063 mdelay(1);
3065 /* reset PHY */
3066 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3067 mdelay(1);
3069 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3070 mdelay(1);
3072 /* enable ucode store */
3073 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3074 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3075 mdelay(1);
3077 /* write ucode */
3079 * @bug
3080 * Do NOT set indirect address register once and then
3081 * store data to indirect data register in the loop.
3082 * It seems very reasonable, but in this case DINO do not
3083 * accept ucode. It is essential to set address each time.
3085 /* load new ipw uCode */
3086 for (i = 0; i < len / 2; i++)
3087 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3088 le16_to_cpu(image[i]));
3090 /* enable DINO */
3091 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3092 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3094 /* this is where the igx / win driver deveates from the VAP driver. */
3096 /* wait for alive response */
3097 for (i = 0; i < 100; i++) {
3098 /* poll for incoming data */
3099 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3100 if (cr & DINO_RXFIFO_DATA)
3101 break;
3102 mdelay(1);
3105 if (cr & DINO_RXFIFO_DATA) {
3106 /* alive_command_responce size is NOT multiple of 4 */
3107 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3109 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3110 response_buffer[i] =
3111 cpu_to_le32(ipw_read_reg32(priv,
3112 IPW_BASEBAND_RX_FIFO_READ));
3113 memcpy(&priv->dino_alive, response_buffer,
3114 sizeof(priv->dino_alive));
3115 if (priv->dino_alive.alive_command == 1
3116 && priv->dino_alive.ucode_valid == 1) {
3117 rc = 0;
3118 IPW_DEBUG_INFO
3119 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3120 "of %02d/%02d/%02d %02d:%02d\n",
3121 priv->dino_alive.software_revision,
3122 priv->dino_alive.software_revision,
3123 priv->dino_alive.device_identifier,
3124 priv->dino_alive.device_identifier,
3125 priv->dino_alive.time_stamp[0],
3126 priv->dino_alive.time_stamp[1],
3127 priv->dino_alive.time_stamp[2],
3128 priv->dino_alive.time_stamp[3],
3129 priv->dino_alive.time_stamp[4]);
3130 } else {
3131 IPW_DEBUG_INFO("Microcode is not alive\n");
3132 rc = -EINVAL;
3134 } else {
3135 IPW_DEBUG_INFO("No alive response from DINO\n");
3136 rc = -ETIME;
3139 /* disable DINO, otherwise for some reason
3140 firmware have problem getting alive resp. */
3141 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3143 return rc;
3146 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3148 int rc = -1;
3149 int offset = 0;
3150 struct fw_chunk *chunk;
3151 dma_addr_t shared_phys;
3152 u8 *shared_virt;
3154 IPW_DEBUG_TRACE("<< : \n");
3155 shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3157 if (!shared_virt)
3158 return -ENOMEM;
3160 memmove(shared_virt, data, len);
3162 /* Start the Dma */
3163 rc = ipw_fw_dma_enable(priv);
3165 if (priv->sram_desc.last_cb_index > 0) {
3166 /* the DMA is already ready this would be a bug. */
3167 BUG();
3168 goto out;
3171 do {
3172 chunk = (struct fw_chunk *)(data + offset);
3173 offset += sizeof(struct fw_chunk);
3174 /* build DMA packet and queue up for sending */
3175 /* dma to chunk->address, the chunk->length bytes from data +
3176 * offeset*/
3177 /* Dma loading */
3178 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3179 le32_to_cpu(chunk->address),
3180 le32_to_cpu(chunk->length));
3181 if (rc) {
3182 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3183 goto out;
3186 offset += le32_to_cpu(chunk->length);
3187 } while (offset < len);
3189 /* Run the DMA and wait for the answer */
3190 rc = ipw_fw_dma_kick(priv);
3191 if (rc) {
3192 IPW_ERROR("dmaKick Failed\n");
3193 goto out;
3196 rc = ipw_fw_dma_wait(priv);
3197 if (rc) {
3198 IPW_ERROR("dmaWaitSync Failed\n");
3199 goto out;
3201 out:
3202 pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3203 return rc;
3206 /* stop nic */
3207 static int ipw_stop_nic(struct ipw_priv *priv)
3209 int rc = 0;
3211 /* stop */
3212 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3214 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3215 IPW_RESET_REG_MASTER_DISABLED, 500);
3216 if (rc < 0) {
3217 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3218 return rc;
3221 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3223 return rc;
3226 static void ipw_start_nic(struct ipw_priv *priv)
3228 IPW_DEBUG_TRACE(">>\n");
3230 /* prvHwStartNic release ARC */
3231 ipw_clear_bit(priv, IPW_RESET_REG,
3232 IPW_RESET_REG_MASTER_DISABLED |
3233 IPW_RESET_REG_STOP_MASTER |
3234 CBD_RESET_REG_PRINCETON_RESET);
3236 /* enable power management */
3237 ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3238 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3240 IPW_DEBUG_TRACE("<<\n");
3243 static int ipw_init_nic(struct ipw_priv *priv)
3245 int rc;
3247 IPW_DEBUG_TRACE(">>\n");
3248 /* reset */
3249 /*prvHwInitNic */
3250 /* set "initialization complete" bit to move adapter to D0 state */
3251 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3253 /* low-level PLL activation */
3254 ipw_write32(priv, IPW_READ_INT_REGISTER,
3255 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3257 /* wait for clock stabilization */
3258 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3259 IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3260 if (rc < 0)
3261 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3263 /* assert SW reset */
3264 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3266 udelay(10);
3268 /* set "initialization complete" bit to move adapter to D0 state */
3269 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3271 IPW_DEBUG_TRACE(">>\n");
3272 return 0;
3275 /* Call this function from process context, it will sleep in request_firmware.
3276 * Probe is an ok place to call this from.
3278 static int ipw_reset_nic(struct ipw_priv *priv)
3280 int rc = 0;
3281 unsigned long flags;
3283 IPW_DEBUG_TRACE(">>\n");
3285 rc = ipw_init_nic(priv);
3287 spin_lock_irqsave(&priv->lock, flags);
3288 /* Clear the 'host command active' bit... */
3289 priv->status &= ~STATUS_HCMD_ACTIVE;
3290 wake_up_interruptible(&priv->wait_command_queue);
3291 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3292 wake_up_interruptible(&priv->wait_state);
3293 spin_unlock_irqrestore(&priv->lock, flags);
3295 IPW_DEBUG_TRACE("<<\n");
3296 return rc;
3300 struct ipw_fw {
3301 __le32 ver;
3302 __le32 boot_size;
3303 __le32 ucode_size;
3304 __le32 fw_size;
3305 u8 data[0];
3308 static int ipw_get_fw(struct ipw_priv *priv,
3309 const struct firmware **raw, const char *name)
3311 struct ipw_fw *fw;
3312 int rc;
3314 /* ask firmware_class module to get the boot firmware off disk */
3315 rc = request_firmware(raw, name, &priv->pci_dev->dev);
3316 if (rc < 0) {
3317 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3318 return rc;
3321 if ((*raw)->size < sizeof(*fw)) {
3322 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3323 return -EINVAL;
3326 fw = (void *)(*raw)->data;
3328 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3329 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3330 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3331 name, (*raw)->size);
3332 return -EINVAL;
3335 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3336 name,
3337 le32_to_cpu(fw->ver) >> 16,
3338 le32_to_cpu(fw->ver) & 0xff,
3339 (*raw)->size - sizeof(*fw));
3340 return 0;
3343 #define IPW_RX_BUF_SIZE (3000)
3345 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3346 struct ipw_rx_queue *rxq)
3348 unsigned long flags;
3349 int i;
3351 spin_lock_irqsave(&rxq->lock, flags);
3353 INIT_LIST_HEAD(&rxq->rx_free);
3354 INIT_LIST_HEAD(&rxq->rx_used);
3356 /* Fill the rx_used queue with _all_ of the Rx buffers */
3357 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3358 /* In the reset function, these buffers may have been allocated
3359 * to an SKB, so we need to unmap and free potential storage */
3360 if (rxq->pool[i].skb != NULL) {
3361 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3362 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3363 dev_kfree_skb(rxq->pool[i].skb);
3364 rxq->pool[i].skb = NULL;
3366 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3369 /* Set us so that we have processed and used all buffers, but have
3370 * not restocked the Rx queue with fresh buffers */
3371 rxq->read = rxq->write = 0;
3372 rxq->free_count = 0;
3373 spin_unlock_irqrestore(&rxq->lock, flags);
3376 #ifdef CONFIG_PM
3377 static int fw_loaded = 0;
3378 static const struct firmware *raw = NULL;
3380 static void free_firmware(void)
3382 if (fw_loaded) {
3383 release_firmware(raw);
3384 raw = NULL;
3385 fw_loaded = 0;
3388 #else
3389 #define free_firmware() do {} while (0)
3390 #endif
3392 static int ipw_load(struct ipw_priv *priv)
3394 #ifndef CONFIG_PM
3395 const struct firmware *raw = NULL;
3396 #endif
3397 struct ipw_fw *fw;
3398 u8 *boot_img, *ucode_img, *fw_img;
3399 u8 *name = NULL;
3400 int rc = 0, retries = 3;
3402 switch (priv->ieee->iw_mode) {
3403 case IW_MODE_ADHOC:
3404 name = "ipw2200-ibss.fw";
3405 break;
3406 #ifdef CONFIG_IPW2200_MONITOR
3407 case IW_MODE_MONITOR:
3408 name = "ipw2200-sniffer.fw";
3409 break;
3410 #endif
3411 case IW_MODE_INFRA:
3412 name = "ipw2200-bss.fw";
3413 break;
3416 if (!name) {
3417 rc = -EINVAL;
3418 goto error;
3421 #ifdef CONFIG_PM
3422 if (!fw_loaded) {
3423 #endif
3424 rc = ipw_get_fw(priv, &raw, name);
3425 if (rc < 0)
3426 goto error;
3427 #ifdef CONFIG_PM
3429 #endif
3431 fw = (void *)raw->data;
3432 boot_img = &fw->data[0];
3433 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3434 fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3435 le32_to_cpu(fw->ucode_size)];
3437 if (rc < 0)
3438 goto error;
3440 if (!priv->rxq)
3441 priv->rxq = ipw_rx_queue_alloc(priv);
3442 else
3443 ipw_rx_queue_reset(priv, priv->rxq);
3444 if (!priv->rxq) {
3445 IPW_ERROR("Unable to initialize Rx queue\n");
3446 goto error;
3449 retry:
3450 /* Ensure interrupts are disabled */
3451 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3452 priv->status &= ~STATUS_INT_ENABLED;
3454 /* ack pending interrupts */
3455 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3457 ipw_stop_nic(priv);
3459 rc = ipw_reset_nic(priv);
3460 if (rc < 0) {
3461 IPW_ERROR("Unable to reset NIC\n");
3462 goto error;
3465 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3466 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3468 /* DMA the initial boot firmware into the device */
3469 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3470 if (rc < 0) {
3471 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3472 goto error;
3475 /* kick start the device */
3476 ipw_start_nic(priv);
3478 /* wait for the device to finish its initial startup sequence */
3479 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3480 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3481 if (rc < 0) {
3482 IPW_ERROR("device failed to boot initial fw image\n");
3483 goto error;
3485 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3487 /* ack fw init done interrupt */
3488 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3490 /* DMA the ucode into the device */
3491 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3492 if (rc < 0) {
3493 IPW_ERROR("Unable to load ucode: %d\n", rc);
3494 goto error;
3497 /* stop nic */
3498 ipw_stop_nic(priv);
3500 /* DMA bss firmware into the device */
3501 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3502 if (rc < 0) {
3503 IPW_ERROR("Unable to load firmware: %d\n", rc);
3504 goto error;
3506 #ifdef CONFIG_PM
3507 fw_loaded = 1;
3508 #endif
3510 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3512 rc = ipw_queue_reset(priv);
3513 if (rc < 0) {
3514 IPW_ERROR("Unable to initialize queues\n");
3515 goto error;
3518 /* Ensure interrupts are disabled */
3519 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3520 /* ack pending interrupts */
3521 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3523 /* kick start the device */
3524 ipw_start_nic(priv);
3526 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3527 if (retries > 0) {
3528 IPW_WARNING("Parity error. Retrying init.\n");
3529 retries--;
3530 goto retry;
3533 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3534 rc = -EIO;
3535 goto error;
3538 /* wait for the device */
3539 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3540 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3541 if (rc < 0) {
3542 IPW_ERROR("device failed to start within 500ms\n");
3543 goto error;
3545 IPW_DEBUG_INFO("device response after %dms\n", rc);
3547 /* ack fw init done interrupt */
3548 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3550 /* read eeprom data and initialize the eeprom region of sram */
3551 priv->eeprom_delay = 1;
3552 ipw_eeprom_init_sram(priv);
3554 /* enable interrupts */
3555 ipw_enable_interrupts(priv);
3557 /* Ensure our queue has valid packets */
3558 ipw_rx_queue_replenish(priv);
3560 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3562 /* ack pending interrupts */
3563 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3565 #ifndef CONFIG_PM
3566 release_firmware(raw);
3567 #endif
3568 return 0;
3570 error:
3571 if (priv->rxq) {
3572 ipw_rx_queue_free(priv, priv->rxq);
3573 priv->rxq = NULL;
3575 ipw_tx_queue_free(priv);
3576 if (raw)
3577 release_firmware(raw);
3578 #ifdef CONFIG_PM
3579 fw_loaded = 0;
3580 raw = NULL;
3581 #endif
3583 return rc;
3587 * DMA services
3589 * Theory of operation
3591 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3592 * 2 empty entries always kept in the buffer to protect from overflow.
3594 * For Tx queue, there are low mark and high mark limits. If, after queuing
3595 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3596 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3597 * Tx queue resumed.
3599 * The IPW operates with six queues, one receive queue in the device's
3600 * sram, one transmit queue for sending commands to the device firmware,
3601 * and four transmit queues for data.
3603 * The four transmit queues allow for performing quality of service (qos)
3604 * transmissions as per the 802.11 protocol. Currently Linux does not
3605 * provide a mechanism to the user for utilizing prioritized queues, so
3606 * we only utilize the first data transmit queue (queue1).
3610 * Driver allocates buffers of this size for Rx
3614 * ipw_rx_queue_space - Return number of free slots available in queue.
3616 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3618 int s = q->read - q->write;
3619 if (s <= 0)
3620 s += RX_QUEUE_SIZE;
3621 /* keep some buffer to not confuse full and empty queue */
3622 s -= 2;
3623 if (s < 0)
3624 s = 0;
3625 return s;
3628 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3630 int s = q->last_used - q->first_empty;
3631 if (s <= 0)
3632 s += q->n_bd;
3633 s -= 2; /* keep some reserve to not confuse empty and full situations */
3634 if (s < 0)
3635 s = 0;
3636 return s;
3639 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3641 return (++index == n_bd) ? 0 : index;
3645 * Initialize common DMA queue structure
3647 * @param q queue to init
3648 * @param count Number of BD's to allocate. Should be power of 2
3649 * @param read_register Address for 'read' register
3650 * (not offset within BAR, full address)
3651 * @param write_register Address for 'write' register
3652 * (not offset within BAR, full address)
3653 * @param base_register Address for 'base' register
3654 * (not offset within BAR, full address)
3655 * @param size Address for 'size' register
3656 * (not offset within BAR, full address)
3658 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3659 int count, u32 read, u32 write, u32 base, u32 size)
3661 q->n_bd = count;
3663 q->low_mark = q->n_bd / 4;
3664 if (q->low_mark < 4)
3665 q->low_mark = 4;
3667 q->high_mark = q->n_bd / 8;
3668 if (q->high_mark < 2)
3669 q->high_mark = 2;
3671 q->first_empty = q->last_used = 0;
3672 q->reg_r = read;
3673 q->reg_w = write;
3675 ipw_write32(priv, base, q->dma_addr);
3676 ipw_write32(priv, size, count);
3677 ipw_write32(priv, read, 0);
3678 ipw_write32(priv, write, 0);
3680 _ipw_read32(priv, 0x90);
3683 static int ipw_queue_tx_init(struct ipw_priv *priv,
3684 struct clx2_tx_queue *q,
3685 int count, u32 read, u32 write, u32 base, u32 size)
3687 struct pci_dev *dev = priv->pci_dev;
3689 q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3690 if (!q->txb) {
3691 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3692 return -ENOMEM;
3695 q->bd =
3696 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3697 if (!q->bd) {
3698 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3699 sizeof(q->bd[0]) * count);
3700 kfree(q->txb);
3701 q->txb = NULL;
3702 return -ENOMEM;
3705 ipw_queue_init(priv, &q->q, count, read, write, base, size);
3706 return 0;
3710 * Free one TFD, those at index [txq->q.last_used].
3711 * Do NOT advance any indexes
3713 * @param dev
3714 * @param txq
3716 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3717 struct clx2_tx_queue *txq)
3719 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3720 struct pci_dev *dev = priv->pci_dev;
3721 int i;
3723 /* classify bd */
3724 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3725 /* nothing to cleanup after for host commands */
3726 return;
3728 /* sanity check */
3729 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3730 IPW_ERROR("Too many chunks: %i\n",
3731 le32_to_cpu(bd->u.data.num_chunks));
3732 /** @todo issue fatal error, it is quite serious situation */
3733 return;
3736 /* unmap chunks if any */
3737 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3738 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3739 le16_to_cpu(bd->u.data.chunk_len[i]),
3740 PCI_DMA_TODEVICE);
3741 if (txq->txb[txq->q.last_used]) {
3742 ieee80211_txb_free(txq->txb[txq->q.last_used]);
3743 txq->txb[txq->q.last_used] = NULL;
3749 * Deallocate DMA queue.
3751 * Empty queue by removing and destroying all BD's.
3752 * Free all buffers.
3754 * @param dev
3755 * @param q
3757 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3759 struct clx2_queue *q = &txq->q;
3760 struct pci_dev *dev = priv->pci_dev;
3762 if (q->n_bd == 0)
3763 return;
3765 /* first, empty all BD's */
3766 for (; q->first_empty != q->last_used;
3767 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3768 ipw_queue_tx_free_tfd(priv, txq);
3771 /* free buffers belonging to queue itself */
3772 pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3773 q->dma_addr);
3774 kfree(txq->txb);
3776 /* 0 fill whole structure */
3777 memset(txq, 0, sizeof(*txq));
3781 * Destroy all DMA queues and structures
3783 * @param priv
3785 static void ipw_tx_queue_free(struct ipw_priv *priv)
3787 /* Tx CMD queue */
3788 ipw_queue_tx_free(priv, &priv->txq_cmd);
3790 /* Tx queues */
3791 ipw_queue_tx_free(priv, &priv->txq[0]);
3792 ipw_queue_tx_free(priv, &priv->txq[1]);
3793 ipw_queue_tx_free(priv, &priv->txq[2]);
3794 ipw_queue_tx_free(priv, &priv->txq[3]);
3797 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3799 /* First 3 bytes are manufacturer */
3800 bssid[0] = priv->mac_addr[0];
3801 bssid[1] = priv->mac_addr[1];
3802 bssid[2] = priv->mac_addr[2];
3804 /* Last bytes are random */
3805 get_random_bytes(&bssid[3], ETH_ALEN - 3);
3807 bssid[0] &= 0xfe; /* clear multicast bit */
3808 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
3811 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3813 struct ipw_station_entry entry;
3814 int i;
3816 for (i = 0; i < priv->num_stations; i++) {
3817 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3818 /* Another node is active in network */
3819 priv->missed_adhoc_beacons = 0;
3820 if (!(priv->config & CFG_STATIC_CHANNEL))
3821 /* when other nodes drop out, we drop out */
3822 priv->config &= ~CFG_ADHOC_PERSIST;
3824 return i;
3828 if (i == MAX_STATIONS)
3829 return IPW_INVALID_STATION;
3831 IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3833 entry.reserved = 0;
3834 entry.support_mode = 0;
3835 memcpy(entry.mac_addr, bssid, ETH_ALEN);
3836 memcpy(priv->stations[i], bssid, ETH_ALEN);
3837 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3838 &entry, sizeof(entry));
3839 priv->num_stations++;
3841 return i;
3844 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3846 int i;
3848 for (i = 0; i < priv->num_stations; i++)
3849 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3850 return i;
3852 return IPW_INVALID_STATION;
3855 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3857 int err;
3859 if (priv->status & STATUS_ASSOCIATING) {
3860 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3861 queue_work(priv->workqueue, &priv->disassociate);
3862 return;
3865 if (!(priv->status & STATUS_ASSOCIATED)) {
3866 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3867 return;
3870 IPW_DEBUG_ASSOC("Disassocation attempt from %pM "
3871 "on channel %d.\n",
3872 priv->assoc_request.bssid,
3873 priv->assoc_request.channel);
3875 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3876 priv->status |= STATUS_DISASSOCIATING;
3878 if (quiet)
3879 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3880 else
3881 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3883 err = ipw_send_associate(priv, &priv->assoc_request);
3884 if (err) {
3885 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3886 "failed.\n");
3887 return;
3892 static int ipw_disassociate(void *data)
3894 struct ipw_priv *priv = data;
3895 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3896 return 0;
3897 ipw_send_disassociate(data, 0);
3898 return 1;
3901 static void ipw_bg_disassociate(struct work_struct *work)
3903 struct ipw_priv *priv =
3904 container_of(work, struct ipw_priv, disassociate);
3905 mutex_lock(&priv->mutex);
3906 ipw_disassociate(priv);
3907 mutex_unlock(&priv->mutex);
3910 static void ipw_system_config(struct work_struct *work)
3912 struct ipw_priv *priv =
3913 container_of(work, struct ipw_priv, system_config);
3915 #ifdef CONFIG_IPW2200_PROMISCUOUS
3916 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3917 priv->sys_config.accept_all_data_frames = 1;
3918 priv->sys_config.accept_non_directed_frames = 1;
3919 priv->sys_config.accept_all_mgmt_bcpr = 1;
3920 priv->sys_config.accept_all_mgmt_frames = 1;
3922 #endif
3924 ipw_send_system_config(priv);
3927 struct ipw_status_code {
3928 u16 status;
3929 const char *reason;
3932 static const struct ipw_status_code ipw_status_codes[] = {
3933 {0x00, "Successful"},
3934 {0x01, "Unspecified failure"},
3935 {0x0A, "Cannot support all requested capabilities in the "
3936 "Capability information field"},
3937 {0x0B, "Reassociation denied due to inability to confirm that "
3938 "association exists"},
3939 {0x0C, "Association denied due to reason outside the scope of this "
3940 "standard"},
3941 {0x0D,
3942 "Responding station does not support the specified authentication "
3943 "algorithm"},
3944 {0x0E,
3945 "Received an Authentication frame with authentication sequence "
3946 "transaction sequence number out of expected sequence"},
3947 {0x0F, "Authentication rejected because of challenge failure"},
3948 {0x10, "Authentication rejected due to timeout waiting for next "
3949 "frame in sequence"},
3950 {0x11, "Association denied because AP is unable to handle additional "
3951 "associated stations"},
3952 {0x12,
3953 "Association denied due to requesting station not supporting all "
3954 "of the datarates in the BSSBasicServiceSet Parameter"},
3955 {0x13,
3956 "Association denied due to requesting station not supporting "
3957 "short preamble operation"},
3958 {0x14,
3959 "Association denied due to requesting station not supporting "
3960 "PBCC encoding"},
3961 {0x15,
3962 "Association denied due to requesting station not supporting "
3963 "channel agility"},
3964 {0x19,
3965 "Association denied due to requesting station not supporting "
3966 "short slot operation"},
3967 {0x1A,
3968 "Association denied due to requesting station not supporting "
3969 "DSSS-OFDM operation"},
3970 {0x28, "Invalid Information Element"},
3971 {0x29, "Group Cipher is not valid"},
3972 {0x2A, "Pairwise Cipher is not valid"},
3973 {0x2B, "AKMP is not valid"},
3974 {0x2C, "Unsupported RSN IE version"},
3975 {0x2D, "Invalid RSN IE Capabilities"},
3976 {0x2E, "Cipher suite is rejected per security policy"},
3979 static const char *ipw_get_status_code(u16 status)
3981 int i;
3982 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3983 if (ipw_status_codes[i].status == (status & 0xff))
3984 return ipw_status_codes[i].reason;
3985 return "Unknown status value.";
3988 static void inline average_init(struct average *avg)
3990 memset(avg, 0, sizeof(*avg));
3993 #define DEPTH_RSSI 8
3994 #define DEPTH_NOISE 16
3995 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
3997 return ((depth-1)*prev_avg + val)/depth;
4000 static void average_add(struct average *avg, s16 val)
4002 avg->sum -= avg->entries[avg->pos];
4003 avg->sum += val;
4004 avg->entries[avg->pos++] = val;
4005 if (unlikely(avg->pos == AVG_ENTRIES)) {
4006 avg->init = 1;
4007 avg->pos = 0;
4011 static s16 average_value(struct average *avg)
4013 if (!unlikely(avg->init)) {
4014 if (avg->pos)
4015 return avg->sum / avg->pos;
4016 return 0;
4019 return avg->sum / AVG_ENTRIES;
4022 static void ipw_reset_stats(struct ipw_priv *priv)
4024 u32 len = sizeof(u32);
4026 priv->quality = 0;
4028 average_init(&priv->average_missed_beacons);
4029 priv->exp_avg_rssi = -60;
4030 priv->exp_avg_noise = -85 + 0x100;
4032 priv->last_rate = 0;
4033 priv->last_missed_beacons = 0;
4034 priv->last_rx_packets = 0;
4035 priv->last_tx_packets = 0;
4036 priv->last_tx_failures = 0;
4038 /* Firmware managed, reset only when NIC is restarted, so we have to
4039 * normalize on the current value */
4040 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4041 &priv->last_rx_err, &len);
4042 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4043 &priv->last_tx_failures, &len);
4045 /* Driver managed, reset with each association */
4046 priv->missed_adhoc_beacons = 0;
4047 priv->missed_beacons = 0;
4048 priv->tx_packets = 0;
4049 priv->rx_packets = 0;
4053 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4055 u32 i = 0x80000000;
4056 u32 mask = priv->rates_mask;
4057 /* If currently associated in B mode, restrict the maximum
4058 * rate match to B rates */
4059 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4060 mask &= IEEE80211_CCK_RATES_MASK;
4062 /* TODO: Verify that the rate is supported by the current rates
4063 * list. */
4065 while (i && !(mask & i))
4066 i >>= 1;
4067 switch (i) {
4068 case IEEE80211_CCK_RATE_1MB_MASK:
4069 return 1000000;
4070 case IEEE80211_CCK_RATE_2MB_MASK:
4071 return 2000000;
4072 case IEEE80211_CCK_RATE_5MB_MASK:
4073 return 5500000;
4074 case IEEE80211_OFDM_RATE_6MB_MASK:
4075 return 6000000;
4076 case IEEE80211_OFDM_RATE_9MB_MASK:
4077 return 9000000;
4078 case IEEE80211_CCK_RATE_11MB_MASK:
4079 return 11000000;
4080 case IEEE80211_OFDM_RATE_12MB_MASK:
4081 return 12000000;
4082 case IEEE80211_OFDM_RATE_18MB_MASK:
4083 return 18000000;
4084 case IEEE80211_OFDM_RATE_24MB_MASK:
4085 return 24000000;
4086 case IEEE80211_OFDM_RATE_36MB_MASK:
4087 return 36000000;
4088 case IEEE80211_OFDM_RATE_48MB_MASK:
4089 return 48000000;
4090 case IEEE80211_OFDM_RATE_54MB_MASK:
4091 return 54000000;
4094 if (priv->ieee->mode == IEEE_B)
4095 return 11000000;
4096 else
4097 return 54000000;
4100 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4102 u32 rate, len = sizeof(rate);
4103 int err;
4105 if (!(priv->status & STATUS_ASSOCIATED))
4106 return 0;
4108 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4109 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4110 &len);
4111 if (err) {
4112 IPW_DEBUG_INFO("failed querying ordinals.\n");
4113 return 0;
4115 } else
4116 return ipw_get_max_rate(priv);
4118 switch (rate) {
4119 case IPW_TX_RATE_1MB:
4120 return 1000000;
4121 case IPW_TX_RATE_2MB:
4122 return 2000000;
4123 case IPW_TX_RATE_5MB:
4124 return 5500000;
4125 case IPW_TX_RATE_6MB:
4126 return 6000000;
4127 case IPW_TX_RATE_9MB:
4128 return 9000000;
4129 case IPW_TX_RATE_11MB:
4130 return 11000000;
4131 case IPW_TX_RATE_12MB:
4132 return 12000000;
4133 case IPW_TX_RATE_18MB:
4134 return 18000000;
4135 case IPW_TX_RATE_24MB:
4136 return 24000000;
4137 case IPW_TX_RATE_36MB:
4138 return 36000000;
4139 case IPW_TX_RATE_48MB:
4140 return 48000000;
4141 case IPW_TX_RATE_54MB:
4142 return 54000000;
4145 return 0;
4148 #define IPW_STATS_INTERVAL (2 * HZ)
4149 static void ipw_gather_stats(struct ipw_priv *priv)
4151 u32 rx_err, rx_err_delta, rx_packets_delta;
4152 u32 tx_failures, tx_failures_delta, tx_packets_delta;
4153 u32 missed_beacons_percent, missed_beacons_delta;
4154 u32 quality = 0;
4155 u32 len = sizeof(u32);
4156 s16 rssi;
4157 u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4158 rate_quality;
4159 u32 max_rate;
4161 if (!(priv->status & STATUS_ASSOCIATED)) {
4162 priv->quality = 0;
4163 return;
4166 /* Update the statistics */
4167 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4168 &priv->missed_beacons, &len);
4169 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4170 priv->last_missed_beacons = priv->missed_beacons;
4171 if (priv->assoc_request.beacon_interval) {
4172 missed_beacons_percent = missed_beacons_delta *
4173 (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4174 (IPW_STATS_INTERVAL * 10);
4175 } else {
4176 missed_beacons_percent = 0;
4178 average_add(&priv->average_missed_beacons, missed_beacons_percent);
4180 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4181 rx_err_delta = rx_err - priv->last_rx_err;
4182 priv->last_rx_err = rx_err;
4184 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4185 tx_failures_delta = tx_failures - priv->last_tx_failures;
4186 priv->last_tx_failures = tx_failures;
4188 rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4189 priv->last_rx_packets = priv->rx_packets;
4191 tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4192 priv->last_tx_packets = priv->tx_packets;
4194 /* Calculate quality based on the following:
4196 * Missed beacon: 100% = 0, 0% = 70% missed
4197 * Rate: 60% = 1Mbs, 100% = Max
4198 * Rx and Tx errors represent a straight % of total Rx/Tx
4199 * RSSI: 100% = > -50, 0% = < -80
4200 * Rx errors: 100% = 0, 0% = 50% missed
4202 * The lowest computed quality is used.
4205 #define BEACON_THRESHOLD 5
4206 beacon_quality = 100 - missed_beacons_percent;
4207 if (beacon_quality < BEACON_THRESHOLD)
4208 beacon_quality = 0;
4209 else
4210 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4211 (100 - BEACON_THRESHOLD);
4212 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4213 beacon_quality, missed_beacons_percent);
4215 priv->last_rate = ipw_get_current_rate(priv);
4216 max_rate = ipw_get_max_rate(priv);
4217 rate_quality = priv->last_rate * 40 / max_rate + 60;
4218 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4219 rate_quality, priv->last_rate / 1000000);
4221 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4222 rx_quality = 100 - (rx_err_delta * 100) /
4223 (rx_packets_delta + rx_err_delta);
4224 else
4225 rx_quality = 100;
4226 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4227 rx_quality, rx_err_delta, rx_packets_delta);
4229 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4230 tx_quality = 100 - (tx_failures_delta * 100) /
4231 (tx_packets_delta + tx_failures_delta);
4232 else
4233 tx_quality = 100;
4234 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4235 tx_quality, tx_failures_delta, tx_packets_delta);
4237 rssi = priv->exp_avg_rssi;
4238 signal_quality =
4239 (100 *
4240 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4241 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4242 (priv->ieee->perfect_rssi - rssi) *
4243 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4244 62 * (priv->ieee->perfect_rssi - rssi))) /
4245 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4246 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4247 if (signal_quality > 100)
4248 signal_quality = 100;
4249 else if (signal_quality < 1)
4250 signal_quality = 0;
4252 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4253 signal_quality, rssi);
4255 quality = min(beacon_quality,
4256 min(rate_quality,
4257 min(tx_quality, min(rx_quality, signal_quality))));
4258 if (quality == beacon_quality)
4259 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4260 quality);
4261 if (quality == rate_quality)
4262 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4263 quality);
4264 if (quality == tx_quality)
4265 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4266 quality);
4267 if (quality == rx_quality)
4268 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4269 quality);
4270 if (quality == signal_quality)
4271 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4272 quality);
4274 priv->quality = quality;
4276 queue_delayed_work(priv->workqueue, &priv->gather_stats,
4277 IPW_STATS_INTERVAL);
4280 static void ipw_bg_gather_stats(struct work_struct *work)
4282 struct ipw_priv *priv =
4283 container_of(work, struct ipw_priv, gather_stats.work);
4284 mutex_lock(&priv->mutex);
4285 ipw_gather_stats(priv);
4286 mutex_unlock(&priv->mutex);
4289 /* Missed beacon behavior:
4290 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4291 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4292 * Above disassociate threshold, give up and stop scanning.
4293 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
4294 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4295 int missed_count)
4297 priv->notif_missed_beacons = missed_count;
4299 if (missed_count > priv->disassociate_threshold &&
4300 priv->status & STATUS_ASSOCIATED) {
4301 /* If associated and we've hit the missed
4302 * beacon threshold, disassociate, turn
4303 * off roaming, and abort any active scans */
4304 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4305 IPW_DL_STATE | IPW_DL_ASSOC,
4306 "Missed beacon: %d - disassociate\n", missed_count);
4307 priv->status &= ~STATUS_ROAMING;
4308 if (priv->status & STATUS_SCANNING) {
4309 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4310 IPW_DL_STATE,
4311 "Aborting scan with missed beacon.\n");
4312 queue_work(priv->workqueue, &priv->abort_scan);
4315 queue_work(priv->workqueue, &priv->disassociate);
4316 return;
4319 if (priv->status & STATUS_ROAMING) {
4320 /* If we are currently roaming, then just
4321 * print a debug statement... */
4322 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4323 "Missed beacon: %d - roam in progress\n",
4324 missed_count);
4325 return;
4328 if (roaming &&
4329 (missed_count > priv->roaming_threshold &&
4330 missed_count <= priv->disassociate_threshold)) {
4331 /* If we are not already roaming, set the ROAM
4332 * bit in the status and kick off a scan.
4333 * This can happen several times before we reach
4334 * disassociate_threshold. */
4335 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4336 "Missed beacon: %d - initiate "
4337 "roaming\n", missed_count);
4338 if (!(priv->status & STATUS_ROAMING)) {
4339 priv->status |= STATUS_ROAMING;
4340 if (!(priv->status & STATUS_SCANNING))
4341 queue_delayed_work(priv->workqueue,
4342 &priv->request_scan, 0);
4344 return;
4347 if (priv->status & STATUS_SCANNING) {
4348 /* Stop scan to keep fw from getting
4349 * stuck (only if we aren't roaming --
4350 * otherwise we'll never scan more than 2 or 3
4351 * channels..) */
4352 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4353 "Aborting scan with missed beacon.\n");
4354 queue_work(priv->workqueue, &priv->abort_scan);
4357 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4360 static void ipw_scan_event(struct work_struct *work)
4362 union iwreq_data wrqu;
4364 struct ipw_priv *priv =
4365 container_of(work, struct ipw_priv, scan_event.work);
4367 wrqu.data.length = 0;
4368 wrqu.data.flags = 0;
4369 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4372 static void handle_scan_event(struct ipw_priv *priv)
4374 /* Only userspace-requested scan completion events go out immediately */
4375 if (!priv->user_requested_scan) {
4376 if (!delayed_work_pending(&priv->scan_event))
4377 queue_delayed_work(priv->workqueue, &priv->scan_event,
4378 round_jiffies_relative(msecs_to_jiffies(4000)));
4379 } else {
4380 union iwreq_data wrqu;
4382 priv->user_requested_scan = 0;
4383 cancel_delayed_work(&priv->scan_event);
4385 wrqu.data.length = 0;
4386 wrqu.data.flags = 0;
4387 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4392 * Handle host notification packet.
4393 * Called from interrupt routine
4395 static void ipw_rx_notification(struct ipw_priv *priv,
4396 struct ipw_rx_notification *notif)
4398 DECLARE_SSID_BUF(ssid);
4399 u16 size = le16_to_cpu(notif->size);
4400 notif->size = le16_to_cpu(notif->size);
4402 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4404 switch (notif->subtype) {
4405 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4406 struct notif_association *assoc = &notif->u.assoc;
4408 switch (assoc->state) {
4409 case CMAS_ASSOCIATED:{
4410 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4411 IPW_DL_ASSOC,
4412 "associated: '%s' %pM \n",
4413 print_ssid(ssid, priv->essid,
4414 priv->essid_len),
4415 priv->bssid);
4417 switch (priv->ieee->iw_mode) {
4418 case IW_MODE_INFRA:
4419 memcpy(priv->ieee->bssid,
4420 priv->bssid, ETH_ALEN);
4421 break;
4423 case IW_MODE_ADHOC:
4424 memcpy(priv->ieee->bssid,
4425 priv->bssid, ETH_ALEN);
4427 /* clear out the station table */
4428 priv->num_stations = 0;
4430 IPW_DEBUG_ASSOC
4431 ("queueing adhoc check\n");
4432 queue_delayed_work(priv->
4433 workqueue,
4434 &priv->
4435 adhoc_check,
4436 le16_to_cpu(priv->
4437 assoc_request.
4438 beacon_interval));
4439 break;
4442 priv->status &= ~STATUS_ASSOCIATING;
4443 priv->status |= STATUS_ASSOCIATED;
4444 queue_work(priv->workqueue,
4445 &priv->system_config);
4447 #ifdef CONFIG_IPW2200_QOS
4448 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4449 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4450 if ((priv->status & STATUS_AUTH) &&
4451 (IPW_GET_PACKET_STYPE(&notif->u.raw)
4452 == IEEE80211_STYPE_ASSOC_RESP)) {
4453 if ((sizeof
4454 (struct
4455 ieee80211_assoc_response)
4456 <= size)
4457 && (size <= 2314)) {
4458 struct
4459 ieee80211_rx_stats
4460 stats = {
4461 .len = size - 1,
4464 IPW_DEBUG_QOS
4465 ("QoS Associate "
4466 "size %d\n", size);
4467 ieee80211_rx_mgt(priv->
4468 ieee,
4469 (struct
4470 ieee80211_hdr_4addr
4472 &notif->u.raw, &stats);
4475 #endif
4477 schedule_work(&priv->link_up);
4479 break;
4482 case CMAS_AUTHENTICATED:{
4483 if (priv->
4484 status & (STATUS_ASSOCIATED |
4485 STATUS_AUTH)) {
4486 struct notif_authenticate *auth
4487 = &notif->u.auth;
4488 IPW_DEBUG(IPW_DL_NOTIF |
4489 IPW_DL_STATE |
4490 IPW_DL_ASSOC,
4491 "deauthenticated: '%s' "
4492 "%pM"
4493 ": (0x%04X) - %s \n",
4494 print_ssid(ssid,
4495 priv->
4496 essid,
4497 priv->
4498 essid_len),
4499 priv->bssid,
4500 le16_to_cpu(auth->status),
4501 ipw_get_status_code
4502 (le16_to_cpu
4503 (auth->status)));
4505 priv->status &=
4506 ~(STATUS_ASSOCIATING |
4507 STATUS_AUTH |
4508 STATUS_ASSOCIATED);
4510 schedule_work(&priv->link_down);
4511 break;
4514 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4515 IPW_DL_ASSOC,
4516 "authenticated: '%s' %pM\n",
4517 print_ssid(ssid, priv->essid,
4518 priv->essid_len),
4519 priv->bssid);
4520 break;
4523 case CMAS_INIT:{
4524 if (priv->status & STATUS_AUTH) {
4525 struct
4526 ieee80211_assoc_response
4527 *resp;
4528 resp =
4529 (struct
4530 ieee80211_assoc_response
4531 *)&notif->u.raw;
4532 IPW_DEBUG(IPW_DL_NOTIF |
4533 IPW_DL_STATE |
4534 IPW_DL_ASSOC,
4535 "association failed (0x%04X): %s\n",
4536 le16_to_cpu(resp->status),
4537 ipw_get_status_code
4538 (le16_to_cpu
4539 (resp->status)));
4542 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4543 IPW_DL_ASSOC,
4544 "disassociated: '%s' %pM \n",
4545 print_ssid(ssid, priv->essid,
4546 priv->essid_len),
4547 priv->bssid);
4549 priv->status &=
4550 ~(STATUS_DISASSOCIATING |
4551 STATUS_ASSOCIATING |
4552 STATUS_ASSOCIATED | STATUS_AUTH);
4553 if (priv->assoc_network
4554 && (priv->assoc_network->
4555 capability &
4556 WLAN_CAPABILITY_IBSS))
4557 ipw_remove_current_network
4558 (priv);
4560 schedule_work(&priv->link_down);
4562 break;
4565 case CMAS_RX_ASSOC_RESP:
4566 break;
4568 default:
4569 IPW_ERROR("assoc: unknown (%d)\n",
4570 assoc->state);
4571 break;
4574 break;
4577 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4578 struct notif_authenticate *auth = &notif->u.auth;
4579 switch (auth->state) {
4580 case CMAS_AUTHENTICATED:
4581 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4582 "authenticated: '%s' %pM \n",
4583 print_ssid(ssid, priv->essid,
4584 priv->essid_len),
4585 priv->bssid);
4586 priv->status |= STATUS_AUTH;
4587 break;
4589 case CMAS_INIT:
4590 if (priv->status & STATUS_AUTH) {
4591 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4592 IPW_DL_ASSOC,
4593 "authentication failed (0x%04X): %s\n",
4594 le16_to_cpu(auth->status),
4595 ipw_get_status_code(le16_to_cpu
4596 (auth->
4597 status)));
4599 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4600 IPW_DL_ASSOC,
4601 "deauthenticated: '%s' %pM\n",
4602 print_ssid(ssid, priv->essid,
4603 priv->essid_len),
4604 priv->bssid);
4606 priv->status &= ~(STATUS_ASSOCIATING |
4607 STATUS_AUTH |
4608 STATUS_ASSOCIATED);
4610 schedule_work(&priv->link_down);
4611 break;
4613 case CMAS_TX_AUTH_SEQ_1:
4614 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4615 IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4616 break;
4617 case CMAS_RX_AUTH_SEQ_2:
4618 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4619 IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4620 break;
4621 case CMAS_AUTH_SEQ_1_PASS:
4622 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4623 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4624 break;
4625 case CMAS_AUTH_SEQ_1_FAIL:
4626 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4627 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4628 break;
4629 case CMAS_TX_AUTH_SEQ_3:
4630 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4631 IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4632 break;
4633 case CMAS_RX_AUTH_SEQ_4:
4634 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4635 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4636 break;
4637 case CMAS_AUTH_SEQ_2_PASS:
4638 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4639 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4640 break;
4641 case CMAS_AUTH_SEQ_2_FAIL:
4642 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4643 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4644 break;
4645 case CMAS_TX_ASSOC:
4646 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4647 IPW_DL_ASSOC, "TX_ASSOC\n");
4648 break;
4649 case CMAS_RX_ASSOC_RESP:
4650 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4651 IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4653 break;
4654 case CMAS_ASSOCIATED:
4655 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4656 IPW_DL_ASSOC, "ASSOCIATED\n");
4657 break;
4658 default:
4659 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4660 auth->state);
4661 break;
4663 break;
4666 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4667 struct notif_channel_result *x =
4668 &notif->u.channel_result;
4670 if (size == sizeof(*x)) {
4671 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4672 x->channel_num);
4673 } else {
4674 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4675 "(should be %zd)\n",
4676 size, sizeof(*x));
4678 break;
4681 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4682 struct notif_scan_complete *x = &notif->u.scan_complete;
4683 if (size == sizeof(*x)) {
4684 IPW_DEBUG_SCAN
4685 ("Scan completed: type %d, %d channels, "
4686 "%d status\n", x->scan_type,
4687 x->num_channels, x->status);
4688 } else {
4689 IPW_ERROR("Scan completed of wrong size %d "
4690 "(should be %zd)\n",
4691 size, sizeof(*x));
4694 priv->status &=
4695 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4697 wake_up_interruptible(&priv->wait_state);
4698 cancel_delayed_work(&priv->scan_check);
4700 if (priv->status & STATUS_EXIT_PENDING)
4701 break;
4703 priv->ieee->scans++;
4705 #ifdef CONFIG_IPW2200_MONITOR
4706 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4707 priv->status |= STATUS_SCAN_FORCED;
4708 queue_delayed_work(priv->workqueue,
4709 &priv->request_scan, 0);
4710 break;
4712 priv->status &= ~STATUS_SCAN_FORCED;
4713 #endif /* CONFIG_IPW2200_MONITOR */
4715 /* Do queued direct scans first */
4716 if (priv->status & STATUS_DIRECT_SCAN_PENDING) {
4717 queue_delayed_work(priv->workqueue,
4718 &priv->request_direct_scan, 0);
4721 if (!(priv->status & (STATUS_ASSOCIATED |
4722 STATUS_ASSOCIATING |
4723 STATUS_ROAMING |
4724 STATUS_DISASSOCIATING)))
4725 queue_work(priv->workqueue, &priv->associate);
4726 else if (priv->status & STATUS_ROAMING) {
4727 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4728 /* If a scan completed and we are in roam mode, then
4729 * the scan that completed was the one requested as a
4730 * result of entering roam... so, schedule the
4731 * roam work */
4732 queue_work(priv->workqueue,
4733 &priv->roam);
4734 else
4735 /* Don't schedule if we aborted the scan */
4736 priv->status &= ~STATUS_ROAMING;
4737 } else if (priv->status & STATUS_SCAN_PENDING)
4738 queue_delayed_work(priv->workqueue,
4739 &priv->request_scan, 0);
4740 else if (priv->config & CFG_BACKGROUND_SCAN
4741 && priv->status & STATUS_ASSOCIATED)
4742 queue_delayed_work(priv->workqueue,
4743 &priv->request_scan,
4744 round_jiffies_relative(HZ));
4746 /* Send an empty event to user space.
4747 * We don't send the received data on the event because
4748 * it would require us to do complex transcoding, and
4749 * we want to minimise the work done in the irq handler
4750 * Use a request to extract the data.
4751 * Also, we generate this even for any scan, regardless
4752 * on how the scan was initiated. User space can just
4753 * sync on periodic scan to get fresh data...
4754 * Jean II */
4755 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4756 handle_scan_event(priv);
4757 break;
4760 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4761 struct notif_frag_length *x = &notif->u.frag_len;
4763 if (size == sizeof(*x))
4764 IPW_ERROR("Frag length: %d\n",
4765 le16_to_cpu(x->frag_length));
4766 else
4767 IPW_ERROR("Frag length of wrong size %d "
4768 "(should be %zd)\n",
4769 size, sizeof(*x));
4770 break;
4773 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4774 struct notif_link_deterioration *x =
4775 &notif->u.link_deterioration;
4777 if (size == sizeof(*x)) {
4778 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4779 "link deterioration: type %d, cnt %d\n",
4780 x->silence_notification_type,
4781 x->silence_count);
4782 memcpy(&priv->last_link_deterioration, x,
4783 sizeof(*x));
4784 } else {
4785 IPW_ERROR("Link Deterioration of wrong size %d "
4786 "(should be %zd)\n",
4787 size, sizeof(*x));
4789 break;
4792 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4793 IPW_ERROR("Dino config\n");
4794 if (priv->hcmd
4795 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4796 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4798 break;
4801 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4802 struct notif_beacon_state *x = &notif->u.beacon_state;
4803 if (size != sizeof(*x)) {
4804 IPW_ERROR
4805 ("Beacon state of wrong size %d (should "
4806 "be %zd)\n", size, sizeof(*x));
4807 break;
4810 if (le32_to_cpu(x->state) ==
4811 HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4812 ipw_handle_missed_beacon(priv,
4813 le32_to_cpu(x->
4814 number));
4816 break;
4819 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4820 struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4821 if (size == sizeof(*x)) {
4822 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4823 "0x%02x station %d\n",
4824 x->key_state, x->security_type,
4825 x->station_index);
4826 break;
4829 IPW_ERROR
4830 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4831 size, sizeof(*x));
4832 break;
4835 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4836 struct notif_calibration *x = &notif->u.calibration;
4838 if (size == sizeof(*x)) {
4839 memcpy(&priv->calib, x, sizeof(*x));
4840 IPW_DEBUG_INFO("TODO: Calibration\n");
4841 break;
4844 IPW_ERROR
4845 ("Calibration of wrong size %d (should be %zd)\n",
4846 size, sizeof(*x));
4847 break;
4850 case HOST_NOTIFICATION_NOISE_STATS:{
4851 if (size == sizeof(u32)) {
4852 priv->exp_avg_noise =
4853 exponential_average(priv->exp_avg_noise,
4854 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4855 DEPTH_NOISE);
4856 break;
4859 IPW_ERROR
4860 ("Noise stat is wrong size %d (should be %zd)\n",
4861 size, sizeof(u32));
4862 break;
4865 default:
4866 IPW_DEBUG_NOTIF("Unknown notification: "
4867 "subtype=%d,flags=0x%2x,size=%d\n",
4868 notif->subtype, notif->flags, size);
4873 * Destroys all DMA structures and initialise them again
4875 * @param priv
4876 * @return error code
4878 static int ipw_queue_reset(struct ipw_priv *priv)
4880 int rc = 0;
4881 /** @todo customize queue sizes */
4882 int nTx = 64, nTxCmd = 8;
4883 ipw_tx_queue_free(priv);
4884 /* Tx CMD queue */
4885 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4886 IPW_TX_CMD_QUEUE_READ_INDEX,
4887 IPW_TX_CMD_QUEUE_WRITE_INDEX,
4888 IPW_TX_CMD_QUEUE_BD_BASE,
4889 IPW_TX_CMD_QUEUE_BD_SIZE);
4890 if (rc) {
4891 IPW_ERROR("Tx Cmd queue init failed\n");
4892 goto error;
4894 /* Tx queue(s) */
4895 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4896 IPW_TX_QUEUE_0_READ_INDEX,
4897 IPW_TX_QUEUE_0_WRITE_INDEX,
4898 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4899 if (rc) {
4900 IPW_ERROR("Tx 0 queue init failed\n");
4901 goto error;
4903 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4904 IPW_TX_QUEUE_1_READ_INDEX,
4905 IPW_TX_QUEUE_1_WRITE_INDEX,
4906 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4907 if (rc) {
4908 IPW_ERROR("Tx 1 queue init failed\n");
4909 goto error;
4911 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4912 IPW_TX_QUEUE_2_READ_INDEX,
4913 IPW_TX_QUEUE_2_WRITE_INDEX,
4914 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4915 if (rc) {
4916 IPW_ERROR("Tx 2 queue init failed\n");
4917 goto error;
4919 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4920 IPW_TX_QUEUE_3_READ_INDEX,
4921 IPW_TX_QUEUE_3_WRITE_INDEX,
4922 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4923 if (rc) {
4924 IPW_ERROR("Tx 3 queue init failed\n");
4925 goto error;
4927 /* statistics */
4928 priv->rx_bufs_min = 0;
4929 priv->rx_pend_max = 0;
4930 return rc;
4932 error:
4933 ipw_tx_queue_free(priv);
4934 return rc;
4938 * Reclaim Tx queue entries no more used by NIC.
4940 * When FW advances 'R' index, all entries between old and
4941 * new 'R' index need to be reclaimed. As result, some free space
4942 * forms. If there is enough free space (> low mark), wake Tx queue.
4944 * @note Need to protect against garbage in 'R' index
4945 * @param priv
4946 * @param txq
4947 * @param qindex
4948 * @return Number of used entries remains in the queue
4950 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4951 struct clx2_tx_queue *txq, int qindex)
4953 u32 hw_tail;
4954 int used;
4955 struct clx2_queue *q = &txq->q;
4957 hw_tail = ipw_read32(priv, q->reg_r);
4958 if (hw_tail >= q->n_bd) {
4959 IPW_ERROR
4960 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4961 hw_tail, q->n_bd);
4962 goto done;
4964 for (; q->last_used != hw_tail;
4965 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4966 ipw_queue_tx_free_tfd(priv, txq);
4967 priv->tx_packets++;
4969 done:
4970 if ((ipw_tx_queue_space(q) > q->low_mark) &&
4971 (qindex >= 0))
4972 netif_wake_queue(priv->net_dev);
4973 used = q->first_empty - q->last_used;
4974 if (used < 0)
4975 used += q->n_bd;
4977 return used;
4980 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4981 int len, int sync)
4983 struct clx2_tx_queue *txq = &priv->txq_cmd;
4984 struct clx2_queue *q = &txq->q;
4985 struct tfd_frame *tfd;
4987 if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
4988 IPW_ERROR("No space for Tx\n");
4989 return -EBUSY;
4992 tfd = &txq->bd[q->first_empty];
4993 txq->txb[q->first_empty] = NULL;
4995 memset(tfd, 0, sizeof(*tfd));
4996 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
4997 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
4998 priv->hcmd_seq++;
4999 tfd->u.cmd.index = hcmd;
5000 tfd->u.cmd.length = len;
5001 memcpy(tfd->u.cmd.payload, buf, len);
5002 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5003 ipw_write32(priv, q->reg_w, q->first_empty);
5004 _ipw_read32(priv, 0x90);
5006 return 0;
5010 * Rx theory of operation
5012 * The host allocates 32 DMA target addresses and passes the host address
5013 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5014 * 0 to 31
5016 * Rx Queue Indexes
5017 * The host/firmware share two index registers for managing the Rx buffers.
5019 * The READ index maps to the first position that the firmware may be writing
5020 * to -- the driver can read up to (but not including) this position and get
5021 * good data.
5022 * The READ index is managed by the firmware once the card is enabled.
5024 * The WRITE index maps to the last position the driver has read from -- the
5025 * position preceding WRITE is the last slot the firmware can place a packet.
5027 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5028 * WRITE = READ.
5030 * During initialization the host sets up the READ queue position to the first
5031 * INDEX position, and WRITE to the last (READ - 1 wrapped)
5033 * When the firmware places a packet in a buffer it will advance the READ index
5034 * and fire the RX interrupt. The driver can then query the READ index and
5035 * process as many packets as possible, moving the WRITE index forward as it
5036 * resets the Rx queue buffers with new memory.
5038 * The management in the driver is as follows:
5039 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
5040 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5041 * to replensish the ipw->rxq->rx_free.
5042 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5043 * ipw->rxq is replenished and the READ INDEX is updated (updating the
5044 * 'processed' and 'read' driver indexes as well)
5045 * + A received packet is processed and handed to the kernel network stack,
5046 * detached from the ipw->rxq. The driver 'processed' index is updated.
5047 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5048 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5049 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
5050 * were enough free buffers and RX_STALLED is set it is cleared.
5053 * Driver sequence:
5055 * ipw_rx_queue_alloc() Allocates rx_free
5056 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
5057 * ipw_rx_queue_restock
5058 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
5059 * queue, updates firmware pointers, and updates
5060 * the WRITE index. If insufficient rx_free buffers
5061 * are available, schedules ipw_rx_queue_replenish
5063 * -- enable interrupts --
5064 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
5065 * READ INDEX, detaching the SKB from the pool.
5066 * Moves the packet buffer from queue to rx_used.
5067 * Calls ipw_rx_queue_restock to refill any empty
5068 * slots.
5069 * ...
5074 * If there are slots in the RX queue that need to be restocked,
5075 * and we have free pre-allocated buffers, fill the ranks as much
5076 * as we can pulling from rx_free.
5078 * This moves the 'write' index forward to catch up with 'processed', and
5079 * also updates the memory address in the firmware to reference the new
5080 * target buffer.
5082 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5084 struct ipw_rx_queue *rxq = priv->rxq;
5085 struct list_head *element;
5086 struct ipw_rx_mem_buffer *rxb;
5087 unsigned long flags;
5088 int write;
5090 spin_lock_irqsave(&rxq->lock, flags);
5091 write = rxq->write;
5092 while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5093 element = rxq->rx_free.next;
5094 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5095 list_del(element);
5097 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5098 rxb->dma_addr);
5099 rxq->queue[rxq->write] = rxb;
5100 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5101 rxq->free_count--;
5103 spin_unlock_irqrestore(&rxq->lock, flags);
5105 /* If the pre-allocated buffer pool is dropping low, schedule to
5106 * refill it */
5107 if (rxq->free_count <= RX_LOW_WATERMARK)
5108 queue_work(priv->workqueue, &priv->rx_replenish);
5110 /* If we've added more space for the firmware to place data, tell it */
5111 if (write != rxq->write)
5112 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5116 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5117 * Also restock the Rx queue via ipw_rx_queue_restock.
5119 * This is called as a scheduled work item (except for during intialization)
5121 static void ipw_rx_queue_replenish(void *data)
5123 struct ipw_priv *priv = data;
5124 struct ipw_rx_queue *rxq = priv->rxq;
5125 struct list_head *element;
5126 struct ipw_rx_mem_buffer *rxb;
5127 unsigned long flags;
5129 spin_lock_irqsave(&rxq->lock, flags);
5130 while (!list_empty(&rxq->rx_used)) {
5131 element = rxq->rx_used.next;
5132 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5133 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5134 if (!rxb->skb) {
5135 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5136 priv->net_dev->name);
5137 /* We don't reschedule replenish work here -- we will
5138 * call the restock method and if it still needs
5139 * more buffers it will schedule replenish */
5140 break;
5142 list_del(element);
5144 rxb->dma_addr =
5145 pci_map_single(priv->pci_dev, rxb->skb->data,
5146 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5148 list_add_tail(&rxb->list, &rxq->rx_free);
5149 rxq->free_count++;
5151 spin_unlock_irqrestore(&rxq->lock, flags);
5153 ipw_rx_queue_restock(priv);
5156 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5158 struct ipw_priv *priv =
5159 container_of(work, struct ipw_priv, rx_replenish);
5160 mutex_lock(&priv->mutex);
5161 ipw_rx_queue_replenish(priv);
5162 mutex_unlock(&priv->mutex);
5165 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5166 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5167 * This free routine walks the list of POOL entries and if SKB is set to
5168 * non NULL it is unmapped and freed
5170 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5172 int i;
5174 if (!rxq)
5175 return;
5177 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5178 if (rxq->pool[i].skb != NULL) {
5179 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5180 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5181 dev_kfree_skb(rxq->pool[i].skb);
5185 kfree(rxq);
5188 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5190 struct ipw_rx_queue *rxq;
5191 int i;
5193 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5194 if (unlikely(!rxq)) {
5195 IPW_ERROR("memory allocation failed\n");
5196 return NULL;
5198 spin_lock_init(&rxq->lock);
5199 INIT_LIST_HEAD(&rxq->rx_free);
5200 INIT_LIST_HEAD(&rxq->rx_used);
5202 /* Fill the rx_used queue with _all_ of the Rx buffers */
5203 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5204 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5206 /* Set us so that we have processed and used all buffers, but have
5207 * not restocked the Rx queue with fresh buffers */
5208 rxq->read = rxq->write = 0;
5209 rxq->free_count = 0;
5211 return rxq;
5214 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5216 rate &= ~IEEE80211_BASIC_RATE_MASK;
5217 if (ieee_mode == IEEE_A) {
5218 switch (rate) {
5219 case IEEE80211_OFDM_RATE_6MB:
5220 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5221 1 : 0;
5222 case IEEE80211_OFDM_RATE_9MB:
5223 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5224 1 : 0;
5225 case IEEE80211_OFDM_RATE_12MB:
5226 return priv->
5227 rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5228 case IEEE80211_OFDM_RATE_18MB:
5229 return priv->
5230 rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5231 case IEEE80211_OFDM_RATE_24MB:
5232 return priv->
5233 rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5234 case IEEE80211_OFDM_RATE_36MB:
5235 return priv->
5236 rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5237 case IEEE80211_OFDM_RATE_48MB:
5238 return priv->
5239 rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5240 case IEEE80211_OFDM_RATE_54MB:
5241 return priv->
5242 rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5243 default:
5244 return 0;
5248 /* B and G mixed */
5249 switch (rate) {
5250 case IEEE80211_CCK_RATE_1MB:
5251 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5252 case IEEE80211_CCK_RATE_2MB:
5253 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5254 case IEEE80211_CCK_RATE_5MB:
5255 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5256 case IEEE80211_CCK_RATE_11MB:
5257 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5260 /* If we are limited to B modulations, bail at this point */
5261 if (ieee_mode == IEEE_B)
5262 return 0;
5264 /* G */
5265 switch (rate) {
5266 case IEEE80211_OFDM_RATE_6MB:
5267 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5268 case IEEE80211_OFDM_RATE_9MB:
5269 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5270 case IEEE80211_OFDM_RATE_12MB:
5271 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5272 case IEEE80211_OFDM_RATE_18MB:
5273 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5274 case IEEE80211_OFDM_RATE_24MB:
5275 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5276 case IEEE80211_OFDM_RATE_36MB:
5277 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5278 case IEEE80211_OFDM_RATE_48MB:
5279 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5280 case IEEE80211_OFDM_RATE_54MB:
5281 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5284 return 0;
5287 static int ipw_compatible_rates(struct ipw_priv *priv,
5288 const struct ieee80211_network *network,
5289 struct ipw_supported_rates *rates)
5291 int num_rates, i;
5293 memset(rates, 0, sizeof(*rates));
5294 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5295 rates->num_rates = 0;
5296 for (i = 0; i < num_rates; i++) {
5297 if (!ipw_is_rate_in_mask(priv, network->mode,
5298 network->rates[i])) {
5300 if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5301 IPW_DEBUG_SCAN("Adding masked mandatory "
5302 "rate %02X\n",
5303 network->rates[i]);
5304 rates->supported_rates[rates->num_rates++] =
5305 network->rates[i];
5306 continue;
5309 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5310 network->rates[i], priv->rates_mask);
5311 continue;
5314 rates->supported_rates[rates->num_rates++] = network->rates[i];
5317 num_rates = min(network->rates_ex_len,
5318 (u8) (IPW_MAX_RATES - num_rates));
5319 for (i = 0; i < num_rates; i++) {
5320 if (!ipw_is_rate_in_mask(priv, network->mode,
5321 network->rates_ex[i])) {
5322 if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5323 IPW_DEBUG_SCAN("Adding masked mandatory "
5324 "rate %02X\n",
5325 network->rates_ex[i]);
5326 rates->supported_rates[rates->num_rates++] =
5327 network->rates[i];
5328 continue;
5331 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5332 network->rates_ex[i], priv->rates_mask);
5333 continue;
5336 rates->supported_rates[rates->num_rates++] =
5337 network->rates_ex[i];
5340 return 1;
5343 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5344 const struct ipw_supported_rates *src)
5346 u8 i;
5347 for (i = 0; i < src->num_rates; i++)
5348 dest->supported_rates[i] = src->supported_rates[i];
5349 dest->num_rates = src->num_rates;
5352 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5353 * mask should ever be used -- right now all callers to add the scan rates are
5354 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5355 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5356 u8 modulation, u32 rate_mask)
5358 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5359 IEEE80211_BASIC_RATE_MASK : 0;
5361 if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5362 rates->supported_rates[rates->num_rates++] =
5363 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5365 if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5366 rates->supported_rates[rates->num_rates++] =
5367 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5369 if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5370 rates->supported_rates[rates->num_rates++] = basic_mask |
5371 IEEE80211_CCK_RATE_5MB;
5373 if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5374 rates->supported_rates[rates->num_rates++] = basic_mask |
5375 IEEE80211_CCK_RATE_11MB;
5378 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5379 u8 modulation, u32 rate_mask)
5381 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5382 IEEE80211_BASIC_RATE_MASK : 0;
5384 if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5385 rates->supported_rates[rates->num_rates++] = basic_mask |
5386 IEEE80211_OFDM_RATE_6MB;
5388 if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5389 rates->supported_rates[rates->num_rates++] =
5390 IEEE80211_OFDM_RATE_9MB;
5392 if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5393 rates->supported_rates[rates->num_rates++] = basic_mask |
5394 IEEE80211_OFDM_RATE_12MB;
5396 if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5397 rates->supported_rates[rates->num_rates++] =
5398 IEEE80211_OFDM_RATE_18MB;
5400 if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5401 rates->supported_rates[rates->num_rates++] = basic_mask |
5402 IEEE80211_OFDM_RATE_24MB;
5404 if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5405 rates->supported_rates[rates->num_rates++] =
5406 IEEE80211_OFDM_RATE_36MB;
5408 if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5409 rates->supported_rates[rates->num_rates++] =
5410 IEEE80211_OFDM_RATE_48MB;
5412 if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5413 rates->supported_rates[rates->num_rates++] =
5414 IEEE80211_OFDM_RATE_54MB;
5417 struct ipw_network_match {
5418 struct ieee80211_network *network;
5419 struct ipw_supported_rates rates;
5422 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5423 struct ipw_network_match *match,
5424 struct ieee80211_network *network,
5425 int roaming)
5427 struct ipw_supported_rates rates;
5428 DECLARE_SSID_BUF(ssid);
5430 /* Verify that this network's capability is compatible with the
5431 * current mode (AdHoc or Infrastructure) */
5432 if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5433 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5434 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded due to "
5435 "capability mismatch.\n",
5436 print_ssid(ssid, network->ssid,
5437 network->ssid_len),
5438 network->bssid);
5439 return 0;
5442 if (unlikely(roaming)) {
5443 /* If we are roaming, then ensure check if this is a valid
5444 * network to try and roam to */
5445 if ((network->ssid_len != match->network->ssid_len) ||
5446 memcmp(network->ssid, match->network->ssid,
5447 network->ssid_len)) {
5448 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5449 "because of non-network ESSID.\n",
5450 print_ssid(ssid, network->ssid,
5451 network->ssid_len),
5452 network->bssid);
5453 return 0;
5455 } else {
5456 /* If an ESSID has been configured then compare the broadcast
5457 * ESSID to ours */
5458 if ((priv->config & CFG_STATIC_ESSID) &&
5459 ((network->ssid_len != priv->essid_len) ||
5460 memcmp(network->ssid, priv->essid,
5461 min(network->ssid_len, priv->essid_len)))) {
5462 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5464 strncpy(escaped,
5465 print_ssid(ssid, network->ssid,
5466 network->ssid_len),
5467 sizeof(escaped));
5468 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5469 "because of ESSID mismatch: '%s'.\n",
5470 escaped, network->bssid,
5471 print_ssid(ssid, priv->essid,
5472 priv->essid_len));
5473 return 0;
5477 /* If the old network rate is better than this one, don't bother
5478 * testing everything else. */
5480 if (network->time_stamp[0] < match->network->time_stamp[0]) {
5481 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5482 "current network.\n",
5483 print_ssid(ssid, match->network->ssid,
5484 match->network->ssid_len));
5485 return 0;
5486 } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5487 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5488 "current network.\n",
5489 print_ssid(ssid, match->network->ssid,
5490 match->network->ssid_len));
5491 return 0;
5494 /* Now go through and see if the requested network is valid... */
5495 if (priv->ieee->scan_age != 0 &&
5496 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5497 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5498 "because of age: %ums.\n",
5499 print_ssid(ssid, network->ssid,
5500 network->ssid_len),
5501 network->bssid,
5502 jiffies_to_msecs(jiffies -
5503 network->last_scanned));
5504 return 0;
5507 if ((priv->config & CFG_STATIC_CHANNEL) &&
5508 (network->channel != priv->channel)) {
5509 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5510 "because of channel mismatch: %d != %d.\n",
5511 print_ssid(ssid, network->ssid,
5512 network->ssid_len),
5513 network->bssid,
5514 network->channel, priv->channel);
5515 return 0;
5518 /* Verify privacy compatability */
5519 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5520 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5521 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5522 "because of privacy mismatch: %s != %s.\n",
5523 print_ssid(ssid, network->ssid,
5524 network->ssid_len),
5525 network->bssid,
5526 priv->
5527 capability & CAP_PRIVACY_ON ? "on" : "off",
5528 network->
5529 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5530 "off");
5531 return 0;
5534 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5535 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5536 "because of the same BSSID match: %pM"
5537 ".\n", print_ssid(ssid, network->ssid,
5538 network->ssid_len),
5539 network->bssid,
5540 priv->bssid);
5541 return 0;
5544 /* Filter out any incompatible freq / mode combinations */
5545 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5546 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5547 "because of invalid frequency/mode "
5548 "combination.\n",
5549 print_ssid(ssid, network->ssid,
5550 network->ssid_len),
5551 network->bssid);
5552 return 0;
5555 /* Ensure that the rates supported by the driver are compatible with
5556 * this AP, including verification of basic rates (mandatory) */
5557 if (!ipw_compatible_rates(priv, network, &rates)) {
5558 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5559 "because configured rate mask excludes "
5560 "AP mandatory rate.\n",
5561 print_ssid(ssid, network->ssid,
5562 network->ssid_len),
5563 network->bssid);
5564 return 0;
5567 if (rates.num_rates == 0) {
5568 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5569 "because of no compatible rates.\n",
5570 print_ssid(ssid, network->ssid,
5571 network->ssid_len),
5572 network->bssid);
5573 return 0;
5576 /* TODO: Perform any further minimal comparititive tests. We do not
5577 * want to put too much policy logic here; intelligent scan selection
5578 * should occur within a generic IEEE 802.11 user space tool. */
5580 /* Set up 'new' AP to this network */
5581 ipw_copy_rates(&match->rates, &rates);
5582 match->network = network;
5583 IPW_DEBUG_MERGE("Network '%s (%pM)' is a viable match.\n",
5584 print_ssid(ssid, network->ssid, network->ssid_len),
5585 network->bssid);
5587 return 1;
5590 static void ipw_merge_adhoc_network(struct work_struct *work)
5592 DECLARE_SSID_BUF(ssid);
5593 struct ipw_priv *priv =
5594 container_of(work, struct ipw_priv, merge_networks);
5595 struct ieee80211_network *network = NULL;
5596 struct ipw_network_match match = {
5597 .network = priv->assoc_network
5600 if ((priv->status & STATUS_ASSOCIATED) &&
5601 (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5602 /* First pass through ROAM process -- look for a better
5603 * network */
5604 unsigned long flags;
5606 spin_lock_irqsave(&priv->ieee->lock, flags);
5607 list_for_each_entry(network, &priv->ieee->network_list, list) {
5608 if (network != priv->assoc_network)
5609 ipw_find_adhoc_network(priv, &match, network,
5612 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5614 if (match.network == priv->assoc_network) {
5615 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5616 "merge to.\n");
5617 return;
5620 mutex_lock(&priv->mutex);
5621 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5622 IPW_DEBUG_MERGE("remove network %s\n",
5623 print_ssid(ssid, priv->essid,
5624 priv->essid_len));
5625 ipw_remove_current_network(priv);
5628 ipw_disassociate(priv);
5629 priv->assoc_network = match.network;
5630 mutex_unlock(&priv->mutex);
5631 return;
5635 static int ipw_best_network(struct ipw_priv *priv,
5636 struct ipw_network_match *match,
5637 struct ieee80211_network *network, int roaming)
5639 struct ipw_supported_rates rates;
5640 DECLARE_SSID_BUF(ssid);
5642 /* Verify that this network's capability is compatible with the
5643 * current mode (AdHoc or Infrastructure) */
5644 if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5645 !(network->capability & WLAN_CAPABILITY_ESS)) ||
5646 (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5647 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5648 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded due to "
5649 "capability mismatch.\n",
5650 print_ssid(ssid, network->ssid,
5651 network->ssid_len),
5652 network->bssid);
5653 return 0;
5656 if (unlikely(roaming)) {
5657 /* If we are roaming, then ensure check if this is a valid
5658 * network to try and roam to */
5659 if ((network->ssid_len != match->network->ssid_len) ||
5660 memcmp(network->ssid, match->network->ssid,
5661 network->ssid_len)) {
5662 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5663 "because of non-network ESSID.\n",
5664 print_ssid(ssid, network->ssid,
5665 network->ssid_len),
5666 network->bssid);
5667 return 0;
5669 } else {
5670 /* If an ESSID has been configured then compare the broadcast
5671 * ESSID to ours */
5672 if ((priv->config & CFG_STATIC_ESSID) &&
5673 ((network->ssid_len != priv->essid_len) ||
5674 memcmp(network->ssid, priv->essid,
5675 min(network->ssid_len, priv->essid_len)))) {
5676 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5677 strncpy(escaped,
5678 print_ssid(ssid, network->ssid,
5679 network->ssid_len),
5680 sizeof(escaped));
5681 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5682 "because of ESSID mismatch: '%s'.\n",
5683 escaped, network->bssid,
5684 print_ssid(ssid, priv->essid,
5685 priv->essid_len));
5686 return 0;
5690 /* If the old network rate is better than this one, don't bother
5691 * testing everything else. */
5692 if (match->network && match->network->stats.rssi > network->stats.rssi) {
5693 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5694 strncpy(escaped,
5695 print_ssid(ssid, network->ssid, network->ssid_len),
5696 sizeof(escaped));
5697 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded because "
5698 "'%s (%pM)' has a stronger signal.\n",
5699 escaped, network->bssid,
5700 print_ssid(ssid, match->network->ssid,
5701 match->network->ssid_len),
5702 match->network->bssid);
5703 return 0;
5706 /* If this network has already had an association attempt within the
5707 * last 3 seconds, do not try and associate again... */
5708 if (network->last_associate &&
5709 time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5710 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5711 "because of storming (%ums since last "
5712 "assoc attempt).\n",
5713 print_ssid(ssid, network->ssid,
5714 network->ssid_len),
5715 network->bssid,
5716 jiffies_to_msecs(jiffies -
5717 network->last_associate));
5718 return 0;
5721 /* Now go through and see if the requested network is valid... */
5722 if (priv->ieee->scan_age != 0 &&
5723 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5724 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5725 "because of age: %ums.\n",
5726 print_ssid(ssid, network->ssid,
5727 network->ssid_len),
5728 network->bssid,
5729 jiffies_to_msecs(jiffies -
5730 network->last_scanned));
5731 return 0;
5734 if ((priv->config & CFG_STATIC_CHANNEL) &&
5735 (network->channel != priv->channel)) {
5736 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5737 "because of channel mismatch: %d != %d.\n",
5738 print_ssid(ssid, network->ssid,
5739 network->ssid_len),
5740 network->bssid,
5741 network->channel, priv->channel);
5742 return 0;
5745 /* Verify privacy compatability */
5746 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5747 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5748 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5749 "because of privacy mismatch: %s != %s.\n",
5750 print_ssid(ssid, network->ssid,
5751 network->ssid_len),
5752 network->bssid,
5753 priv->capability & CAP_PRIVACY_ON ? "on" :
5754 "off",
5755 network->capability &
5756 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5757 return 0;
5760 if ((priv->config & CFG_STATIC_BSSID) &&
5761 memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5762 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5763 "because of BSSID mismatch: %pM.\n",
5764 print_ssid(ssid, network->ssid,
5765 network->ssid_len),
5766 network->bssid, priv->bssid);
5767 return 0;
5770 /* Filter out any incompatible freq / mode combinations */
5771 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5772 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5773 "because of invalid frequency/mode "
5774 "combination.\n",
5775 print_ssid(ssid, network->ssid,
5776 network->ssid_len),
5777 network->bssid);
5778 return 0;
5781 /* Filter out invalid channel in current GEO */
5782 if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5783 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5784 "because of invalid channel in current GEO\n",
5785 print_ssid(ssid, network->ssid,
5786 network->ssid_len),
5787 network->bssid);
5788 return 0;
5791 /* Ensure that the rates supported by the driver are compatible with
5792 * this AP, including verification of basic rates (mandatory) */
5793 if (!ipw_compatible_rates(priv, network, &rates)) {
5794 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5795 "because configured rate mask excludes "
5796 "AP mandatory rate.\n",
5797 print_ssid(ssid, network->ssid,
5798 network->ssid_len),
5799 network->bssid);
5800 return 0;
5803 if (rates.num_rates == 0) {
5804 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5805 "because of no compatible rates.\n",
5806 print_ssid(ssid, network->ssid,
5807 network->ssid_len),
5808 network->bssid);
5809 return 0;
5812 /* TODO: Perform any further minimal comparititive tests. We do not
5813 * want to put too much policy logic here; intelligent scan selection
5814 * should occur within a generic IEEE 802.11 user space tool. */
5816 /* Set up 'new' AP to this network */
5817 ipw_copy_rates(&match->rates, &rates);
5818 match->network = network;
5820 IPW_DEBUG_ASSOC("Network '%s (%pM)' is a viable match.\n",
5821 print_ssid(ssid, network->ssid, network->ssid_len),
5822 network->bssid);
5824 return 1;
5827 static void ipw_adhoc_create(struct ipw_priv *priv,
5828 struct ieee80211_network *network)
5830 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5831 int i;
5834 * For the purposes of scanning, we can set our wireless mode
5835 * to trigger scans across combinations of bands, but when it
5836 * comes to creating a new ad-hoc network, we have tell the FW
5837 * exactly which band to use.
5839 * We also have the possibility of an invalid channel for the
5840 * chossen band. Attempting to create a new ad-hoc network
5841 * with an invalid channel for wireless mode will trigger a
5842 * FW fatal error.
5845 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5846 case IEEE80211_52GHZ_BAND:
5847 network->mode = IEEE_A;
5848 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5849 BUG_ON(i == -1);
5850 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5851 IPW_WARNING("Overriding invalid channel\n");
5852 priv->channel = geo->a[0].channel;
5854 break;
5856 case IEEE80211_24GHZ_BAND:
5857 if (priv->ieee->mode & IEEE_G)
5858 network->mode = IEEE_G;
5859 else
5860 network->mode = IEEE_B;
5861 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5862 BUG_ON(i == -1);
5863 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5864 IPW_WARNING("Overriding invalid channel\n");
5865 priv->channel = geo->bg[0].channel;
5867 break;
5869 default:
5870 IPW_WARNING("Overriding invalid channel\n");
5871 if (priv->ieee->mode & IEEE_A) {
5872 network->mode = IEEE_A;
5873 priv->channel = geo->a[0].channel;
5874 } else if (priv->ieee->mode & IEEE_G) {
5875 network->mode = IEEE_G;
5876 priv->channel = geo->bg[0].channel;
5877 } else {
5878 network->mode = IEEE_B;
5879 priv->channel = geo->bg[0].channel;
5881 break;
5884 network->channel = priv->channel;
5885 priv->config |= CFG_ADHOC_PERSIST;
5886 ipw_create_bssid(priv, network->bssid);
5887 network->ssid_len = priv->essid_len;
5888 memcpy(network->ssid, priv->essid, priv->essid_len);
5889 memset(&network->stats, 0, sizeof(network->stats));
5890 network->capability = WLAN_CAPABILITY_IBSS;
5891 if (!(priv->config & CFG_PREAMBLE_LONG))
5892 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5893 if (priv->capability & CAP_PRIVACY_ON)
5894 network->capability |= WLAN_CAPABILITY_PRIVACY;
5895 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5896 memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5897 network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5898 memcpy(network->rates_ex,
5899 &priv->rates.supported_rates[network->rates_len],
5900 network->rates_ex_len);
5901 network->last_scanned = 0;
5902 network->flags = 0;
5903 network->last_associate = 0;
5904 network->time_stamp[0] = 0;
5905 network->time_stamp[1] = 0;
5906 network->beacon_interval = 100; /* Default */
5907 network->listen_interval = 10; /* Default */
5908 network->atim_window = 0; /* Default */
5909 network->wpa_ie_len = 0;
5910 network->rsn_ie_len = 0;
5913 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5915 struct ipw_tgi_tx_key key;
5917 if (!(priv->ieee->sec.flags & (1 << index)))
5918 return;
5920 key.key_id = index;
5921 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5922 key.security_type = type;
5923 key.station_index = 0; /* always 0 for BSS */
5924 key.flags = 0;
5925 /* 0 for new key; previous value of counter (after fatal error) */
5926 key.tx_counter[0] = cpu_to_le32(0);
5927 key.tx_counter[1] = cpu_to_le32(0);
5929 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5932 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5934 struct ipw_wep_key key;
5935 int i;
5937 key.cmd_id = DINO_CMD_WEP_KEY;
5938 key.seq_num = 0;
5940 /* Note: AES keys cannot be set for multiple times.
5941 * Only set it at the first time. */
5942 for (i = 0; i < 4; i++) {
5943 key.key_index = i | type;
5944 if (!(priv->ieee->sec.flags & (1 << i))) {
5945 key.key_size = 0;
5946 continue;
5949 key.key_size = priv->ieee->sec.key_sizes[i];
5950 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5952 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5956 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5958 if (priv->ieee->host_encrypt)
5959 return;
5961 switch (level) {
5962 case SEC_LEVEL_3:
5963 priv->sys_config.disable_unicast_decryption = 0;
5964 priv->ieee->host_decrypt = 0;
5965 break;
5966 case SEC_LEVEL_2:
5967 priv->sys_config.disable_unicast_decryption = 1;
5968 priv->ieee->host_decrypt = 1;
5969 break;
5970 case SEC_LEVEL_1:
5971 priv->sys_config.disable_unicast_decryption = 0;
5972 priv->ieee->host_decrypt = 0;
5973 break;
5974 case SEC_LEVEL_0:
5975 priv->sys_config.disable_unicast_decryption = 1;
5976 break;
5977 default:
5978 break;
5982 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5984 if (priv->ieee->host_encrypt)
5985 return;
5987 switch (level) {
5988 case SEC_LEVEL_3:
5989 priv->sys_config.disable_multicast_decryption = 0;
5990 break;
5991 case SEC_LEVEL_2:
5992 priv->sys_config.disable_multicast_decryption = 1;
5993 break;
5994 case SEC_LEVEL_1:
5995 priv->sys_config.disable_multicast_decryption = 0;
5996 break;
5997 case SEC_LEVEL_0:
5998 priv->sys_config.disable_multicast_decryption = 1;
5999 break;
6000 default:
6001 break;
6005 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6007 switch (priv->ieee->sec.level) {
6008 case SEC_LEVEL_3:
6009 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6010 ipw_send_tgi_tx_key(priv,
6011 DCT_FLAG_EXT_SECURITY_CCM,
6012 priv->ieee->sec.active_key);
6014 if (!priv->ieee->host_mc_decrypt)
6015 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6016 break;
6017 case SEC_LEVEL_2:
6018 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6019 ipw_send_tgi_tx_key(priv,
6020 DCT_FLAG_EXT_SECURITY_TKIP,
6021 priv->ieee->sec.active_key);
6022 break;
6023 case SEC_LEVEL_1:
6024 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6025 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6026 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6027 break;
6028 case SEC_LEVEL_0:
6029 default:
6030 break;
6034 static void ipw_adhoc_check(void *data)
6036 struct ipw_priv *priv = data;
6038 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6039 !(priv->config & CFG_ADHOC_PERSIST)) {
6040 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6041 IPW_DL_STATE | IPW_DL_ASSOC,
6042 "Missed beacon: %d - disassociate\n",
6043 priv->missed_adhoc_beacons);
6044 ipw_remove_current_network(priv);
6045 ipw_disassociate(priv);
6046 return;
6049 queue_delayed_work(priv->workqueue, &priv->adhoc_check,
6050 le16_to_cpu(priv->assoc_request.beacon_interval));
6053 static void ipw_bg_adhoc_check(struct work_struct *work)
6055 struct ipw_priv *priv =
6056 container_of(work, struct ipw_priv, adhoc_check.work);
6057 mutex_lock(&priv->mutex);
6058 ipw_adhoc_check(priv);
6059 mutex_unlock(&priv->mutex);
6062 static void ipw_debug_config(struct ipw_priv *priv)
6064 DECLARE_SSID_BUF(ssid);
6065 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6066 "[CFG 0x%08X]\n", priv->config);
6067 if (priv->config & CFG_STATIC_CHANNEL)
6068 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6069 else
6070 IPW_DEBUG_INFO("Channel unlocked.\n");
6071 if (priv->config & CFG_STATIC_ESSID)
6072 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6073 print_ssid(ssid, priv->essid, priv->essid_len));
6074 else
6075 IPW_DEBUG_INFO("ESSID unlocked.\n");
6076 if (priv->config & CFG_STATIC_BSSID)
6077 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6078 else
6079 IPW_DEBUG_INFO("BSSID unlocked.\n");
6080 if (priv->capability & CAP_PRIVACY_ON)
6081 IPW_DEBUG_INFO("PRIVACY on\n");
6082 else
6083 IPW_DEBUG_INFO("PRIVACY off\n");
6084 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6087 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6089 /* TODO: Verify that this works... */
6090 struct ipw_fixed_rate fr = {
6091 .tx_rates = priv->rates_mask
6093 u32 reg;
6094 u16 mask = 0;
6096 /* Identify 'current FW band' and match it with the fixed
6097 * Tx rates */
6099 switch (priv->ieee->freq_band) {
6100 case IEEE80211_52GHZ_BAND: /* A only */
6101 /* IEEE_A */
6102 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6103 /* Invalid fixed rate mask */
6104 IPW_DEBUG_WX
6105 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6106 fr.tx_rates = 0;
6107 break;
6110 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6111 break;
6113 default: /* 2.4Ghz or Mixed */
6114 /* IEEE_B */
6115 if (mode == IEEE_B) {
6116 if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6117 /* Invalid fixed rate mask */
6118 IPW_DEBUG_WX
6119 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6120 fr.tx_rates = 0;
6122 break;
6125 /* IEEE_G */
6126 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6127 IEEE80211_OFDM_RATES_MASK)) {
6128 /* Invalid fixed rate mask */
6129 IPW_DEBUG_WX
6130 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6131 fr.tx_rates = 0;
6132 break;
6135 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6136 mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6137 fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6140 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6141 mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6142 fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6145 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6146 mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6147 fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6150 fr.tx_rates |= mask;
6151 break;
6154 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6155 ipw_write_reg32(priv, reg, *(u32 *) & fr);
6158 static void ipw_abort_scan(struct ipw_priv *priv)
6160 int err;
6162 if (priv->status & STATUS_SCAN_ABORTING) {
6163 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6164 return;
6166 priv->status |= STATUS_SCAN_ABORTING;
6168 err = ipw_send_scan_abort(priv);
6169 if (err)
6170 IPW_DEBUG_HC("Request to abort scan failed.\n");
6173 static void ipw_add_scan_channels(struct ipw_priv *priv,
6174 struct ipw_scan_request_ext *scan,
6175 int scan_type)
6177 int channel_index = 0;
6178 const struct ieee80211_geo *geo;
6179 int i;
6181 geo = ieee80211_get_geo(priv->ieee);
6183 if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6184 int start = channel_index;
6185 for (i = 0; i < geo->a_channels; i++) {
6186 if ((priv->status & STATUS_ASSOCIATED) &&
6187 geo->a[i].channel == priv->channel)
6188 continue;
6189 channel_index++;
6190 scan->channels_list[channel_index] = geo->a[i].channel;
6191 ipw_set_scan_type(scan, channel_index,
6192 geo->a[i].
6193 flags & IEEE80211_CH_PASSIVE_ONLY ?
6194 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6195 scan_type);
6198 if (start != channel_index) {
6199 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6200 (channel_index - start);
6201 channel_index++;
6205 if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6206 int start = channel_index;
6207 if (priv->config & CFG_SPEED_SCAN) {
6208 int index;
6209 u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6210 /* nop out the list */
6211 [0] = 0
6214 u8 channel;
6215 while (channel_index < IPW_SCAN_CHANNELS) {
6216 channel =
6217 priv->speed_scan[priv->speed_scan_pos];
6218 if (channel == 0) {
6219 priv->speed_scan_pos = 0;
6220 channel = priv->speed_scan[0];
6222 if ((priv->status & STATUS_ASSOCIATED) &&
6223 channel == priv->channel) {
6224 priv->speed_scan_pos++;
6225 continue;
6228 /* If this channel has already been
6229 * added in scan, break from loop
6230 * and this will be the first channel
6231 * in the next scan.
6233 if (channels[channel - 1] != 0)
6234 break;
6236 channels[channel - 1] = 1;
6237 priv->speed_scan_pos++;
6238 channel_index++;
6239 scan->channels_list[channel_index] = channel;
6240 index =
6241 ieee80211_channel_to_index(priv->ieee, channel);
6242 ipw_set_scan_type(scan, channel_index,
6243 geo->bg[index].
6244 flags &
6245 IEEE80211_CH_PASSIVE_ONLY ?
6246 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6247 : scan_type);
6249 } else {
6250 for (i = 0; i < geo->bg_channels; i++) {
6251 if ((priv->status & STATUS_ASSOCIATED) &&
6252 geo->bg[i].channel == priv->channel)
6253 continue;
6254 channel_index++;
6255 scan->channels_list[channel_index] =
6256 geo->bg[i].channel;
6257 ipw_set_scan_type(scan, channel_index,
6258 geo->bg[i].
6259 flags &
6260 IEEE80211_CH_PASSIVE_ONLY ?
6261 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6262 : scan_type);
6266 if (start != channel_index) {
6267 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6268 (channel_index - start);
6273 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6275 struct ipw_scan_request_ext scan;
6276 int err = 0, scan_type;
6278 if (!(priv->status & STATUS_INIT) ||
6279 (priv->status & STATUS_EXIT_PENDING))
6280 return 0;
6282 mutex_lock(&priv->mutex);
6284 if (direct && (priv->direct_scan_ssid_len == 0)) {
6285 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6286 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6287 goto done;
6290 if (priv->status & STATUS_SCANNING) {
6291 IPW_DEBUG_HC("Concurrent scan requested. Queuing.\n");
6292 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6293 STATUS_SCAN_PENDING;
6294 goto done;
6297 if (!(priv->status & STATUS_SCAN_FORCED) &&
6298 priv->status & STATUS_SCAN_ABORTING) {
6299 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6300 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6301 STATUS_SCAN_PENDING;
6302 goto done;
6305 if (priv->status & STATUS_RF_KILL_MASK) {
6306 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6307 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6308 STATUS_SCAN_PENDING;
6309 goto done;
6312 memset(&scan, 0, sizeof(scan));
6313 scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6315 if (type == IW_SCAN_TYPE_PASSIVE) {
6316 IPW_DEBUG_WX("use passive scanning\n");
6317 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6318 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6319 cpu_to_le16(120);
6320 ipw_add_scan_channels(priv, &scan, scan_type);
6321 goto send_request;
6324 /* Use active scan by default. */
6325 if (priv->config & CFG_SPEED_SCAN)
6326 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6327 cpu_to_le16(30);
6328 else
6329 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6330 cpu_to_le16(20);
6332 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6333 cpu_to_le16(20);
6335 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6336 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6338 #ifdef CONFIG_IPW2200_MONITOR
6339 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6340 u8 channel;
6341 u8 band = 0;
6343 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6344 case IEEE80211_52GHZ_BAND:
6345 band = (u8) (IPW_A_MODE << 6) | 1;
6346 channel = priv->channel;
6347 break;
6349 case IEEE80211_24GHZ_BAND:
6350 band = (u8) (IPW_B_MODE << 6) | 1;
6351 channel = priv->channel;
6352 break;
6354 default:
6355 band = (u8) (IPW_B_MODE << 6) | 1;
6356 channel = 9;
6357 break;
6360 scan.channels_list[0] = band;
6361 scan.channels_list[1] = channel;
6362 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6364 /* NOTE: The card will sit on this channel for this time
6365 * period. Scan aborts are timing sensitive and frequently
6366 * result in firmware restarts. As such, it is best to
6367 * set a small dwell_time here and just keep re-issuing
6368 * scans. Otherwise fast channel hopping will not actually
6369 * hop channels.
6371 * TODO: Move SPEED SCAN support to all modes and bands */
6372 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6373 cpu_to_le16(2000);
6374 } else {
6375 #endif /* CONFIG_IPW2200_MONITOR */
6376 /* Honor direct scans first, otherwise if we are roaming make
6377 * this a direct scan for the current network. Finally,
6378 * ensure that every other scan is a fast channel hop scan */
6379 if (direct) {
6380 err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6381 priv->direct_scan_ssid_len);
6382 if (err) {
6383 IPW_DEBUG_HC("Attempt to send SSID command "
6384 "failed\n");
6385 goto done;
6388 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6389 } else if ((priv->status & STATUS_ROAMING)
6390 || (!(priv->status & STATUS_ASSOCIATED)
6391 && (priv->config & CFG_STATIC_ESSID)
6392 && (le32_to_cpu(scan.full_scan_index) % 2))) {
6393 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6394 if (err) {
6395 IPW_DEBUG_HC("Attempt to send SSID command "
6396 "failed.\n");
6397 goto done;
6400 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6401 } else
6402 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6404 ipw_add_scan_channels(priv, &scan, scan_type);
6405 #ifdef CONFIG_IPW2200_MONITOR
6407 #endif
6409 send_request:
6410 err = ipw_send_scan_request_ext(priv, &scan);
6411 if (err) {
6412 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6413 goto done;
6416 priv->status |= STATUS_SCANNING;
6417 if (direct) {
6418 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6419 priv->direct_scan_ssid_len = 0;
6420 } else
6421 priv->status &= ~STATUS_SCAN_PENDING;
6423 queue_delayed_work(priv->workqueue, &priv->scan_check,
6424 IPW_SCAN_CHECK_WATCHDOG);
6425 done:
6426 mutex_unlock(&priv->mutex);
6427 return err;
6430 static void ipw_request_passive_scan(struct work_struct *work)
6432 struct ipw_priv *priv =
6433 container_of(work, struct ipw_priv, request_passive_scan.work);
6434 ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6437 static void ipw_request_scan(struct work_struct *work)
6439 struct ipw_priv *priv =
6440 container_of(work, struct ipw_priv, request_scan.work);
6441 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6444 static void ipw_request_direct_scan(struct work_struct *work)
6446 struct ipw_priv *priv =
6447 container_of(work, struct ipw_priv, request_direct_scan.work);
6448 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6451 static void ipw_bg_abort_scan(struct work_struct *work)
6453 struct ipw_priv *priv =
6454 container_of(work, struct ipw_priv, abort_scan);
6455 mutex_lock(&priv->mutex);
6456 ipw_abort_scan(priv);
6457 mutex_unlock(&priv->mutex);
6460 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6462 /* This is called when wpa_supplicant loads and closes the driver
6463 * interface. */
6464 priv->ieee->wpa_enabled = value;
6465 return 0;
6468 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6470 struct ieee80211_device *ieee = priv->ieee;
6471 struct ieee80211_security sec = {
6472 .flags = SEC_AUTH_MODE,
6474 int ret = 0;
6476 if (value & IW_AUTH_ALG_SHARED_KEY) {
6477 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6478 ieee->open_wep = 0;
6479 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6480 sec.auth_mode = WLAN_AUTH_OPEN;
6481 ieee->open_wep = 1;
6482 } else if (value & IW_AUTH_ALG_LEAP) {
6483 sec.auth_mode = WLAN_AUTH_LEAP;
6484 ieee->open_wep = 1;
6485 } else
6486 return -EINVAL;
6488 if (ieee->set_security)
6489 ieee->set_security(ieee->dev, &sec);
6490 else
6491 ret = -EOPNOTSUPP;
6493 return ret;
6496 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6497 int wpa_ie_len)
6499 /* make sure WPA is enabled */
6500 ipw_wpa_enable(priv, 1);
6503 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6504 char *capabilities, int length)
6506 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6508 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6509 capabilities);
6513 * WE-18 support
6516 /* SIOCSIWGENIE */
6517 static int ipw_wx_set_genie(struct net_device *dev,
6518 struct iw_request_info *info,
6519 union iwreq_data *wrqu, char *extra)
6521 struct ipw_priv *priv = ieee80211_priv(dev);
6522 struct ieee80211_device *ieee = priv->ieee;
6523 u8 *buf;
6524 int err = 0;
6526 if (wrqu->data.length > MAX_WPA_IE_LEN ||
6527 (wrqu->data.length && extra == NULL))
6528 return -EINVAL;
6530 if (wrqu->data.length) {
6531 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6532 if (buf == NULL) {
6533 err = -ENOMEM;
6534 goto out;
6537 memcpy(buf, extra, wrqu->data.length);
6538 kfree(ieee->wpa_ie);
6539 ieee->wpa_ie = buf;
6540 ieee->wpa_ie_len = wrqu->data.length;
6541 } else {
6542 kfree(ieee->wpa_ie);
6543 ieee->wpa_ie = NULL;
6544 ieee->wpa_ie_len = 0;
6547 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6548 out:
6549 return err;
6552 /* SIOCGIWGENIE */
6553 static int ipw_wx_get_genie(struct net_device *dev,
6554 struct iw_request_info *info,
6555 union iwreq_data *wrqu, char *extra)
6557 struct ipw_priv *priv = ieee80211_priv(dev);
6558 struct ieee80211_device *ieee = priv->ieee;
6559 int err = 0;
6561 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6562 wrqu->data.length = 0;
6563 goto out;
6566 if (wrqu->data.length < ieee->wpa_ie_len) {
6567 err = -E2BIG;
6568 goto out;
6571 wrqu->data.length = ieee->wpa_ie_len;
6572 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6574 out:
6575 return err;
6578 static int wext_cipher2level(int cipher)
6580 switch (cipher) {
6581 case IW_AUTH_CIPHER_NONE:
6582 return SEC_LEVEL_0;
6583 case IW_AUTH_CIPHER_WEP40:
6584 case IW_AUTH_CIPHER_WEP104:
6585 return SEC_LEVEL_1;
6586 case IW_AUTH_CIPHER_TKIP:
6587 return SEC_LEVEL_2;
6588 case IW_AUTH_CIPHER_CCMP:
6589 return SEC_LEVEL_3;
6590 default:
6591 return -1;
6595 /* SIOCSIWAUTH */
6596 static int ipw_wx_set_auth(struct net_device *dev,
6597 struct iw_request_info *info,
6598 union iwreq_data *wrqu, char *extra)
6600 struct ipw_priv *priv = ieee80211_priv(dev);
6601 struct ieee80211_device *ieee = priv->ieee;
6602 struct iw_param *param = &wrqu->param;
6603 struct lib80211_crypt_data *crypt;
6604 unsigned long flags;
6605 int ret = 0;
6607 switch (param->flags & IW_AUTH_INDEX) {
6608 case IW_AUTH_WPA_VERSION:
6609 break;
6610 case IW_AUTH_CIPHER_PAIRWISE:
6611 ipw_set_hw_decrypt_unicast(priv,
6612 wext_cipher2level(param->value));
6613 break;
6614 case IW_AUTH_CIPHER_GROUP:
6615 ipw_set_hw_decrypt_multicast(priv,
6616 wext_cipher2level(param->value));
6617 break;
6618 case IW_AUTH_KEY_MGMT:
6620 * ipw2200 does not use these parameters
6622 break;
6624 case IW_AUTH_TKIP_COUNTERMEASURES:
6625 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6626 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6627 break;
6629 flags = crypt->ops->get_flags(crypt->priv);
6631 if (param->value)
6632 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6633 else
6634 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6636 crypt->ops->set_flags(flags, crypt->priv);
6638 break;
6640 case IW_AUTH_DROP_UNENCRYPTED:{
6641 /* HACK:
6643 * wpa_supplicant calls set_wpa_enabled when the driver
6644 * is loaded and unloaded, regardless of if WPA is being
6645 * used. No other calls are made which can be used to
6646 * determine if encryption will be used or not prior to
6647 * association being expected. If encryption is not being
6648 * used, drop_unencrypted is set to false, else true -- we
6649 * can use this to determine if the CAP_PRIVACY_ON bit should
6650 * be set.
6652 struct ieee80211_security sec = {
6653 .flags = SEC_ENABLED,
6654 .enabled = param->value,
6656 priv->ieee->drop_unencrypted = param->value;
6657 /* We only change SEC_LEVEL for open mode. Others
6658 * are set by ipw_wpa_set_encryption.
6660 if (!param->value) {
6661 sec.flags |= SEC_LEVEL;
6662 sec.level = SEC_LEVEL_0;
6663 } else {
6664 sec.flags |= SEC_LEVEL;
6665 sec.level = SEC_LEVEL_1;
6667 if (priv->ieee->set_security)
6668 priv->ieee->set_security(priv->ieee->dev, &sec);
6669 break;
6672 case IW_AUTH_80211_AUTH_ALG:
6673 ret = ipw_wpa_set_auth_algs(priv, param->value);
6674 break;
6676 case IW_AUTH_WPA_ENABLED:
6677 ret = ipw_wpa_enable(priv, param->value);
6678 ipw_disassociate(priv);
6679 break;
6681 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6682 ieee->ieee802_1x = param->value;
6683 break;
6685 case IW_AUTH_PRIVACY_INVOKED:
6686 ieee->privacy_invoked = param->value;
6687 break;
6689 default:
6690 return -EOPNOTSUPP;
6692 return ret;
6695 /* SIOCGIWAUTH */
6696 static int ipw_wx_get_auth(struct net_device *dev,
6697 struct iw_request_info *info,
6698 union iwreq_data *wrqu, char *extra)
6700 struct ipw_priv *priv = ieee80211_priv(dev);
6701 struct ieee80211_device *ieee = priv->ieee;
6702 struct lib80211_crypt_data *crypt;
6703 struct iw_param *param = &wrqu->param;
6704 int ret = 0;
6706 switch (param->flags & IW_AUTH_INDEX) {
6707 case IW_AUTH_WPA_VERSION:
6708 case IW_AUTH_CIPHER_PAIRWISE:
6709 case IW_AUTH_CIPHER_GROUP:
6710 case IW_AUTH_KEY_MGMT:
6712 * wpa_supplicant will control these internally
6714 ret = -EOPNOTSUPP;
6715 break;
6717 case IW_AUTH_TKIP_COUNTERMEASURES:
6718 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6719 if (!crypt || !crypt->ops->get_flags)
6720 break;
6722 param->value = (crypt->ops->get_flags(crypt->priv) &
6723 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6725 break;
6727 case IW_AUTH_DROP_UNENCRYPTED:
6728 param->value = ieee->drop_unencrypted;
6729 break;
6731 case IW_AUTH_80211_AUTH_ALG:
6732 param->value = ieee->sec.auth_mode;
6733 break;
6735 case IW_AUTH_WPA_ENABLED:
6736 param->value = ieee->wpa_enabled;
6737 break;
6739 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6740 param->value = ieee->ieee802_1x;
6741 break;
6743 case IW_AUTH_ROAMING_CONTROL:
6744 case IW_AUTH_PRIVACY_INVOKED:
6745 param->value = ieee->privacy_invoked;
6746 break;
6748 default:
6749 return -EOPNOTSUPP;
6751 return 0;
6754 /* SIOCSIWENCODEEXT */
6755 static int ipw_wx_set_encodeext(struct net_device *dev,
6756 struct iw_request_info *info,
6757 union iwreq_data *wrqu, char *extra)
6759 struct ipw_priv *priv = ieee80211_priv(dev);
6760 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6762 if (hwcrypto) {
6763 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6764 /* IPW HW can't build TKIP MIC,
6765 host decryption still needed */
6766 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6767 priv->ieee->host_mc_decrypt = 1;
6768 else {
6769 priv->ieee->host_encrypt = 0;
6770 priv->ieee->host_encrypt_msdu = 1;
6771 priv->ieee->host_decrypt = 1;
6773 } else {
6774 priv->ieee->host_encrypt = 0;
6775 priv->ieee->host_encrypt_msdu = 0;
6776 priv->ieee->host_decrypt = 0;
6777 priv->ieee->host_mc_decrypt = 0;
6781 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6784 /* SIOCGIWENCODEEXT */
6785 static int ipw_wx_get_encodeext(struct net_device *dev,
6786 struct iw_request_info *info,
6787 union iwreq_data *wrqu, char *extra)
6789 struct ipw_priv *priv = ieee80211_priv(dev);
6790 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6793 /* SIOCSIWMLME */
6794 static int ipw_wx_set_mlme(struct net_device *dev,
6795 struct iw_request_info *info,
6796 union iwreq_data *wrqu, char *extra)
6798 struct ipw_priv *priv = ieee80211_priv(dev);
6799 struct iw_mlme *mlme = (struct iw_mlme *)extra;
6800 __le16 reason;
6802 reason = cpu_to_le16(mlme->reason_code);
6804 switch (mlme->cmd) {
6805 case IW_MLME_DEAUTH:
6806 /* silently ignore */
6807 break;
6809 case IW_MLME_DISASSOC:
6810 ipw_disassociate(priv);
6811 break;
6813 default:
6814 return -EOPNOTSUPP;
6816 return 0;
6819 #ifdef CONFIG_IPW2200_QOS
6821 /* QoS */
6823 * get the modulation type of the current network or
6824 * the card current mode
6826 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6828 u8 mode = 0;
6830 if (priv->status & STATUS_ASSOCIATED) {
6831 unsigned long flags;
6833 spin_lock_irqsave(&priv->ieee->lock, flags);
6834 mode = priv->assoc_network->mode;
6835 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6836 } else {
6837 mode = priv->ieee->mode;
6839 IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6840 return mode;
6844 * Handle management frame beacon and probe response
6846 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6847 int active_network,
6848 struct ieee80211_network *network)
6850 u32 size = sizeof(struct ieee80211_qos_parameters);
6852 if (network->capability & WLAN_CAPABILITY_IBSS)
6853 network->qos_data.active = network->qos_data.supported;
6855 if (network->flags & NETWORK_HAS_QOS_MASK) {
6856 if (active_network &&
6857 (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6858 network->qos_data.active = network->qos_data.supported;
6860 if ((network->qos_data.active == 1) && (active_network == 1) &&
6861 (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6862 (network->qos_data.old_param_count !=
6863 network->qos_data.param_count)) {
6864 network->qos_data.old_param_count =
6865 network->qos_data.param_count;
6866 schedule_work(&priv->qos_activate);
6867 IPW_DEBUG_QOS("QoS parameters change call "
6868 "qos_activate\n");
6870 } else {
6871 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6872 memcpy(&network->qos_data.parameters,
6873 &def_parameters_CCK, size);
6874 else
6875 memcpy(&network->qos_data.parameters,
6876 &def_parameters_OFDM, size);
6878 if ((network->qos_data.active == 1) && (active_network == 1)) {
6879 IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6880 schedule_work(&priv->qos_activate);
6883 network->qos_data.active = 0;
6884 network->qos_data.supported = 0;
6886 if ((priv->status & STATUS_ASSOCIATED) &&
6887 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6888 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6889 if (network->capability & WLAN_CAPABILITY_IBSS)
6890 if ((network->ssid_len ==
6891 priv->assoc_network->ssid_len) &&
6892 !memcmp(network->ssid,
6893 priv->assoc_network->ssid,
6894 network->ssid_len)) {
6895 queue_work(priv->workqueue,
6896 &priv->merge_networks);
6900 return 0;
6904 * This function set up the firmware to support QoS. It sends
6905 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6907 static int ipw_qos_activate(struct ipw_priv *priv,
6908 struct ieee80211_qos_data *qos_network_data)
6910 int err;
6911 struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6912 struct ieee80211_qos_parameters *active_one = NULL;
6913 u32 size = sizeof(struct ieee80211_qos_parameters);
6914 u32 burst_duration;
6915 int i;
6916 u8 type;
6918 type = ipw_qos_current_mode(priv);
6920 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6921 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6922 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6923 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6925 if (qos_network_data == NULL) {
6926 if (type == IEEE_B) {
6927 IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6928 active_one = &def_parameters_CCK;
6929 } else
6930 active_one = &def_parameters_OFDM;
6932 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6933 burst_duration = ipw_qos_get_burst_duration(priv);
6934 for (i = 0; i < QOS_QUEUE_NUM; i++)
6935 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6936 cpu_to_le16(burst_duration);
6937 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6938 if (type == IEEE_B) {
6939 IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6940 type);
6941 if (priv->qos_data.qos_enable == 0)
6942 active_one = &def_parameters_CCK;
6943 else
6944 active_one = priv->qos_data.def_qos_parm_CCK;
6945 } else {
6946 if (priv->qos_data.qos_enable == 0)
6947 active_one = &def_parameters_OFDM;
6948 else
6949 active_one = priv->qos_data.def_qos_parm_OFDM;
6951 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6952 } else {
6953 unsigned long flags;
6954 int active;
6956 spin_lock_irqsave(&priv->ieee->lock, flags);
6957 active_one = &(qos_network_data->parameters);
6958 qos_network_data->old_param_count =
6959 qos_network_data->param_count;
6960 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6961 active = qos_network_data->supported;
6962 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6964 if (active == 0) {
6965 burst_duration = ipw_qos_get_burst_duration(priv);
6966 for (i = 0; i < QOS_QUEUE_NUM; i++)
6967 qos_parameters[QOS_PARAM_SET_ACTIVE].
6968 tx_op_limit[i] = cpu_to_le16(burst_duration);
6972 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6973 err = ipw_send_qos_params_command(priv,
6974 (struct ieee80211_qos_parameters *)
6975 &(qos_parameters[0]));
6976 if (err)
6977 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6979 return err;
6983 * send IPW_CMD_WME_INFO to the firmware
6985 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6987 int ret = 0;
6988 struct ieee80211_qos_information_element qos_info;
6990 if (priv == NULL)
6991 return -1;
6993 qos_info.elementID = QOS_ELEMENT_ID;
6994 qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
6996 qos_info.version = QOS_VERSION_1;
6997 qos_info.ac_info = 0;
6999 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7000 qos_info.qui_type = QOS_OUI_TYPE;
7001 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7003 ret = ipw_send_qos_info_command(priv, &qos_info);
7004 if (ret != 0) {
7005 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7007 return ret;
7011 * Set the QoS parameter with the association request structure
7013 static int ipw_qos_association(struct ipw_priv *priv,
7014 struct ieee80211_network *network)
7016 int err = 0;
7017 struct ieee80211_qos_data *qos_data = NULL;
7018 struct ieee80211_qos_data ibss_data = {
7019 .supported = 1,
7020 .active = 1,
7023 switch (priv->ieee->iw_mode) {
7024 case IW_MODE_ADHOC:
7025 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7027 qos_data = &ibss_data;
7028 break;
7030 case IW_MODE_INFRA:
7031 qos_data = &network->qos_data;
7032 break;
7034 default:
7035 BUG();
7036 break;
7039 err = ipw_qos_activate(priv, qos_data);
7040 if (err) {
7041 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7042 return err;
7045 if (priv->qos_data.qos_enable && qos_data->supported) {
7046 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7047 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7048 return ipw_qos_set_info_element(priv);
7051 return 0;
7055 * handling the beaconing responses. if we get different QoS setting
7056 * off the network from the associated setting, adjust the QoS
7057 * setting
7059 static int ipw_qos_association_resp(struct ipw_priv *priv,
7060 struct ieee80211_network *network)
7062 int ret = 0;
7063 unsigned long flags;
7064 u32 size = sizeof(struct ieee80211_qos_parameters);
7065 int set_qos_param = 0;
7067 if ((priv == NULL) || (network == NULL) ||
7068 (priv->assoc_network == NULL))
7069 return ret;
7071 if (!(priv->status & STATUS_ASSOCIATED))
7072 return ret;
7074 if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7075 return ret;
7077 spin_lock_irqsave(&priv->ieee->lock, flags);
7078 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7079 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7080 sizeof(struct ieee80211_qos_data));
7081 priv->assoc_network->qos_data.active = 1;
7082 if ((network->qos_data.old_param_count !=
7083 network->qos_data.param_count)) {
7084 set_qos_param = 1;
7085 network->qos_data.old_param_count =
7086 network->qos_data.param_count;
7089 } else {
7090 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7091 memcpy(&priv->assoc_network->qos_data.parameters,
7092 &def_parameters_CCK, size);
7093 else
7094 memcpy(&priv->assoc_network->qos_data.parameters,
7095 &def_parameters_OFDM, size);
7096 priv->assoc_network->qos_data.active = 0;
7097 priv->assoc_network->qos_data.supported = 0;
7098 set_qos_param = 1;
7101 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7103 if (set_qos_param == 1)
7104 schedule_work(&priv->qos_activate);
7106 return ret;
7109 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7111 u32 ret = 0;
7113 if ((priv == NULL))
7114 return 0;
7116 if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
7117 ret = priv->qos_data.burst_duration_CCK;
7118 else
7119 ret = priv->qos_data.burst_duration_OFDM;
7121 return ret;
7125 * Initialize the setting of QoS global
7127 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7128 int burst_enable, u32 burst_duration_CCK,
7129 u32 burst_duration_OFDM)
7131 priv->qos_data.qos_enable = enable;
7133 if (priv->qos_data.qos_enable) {
7134 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7135 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7136 IPW_DEBUG_QOS("QoS is enabled\n");
7137 } else {
7138 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7139 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7140 IPW_DEBUG_QOS("QoS is not enabled\n");
7143 priv->qos_data.burst_enable = burst_enable;
7145 if (burst_enable) {
7146 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7147 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7148 } else {
7149 priv->qos_data.burst_duration_CCK = 0;
7150 priv->qos_data.burst_duration_OFDM = 0;
7155 * map the packet priority to the right TX Queue
7157 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7159 if (priority > 7 || !priv->qos_data.qos_enable)
7160 priority = 0;
7162 return from_priority_to_tx_queue[priority] - 1;
7165 static int ipw_is_qos_active(struct net_device *dev,
7166 struct sk_buff *skb)
7168 struct ipw_priv *priv = ieee80211_priv(dev);
7169 struct ieee80211_qos_data *qos_data = NULL;
7170 int active, supported;
7171 u8 *daddr = skb->data + ETH_ALEN;
7172 int unicast = !is_multicast_ether_addr(daddr);
7174 if (!(priv->status & STATUS_ASSOCIATED))
7175 return 0;
7177 qos_data = &priv->assoc_network->qos_data;
7179 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7180 if (unicast == 0)
7181 qos_data->active = 0;
7182 else
7183 qos_data->active = qos_data->supported;
7185 active = qos_data->active;
7186 supported = qos_data->supported;
7187 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7188 "unicast %d\n",
7189 priv->qos_data.qos_enable, active, supported, unicast);
7190 if (active && priv->qos_data.qos_enable)
7191 return 1;
7193 return 0;
7197 * add QoS parameter to the TX command
7199 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7200 u16 priority,
7201 struct tfd_data *tfd)
7203 int tx_queue_id = 0;
7206 tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7207 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7209 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7210 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7211 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7213 return 0;
7217 * background support to run QoS activate functionality
7219 static void ipw_bg_qos_activate(struct work_struct *work)
7221 struct ipw_priv *priv =
7222 container_of(work, struct ipw_priv, qos_activate);
7224 if (priv == NULL)
7225 return;
7227 mutex_lock(&priv->mutex);
7229 if (priv->status & STATUS_ASSOCIATED)
7230 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7232 mutex_unlock(&priv->mutex);
7235 static int ipw_handle_probe_response(struct net_device *dev,
7236 struct ieee80211_probe_response *resp,
7237 struct ieee80211_network *network)
7239 struct ipw_priv *priv = ieee80211_priv(dev);
7240 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7241 (network == priv->assoc_network));
7243 ipw_qos_handle_probe_response(priv, active_network, network);
7245 return 0;
7248 static int ipw_handle_beacon(struct net_device *dev,
7249 struct ieee80211_beacon *resp,
7250 struct ieee80211_network *network)
7252 struct ipw_priv *priv = ieee80211_priv(dev);
7253 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7254 (network == priv->assoc_network));
7256 ipw_qos_handle_probe_response(priv, active_network, network);
7258 return 0;
7261 static int ipw_handle_assoc_response(struct net_device *dev,
7262 struct ieee80211_assoc_response *resp,
7263 struct ieee80211_network *network)
7265 struct ipw_priv *priv = ieee80211_priv(dev);
7266 ipw_qos_association_resp(priv, network);
7267 return 0;
7270 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7271 *qos_param)
7273 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7274 sizeof(*qos_param) * 3, qos_param);
7277 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7278 *qos_param)
7280 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7281 qos_param);
7284 #endif /* CONFIG_IPW2200_QOS */
7286 static int ipw_associate_network(struct ipw_priv *priv,
7287 struct ieee80211_network *network,
7288 struct ipw_supported_rates *rates, int roaming)
7290 int err;
7291 DECLARE_SSID_BUF(ssid);
7293 if (priv->config & CFG_FIXED_RATE)
7294 ipw_set_fixed_rate(priv, network->mode);
7296 if (!(priv->config & CFG_STATIC_ESSID)) {
7297 priv->essid_len = min(network->ssid_len,
7298 (u8) IW_ESSID_MAX_SIZE);
7299 memcpy(priv->essid, network->ssid, priv->essid_len);
7302 network->last_associate = jiffies;
7304 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7305 priv->assoc_request.channel = network->channel;
7306 priv->assoc_request.auth_key = 0;
7308 if ((priv->capability & CAP_PRIVACY_ON) &&
7309 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7310 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7311 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7313 if (priv->ieee->sec.level == SEC_LEVEL_1)
7314 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7316 } else if ((priv->capability & CAP_PRIVACY_ON) &&
7317 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7318 priv->assoc_request.auth_type = AUTH_LEAP;
7319 else
7320 priv->assoc_request.auth_type = AUTH_OPEN;
7322 if (priv->ieee->wpa_ie_len) {
7323 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7324 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7325 priv->ieee->wpa_ie_len);
7329 * It is valid for our ieee device to support multiple modes, but
7330 * when it comes to associating to a given network we have to choose
7331 * just one mode.
7333 if (network->mode & priv->ieee->mode & IEEE_A)
7334 priv->assoc_request.ieee_mode = IPW_A_MODE;
7335 else if (network->mode & priv->ieee->mode & IEEE_G)
7336 priv->assoc_request.ieee_mode = IPW_G_MODE;
7337 else if (network->mode & priv->ieee->mode & IEEE_B)
7338 priv->assoc_request.ieee_mode = IPW_B_MODE;
7340 priv->assoc_request.capability = cpu_to_le16(network->capability);
7341 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7342 && !(priv->config & CFG_PREAMBLE_LONG)) {
7343 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7344 } else {
7345 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7347 /* Clear the short preamble if we won't be supporting it */
7348 priv->assoc_request.capability &=
7349 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7352 /* Clear capability bits that aren't used in Ad Hoc */
7353 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7354 priv->assoc_request.capability &=
7355 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7357 IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7358 "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7359 roaming ? "Rea" : "A",
7360 print_ssid(ssid, priv->essid, priv->essid_len),
7361 network->channel,
7362 ipw_modes[priv->assoc_request.ieee_mode],
7363 rates->num_rates,
7364 (priv->assoc_request.preamble_length ==
7365 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7366 network->capability &
7367 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7368 priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7369 priv->capability & CAP_PRIVACY_ON ?
7370 (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7371 "(open)") : "",
7372 priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7373 priv->capability & CAP_PRIVACY_ON ?
7374 '1' + priv->ieee->sec.active_key : '.',
7375 priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7377 priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7378 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7379 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7380 priv->assoc_request.assoc_type = HC_IBSS_START;
7381 priv->assoc_request.assoc_tsf_msw = 0;
7382 priv->assoc_request.assoc_tsf_lsw = 0;
7383 } else {
7384 if (unlikely(roaming))
7385 priv->assoc_request.assoc_type = HC_REASSOCIATE;
7386 else
7387 priv->assoc_request.assoc_type = HC_ASSOCIATE;
7388 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7389 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7392 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7394 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7395 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7396 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7397 } else {
7398 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7399 priv->assoc_request.atim_window = 0;
7402 priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7404 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7405 if (err) {
7406 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7407 return err;
7410 rates->ieee_mode = priv->assoc_request.ieee_mode;
7411 rates->purpose = IPW_RATE_CONNECT;
7412 ipw_send_supported_rates(priv, rates);
7414 if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7415 priv->sys_config.dot11g_auto_detection = 1;
7416 else
7417 priv->sys_config.dot11g_auto_detection = 0;
7419 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7420 priv->sys_config.answer_broadcast_ssid_probe = 1;
7421 else
7422 priv->sys_config.answer_broadcast_ssid_probe = 0;
7424 err = ipw_send_system_config(priv);
7425 if (err) {
7426 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7427 return err;
7430 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7431 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7432 if (err) {
7433 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7434 return err;
7438 * If preemption is enabled, it is possible for the association
7439 * to complete before we return from ipw_send_associate. Therefore
7440 * we have to be sure and update our priviate data first.
7442 priv->channel = network->channel;
7443 memcpy(priv->bssid, network->bssid, ETH_ALEN);
7444 priv->status |= STATUS_ASSOCIATING;
7445 priv->status &= ~STATUS_SECURITY_UPDATED;
7447 priv->assoc_network = network;
7449 #ifdef CONFIG_IPW2200_QOS
7450 ipw_qos_association(priv, network);
7451 #endif
7453 err = ipw_send_associate(priv, &priv->assoc_request);
7454 if (err) {
7455 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7456 return err;
7459 IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %pM \n",
7460 print_ssid(ssid, priv->essid, priv->essid_len),
7461 priv->bssid);
7463 return 0;
7466 static void ipw_roam(void *data)
7468 struct ipw_priv *priv = data;
7469 struct ieee80211_network *network = NULL;
7470 struct ipw_network_match match = {
7471 .network = priv->assoc_network
7474 /* The roaming process is as follows:
7476 * 1. Missed beacon threshold triggers the roaming process by
7477 * setting the status ROAM bit and requesting a scan.
7478 * 2. When the scan completes, it schedules the ROAM work
7479 * 3. The ROAM work looks at all of the known networks for one that
7480 * is a better network than the currently associated. If none
7481 * found, the ROAM process is over (ROAM bit cleared)
7482 * 4. If a better network is found, a disassociation request is
7483 * sent.
7484 * 5. When the disassociation completes, the roam work is again
7485 * scheduled. The second time through, the driver is no longer
7486 * associated, and the newly selected network is sent an
7487 * association request.
7488 * 6. At this point ,the roaming process is complete and the ROAM
7489 * status bit is cleared.
7492 /* If we are no longer associated, and the roaming bit is no longer
7493 * set, then we are not actively roaming, so just return */
7494 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7495 return;
7497 if (priv->status & STATUS_ASSOCIATED) {
7498 /* First pass through ROAM process -- look for a better
7499 * network */
7500 unsigned long flags;
7501 u8 rssi = priv->assoc_network->stats.rssi;
7502 priv->assoc_network->stats.rssi = -128;
7503 spin_lock_irqsave(&priv->ieee->lock, flags);
7504 list_for_each_entry(network, &priv->ieee->network_list, list) {
7505 if (network != priv->assoc_network)
7506 ipw_best_network(priv, &match, network, 1);
7508 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7509 priv->assoc_network->stats.rssi = rssi;
7511 if (match.network == priv->assoc_network) {
7512 IPW_DEBUG_ASSOC("No better APs in this network to "
7513 "roam to.\n");
7514 priv->status &= ~STATUS_ROAMING;
7515 ipw_debug_config(priv);
7516 return;
7519 ipw_send_disassociate(priv, 1);
7520 priv->assoc_network = match.network;
7522 return;
7525 /* Second pass through ROAM process -- request association */
7526 ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7527 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7528 priv->status &= ~STATUS_ROAMING;
7531 static void ipw_bg_roam(struct work_struct *work)
7533 struct ipw_priv *priv =
7534 container_of(work, struct ipw_priv, roam);
7535 mutex_lock(&priv->mutex);
7536 ipw_roam(priv);
7537 mutex_unlock(&priv->mutex);
7540 static int ipw_associate(void *data)
7542 struct ipw_priv *priv = data;
7544 struct ieee80211_network *network = NULL;
7545 struct ipw_network_match match = {
7546 .network = NULL
7548 struct ipw_supported_rates *rates;
7549 struct list_head *element;
7550 unsigned long flags;
7551 DECLARE_SSID_BUF(ssid);
7553 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7554 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7555 return 0;
7558 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7559 IPW_DEBUG_ASSOC("Not attempting association (already in "
7560 "progress)\n");
7561 return 0;
7564 if (priv->status & STATUS_DISASSOCIATING) {
7565 IPW_DEBUG_ASSOC("Not attempting association (in "
7566 "disassociating)\n ");
7567 queue_work(priv->workqueue, &priv->associate);
7568 return 0;
7571 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7572 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7573 "initialized)\n");
7574 return 0;
7577 if (!(priv->config & CFG_ASSOCIATE) &&
7578 !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7579 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7580 return 0;
7583 /* Protect our use of the network_list */
7584 spin_lock_irqsave(&priv->ieee->lock, flags);
7585 list_for_each_entry(network, &priv->ieee->network_list, list)
7586 ipw_best_network(priv, &match, network, 0);
7588 network = match.network;
7589 rates = &match.rates;
7591 if (network == NULL &&
7592 priv->ieee->iw_mode == IW_MODE_ADHOC &&
7593 priv->config & CFG_ADHOC_CREATE &&
7594 priv->config & CFG_STATIC_ESSID &&
7595 priv->config & CFG_STATIC_CHANNEL) {
7596 /* Use oldest network if the free list is empty */
7597 if (list_empty(&priv->ieee->network_free_list)) {
7598 struct ieee80211_network *oldest = NULL;
7599 struct ieee80211_network *target;
7601 list_for_each_entry(target, &priv->ieee->network_list, list) {
7602 if ((oldest == NULL) ||
7603 (target->last_scanned < oldest->last_scanned))
7604 oldest = target;
7607 /* If there are no more slots, expire the oldest */
7608 list_del(&oldest->list);
7609 target = oldest;
7610 IPW_DEBUG_ASSOC("Expired '%s' (%pM) from "
7611 "network list.\n",
7612 print_ssid(ssid, target->ssid,
7613 target->ssid_len),
7614 target->bssid);
7615 list_add_tail(&target->list,
7616 &priv->ieee->network_free_list);
7619 element = priv->ieee->network_free_list.next;
7620 network = list_entry(element, struct ieee80211_network, list);
7621 ipw_adhoc_create(priv, network);
7622 rates = &priv->rates;
7623 list_del(element);
7624 list_add_tail(&network->list, &priv->ieee->network_list);
7626 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7628 /* If we reached the end of the list, then we don't have any valid
7629 * matching APs */
7630 if (!network) {
7631 ipw_debug_config(priv);
7633 if (!(priv->status & STATUS_SCANNING)) {
7634 if (!(priv->config & CFG_SPEED_SCAN))
7635 queue_delayed_work(priv->workqueue,
7636 &priv->request_scan,
7637 SCAN_INTERVAL);
7638 else
7639 queue_delayed_work(priv->workqueue,
7640 &priv->request_scan, 0);
7643 return 0;
7646 ipw_associate_network(priv, network, rates, 0);
7648 return 1;
7651 static void ipw_bg_associate(struct work_struct *work)
7653 struct ipw_priv *priv =
7654 container_of(work, struct ipw_priv, associate);
7655 mutex_lock(&priv->mutex);
7656 ipw_associate(priv);
7657 mutex_unlock(&priv->mutex);
7660 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7661 struct sk_buff *skb)
7663 struct ieee80211_hdr *hdr;
7664 u16 fc;
7666 hdr = (struct ieee80211_hdr *)skb->data;
7667 fc = le16_to_cpu(hdr->frame_control);
7668 if (!(fc & IEEE80211_FCTL_PROTECTED))
7669 return;
7671 fc &= ~IEEE80211_FCTL_PROTECTED;
7672 hdr->frame_control = cpu_to_le16(fc);
7673 switch (priv->ieee->sec.level) {
7674 case SEC_LEVEL_3:
7675 /* Remove CCMP HDR */
7676 memmove(skb->data + IEEE80211_3ADDR_LEN,
7677 skb->data + IEEE80211_3ADDR_LEN + 8,
7678 skb->len - IEEE80211_3ADDR_LEN - 8);
7679 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7680 break;
7681 case SEC_LEVEL_2:
7682 break;
7683 case SEC_LEVEL_1:
7684 /* Remove IV */
7685 memmove(skb->data + IEEE80211_3ADDR_LEN,
7686 skb->data + IEEE80211_3ADDR_LEN + 4,
7687 skb->len - IEEE80211_3ADDR_LEN - 4);
7688 skb_trim(skb, skb->len - 8); /* IV + ICV */
7689 break;
7690 case SEC_LEVEL_0:
7691 break;
7692 default:
7693 printk(KERN_ERR "Unknow security level %d\n",
7694 priv->ieee->sec.level);
7695 break;
7699 static void ipw_handle_data_packet(struct ipw_priv *priv,
7700 struct ipw_rx_mem_buffer *rxb,
7701 struct ieee80211_rx_stats *stats)
7703 struct ieee80211_hdr_4addr *hdr;
7704 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7706 /* We received data from the HW, so stop the watchdog */
7707 priv->net_dev->trans_start = jiffies;
7709 /* We only process data packets if the
7710 * interface is open */
7711 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7712 skb_tailroom(rxb->skb))) {
7713 priv->ieee->stats.rx_errors++;
7714 priv->wstats.discard.misc++;
7715 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7716 return;
7717 } else if (unlikely(!netif_running(priv->net_dev))) {
7718 priv->ieee->stats.rx_dropped++;
7719 priv->wstats.discard.misc++;
7720 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7721 return;
7724 /* Advance skb->data to the start of the actual payload */
7725 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7727 /* Set the size of the skb to the size of the frame */
7728 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7730 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7732 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7733 hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7734 if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7735 (is_multicast_ether_addr(hdr->addr1) ?
7736 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7737 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7739 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7740 priv->ieee->stats.rx_errors++;
7741 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7742 rxb->skb = NULL;
7743 __ipw_led_activity_on(priv);
7747 #ifdef CONFIG_IPW2200_RADIOTAP
7748 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7749 struct ipw_rx_mem_buffer *rxb,
7750 struct ieee80211_rx_stats *stats)
7752 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7753 struct ipw_rx_frame *frame = &pkt->u.frame;
7755 /* initial pull of some data */
7756 u16 received_channel = frame->received_channel;
7757 u8 antennaAndPhy = frame->antennaAndPhy;
7758 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */
7759 u16 pktrate = frame->rate;
7761 /* Magic struct that slots into the radiotap header -- no reason
7762 * to build this manually element by element, we can write it much
7763 * more efficiently than we can parse it. ORDER MATTERS HERE */
7764 struct ipw_rt_hdr *ipw_rt;
7766 short len = le16_to_cpu(pkt->u.frame.length);
7768 /* We received data from the HW, so stop the watchdog */
7769 priv->net_dev->trans_start = jiffies;
7771 /* We only process data packets if the
7772 * interface is open */
7773 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7774 skb_tailroom(rxb->skb))) {
7775 priv->ieee->stats.rx_errors++;
7776 priv->wstats.discard.misc++;
7777 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7778 return;
7779 } else if (unlikely(!netif_running(priv->net_dev))) {
7780 priv->ieee->stats.rx_dropped++;
7781 priv->wstats.discard.misc++;
7782 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7783 return;
7786 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7787 * that now */
7788 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7789 /* FIXME: Should alloc bigger skb instead */
7790 priv->ieee->stats.rx_dropped++;
7791 priv->wstats.discard.misc++;
7792 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7793 return;
7796 /* copy the frame itself */
7797 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7798 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7800 /* Zero the radiotap static buffer ... We only need to zero the bytes NOT
7801 * part of our real header, saves a little time.
7803 * No longer necessary since we fill in all our data. Purge before merging
7804 * patch officially.
7805 * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7806 * IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7809 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7811 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7812 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7813 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7815 /* Big bitfield of all the fields we provide in radiotap */
7816 ipw_rt->rt_hdr.it_present = cpu_to_le32(
7817 (1 << IEEE80211_RADIOTAP_TSFT) |
7818 (1 << IEEE80211_RADIOTAP_FLAGS) |
7819 (1 << IEEE80211_RADIOTAP_RATE) |
7820 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7821 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7822 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7823 (1 << IEEE80211_RADIOTAP_ANTENNA));
7825 /* Zero the flags, we'll add to them as we go */
7826 ipw_rt->rt_flags = 0;
7827 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7828 frame->parent_tsf[2] << 16 |
7829 frame->parent_tsf[1] << 8 |
7830 frame->parent_tsf[0]);
7832 /* Convert signal to DBM */
7833 ipw_rt->rt_dbmsignal = antsignal;
7834 ipw_rt->rt_dbmnoise = frame->noise;
7836 /* Convert the channel data and set the flags */
7837 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7838 if (received_channel > 14) { /* 802.11a */
7839 ipw_rt->rt_chbitmask =
7840 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7841 } else if (antennaAndPhy & 32) { /* 802.11b */
7842 ipw_rt->rt_chbitmask =
7843 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7844 } else { /* 802.11g */
7845 ipw_rt->rt_chbitmask =
7846 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7849 /* set the rate in multiples of 500k/s */
7850 switch (pktrate) {
7851 case IPW_TX_RATE_1MB:
7852 ipw_rt->rt_rate = 2;
7853 break;
7854 case IPW_TX_RATE_2MB:
7855 ipw_rt->rt_rate = 4;
7856 break;
7857 case IPW_TX_RATE_5MB:
7858 ipw_rt->rt_rate = 10;
7859 break;
7860 case IPW_TX_RATE_6MB:
7861 ipw_rt->rt_rate = 12;
7862 break;
7863 case IPW_TX_RATE_9MB:
7864 ipw_rt->rt_rate = 18;
7865 break;
7866 case IPW_TX_RATE_11MB:
7867 ipw_rt->rt_rate = 22;
7868 break;
7869 case IPW_TX_RATE_12MB:
7870 ipw_rt->rt_rate = 24;
7871 break;
7872 case IPW_TX_RATE_18MB:
7873 ipw_rt->rt_rate = 36;
7874 break;
7875 case IPW_TX_RATE_24MB:
7876 ipw_rt->rt_rate = 48;
7877 break;
7878 case IPW_TX_RATE_36MB:
7879 ipw_rt->rt_rate = 72;
7880 break;
7881 case IPW_TX_RATE_48MB:
7882 ipw_rt->rt_rate = 96;
7883 break;
7884 case IPW_TX_RATE_54MB:
7885 ipw_rt->rt_rate = 108;
7886 break;
7887 default:
7888 ipw_rt->rt_rate = 0;
7889 break;
7892 /* antenna number */
7893 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */
7895 /* set the preamble flag if we have it */
7896 if ((antennaAndPhy & 64))
7897 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7899 /* Set the size of the skb to the size of the frame */
7900 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7902 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7904 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7905 priv->ieee->stats.rx_errors++;
7906 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7907 rxb->skb = NULL;
7908 /* no LED during capture */
7911 #endif
7913 #ifdef CONFIG_IPW2200_PROMISCUOUS
7914 #define ieee80211_is_probe_response(fc) \
7915 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7916 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7918 #define ieee80211_is_management(fc) \
7919 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7921 #define ieee80211_is_control(fc) \
7922 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7924 #define ieee80211_is_data(fc) \
7925 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7927 #define ieee80211_is_assoc_request(fc) \
7928 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7930 #define ieee80211_is_reassoc_request(fc) \
7931 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7933 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7934 struct ipw_rx_mem_buffer *rxb,
7935 struct ieee80211_rx_stats *stats)
7937 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7938 struct ipw_rx_frame *frame = &pkt->u.frame;
7939 struct ipw_rt_hdr *ipw_rt;
7941 /* First cache any information we need before we overwrite
7942 * the information provided in the skb from the hardware */
7943 struct ieee80211_hdr *hdr;
7944 u16 channel = frame->received_channel;
7945 u8 phy_flags = frame->antennaAndPhy;
7946 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7947 s8 noise = frame->noise;
7948 u8 rate = frame->rate;
7949 short len = le16_to_cpu(pkt->u.frame.length);
7950 struct sk_buff *skb;
7951 int hdr_only = 0;
7952 u16 filter = priv->prom_priv->filter;
7954 /* If the filter is set to not include Rx frames then return */
7955 if (filter & IPW_PROM_NO_RX)
7956 return;
7958 /* We received data from the HW, so stop the watchdog */
7959 priv->prom_net_dev->trans_start = jiffies;
7961 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7962 priv->prom_priv->ieee->stats.rx_errors++;
7963 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7964 return;
7967 /* We only process data packets if the interface is open */
7968 if (unlikely(!netif_running(priv->prom_net_dev))) {
7969 priv->prom_priv->ieee->stats.rx_dropped++;
7970 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7971 return;
7974 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7975 * that now */
7976 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7977 /* FIXME: Should alloc bigger skb instead */
7978 priv->prom_priv->ieee->stats.rx_dropped++;
7979 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7980 return;
7983 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7984 if (ieee80211_is_management(le16_to_cpu(hdr->frame_control))) {
7985 if (filter & IPW_PROM_NO_MGMT)
7986 return;
7987 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7988 hdr_only = 1;
7989 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_control))) {
7990 if (filter & IPW_PROM_NO_CTL)
7991 return;
7992 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7993 hdr_only = 1;
7994 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_control))) {
7995 if (filter & IPW_PROM_NO_DATA)
7996 return;
7997 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7998 hdr_only = 1;
8001 /* Copy the SKB since this is for the promiscuous side */
8002 skb = skb_copy(rxb->skb, GFP_ATOMIC);
8003 if (skb == NULL) {
8004 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8005 return;
8008 /* copy the frame data to write after where the radiotap header goes */
8009 ipw_rt = (void *)skb->data;
8011 if (hdr_only)
8012 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control));
8014 memcpy(ipw_rt->payload, hdr, len);
8016 /* Zero the radiotap static buffer ... We only need to zero the bytes
8017 * NOT part of our real header, saves a little time.
8019 * No longer necessary since we fill in all our data. Purge before
8020 * merging patch officially.
8021 * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
8022 * IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
8025 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8026 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
8027 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt)); /* total header+data */
8029 /* Set the size of the skb to the size of the frame */
8030 skb_put(skb, sizeof(*ipw_rt) + len);
8032 /* Big bitfield of all the fields we provide in radiotap */
8033 ipw_rt->rt_hdr.it_present = cpu_to_le32(
8034 (1 << IEEE80211_RADIOTAP_TSFT) |
8035 (1 << IEEE80211_RADIOTAP_FLAGS) |
8036 (1 << IEEE80211_RADIOTAP_RATE) |
8037 (1 << IEEE80211_RADIOTAP_CHANNEL) |
8038 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8039 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8040 (1 << IEEE80211_RADIOTAP_ANTENNA));
8042 /* Zero the flags, we'll add to them as we go */
8043 ipw_rt->rt_flags = 0;
8044 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8045 frame->parent_tsf[2] << 16 |
8046 frame->parent_tsf[1] << 8 |
8047 frame->parent_tsf[0]);
8049 /* Convert to DBM */
8050 ipw_rt->rt_dbmsignal = signal;
8051 ipw_rt->rt_dbmnoise = noise;
8053 /* Convert the channel data and set the flags */
8054 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8055 if (channel > 14) { /* 802.11a */
8056 ipw_rt->rt_chbitmask =
8057 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8058 } else if (phy_flags & (1 << 5)) { /* 802.11b */
8059 ipw_rt->rt_chbitmask =
8060 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8061 } else { /* 802.11g */
8062 ipw_rt->rt_chbitmask =
8063 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8066 /* set the rate in multiples of 500k/s */
8067 switch (rate) {
8068 case IPW_TX_RATE_1MB:
8069 ipw_rt->rt_rate = 2;
8070 break;
8071 case IPW_TX_RATE_2MB:
8072 ipw_rt->rt_rate = 4;
8073 break;
8074 case IPW_TX_RATE_5MB:
8075 ipw_rt->rt_rate = 10;
8076 break;
8077 case IPW_TX_RATE_6MB:
8078 ipw_rt->rt_rate = 12;
8079 break;
8080 case IPW_TX_RATE_9MB:
8081 ipw_rt->rt_rate = 18;
8082 break;
8083 case IPW_TX_RATE_11MB:
8084 ipw_rt->rt_rate = 22;
8085 break;
8086 case IPW_TX_RATE_12MB:
8087 ipw_rt->rt_rate = 24;
8088 break;
8089 case IPW_TX_RATE_18MB:
8090 ipw_rt->rt_rate = 36;
8091 break;
8092 case IPW_TX_RATE_24MB:
8093 ipw_rt->rt_rate = 48;
8094 break;
8095 case IPW_TX_RATE_36MB:
8096 ipw_rt->rt_rate = 72;
8097 break;
8098 case IPW_TX_RATE_48MB:
8099 ipw_rt->rt_rate = 96;
8100 break;
8101 case IPW_TX_RATE_54MB:
8102 ipw_rt->rt_rate = 108;
8103 break;
8104 default:
8105 ipw_rt->rt_rate = 0;
8106 break;
8109 /* antenna number */
8110 ipw_rt->rt_antenna = (phy_flags & 3);
8112 /* set the preamble flag if we have it */
8113 if (phy_flags & (1 << 6))
8114 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8116 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8118 if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
8119 priv->prom_priv->ieee->stats.rx_errors++;
8120 dev_kfree_skb_any(skb);
8123 #endif
8125 static int is_network_packet(struct ipw_priv *priv,
8126 struct ieee80211_hdr_4addr *header)
8128 /* Filter incoming packets to determine if they are targetted toward
8129 * this network, discarding packets coming from ourselves */
8130 switch (priv->ieee->iw_mode) {
8131 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */
8132 /* packets from our adapter are dropped (echo) */
8133 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8134 return 0;
8136 /* {broad,multi}cast packets to our BSSID go through */
8137 if (is_multicast_ether_addr(header->addr1))
8138 return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8140 /* packets to our adapter go through */
8141 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8142 ETH_ALEN);
8144 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */
8145 /* packets from our adapter are dropped (echo) */
8146 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8147 return 0;
8149 /* {broad,multi}cast packets to our BSS go through */
8150 if (is_multicast_ether_addr(header->addr1))
8151 return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8153 /* packets to our adapter go through */
8154 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8155 ETH_ALEN);
8158 return 1;
8161 #define IPW_PACKET_RETRY_TIME HZ
8163 static int is_duplicate_packet(struct ipw_priv *priv,
8164 struct ieee80211_hdr_4addr *header)
8166 u16 sc = le16_to_cpu(header->seq_ctl);
8167 u16 seq = WLAN_GET_SEQ_SEQ(sc);
8168 u16 frag = WLAN_GET_SEQ_FRAG(sc);
8169 u16 *last_seq, *last_frag;
8170 unsigned long *last_time;
8172 switch (priv->ieee->iw_mode) {
8173 case IW_MODE_ADHOC:
8175 struct list_head *p;
8176 struct ipw_ibss_seq *entry = NULL;
8177 u8 *mac = header->addr2;
8178 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8180 __list_for_each(p, &priv->ibss_mac_hash[index]) {
8181 entry =
8182 list_entry(p, struct ipw_ibss_seq, list);
8183 if (!memcmp(entry->mac, mac, ETH_ALEN))
8184 break;
8186 if (p == &priv->ibss_mac_hash[index]) {
8187 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8188 if (!entry) {
8189 IPW_ERROR
8190 ("Cannot malloc new mac entry\n");
8191 return 0;
8193 memcpy(entry->mac, mac, ETH_ALEN);
8194 entry->seq_num = seq;
8195 entry->frag_num = frag;
8196 entry->packet_time = jiffies;
8197 list_add(&entry->list,
8198 &priv->ibss_mac_hash[index]);
8199 return 0;
8201 last_seq = &entry->seq_num;
8202 last_frag = &entry->frag_num;
8203 last_time = &entry->packet_time;
8204 break;
8206 case IW_MODE_INFRA:
8207 last_seq = &priv->last_seq_num;
8208 last_frag = &priv->last_frag_num;
8209 last_time = &priv->last_packet_time;
8210 break;
8211 default:
8212 return 0;
8214 if ((*last_seq == seq) &&
8215 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8216 if (*last_frag == frag)
8217 goto drop;
8218 if (*last_frag + 1 != frag)
8219 /* out-of-order fragment */
8220 goto drop;
8221 } else
8222 *last_seq = seq;
8224 *last_frag = frag;
8225 *last_time = jiffies;
8226 return 0;
8228 drop:
8229 /* Comment this line now since we observed the card receives
8230 * duplicate packets but the FCTL_RETRY bit is not set in the
8231 * IBSS mode with fragmentation enabled.
8232 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8233 return 1;
8236 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8237 struct ipw_rx_mem_buffer *rxb,
8238 struct ieee80211_rx_stats *stats)
8240 struct sk_buff *skb = rxb->skb;
8241 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8242 struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8243 (skb->data + IPW_RX_FRAME_SIZE);
8245 ieee80211_rx_mgt(priv->ieee, header, stats);
8247 if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8248 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8249 IEEE80211_STYPE_PROBE_RESP) ||
8250 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8251 IEEE80211_STYPE_BEACON))) {
8252 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8253 ipw_add_station(priv, header->addr2);
8256 if (priv->config & CFG_NET_STATS) {
8257 IPW_DEBUG_HC("sending stat packet\n");
8259 /* Set the size of the skb to the size of the full
8260 * ipw header and 802.11 frame */
8261 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8262 IPW_RX_FRAME_SIZE);
8264 /* Advance past the ipw packet header to the 802.11 frame */
8265 skb_pull(skb, IPW_RX_FRAME_SIZE);
8267 /* Push the ieee80211_rx_stats before the 802.11 frame */
8268 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8270 skb->dev = priv->ieee->dev;
8272 /* Point raw at the ieee80211_stats */
8273 skb_reset_mac_header(skb);
8275 skb->pkt_type = PACKET_OTHERHOST;
8276 skb->protocol = __constant_htons(ETH_P_80211_STATS);
8277 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8278 netif_rx(skb);
8279 rxb->skb = NULL;
8284 * Main entry function for recieving a packet with 80211 headers. This
8285 * should be called when ever the FW has notified us that there is a new
8286 * skb in the recieve queue.
8288 static void ipw_rx(struct ipw_priv *priv)
8290 struct ipw_rx_mem_buffer *rxb;
8291 struct ipw_rx_packet *pkt;
8292 struct ieee80211_hdr_4addr *header;
8293 u32 r, w, i;
8294 u8 network_packet;
8295 u8 fill_rx = 0;
8297 r = ipw_read32(priv, IPW_RX_READ_INDEX);
8298 w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8299 i = priv->rxq->read;
8301 if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8302 fill_rx = 1;
8304 while (i != r) {
8305 rxb = priv->rxq->queue[i];
8306 if (unlikely(rxb == NULL)) {
8307 printk(KERN_CRIT "Queue not allocated!\n");
8308 break;
8310 priv->rxq->queue[i] = NULL;
8312 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8313 IPW_RX_BUF_SIZE,
8314 PCI_DMA_FROMDEVICE);
8316 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8317 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8318 pkt->header.message_type,
8319 pkt->header.rx_seq_num, pkt->header.control_bits);
8321 switch (pkt->header.message_type) {
8322 case RX_FRAME_TYPE: /* 802.11 frame */ {
8323 struct ieee80211_rx_stats stats = {
8324 .rssi = pkt->u.frame.rssi_dbm -
8325 IPW_RSSI_TO_DBM,
8326 .signal =
8327 le16_to_cpu(pkt->u.frame.rssi_dbm) -
8328 IPW_RSSI_TO_DBM + 0x100,
8329 .noise =
8330 le16_to_cpu(pkt->u.frame.noise),
8331 .rate = pkt->u.frame.rate,
8332 .mac_time = jiffies,
8333 .received_channel =
8334 pkt->u.frame.received_channel,
8335 .freq =
8336 (pkt->u.frame.
8337 control & (1 << 0)) ?
8338 IEEE80211_24GHZ_BAND :
8339 IEEE80211_52GHZ_BAND,
8340 .len = le16_to_cpu(pkt->u.frame.length),
8343 if (stats.rssi != 0)
8344 stats.mask |= IEEE80211_STATMASK_RSSI;
8345 if (stats.signal != 0)
8346 stats.mask |= IEEE80211_STATMASK_SIGNAL;
8347 if (stats.noise != 0)
8348 stats.mask |= IEEE80211_STATMASK_NOISE;
8349 if (stats.rate != 0)
8350 stats.mask |= IEEE80211_STATMASK_RATE;
8352 priv->rx_packets++;
8354 #ifdef CONFIG_IPW2200_PROMISCUOUS
8355 if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8356 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8357 #endif
8359 #ifdef CONFIG_IPW2200_MONITOR
8360 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8361 #ifdef CONFIG_IPW2200_RADIOTAP
8363 ipw_handle_data_packet_monitor(priv,
8364 rxb,
8365 &stats);
8366 #else
8367 ipw_handle_data_packet(priv, rxb,
8368 &stats);
8369 #endif
8370 break;
8372 #endif
8374 header =
8375 (struct ieee80211_hdr_4addr *)(rxb->skb->
8376 data +
8377 IPW_RX_FRAME_SIZE);
8378 /* TODO: Check Ad-Hoc dest/source and make sure
8379 * that we are actually parsing these packets
8380 * correctly -- we should probably use the
8381 * frame control of the packet and disregard
8382 * the current iw_mode */
8384 network_packet =
8385 is_network_packet(priv, header);
8386 if (network_packet && priv->assoc_network) {
8387 priv->assoc_network->stats.rssi =
8388 stats.rssi;
8389 priv->exp_avg_rssi =
8390 exponential_average(priv->exp_avg_rssi,
8391 stats.rssi, DEPTH_RSSI);
8394 IPW_DEBUG_RX("Frame: len=%u\n",
8395 le16_to_cpu(pkt->u.frame.length));
8397 if (le16_to_cpu(pkt->u.frame.length) <
8398 ieee80211_get_hdrlen(le16_to_cpu(
8399 header->frame_ctl))) {
8400 IPW_DEBUG_DROP
8401 ("Received packet is too small. "
8402 "Dropping.\n");
8403 priv->ieee->stats.rx_errors++;
8404 priv->wstats.discard.misc++;
8405 break;
8408 switch (WLAN_FC_GET_TYPE
8409 (le16_to_cpu(header->frame_ctl))) {
8411 case IEEE80211_FTYPE_MGMT:
8412 ipw_handle_mgmt_packet(priv, rxb,
8413 &stats);
8414 break;
8416 case IEEE80211_FTYPE_CTL:
8417 break;
8419 case IEEE80211_FTYPE_DATA:
8420 if (unlikely(!network_packet ||
8421 is_duplicate_packet(priv,
8422 header)))
8424 IPW_DEBUG_DROP("Dropping: "
8425 "%pM, "
8426 "%pM, "
8427 "%pM\n",
8428 header->addr1,
8429 header->addr2,
8430 header->addr3);
8431 break;
8434 ipw_handle_data_packet(priv, rxb,
8435 &stats);
8437 break;
8439 break;
8442 case RX_HOST_NOTIFICATION_TYPE:{
8443 IPW_DEBUG_RX
8444 ("Notification: subtype=%02X flags=%02X size=%d\n",
8445 pkt->u.notification.subtype,
8446 pkt->u.notification.flags,
8447 le16_to_cpu(pkt->u.notification.size));
8448 ipw_rx_notification(priv, &pkt->u.notification);
8449 break;
8452 default:
8453 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8454 pkt->header.message_type);
8455 break;
8458 /* For now we just don't re-use anything. We can tweak this
8459 * later to try and re-use notification packets and SKBs that
8460 * fail to Rx correctly */
8461 if (rxb->skb != NULL) {
8462 dev_kfree_skb_any(rxb->skb);
8463 rxb->skb = NULL;
8466 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8467 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8468 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8470 i = (i + 1) % RX_QUEUE_SIZE;
8472 /* If there are a lot of unsued frames, restock the Rx queue
8473 * so the ucode won't assert */
8474 if (fill_rx) {
8475 priv->rxq->read = i;
8476 ipw_rx_queue_replenish(priv);
8480 /* Backtrack one entry */
8481 priv->rxq->read = i;
8482 ipw_rx_queue_restock(priv);
8485 #define DEFAULT_RTS_THRESHOLD 2304U
8486 #define MIN_RTS_THRESHOLD 1U
8487 #define MAX_RTS_THRESHOLD 2304U
8488 #define DEFAULT_BEACON_INTERVAL 100U
8489 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8490 #define DEFAULT_LONG_RETRY_LIMIT 4U
8493 * ipw_sw_reset
8494 * @option: options to control different reset behaviour
8495 * 0 = reset everything except the 'disable' module_param
8496 * 1 = reset everything and print out driver info (for probe only)
8497 * 2 = reset everything
8499 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8501 int band, modulation;
8502 int old_mode = priv->ieee->iw_mode;
8504 /* Initialize module parameter values here */
8505 priv->config = 0;
8507 /* We default to disabling the LED code as right now it causes
8508 * too many systems to lock up... */
8509 if (!led)
8510 priv->config |= CFG_NO_LED;
8512 if (associate)
8513 priv->config |= CFG_ASSOCIATE;
8514 else
8515 IPW_DEBUG_INFO("Auto associate disabled.\n");
8517 if (auto_create)
8518 priv->config |= CFG_ADHOC_CREATE;
8519 else
8520 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8522 priv->config &= ~CFG_STATIC_ESSID;
8523 priv->essid_len = 0;
8524 memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8526 if (disable && option) {
8527 priv->status |= STATUS_RF_KILL_SW;
8528 IPW_DEBUG_INFO("Radio disabled.\n");
8531 if (channel != 0) {
8532 priv->config |= CFG_STATIC_CHANNEL;
8533 priv->channel = channel;
8534 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8535 /* TODO: Validate that provided channel is in range */
8537 #ifdef CONFIG_IPW2200_QOS
8538 ipw_qos_init(priv, qos_enable, qos_burst_enable,
8539 burst_duration_CCK, burst_duration_OFDM);
8540 #endif /* CONFIG_IPW2200_QOS */
8542 switch (mode) {
8543 case 1:
8544 priv->ieee->iw_mode = IW_MODE_ADHOC;
8545 priv->net_dev->type = ARPHRD_ETHER;
8547 break;
8548 #ifdef CONFIG_IPW2200_MONITOR
8549 case 2:
8550 priv->ieee->iw_mode = IW_MODE_MONITOR;
8551 #ifdef CONFIG_IPW2200_RADIOTAP
8552 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8553 #else
8554 priv->net_dev->type = ARPHRD_IEEE80211;
8555 #endif
8556 break;
8557 #endif
8558 default:
8559 case 0:
8560 priv->net_dev->type = ARPHRD_ETHER;
8561 priv->ieee->iw_mode = IW_MODE_INFRA;
8562 break;
8565 if (hwcrypto) {
8566 priv->ieee->host_encrypt = 0;
8567 priv->ieee->host_encrypt_msdu = 0;
8568 priv->ieee->host_decrypt = 0;
8569 priv->ieee->host_mc_decrypt = 0;
8571 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8573 /* IPW2200/2915 is abled to do hardware fragmentation. */
8574 priv->ieee->host_open_frag = 0;
8576 if ((priv->pci_dev->device == 0x4223) ||
8577 (priv->pci_dev->device == 0x4224)) {
8578 if (option == 1)
8579 printk(KERN_INFO DRV_NAME
8580 ": Detected Intel PRO/Wireless 2915ABG Network "
8581 "Connection\n");
8582 priv->ieee->abg_true = 1;
8583 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8584 modulation = IEEE80211_OFDM_MODULATION |
8585 IEEE80211_CCK_MODULATION;
8586 priv->adapter = IPW_2915ABG;
8587 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8588 } else {
8589 if (option == 1)
8590 printk(KERN_INFO DRV_NAME
8591 ": Detected Intel PRO/Wireless 2200BG Network "
8592 "Connection\n");
8594 priv->ieee->abg_true = 0;
8595 band = IEEE80211_24GHZ_BAND;
8596 modulation = IEEE80211_OFDM_MODULATION |
8597 IEEE80211_CCK_MODULATION;
8598 priv->adapter = IPW_2200BG;
8599 priv->ieee->mode = IEEE_G | IEEE_B;
8602 priv->ieee->freq_band = band;
8603 priv->ieee->modulation = modulation;
8605 priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8607 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8608 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8610 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8611 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8612 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8614 /* If power management is turned on, default to AC mode */
8615 priv->power_mode = IPW_POWER_AC;
8616 priv->tx_power = IPW_TX_POWER_DEFAULT;
8618 return old_mode == priv->ieee->iw_mode;
8622 * This file defines the Wireless Extension handlers. It does not
8623 * define any methods of hardware manipulation and relies on the
8624 * functions defined in ipw_main to provide the HW interaction.
8626 * The exception to this is the use of the ipw_get_ordinal()
8627 * function used to poll the hardware vs. making unecessary calls.
8631 static int ipw_wx_get_name(struct net_device *dev,
8632 struct iw_request_info *info,
8633 union iwreq_data *wrqu, char *extra)
8635 struct ipw_priv *priv = ieee80211_priv(dev);
8636 mutex_lock(&priv->mutex);
8637 if (priv->status & STATUS_RF_KILL_MASK)
8638 strcpy(wrqu->name, "radio off");
8639 else if (!(priv->status & STATUS_ASSOCIATED))
8640 strcpy(wrqu->name, "unassociated");
8641 else
8642 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8643 ipw_modes[priv->assoc_request.ieee_mode]);
8644 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8645 mutex_unlock(&priv->mutex);
8646 return 0;
8649 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8651 if (channel == 0) {
8652 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8653 priv->config &= ~CFG_STATIC_CHANNEL;
8654 IPW_DEBUG_ASSOC("Attempting to associate with new "
8655 "parameters.\n");
8656 ipw_associate(priv);
8657 return 0;
8660 priv->config |= CFG_STATIC_CHANNEL;
8662 if (priv->channel == channel) {
8663 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8664 channel);
8665 return 0;
8668 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8669 priv->channel = channel;
8671 #ifdef CONFIG_IPW2200_MONITOR
8672 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8673 int i;
8674 if (priv->status & STATUS_SCANNING) {
8675 IPW_DEBUG_SCAN("Scan abort triggered due to "
8676 "channel change.\n");
8677 ipw_abort_scan(priv);
8680 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8681 udelay(10);
8683 if (priv->status & STATUS_SCANNING)
8684 IPW_DEBUG_SCAN("Still scanning...\n");
8685 else
8686 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8687 1000 - i);
8689 return 0;
8691 #endif /* CONFIG_IPW2200_MONITOR */
8693 /* Network configuration changed -- force [re]association */
8694 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8695 if (!ipw_disassociate(priv))
8696 ipw_associate(priv);
8698 return 0;
8701 static int ipw_wx_set_freq(struct net_device *dev,
8702 struct iw_request_info *info,
8703 union iwreq_data *wrqu, char *extra)
8705 struct ipw_priv *priv = ieee80211_priv(dev);
8706 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8707 struct iw_freq *fwrq = &wrqu->freq;
8708 int ret = 0, i;
8709 u8 channel, flags;
8710 int band;
8712 if (fwrq->m == 0) {
8713 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8714 mutex_lock(&priv->mutex);
8715 ret = ipw_set_channel(priv, 0);
8716 mutex_unlock(&priv->mutex);
8717 return ret;
8719 /* if setting by freq convert to channel */
8720 if (fwrq->e == 1) {
8721 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8722 if (channel == 0)
8723 return -EINVAL;
8724 } else
8725 channel = fwrq->m;
8727 if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8728 return -EINVAL;
8730 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8731 i = ieee80211_channel_to_index(priv->ieee, channel);
8732 if (i == -1)
8733 return -EINVAL;
8735 flags = (band == IEEE80211_24GHZ_BAND) ?
8736 geo->bg[i].flags : geo->a[i].flags;
8737 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8738 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8739 return -EINVAL;
8743 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8744 mutex_lock(&priv->mutex);
8745 ret = ipw_set_channel(priv, channel);
8746 mutex_unlock(&priv->mutex);
8747 return ret;
8750 static int ipw_wx_get_freq(struct net_device *dev,
8751 struct iw_request_info *info,
8752 union iwreq_data *wrqu, char *extra)
8754 struct ipw_priv *priv = ieee80211_priv(dev);
8756 wrqu->freq.e = 0;
8758 /* If we are associated, trying to associate, or have a statically
8759 * configured CHANNEL then return that; otherwise return ANY */
8760 mutex_lock(&priv->mutex);
8761 if (priv->config & CFG_STATIC_CHANNEL ||
8762 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8763 int i;
8765 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
8766 BUG_ON(i == -1);
8767 wrqu->freq.e = 1;
8769 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
8770 case IEEE80211_52GHZ_BAND:
8771 wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8772 break;
8774 case IEEE80211_24GHZ_BAND:
8775 wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8776 break;
8778 default:
8779 BUG();
8781 } else
8782 wrqu->freq.m = 0;
8784 mutex_unlock(&priv->mutex);
8785 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8786 return 0;
8789 static int ipw_wx_set_mode(struct net_device *dev,
8790 struct iw_request_info *info,
8791 union iwreq_data *wrqu, char *extra)
8793 struct ipw_priv *priv = ieee80211_priv(dev);
8794 int err = 0;
8796 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8798 switch (wrqu->mode) {
8799 #ifdef CONFIG_IPW2200_MONITOR
8800 case IW_MODE_MONITOR:
8801 #endif
8802 case IW_MODE_ADHOC:
8803 case IW_MODE_INFRA:
8804 break;
8805 case IW_MODE_AUTO:
8806 wrqu->mode = IW_MODE_INFRA;
8807 break;
8808 default:
8809 return -EINVAL;
8811 if (wrqu->mode == priv->ieee->iw_mode)
8812 return 0;
8814 mutex_lock(&priv->mutex);
8816 ipw_sw_reset(priv, 0);
8818 #ifdef CONFIG_IPW2200_MONITOR
8819 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8820 priv->net_dev->type = ARPHRD_ETHER;
8822 if (wrqu->mode == IW_MODE_MONITOR)
8823 #ifdef CONFIG_IPW2200_RADIOTAP
8824 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8825 #else
8826 priv->net_dev->type = ARPHRD_IEEE80211;
8827 #endif
8828 #endif /* CONFIG_IPW2200_MONITOR */
8830 /* Free the existing firmware and reset the fw_loaded
8831 * flag so ipw_load() will bring in the new firmawre */
8832 free_firmware();
8834 priv->ieee->iw_mode = wrqu->mode;
8836 queue_work(priv->workqueue, &priv->adapter_restart);
8837 mutex_unlock(&priv->mutex);
8838 return err;
8841 static int ipw_wx_get_mode(struct net_device *dev,
8842 struct iw_request_info *info,
8843 union iwreq_data *wrqu, char *extra)
8845 struct ipw_priv *priv = ieee80211_priv(dev);
8846 mutex_lock(&priv->mutex);
8847 wrqu->mode = priv->ieee->iw_mode;
8848 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8849 mutex_unlock(&priv->mutex);
8850 return 0;
8853 /* Values are in microsecond */
8854 static const s32 timeout_duration[] = {
8855 350000,
8856 250000,
8857 75000,
8858 37000,
8859 25000,
8862 static const s32 period_duration[] = {
8863 400000,
8864 700000,
8865 1000000,
8866 1000000,
8867 1000000
8870 static int ipw_wx_get_range(struct net_device *dev,
8871 struct iw_request_info *info,
8872 union iwreq_data *wrqu, char *extra)
8874 struct ipw_priv *priv = ieee80211_priv(dev);
8875 struct iw_range *range = (struct iw_range *)extra;
8876 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8877 int i = 0, j;
8879 wrqu->data.length = sizeof(*range);
8880 memset(range, 0, sizeof(*range));
8882 /* 54Mbs == ~27 Mb/s real (802.11g) */
8883 range->throughput = 27 * 1000 * 1000;
8885 range->max_qual.qual = 100;
8886 /* TODO: Find real max RSSI and stick here */
8887 range->max_qual.level = 0;
8888 range->max_qual.noise = 0;
8889 range->max_qual.updated = 7; /* Updated all three */
8891 range->avg_qual.qual = 70;
8892 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8893 range->avg_qual.level = 0; /* FIXME to real average level */
8894 range->avg_qual.noise = 0;
8895 range->avg_qual.updated = 7; /* Updated all three */
8896 mutex_lock(&priv->mutex);
8897 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8899 for (i = 0; i < range->num_bitrates; i++)
8900 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8901 500000;
8903 range->max_rts = DEFAULT_RTS_THRESHOLD;
8904 range->min_frag = MIN_FRAG_THRESHOLD;
8905 range->max_frag = MAX_FRAG_THRESHOLD;
8907 range->encoding_size[0] = 5;
8908 range->encoding_size[1] = 13;
8909 range->num_encoding_sizes = 2;
8910 range->max_encoding_tokens = WEP_KEYS;
8912 /* Set the Wireless Extension versions */
8913 range->we_version_compiled = WIRELESS_EXT;
8914 range->we_version_source = 18;
8916 i = 0;
8917 if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8918 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8919 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8920 (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8921 continue;
8923 range->freq[i].i = geo->bg[j].channel;
8924 range->freq[i].m = geo->bg[j].freq * 100000;
8925 range->freq[i].e = 1;
8926 i++;
8930 if (priv->ieee->mode & IEEE_A) {
8931 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8932 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8933 (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8934 continue;
8936 range->freq[i].i = geo->a[j].channel;
8937 range->freq[i].m = geo->a[j].freq * 100000;
8938 range->freq[i].e = 1;
8939 i++;
8943 range->num_channels = i;
8944 range->num_frequency = i;
8946 mutex_unlock(&priv->mutex);
8948 /* Event capability (kernel + driver) */
8949 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8950 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8951 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8952 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8953 range->event_capa[1] = IW_EVENT_CAPA_K_1;
8955 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8956 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8958 range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8960 IPW_DEBUG_WX("GET Range\n");
8961 return 0;
8964 static int ipw_wx_set_wap(struct net_device *dev,
8965 struct iw_request_info *info,
8966 union iwreq_data *wrqu, char *extra)
8968 struct ipw_priv *priv = ieee80211_priv(dev);
8970 static const unsigned char any[] = {
8971 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8973 static const unsigned char off[] = {
8974 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8977 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8978 return -EINVAL;
8979 mutex_lock(&priv->mutex);
8980 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8981 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8982 /* we disable mandatory BSSID association */
8983 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8984 priv->config &= ~CFG_STATIC_BSSID;
8985 IPW_DEBUG_ASSOC("Attempting to associate with new "
8986 "parameters.\n");
8987 ipw_associate(priv);
8988 mutex_unlock(&priv->mutex);
8989 return 0;
8992 priv->config |= CFG_STATIC_BSSID;
8993 if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8994 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8995 mutex_unlock(&priv->mutex);
8996 return 0;
8999 IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
9000 wrqu->ap_addr.sa_data);
9002 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
9004 /* Network configuration changed -- force [re]association */
9005 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
9006 if (!ipw_disassociate(priv))
9007 ipw_associate(priv);
9009 mutex_unlock(&priv->mutex);
9010 return 0;
9013 static int ipw_wx_get_wap(struct net_device *dev,
9014 struct iw_request_info *info,
9015 union iwreq_data *wrqu, char *extra)
9017 struct ipw_priv *priv = ieee80211_priv(dev);
9019 /* If we are associated, trying to associate, or have a statically
9020 * configured BSSID then return that; otherwise return ANY */
9021 mutex_lock(&priv->mutex);
9022 if (priv->config & CFG_STATIC_BSSID ||
9023 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9024 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
9025 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
9026 } else
9027 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
9029 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
9030 wrqu->ap_addr.sa_data);
9031 mutex_unlock(&priv->mutex);
9032 return 0;
9035 static int ipw_wx_set_essid(struct net_device *dev,
9036 struct iw_request_info *info,
9037 union iwreq_data *wrqu, char *extra)
9039 struct ipw_priv *priv = ieee80211_priv(dev);
9040 int length;
9041 DECLARE_SSID_BUF(ssid);
9043 mutex_lock(&priv->mutex);
9045 if (!wrqu->essid.flags)
9047 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9048 ipw_disassociate(priv);
9049 priv->config &= ~CFG_STATIC_ESSID;
9050 ipw_associate(priv);
9051 mutex_unlock(&priv->mutex);
9052 return 0;
9055 length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9057 priv->config |= CFG_STATIC_ESSID;
9059 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9060 && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9061 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9062 mutex_unlock(&priv->mutex);
9063 return 0;
9066 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
9067 print_ssid(ssid, extra, length), length);
9069 priv->essid_len = length;
9070 memcpy(priv->essid, extra, priv->essid_len);
9072 /* Network configuration changed -- force [re]association */
9073 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9074 if (!ipw_disassociate(priv))
9075 ipw_associate(priv);
9077 mutex_unlock(&priv->mutex);
9078 return 0;
9081 static int ipw_wx_get_essid(struct net_device *dev,
9082 struct iw_request_info *info,
9083 union iwreq_data *wrqu, char *extra)
9085 struct ipw_priv *priv = ieee80211_priv(dev);
9086 DECLARE_SSID_BUF(ssid);
9088 /* If we are associated, trying to associate, or have a statically
9089 * configured ESSID then return that; otherwise return ANY */
9090 mutex_lock(&priv->mutex);
9091 if (priv->config & CFG_STATIC_ESSID ||
9092 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9093 IPW_DEBUG_WX("Getting essid: '%s'\n",
9094 print_ssid(ssid, priv->essid, priv->essid_len));
9095 memcpy(extra, priv->essid, priv->essid_len);
9096 wrqu->essid.length = priv->essid_len;
9097 wrqu->essid.flags = 1; /* active */
9098 } else {
9099 IPW_DEBUG_WX("Getting essid: ANY\n");
9100 wrqu->essid.length = 0;
9101 wrqu->essid.flags = 0; /* active */
9103 mutex_unlock(&priv->mutex);
9104 return 0;
9107 static int ipw_wx_set_nick(struct net_device *dev,
9108 struct iw_request_info *info,
9109 union iwreq_data *wrqu, char *extra)
9111 struct ipw_priv *priv = ieee80211_priv(dev);
9113 IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9114 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9115 return -E2BIG;
9116 mutex_lock(&priv->mutex);
9117 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9118 memset(priv->nick, 0, sizeof(priv->nick));
9119 memcpy(priv->nick, extra, wrqu->data.length);
9120 IPW_DEBUG_TRACE("<<\n");
9121 mutex_unlock(&priv->mutex);
9122 return 0;
9126 static int ipw_wx_get_nick(struct net_device *dev,
9127 struct iw_request_info *info,
9128 union iwreq_data *wrqu, char *extra)
9130 struct ipw_priv *priv = ieee80211_priv(dev);
9131 IPW_DEBUG_WX("Getting nick\n");
9132 mutex_lock(&priv->mutex);
9133 wrqu->data.length = strlen(priv->nick);
9134 memcpy(extra, priv->nick, wrqu->data.length);
9135 wrqu->data.flags = 1; /* active */
9136 mutex_unlock(&priv->mutex);
9137 return 0;
9140 static int ipw_wx_set_sens(struct net_device *dev,
9141 struct iw_request_info *info,
9142 union iwreq_data *wrqu, char *extra)
9144 struct ipw_priv *priv = ieee80211_priv(dev);
9145 int err = 0;
9147 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9148 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9149 mutex_lock(&priv->mutex);
9151 if (wrqu->sens.fixed == 0)
9153 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9154 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9155 goto out;
9157 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9158 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9159 err = -EINVAL;
9160 goto out;
9163 priv->roaming_threshold = wrqu->sens.value;
9164 priv->disassociate_threshold = 3*wrqu->sens.value;
9165 out:
9166 mutex_unlock(&priv->mutex);
9167 return err;
9170 static int ipw_wx_get_sens(struct net_device *dev,
9171 struct iw_request_info *info,
9172 union iwreq_data *wrqu, char *extra)
9174 struct ipw_priv *priv = ieee80211_priv(dev);
9175 mutex_lock(&priv->mutex);
9176 wrqu->sens.fixed = 1;
9177 wrqu->sens.value = priv->roaming_threshold;
9178 mutex_unlock(&priv->mutex);
9180 IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9181 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9183 return 0;
9186 static int ipw_wx_set_rate(struct net_device *dev,
9187 struct iw_request_info *info,
9188 union iwreq_data *wrqu, char *extra)
9190 /* TODO: We should use semaphores or locks for access to priv */
9191 struct ipw_priv *priv = ieee80211_priv(dev);
9192 u32 target_rate = wrqu->bitrate.value;
9193 u32 fixed, mask;
9195 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9196 /* value = X, fixed = 1 means only rate X */
9197 /* value = X, fixed = 0 means all rates lower equal X */
9199 if (target_rate == -1) {
9200 fixed = 0;
9201 mask = IEEE80211_DEFAULT_RATES_MASK;
9202 /* Now we should reassociate */
9203 goto apply;
9206 mask = 0;
9207 fixed = wrqu->bitrate.fixed;
9209 if (target_rate == 1000000 || !fixed)
9210 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9211 if (target_rate == 1000000)
9212 goto apply;
9214 if (target_rate == 2000000 || !fixed)
9215 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9216 if (target_rate == 2000000)
9217 goto apply;
9219 if (target_rate == 5500000 || !fixed)
9220 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9221 if (target_rate == 5500000)
9222 goto apply;
9224 if (target_rate == 6000000 || !fixed)
9225 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9226 if (target_rate == 6000000)
9227 goto apply;
9229 if (target_rate == 9000000 || !fixed)
9230 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9231 if (target_rate == 9000000)
9232 goto apply;
9234 if (target_rate == 11000000 || !fixed)
9235 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9236 if (target_rate == 11000000)
9237 goto apply;
9239 if (target_rate == 12000000 || !fixed)
9240 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9241 if (target_rate == 12000000)
9242 goto apply;
9244 if (target_rate == 18000000 || !fixed)
9245 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9246 if (target_rate == 18000000)
9247 goto apply;
9249 if (target_rate == 24000000 || !fixed)
9250 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9251 if (target_rate == 24000000)
9252 goto apply;
9254 if (target_rate == 36000000 || !fixed)
9255 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9256 if (target_rate == 36000000)
9257 goto apply;
9259 if (target_rate == 48000000 || !fixed)
9260 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9261 if (target_rate == 48000000)
9262 goto apply;
9264 if (target_rate == 54000000 || !fixed)
9265 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9266 if (target_rate == 54000000)
9267 goto apply;
9269 IPW_DEBUG_WX("invalid rate specified, returning error\n");
9270 return -EINVAL;
9272 apply:
9273 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9274 mask, fixed ? "fixed" : "sub-rates");
9275 mutex_lock(&priv->mutex);
9276 if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9277 priv->config &= ~CFG_FIXED_RATE;
9278 ipw_set_fixed_rate(priv, priv->ieee->mode);
9279 } else
9280 priv->config |= CFG_FIXED_RATE;
9282 if (priv->rates_mask == mask) {
9283 IPW_DEBUG_WX("Mask set to current mask.\n");
9284 mutex_unlock(&priv->mutex);
9285 return 0;
9288 priv->rates_mask = mask;
9290 /* Network configuration changed -- force [re]association */
9291 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9292 if (!ipw_disassociate(priv))
9293 ipw_associate(priv);
9295 mutex_unlock(&priv->mutex);
9296 return 0;
9299 static int ipw_wx_get_rate(struct net_device *dev,
9300 struct iw_request_info *info,
9301 union iwreq_data *wrqu, char *extra)
9303 struct ipw_priv *priv = ieee80211_priv(dev);
9304 mutex_lock(&priv->mutex);
9305 wrqu->bitrate.value = priv->last_rate;
9306 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9307 mutex_unlock(&priv->mutex);
9308 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9309 return 0;
9312 static int ipw_wx_set_rts(struct net_device *dev,
9313 struct iw_request_info *info,
9314 union iwreq_data *wrqu, char *extra)
9316 struct ipw_priv *priv = ieee80211_priv(dev);
9317 mutex_lock(&priv->mutex);
9318 if (wrqu->rts.disabled || !wrqu->rts.fixed)
9319 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9320 else {
9321 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9322 wrqu->rts.value > MAX_RTS_THRESHOLD) {
9323 mutex_unlock(&priv->mutex);
9324 return -EINVAL;
9326 priv->rts_threshold = wrqu->rts.value;
9329 ipw_send_rts_threshold(priv, priv->rts_threshold);
9330 mutex_unlock(&priv->mutex);
9331 IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9332 return 0;
9335 static int ipw_wx_get_rts(struct net_device *dev,
9336 struct iw_request_info *info,
9337 union iwreq_data *wrqu, char *extra)
9339 struct ipw_priv *priv = ieee80211_priv(dev);
9340 mutex_lock(&priv->mutex);
9341 wrqu->rts.value = priv->rts_threshold;
9342 wrqu->rts.fixed = 0; /* no auto select */
9343 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9344 mutex_unlock(&priv->mutex);
9345 IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9346 return 0;
9349 static int ipw_wx_set_txpow(struct net_device *dev,
9350 struct iw_request_info *info,
9351 union iwreq_data *wrqu, char *extra)
9353 struct ipw_priv *priv = ieee80211_priv(dev);
9354 int err = 0;
9356 mutex_lock(&priv->mutex);
9357 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9358 err = -EINPROGRESS;
9359 goto out;
9362 if (!wrqu->power.fixed)
9363 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9365 if (wrqu->power.flags != IW_TXPOW_DBM) {
9366 err = -EINVAL;
9367 goto out;
9370 if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9371 (wrqu->power.value < IPW_TX_POWER_MIN)) {
9372 err = -EINVAL;
9373 goto out;
9376 priv->tx_power = wrqu->power.value;
9377 err = ipw_set_tx_power(priv);
9378 out:
9379 mutex_unlock(&priv->mutex);
9380 return err;
9383 static int ipw_wx_get_txpow(struct net_device *dev,
9384 struct iw_request_info *info,
9385 union iwreq_data *wrqu, char *extra)
9387 struct ipw_priv *priv = ieee80211_priv(dev);
9388 mutex_lock(&priv->mutex);
9389 wrqu->power.value = priv->tx_power;
9390 wrqu->power.fixed = 1;
9391 wrqu->power.flags = IW_TXPOW_DBM;
9392 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9393 mutex_unlock(&priv->mutex);
9395 IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9396 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9398 return 0;
9401 static int ipw_wx_set_frag(struct net_device *dev,
9402 struct iw_request_info *info,
9403 union iwreq_data *wrqu, char *extra)
9405 struct ipw_priv *priv = ieee80211_priv(dev);
9406 mutex_lock(&priv->mutex);
9407 if (wrqu->frag.disabled || !wrqu->frag.fixed)
9408 priv->ieee->fts = DEFAULT_FTS;
9409 else {
9410 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9411 wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9412 mutex_unlock(&priv->mutex);
9413 return -EINVAL;
9416 priv->ieee->fts = wrqu->frag.value & ~0x1;
9419 ipw_send_frag_threshold(priv, wrqu->frag.value);
9420 mutex_unlock(&priv->mutex);
9421 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9422 return 0;
9425 static int ipw_wx_get_frag(struct net_device *dev,
9426 struct iw_request_info *info,
9427 union iwreq_data *wrqu, char *extra)
9429 struct ipw_priv *priv = ieee80211_priv(dev);
9430 mutex_lock(&priv->mutex);
9431 wrqu->frag.value = priv->ieee->fts;
9432 wrqu->frag.fixed = 0; /* no auto select */
9433 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9434 mutex_unlock(&priv->mutex);
9435 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9437 return 0;
9440 static int ipw_wx_set_retry(struct net_device *dev,
9441 struct iw_request_info *info,
9442 union iwreq_data *wrqu, char *extra)
9444 struct ipw_priv *priv = ieee80211_priv(dev);
9446 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9447 return -EINVAL;
9449 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9450 return 0;
9452 if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9453 return -EINVAL;
9455 mutex_lock(&priv->mutex);
9456 if (wrqu->retry.flags & IW_RETRY_SHORT)
9457 priv->short_retry_limit = (u8) wrqu->retry.value;
9458 else if (wrqu->retry.flags & IW_RETRY_LONG)
9459 priv->long_retry_limit = (u8) wrqu->retry.value;
9460 else {
9461 priv->short_retry_limit = (u8) wrqu->retry.value;
9462 priv->long_retry_limit = (u8) wrqu->retry.value;
9465 ipw_send_retry_limit(priv, priv->short_retry_limit,
9466 priv->long_retry_limit);
9467 mutex_unlock(&priv->mutex);
9468 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9469 priv->short_retry_limit, priv->long_retry_limit);
9470 return 0;
9473 static int ipw_wx_get_retry(struct net_device *dev,
9474 struct iw_request_info *info,
9475 union iwreq_data *wrqu, char *extra)
9477 struct ipw_priv *priv = ieee80211_priv(dev);
9479 mutex_lock(&priv->mutex);
9480 wrqu->retry.disabled = 0;
9482 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9483 mutex_unlock(&priv->mutex);
9484 return -EINVAL;
9487 if (wrqu->retry.flags & IW_RETRY_LONG) {
9488 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9489 wrqu->retry.value = priv->long_retry_limit;
9490 } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9491 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9492 wrqu->retry.value = priv->short_retry_limit;
9493 } else {
9494 wrqu->retry.flags = IW_RETRY_LIMIT;
9495 wrqu->retry.value = priv->short_retry_limit;
9497 mutex_unlock(&priv->mutex);
9499 IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9501 return 0;
9504 static int ipw_wx_set_scan(struct net_device *dev,
9505 struct iw_request_info *info,
9506 union iwreq_data *wrqu, char *extra)
9508 struct ipw_priv *priv = ieee80211_priv(dev);
9509 struct iw_scan_req *req = (struct iw_scan_req *)extra;
9510 struct delayed_work *work = NULL;
9512 mutex_lock(&priv->mutex);
9514 priv->user_requested_scan = 1;
9516 if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9517 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9518 int len = min((int)req->essid_len,
9519 (int)sizeof(priv->direct_scan_ssid));
9520 memcpy(priv->direct_scan_ssid, req->essid, len);
9521 priv->direct_scan_ssid_len = len;
9522 work = &priv->request_direct_scan;
9523 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9524 work = &priv->request_passive_scan;
9526 } else {
9527 /* Normal active broadcast scan */
9528 work = &priv->request_scan;
9531 mutex_unlock(&priv->mutex);
9533 IPW_DEBUG_WX("Start scan\n");
9535 queue_delayed_work(priv->workqueue, work, 0);
9537 return 0;
9540 static int ipw_wx_get_scan(struct net_device *dev,
9541 struct iw_request_info *info,
9542 union iwreq_data *wrqu, char *extra)
9544 struct ipw_priv *priv = ieee80211_priv(dev);
9545 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9548 static int ipw_wx_set_encode(struct net_device *dev,
9549 struct iw_request_info *info,
9550 union iwreq_data *wrqu, char *key)
9552 struct ipw_priv *priv = ieee80211_priv(dev);
9553 int ret;
9554 u32 cap = priv->capability;
9556 mutex_lock(&priv->mutex);
9557 ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9559 /* In IBSS mode, we need to notify the firmware to update
9560 * the beacon info after we changed the capability. */
9561 if (cap != priv->capability &&
9562 priv->ieee->iw_mode == IW_MODE_ADHOC &&
9563 priv->status & STATUS_ASSOCIATED)
9564 ipw_disassociate(priv);
9566 mutex_unlock(&priv->mutex);
9567 return ret;
9570 static int ipw_wx_get_encode(struct net_device *dev,
9571 struct iw_request_info *info,
9572 union iwreq_data *wrqu, char *key)
9574 struct ipw_priv *priv = ieee80211_priv(dev);
9575 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9578 static int ipw_wx_set_power(struct net_device *dev,
9579 struct iw_request_info *info,
9580 union iwreq_data *wrqu, char *extra)
9582 struct ipw_priv *priv = ieee80211_priv(dev);
9583 int err;
9584 mutex_lock(&priv->mutex);
9585 if (wrqu->power.disabled) {
9586 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9587 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9588 if (err) {
9589 IPW_DEBUG_WX("failed setting power mode.\n");
9590 mutex_unlock(&priv->mutex);
9591 return err;
9593 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9594 mutex_unlock(&priv->mutex);
9595 return 0;
9598 switch (wrqu->power.flags & IW_POWER_MODE) {
9599 case IW_POWER_ON: /* If not specified */
9600 case IW_POWER_MODE: /* If set all mask */
9601 case IW_POWER_ALL_R: /* If explicitly state all */
9602 break;
9603 default: /* Otherwise we don't support it */
9604 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9605 wrqu->power.flags);
9606 mutex_unlock(&priv->mutex);
9607 return -EOPNOTSUPP;
9610 /* If the user hasn't specified a power management mode yet, default
9611 * to BATTERY */
9612 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9613 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9614 else
9615 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9617 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9618 if (err) {
9619 IPW_DEBUG_WX("failed setting power mode.\n");
9620 mutex_unlock(&priv->mutex);
9621 return err;
9624 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9625 mutex_unlock(&priv->mutex);
9626 return 0;
9629 static int ipw_wx_get_power(struct net_device *dev,
9630 struct iw_request_info *info,
9631 union iwreq_data *wrqu, char *extra)
9633 struct ipw_priv *priv = ieee80211_priv(dev);
9634 mutex_lock(&priv->mutex);
9635 if (!(priv->power_mode & IPW_POWER_ENABLED))
9636 wrqu->power.disabled = 1;
9637 else
9638 wrqu->power.disabled = 0;
9640 mutex_unlock(&priv->mutex);
9641 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9643 return 0;
9646 static int ipw_wx_set_powermode(struct net_device *dev,
9647 struct iw_request_info *info,
9648 union iwreq_data *wrqu, char *extra)
9650 struct ipw_priv *priv = ieee80211_priv(dev);
9651 int mode = *(int *)extra;
9652 int err;
9654 mutex_lock(&priv->mutex);
9655 if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9656 mode = IPW_POWER_AC;
9658 if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9659 err = ipw_send_power_mode(priv, mode);
9660 if (err) {
9661 IPW_DEBUG_WX("failed setting power mode.\n");
9662 mutex_unlock(&priv->mutex);
9663 return err;
9665 priv->power_mode = IPW_POWER_ENABLED | mode;
9667 mutex_unlock(&priv->mutex);
9668 return 0;
9671 #define MAX_WX_STRING 80
9672 static int ipw_wx_get_powermode(struct net_device *dev,
9673 struct iw_request_info *info,
9674 union iwreq_data *wrqu, char *extra)
9676 struct ipw_priv *priv = ieee80211_priv(dev);
9677 int level = IPW_POWER_LEVEL(priv->power_mode);
9678 char *p = extra;
9680 p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9682 switch (level) {
9683 case IPW_POWER_AC:
9684 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9685 break;
9686 case IPW_POWER_BATTERY:
9687 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9688 break;
9689 default:
9690 p += snprintf(p, MAX_WX_STRING - (p - extra),
9691 "(Timeout %dms, Period %dms)",
9692 timeout_duration[level - 1] / 1000,
9693 period_duration[level - 1] / 1000);
9696 if (!(priv->power_mode & IPW_POWER_ENABLED))
9697 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9699 wrqu->data.length = p - extra + 1;
9701 return 0;
9704 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9705 struct iw_request_info *info,
9706 union iwreq_data *wrqu, char *extra)
9708 struct ipw_priv *priv = ieee80211_priv(dev);
9709 int mode = *(int *)extra;
9710 u8 band = 0, modulation = 0;
9712 if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9713 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9714 return -EINVAL;
9716 mutex_lock(&priv->mutex);
9717 if (priv->adapter == IPW_2915ABG) {
9718 priv->ieee->abg_true = 1;
9719 if (mode & IEEE_A) {
9720 band |= IEEE80211_52GHZ_BAND;
9721 modulation |= IEEE80211_OFDM_MODULATION;
9722 } else
9723 priv->ieee->abg_true = 0;
9724 } else {
9725 if (mode & IEEE_A) {
9726 IPW_WARNING("Attempt to set 2200BG into "
9727 "802.11a mode\n");
9728 mutex_unlock(&priv->mutex);
9729 return -EINVAL;
9732 priv->ieee->abg_true = 0;
9735 if (mode & IEEE_B) {
9736 band |= IEEE80211_24GHZ_BAND;
9737 modulation |= IEEE80211_CCK_MODULATION;
9738 } else
9739 priv->ieee->abg_true = 0;
9741 if (mode & IEEE_G) {
9742 band |= IEEE80211_24GHZ_BAND;
9743 modulation |= IEEE80211_OFDM_MODULATION;
9744 } else
9745 priv->ieee->abg_true = 0;
9747 priv->ieee->mode = mode;
9748 priv->ieee->freq_band = band;
9749 priv->ieee->modulation = modulation;
9750 init_supported_rates(priv, &priv->rates);
9752 /* Network configuration changed -- force [re]association */
9753 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9754 if (!ipw_disassociate(priv)) {
9755 ipw_send_supported_rates(priv, &priv->rates);
9756 ipw_associate(priv);
9759 /* Update the band LEDs */
9760 ipw_led_band_on(priv);
9762 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9763 mode & IEEE_A ? 'a' : '.',
9764 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9765 mutex_unlock(&priv->mutex);
9766 return 0;
9769 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9770 struct iw_request_info *info,
9771 union iwreq_data *wrqu, char *extra)
9773 struct ipw_priv *priv = ieee80211_priv(dev);
9774 mutex_lock(&priv->mutex);
9775 switch (priv->ieee->mode) {
9776 case IEEE_A:
9777 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9778 break;
9779 case IEEE_B:
9780 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9781 break;
9782 case IEEE_A | IEEE_B:
9783 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9784 break;
9785 case IEEE_G:
9786 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9787 break;
9788 case IEEE_A | IEEE_G:
9789 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9790 break;
9791 case IEEE_B | IEEE_G:
9792 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9793 break;
9794 case IEEE_A | IEEE_B | IEEE_G:
9795 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9796 break;
9797 default:
9798 strncpy(extra, "unknown", MAX_WX_STRING);
9799 break;
9802 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9804 wrqu->data.length = strlen(extra) + 1;
9805 mutex_unlock(&priv->mutex);
9807 return 0;
9810 static int ipw_wx_set_preamble(struct net_device *dev,
9811 struct iw_request_info *info,
9812 union iwreq_data *wrqu, char *extra)
9814 struct ipw_priv *priv = ieee80211_priv(dev);
9815 int mode = *(int *)extra;
9816 mutex_lock(&priv->mutex);
9817 /* Switching from SHORT -> LONG requires a disassociation */
9818 if (mode == 1) {
9819 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9820 priv->config |= CFG_PREAMBLE_LONG;
9822 /* Network configuration changed -- force [re]association */
9823 IPW_DEBUG_ASSOC
9824 ("[re]association triggered due to preamble change.\n");
9825 if (!ipw_disassociate(priv))
9826 ipw_associate(priv);
9828 goto done;
9831 if (mode == 0) {
9832 priv->config &= ~CFG_PREAMBLE_LONG;
9833 goto done;
9835 mutex_unlock(&priv->mutex);
9836 return -EINVAL;
9838 done:
9839 mutex_unlock(&priv->mutex);
9840 return 0;
9843 static int ipw_wx_get_preamble(struct net_device *dev,
9844 struct iw_request_info *info,
9845 union iwreq_data *wrqu, char *extra)
9847 struct ipw_priv *priv = ieee80211_priv(dev);
9848 mutex_lock(&priv->mutex);
9849 if (priv->config & CFG_PREAMBLE_LONG)
9850 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9851 else
9852 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9853 mutex_unlock(&priv->mutex);
9854 return 0;
9857 #ifdef CONFIG_IPW2200_MONITOR
9858 static int ipw_wx_set_monitor(struct net_device *dev,
9859 struct iw_request_info *info,
9860 union iwreq_data *wrqu, char *extra)
9862 struct ipw_priv *priv = ieee80211_priv(dev);
9863 int *parms = (int *)extra;
9864 int enable = (parms[0] > 0);
9865 mutex_lock(&priv->mutex);
9866 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9867 if (enable) {
9868 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9869 #ifdef CONFIG_IPW2200_RADIOTAP
9870 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9871 #else
9872 priv->net_dev->type = ARPHRD_IEEE80211;
9873 #endif
9874 queue_work(priv->workqueue, &priv->adapter_restart);
9877 ipw_set_channel(priv, parms[1]);
9878 } else {
9879 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9880 mutex_unlock(&priv->mutex);
9881 return 0;
9883 priv->net_dev->type = ARPHRD_ETHER;
9884 queue_work(priv->workqueue, &priv->adapter_restart);
9886 mutex_unlock(&priv->mutex);
9887 return 0;
9890 #endif /* CONFIG_IPW2200_MONITOR */
9892 static int ipw_wx_reset(struct net_device *dev,
9893 struct iw_request_info *info,
9894 union iwreq_data *wrqu, char *extra)
9896 struct ipw_priv *priv = ieee80211_priv(dev);
9897 IPW_DEBUG_WX("RESET\n");
9898 queue_work(priv->workqueue, &priv->adapter_restart);
9899 return 0;
9902 static int ipw_wx_sw_reset(struct net_device *dev,
9903 struct iw_request_info *info,
9904 union iwreq_data *wrqu, char *extra)
9906 struct ipw_priv *priv = ieee80211_priv(dev);
9907 union iwreq_data wrqu_sec = {
9908 .encoding = {
9909 .flags = IW_ENCODE_DISABLED,
9912 int ret;
9914 IPW_DEBUG_WX("SW_RESET\n");
9916 mutex_lock(&priv->mutex);
9918 ret = ipw_sw_reset(priv, 2);
9919 if (!ret) {
9920 free_firmware();
9921 ipw_adapter_restart(priv);
9924 /* The SW reset bit might have been toggled on by the 'disable'
9925 * module parameter, so take appropriate action */
9926 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9928 mutex_unlock(&priv->mutex);
9929 ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9930 mutex_lock(&priv->mutex);
9932 if (!(priv->status & STATUS_RF_KILL_MASK)) {
9933 /* Configuration likely changed -- force [re]association */
9934 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9935 "reset.\n");
9936 if (!ipw_disassociate(priv))
9937 ipw_associate(priv);
9940 mutex_unlock(&priv->mutex);
9942 return 0;
9945 /* Rebase the WE IOCTLs to zero for the handler array */
9946 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9947 static iw_handler ipw_wx_handlers[] = {
9948 IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9949 IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9950 IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9951 IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9952 IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9953 IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9954 IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9955 IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9956 IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9957 IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9958 IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9959 IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9960 IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9961 IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9962 IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9963 IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9964 IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9965 IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9966 IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9967 IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9968 IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9969 IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9970 IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9971 IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9972 IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9973 IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9974 IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9975 IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9976 IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9977 IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9978 IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9979 IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9980 IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9981 IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9982 IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9983 IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9984 IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9985 IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
9986 IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
9987 IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
9988 IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
9991 enum {
9992 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9993 IPW_PRIV_GET_POWER,
9994 IPW_PRIV_SET_MODE,
9995 IPW_PRIV_GET_MODE,
9996 IPW_PRIV_SET_PREAMBLE,
9997 IPW_PRIV_GET_PREAMBLE,
9998 IPW_PRIV_RESET,
9999 IPW_PRIV_SW_RESET,
10000 #ifdef CONFIG_IPW2200_MONITOR
10001 IPW_PRIV_SET_MONITOR,
10002 #endif
10005 static struct iw_priv_args ipw_priv_args[] = {
10007 .cmd = IPW_PRIV_SET_POWER,
10008 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10009 .name = "set_power"},
10011 .cmd = IPW_PRIV_GET_POWER,
10012 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10013 .name = "get_power"},
10015 .cmd = IPW_PRIV_SET_MODE,
10016 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10017 .name = "set_mode"},
10019 .cmd = IPW_PRIV_GET_MODE,
10020 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10021 .name = "get_mode"},
10023 .cmd = IPW_PRIV_SET_PREAMBLE,
10024 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10025 .name = "set_preamble"},
10027 .cmd = IPW_PRIV_GET_PREAMBLE,
10028 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10029 .name = "get_preamble"},
10031 IPW_PRIV_RESET,
10032 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10034 IPW_PRIV_SW_RESET,
10035 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10036 #ifdef CONFIG_IPW2200_MONITOR
10038 IPW_PRIV_SET_MONITOR,
10039 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10040 #endif /* CONFIG_IPW2200_MONITOR */
10043 static iw_handler ipw_priv_handler[] = {
10044 ipw_wx_set_powermode,
10045 ipw_wx_get_powermode,
10046 ipw_wx_set_wireless_mode,
10047 ipw_wx_get_wireless_mode,
10048 ipw_wx_set_preamble,
10049 ipw_wx_get_preamble,
10050 ipw_wx_reset,
10051 ipw_wx_sw_reset,
10052 #ifdef CONFIG_IPW2200_MONITOR
10053 ipw_wx_set_monitor,
10054 #endif
10057 static struct iw_handler_def ipw_wx_handler_def = {
10058 .standard = ipw_wx_handlers,
10059 .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10060 .num_private = ARRAY_SIZE(ipw_priv_handler),
10061 .num_private_args = ARRAY_SIZE(ipw_priv_args),
10062 .private = ipw_priv_handler,
10063 .private_args = ipw_priv_args,
10064 .get_wireless_stats = ipw_get_wireless_stats,
10068 * Get wireless statistics.
10069 * Called by /proc/net/wireless
10070 * Also called by SIOCGIWSTATS
10072 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10074 struct ipw_priv *priv = ieee80211_priv(dev);
10075 struct iw_statistics *wstats;
10077 wstats = &priv->wstats;
10079 /* if hw is disabled, then ipw_get_ordinal() can't be called.
10080 * netdev->get_wireless_stats seems to be called before fw is
10081 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
10082 * and associated; if not associcated, the values are all meaningless
10083 * anyway, so set them all to NULL and INVALID */
10084 if (!(priv->status & STATUS_ASSOCIATED)) {
10085 wstats->miss.beacon = 0;
10086 wstats->discard.retries = 0;
10087 wstats->qual.qual = 0;
10088 wstats->qual.level = 0;
10089 wstats->qual.noise = 0;
10090 wstats->qual.updated = 7;
10091 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10092 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10093 return wstats;
10096 wstats->qual.qual = priv->quality;
10097 wstats->qual.level = priv->exp_avg_rssi;
10098 wstats->qual.noise = priv->exp_avg_noise;
10099 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10100 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10102 wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10103 wstats->discard.retries = priv->last_tx_failures;
10104 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10106 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10107 goto fail_get_ordinal;
10108 wstats->discard.retries += tx_retry; */
10110 return wstats;
10113 /* net device stuff */
10115 static void init_sys_config(struct ipw_sys_config *sys_config)
10117 memset(sys_config, 0, sizeof(struct ipw_sys_config));
10118 sys_config->bt_coexistence = 0;
10119 sys_config->answer_broadcast_ssid_probe = 0;
10120 sys_config->accept_all_data_frames = 0;
10121 sys_config->accept_non_directed_frames = 1;
10122 sys_config->exclude_unicast_unencrypted = 0;
10123 sys_config->disable_unicast_decryption = 1;
10124 sys_config->exclude_multicast_unencrypted = 0;
10125 sys_config->disable_multicast_decryption = 1;
10126 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10127 antenna = CFG_SYS_ANTENNA_BOTH;
10128 sys_config->antenna_diversity = antenna;
10129 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
10130 sys_config->dot11g_auto_detection = 0;
10131 sys_config->enable_cts_to_self = 0;
10132 sys_config->bt_coexist_collision_thr = 0;
10133 sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */
10134 sys_config->silence_threshold = 0x1e;
10137 static int ipw_net_open(struct net_device *dev)
10139 IPW_DEBUG_INFO("dev->open\n");
10140 netif_start_queue(dev);
10141 return 0;
10144 static int ipw_net_stop(struct net_device *dev)
10146 IPW_DEBUG_INFO("dev->close\n");
10147 netif_stop_queue(dev);
10148 return 0;
10152 todo:
10154 modify to send one tfd per fragment instead of using chunking. otherwise
10155 we need to heavily modify the ieee80211_skb_to_txb.
10158 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10159 int pri)
10161 struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10162 txb->fragments[0]->data;
10163 int i = 0;
10164 struct tfd_frame *tfd;
10165 #ifdef CONFIG_IPW2200_QOS
10166 int tx_id = ipw_get_tx_queue_number(priv, pri);
10167 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10168 #else
10169 struct clx2_tx_queue *txq = &priv->txq[0];
10170 #endif
10171 struct clx2_queue *q = &txq->q;
10172 u8 id, hdr_len, unicast;
10173 u16 remaining_bytes;
10174 int fc;
10176 hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10177 switch (priv->ieee->iw_mode) {
10178 case IW_MODE_ADHOC:
10179 unicast = !is_multicast_ether_addr(hdr->addr1);
10180 id = ipw_find_station(priv, hdr->addr1);
10181 if (id == IPW_INVALID_STATION) {
10182 id = ipw_add_station(priv, hdr->addr1);
10183 if (id == IPW_INVALID_STATION) {
10184 IPW_WARNING("Attempt to send data to "
10185 "invalid cell: %pM\n",
10186 hdr->addr1);
10187 goto drop;
10190 break;
10192 case IW_MODE_INFRA:
10193 default:
10194 unicast = !is_multicast_ether_addr(hdr->addr3);
10195 id = 0;
10196 break;
10199 tfd = &txq->bd[q->first_empty];
10200 txq->txb[q->first_empty] = txb;
10201 memset(tfd, 0, sizeof(*tfd));
10202 tfd->u.data.station_number = id;
10204 tfd->control_flags.message_type = TX_FRAME_TYPE;
10205 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10207 tfd->u.data.cmd_id = DINO_CMD_TX;
10208 tfd->u.data.len = cpu_to_le16(txb->payload_size);
10209 remaining_bytes = txb->payload_size;
10211 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10212 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10213 else
10214 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10216 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10217 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10219 fc = le16_to_cpu(hdr->frame_ctl);
10220 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10222 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10224 if (likely(unicast))
10225 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10227 if (txb->encrypted && !priv->ieee->host_encrypt) {
10228 switch (priv->ieee->sec.level) {
10229 case SEC_LEVEL_3:
10230 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10231 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10232 /* XXX: ACK flag must be set for CCMP even if it
10233 * is a multicast/broadcast packet, because CCMP
10234 * group communication encrypted by GTK is
10235 * actually done by the AP. */
10236 if (!unicast)
10237 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10239 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10240 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10241 tfd->u.data.key_index = 0;
10242 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10243 break;
10244 case SEC_LEVEL_2:
10245 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10246 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10247 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10248 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10249 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10250 break;
10251 case SEC_LEVEL_1:
10252 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10253 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10254 tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10255 if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10257 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10258 else
10259 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10260 break;
10261 case SEC_LEVEL_0:
10262 break;
10263 default:
10264 printk(KERN_ERR "Unknow security level %d\n",
10265 priv->ieee->sec.level);
10266 break;
10268 } else
10269 /* No hardware encryption */
10270 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10272 #ifdef CONFIG_IPW2200_QOS
10273 if (fc & IEEE80211_STYPE_QOS_DATA)
10274 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10275 #endif /* CONFIG_IPW2200_QOS */
10277 /* payload */
10278 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10279 txb->nr_frags));
10280 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10281 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10282 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10283 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10284 i, le32_to_cpu(tfd->u.data.num_chunks),
10285 txb->fragments[i]->len - hdr_len);
10286 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10287 i, tfd->u.data.num_chunks,
10288 txb->fragments[i]->len - hdr_len);
10289 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10290 txb->fragments[i]->len - hdr_len);
10292 tfd->u.data.chunk_ptr[i] =
10293 cpu_to_le32(pci_map_single
10294 (priv->pci_dev,
10295 txb->fragments[i]->data + hdr_len,
10296 txb->fragments[i]->len - hdr_len,
10297 PCI_DMA_TODEVICE));
10298 tfd->u.data.chunk_len[i] =
10299 cpu_to_le16(txb->fragments[i]->len - hdr_len);
10302 if (i != txb->nr_frags) {
10303 struct sk_buff *skb;
10304 u16 remaining_bytes = 0;
10305 int j;
10307 for (j = i; j < txb->nr_frags; j++)
10308 remaining_bytes += txb->fragments[j]->len - hdr_len;
10310 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10311 remaining_bytes);
10312 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10313 if (skb != NULL) {
10314 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10315 for (j = i; j < txb->nr_frags; j++) {
10316 int size = txb->fragments[j]->len - hdr_len;
10318 printk(KERN_INFO "Adding frag %d %d...\n",
10319 j, size);
10320 memcpy(skb_put(skb, size),
10321 txb->fragments[j]->data + hdr_len, size);
10323 dev_kfree_skb_any(txb->fragments[i]);
10324 txb->fragments[i] = skb;
10325 tfd->u.data.chunk_ptr[i] =
10326 cpu_to_le32(pci_map_single
10327 (priv->pci_dev, skb->data,
10328 remaining_bytes,
10329 PCI_DMA_TODEVICE));
10331 le32_add_cpu(&tfd->u.data.num_chunks, 1);
10335 /* kick DMA */
10336 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10337 ipw_write32(priv, q->reg_w, q->first_empty);
10339 if (ipw_tx_queue_space(q) < q->high_mark)
10340 netif_stop_queue(priv->net_dev);
10342 return NETDEV_TX_OK;
10344 drop:
10345 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10346 ieee80211_txb_free(txb);
10347 return NETDEV_TX_OK;
10350 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10352 struct ipw_priv *priv = ieee80211_priv(dev);
10353 #ifdef CONFIG_IPW2200_QOS
10354 int tx_id = ipw_get_tx_queue_number(priv, pri);
10355 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10356 #else
10357 struct clx2_tx_queue *txq = &priv->txq[0];
10358 #endif /* CONFIG_IPW2200_QOS */
10360 if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10361 return 1;
10363 return 0;
10366 #ifdef CONFIG_IPW2200_PROMISCUOUS
10367 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10368 struct ieee80211_txb *txb)
10370 struct ieee80211_rx_stats dummystats;
10371 struct ieee80211_hdr *hdr;
10372 u8 n;
10373 u16 filter = priv->prom_priv->filter;
10374 int hdr_only = 0;
10376 if (filter & IPW_PROM_NO_TX)
10377 return;
10379 memset(&dummystats, 0, sizeof(dummystats));
10381 /* Filtering of fragment chains is done agains the first fragment */
10382 hdr = (void *)txb->fragments[0]->data;
10383 if (ieee80211_is_management(le16_to_cpu(hdr->frame_control))) {
10384 if (filter & IPW_PROM_NO_MGMT)
10385 return;
10386 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10387 hdr_only = 1;
10388 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_control))) {
10389 if (filter & IPW_PROM_NO_CTL)
10390 return;
10391 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10392 hdr_only = 1;
10393 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_control))) {
10394 if (filter & IPW_PROM_NO_DATA)
10395 return;
10396 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10397 hdr_only = 1;
10400 for(n=0; n<txb->nr_frags; ++n) {
10401 struct sk_buff *src = txb->fragments[n];
10402 struct sk_buff *dst;
10403 struct ieee80211_radiotap_header *rt_hdr;
10404 int len;
10406 if (hdr_only) {
10407 hdr = (void *)src->data;
10408 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control));
10409 } else
10410 len = src->len;
10412 dst = alloc_skb(
10413 len + IEEE80211_RADIOTAP_HDRLEN, GFP_ATOMIC);
10414 if (!dst) continue;
10416 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10418 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10419 rt_hdr->it_pad = 0;
10420 rt_hdr->it_present = 0; /* after all, it's just an idea */
10421 rt_hdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10423 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10424 ieee80211chan2mhz(priv->channel));
10425 if (priv->channel > 14) /* 802.11a */
10426 *(__le16*)skb_put(dst, sizeof(u16)) =
10427 cpu_to_le16(IEEE80211_CHAN_OFDM |
10428 IEEE80211_CHAN_5GHZ);
10429 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10430 *(__le16*)skb_put(dst, sizeof(u16)) =
10431 cpu_to_le16(IEEE80211_CHAN_CCK |
10432 IEEE80211_CHAN_2GHZ);
10433 else /* 802.11g */
10434 *(__le16*)skb_put(dst, sizeof(u16)) =
10435 cpu_to_le16(IEEE80211_CHAN_OFDM |
10436 IEEE80211_CHAN_2GHZ);
10438 rt_hdr->it_len = cpu_to_le16(dst->len);
10440 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10442 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10443 dev_kfree_skb_any(dst);
10446 #endif
10448 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10449 struct net_device *dev, int pri)
10451 struct ipw_priv *priv = ieee80211_priv(dev);
10452 unsigned long flags;
10453 int ret;
10455 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10456 spin_lock_irqsave(&priv->lock, flags);
10458 #ifdef CONFIG_IPW2200_PROMISCUOUS
10459 if (rtap_iface && netif_running(priv->prom_net_dev))
10460 ipw_handle_promiscuous_tx(priv, txb);
10461 #endif
10463 ret = ipw_tx_skb(priv, txb, pri);
10464 if (ret == NETDEV_TX_OK)
10465 __ipw_led_activity_on(priv);
10466 spin_unlock_irqrestore(&priv->lock, flags);
10468 return ret;
10471 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
10473 struct ipw_priv *priv = ieee80211_priv(dev);
10475 priv->ieee->stats.tx_packets = priv->tx_packets;
10476 priv->ieee->stats.rx_packets = priv->rx_packets;
10477 return &priv->ieee->stats;
10480 static void ipw_net_set_multicast_list(struct net_device *dev)
10485 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10487 struct ipw_priv *priv = ieee80211_priv(dev);
10488 struct sockaddr *addr = p;
10490 if (!is_valid_ether_addr(addr->sa_data))
10491 return -EADDRNOTAVAIL;
10492 mutex_lock(&priv->mutex);
10493 priv->config |= CFG_CUSTOM_MAC;
10494 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10495 printk(KERN_INFO "%s: Setting MAC to %pM\n",
10496 priv->net_dev->name, priv->mac_addr);
10497 queue_work(priv->workqueue, &priv->adapter_restart);
10498 mutex_unlock(&priv->mutex);
10499 return 0;
10502 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10503 struct ethtool_drvinfo *info)
10505 struct ipw_priv *p = ieee80211_priv(dev);
10506 char vers[64];
10507 char date[32];
10508 u32 len;
10510 strcpy(info->driver, DRV_NAME);
10511 strcpy(info->version, DRV_VERSION);
10513 len = sizeof(vers);
10514 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10515 len = sizeof(date);
10516 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10518 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10519 vers, date);
10520 strcpy(info->bus_info, pci_name(p->pci_dev));
10521 info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10524 static u32 ipw_ethtool_get_link(struct net_device *dev)
10526 struct ipw_priv *priv = ieee80211_priv(dev);
10527 return (priv->status & STATUS_ASSOCIATED) != 0;
10530 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10532 return IPW_EEPROM_IMAGE_SIZE;
10535 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10536 struct ethtool_eeprom *eeprom, u8 * bytes)
10538 struct ipw_priv *p = ieee80211_priv(dev);
10540 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10541 return -EINVAL;
10542 mutex_lock(&p->mutex);
10543 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10544 mutex_unlock(&p->mutex);
10545 return 0;
10548 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10549 struct ethtool_eeprom *eeprom, u8 * bytes)
10551 struct ipw_priv *p = ieee80211_priv(dev);
10552 int i;
10554 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10555 return -EINVAL;
10556 mutex_lock(&p->mutex);
10557 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10558 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10559 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10560 mutex_unlock(&p->mutex);
10561 return 0;
10564 static const struct ethtool_ops ipw_ethtool_ops = {
10565 .get_link = ipw_ethtool_get_link,
10566 .get_drvinfo = ipw_ethtool_get_drvinfo,
10567 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10568 .get_eeprom = ipw_ethtool_get_eeprom,
10569 .set_eeprom = ipw_ethtool_set_eeprom,
10572 static irqreturn_t ipw_isr(int irq, void *data)
10574 struct ipw_priv *priv = data;
10575 u32 inta, inta_mask;
10577 if (!priv)
10578 return IRQ_NONE;
10580 spin_lock(&priv->irq_lock);
10582 if (!(priv->status & STATUS_INT_ENABLED)) {
10583 /* IRQ is disabled */
10584 goto none;
10587 inta = ipw_read32(priv, IPW_INTA_RW);
10588 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10590 if (inta == 0xFFFFFFFF) {
10591 /* Hardware disappeared */
10592 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10593 goto none;
10596 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10597 /* Shared interrupt */
10598 goto none;
10601 /* tell the device to stop sending interrupts */
10602 __ipw_disable_interrupts(priv);
10604 /* ack current interrupts */
10605 inta &= (IPW_INTA_MASK_ALL & inta_mask);
10606 ipw_write32(priv, IPW_INTA_RW, inta);
10608 /* Cache INTA value for our tasklet */
10609 priv->isr_inta = inta;
10611 tasklet_schedule(&priv->irq_tasklet);
10613 spin_unlock(&priv->irq_lock);
10615 return IRQ_HANDLED;
10616 none:
10617 spin_unlock(&priv->irq_lock);
10618 return IRQ_NONE;
10621 static void ipw_rf_kill(void *adapter)
10623 struct ipw_priv *priv = adapter;
10624 unsigned long flags;
10626 spin_lock_irqsave(&priv->lock, flags);
10628 if (rf_kill_active(priv)) {
10629 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10630 if (priv->workqueue)
10631 queue_delayed_work(priv->workqueue,
10632 &priv->rf_kill, 2 * HZ);
10633 goto exit_unlock;
10636 /* RF Kill is now disabled, so bring the device back up */
10638 if (!(priv->status & STATUS_RF_KILL_MASK)) {
10639 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10640 "device\n");
10642 /* we can not do an adapter restart while inside an irq lock */
10643 queue_work(priv->workqueue, &priv->adapter_restart);
10644 } else
10645 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10646 "enabled\n");
10648 exit_unlock:
10649 spin_unlock_irqrestore(&priv->lock, flags);
10652 static void ipw_bg_rf_kill(struct work_struct *work)
10654 struct ipw_priv *priv =
10655 container_of(work, struct ipw_priv, rf_kill.work);
10656 mutex_lock(&priv->mutex);
10657 ipw_rf_kill(priv);
10658 mutex_unlock(&priv->mutex);
10661 static void ipw_link_up(struct ipw_priv *priv)
10663 priv->last_seq_num = -1;
10664 priv->last_frag_num = -1;
10665 priv->last_packet_time = 0;
10667 netif_carrier_on(priv->net_dev);
10669 cancel_delayed_work(&priv->request_scan);
10670 cancel_delayed_work(&priv->request_direct_scan);
10671 cancel_delayed_work(&priv->request_passive_scan);
10672 cancel_delayed_work(&priv->scan_event);
10673 ipw_reset_stats(priv);
10674 /* Ensure the rate is updated immediately */
10675 priv->last_rate = ipw_get_current_rate(priv);
10676 ipw_gather_stats(priv);
10677 ipw_led_link_up(priv);
10678 notify_wx_assoc_event(priv);
10680 if (priv->config & CFG_BACKGROUND_SCAN)
10681 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10684 static void ipw_bg_link_up(struct work_struct *work)
10686 struct ipw_priv *priv =
10687 container_of(work, struct ipw_priv, link_up);
10688 mutex_lock(&priv->mutex);
10689 ipw_link_up(priv);
10690 mutex_unlock(&priv->mutex);
10693 static void ipw_link_down(struct ipw_priv *priv)
10695 ipw_led_link_down(priv);
10696 netif_carrier_off(priv->net_dev);
10697 notify_wx_assoc_event(priv);
10699 /* Cancel any queued work ... */
10700 cancel_delayed_work(&priv->request_scan);
10701 cancel_delayed_work(&priv->request_direct_scan);
10702 cancel_delayed_work(&priv->request_passive_scan);
10703 cancel_delayed_work(&priv->adhoc_check);
10704 cancel_delayed_work(&priv->gather_stats);
10706 ipw_reset_stats(priv);
10708 if (!(priv->status & STATUS_EXIT_PENDING)) {
10709 /* Queue up another scan... */
10710 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10711 } else
10712 cancel_delayed_work(&priv->scan_event);
10715 static void ipw_bg_link_down(struct work_struct *work)
10717 struct ipw_priv *priv =
10718 container_of(work, struct ipw_priv, link_down);
10719 mutex_lock(&priv->mutex);
10720 ipw_link_down(priv);
10721 mutex_unlock(&priv->mutex);
10724 static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv)
10726 int ret = 0;
10728 priv->workqueue = create_workqueue(DRV_NAME);
10729 init_waitqueue_head(&priv->wait_command_queue);
10730 init_waitqueue_head(&priv->wait_state);
10732 INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10733 INIT_WORK(&priv->associate, ipw_bg_associate);
10734 INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10735 INIT_WORK(&priv->system_config, ipw_system_config);
10736 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10737 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10738 INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10739 INIT_WORK(&priv->up, ipw_bg_up);
10740 INIT_WORK(&priv->down, ipw_bg_down);
10741 INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10742 INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10743 INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10744 INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10745 INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10746 INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10747 INIT_WORK(&priv->roam, ipw_bg_roam);
10748 INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10749 INIT_WORK(&priv->link_up, ipw_bg_link_up);
10750 INIT_WORK(&priv->link_down, ipw_bg_link_down);
10751 INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10752 INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10753 INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10754 INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10756 #ifdef CONFIG_IPW2200_QOS
10757 INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10758 #endif /* CONFIG_IPW2200_QOS */
10760 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10761 ipw_irq_tasklet, (unsigned long)priv);
10763 return ret;
10766 static void shim__set_security(struct net_device *dev,
10767 struct ieee80211_security *sec)
10769 struct ipw_priv *priv = ieee80211_priv(dev);
10770 int i;
10771 for (i = 0; i < 4; i++) {
10772 if (sec->flags & (1 << i)) {
10773 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10774 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10775 if (sec->key_sizes[i] == 0)
10776 priv->ieee->sec.flags &= ~(1 << i);
10777 else {
10778 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10779 sec->key_sizes[i]);
10780 priv->ieee->sec.flags |= (1 << i);
10782 priv->status |= STATUS_SECURITY_UPDATED;
10783 } else if (sec->level != SEC_LEVEL_1)
10784 priv->ieee->sec.flags &= ~(1 << i);
10787 if (sec->flags & SEC_ACTIVE_KEY) {
10788 if (sec->active_key <= 3) {
10789 priv->ieee->sec.active_key = sec->active_key;
10790 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10791 } else
10792 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10793 priv->status |= STATUS_SECURITY_UPDATED;
10794 } else
10795 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10797 if ((sec->flags & SEC_AUTH_MODE) &&
10798 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10799 priv->ieee->sec.auth_mode = sec->auth_mode;
10800 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10801 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10802 priv->capability |= CAP_SHARED_KEY;
10803 else
10804 priv->capability &= ~CAP_SHARED_KEY;
10805 priv->status |= STATUS_SECURITY_UPDATED;
10808 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10809 priv->ieee->sec.flags |= SEC_ENABLED;
10810 priv->ieee->sec.enabled = sec->enabled;
10811 priv->status |= STATUS_SECURITY_UPDATED;
10812 if (sec->enabled)
10813 priv->capability |= CAP_PRIVACY_ON;
10814 else
10815 priv->capability &= ~CAP_PRIVACY_ON;
10818 if (sec->flags & SEC_ENCRYPT)
10819 priv->ieee->sec.encrypt = sec->encrypt;
10821 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10822 priv->ieee->sec.level = sec->level;
10823 priv->ieee->sec.flags |= SEC_LEVEL;
10824 priv->status |= STATUS_SECURITY_UPDATED;
10827 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10828 ipw_set_hwcrypto_keys(priv);
10830 /* To match current functionality of ipw2100 (which works well w/
10831 * various supplicants, we don't force a disassociate if the
10832 * privacy capability changes ... */
10833 #if 0
10834 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10835 (((priv->assoc_request.capability &
10836 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10837 (!(priv->assoc_request.capability &
10838 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10839 IPW_DEBUG_ASSOC("Disassociating due to capability "
10840 "change.\n");
10841 ipw_disassociate(priv);
10843 #endif
10846 static int init_supported_rates(struct ipw_priv *priv,
10847 struct ipw_supported_rates *rates)
10849 /* TODO: Mask out rates based on priv->rates_mask */
10851 memset(rates, 0, sizeof(*rates));
10852 /* configure supported rates */
10853 switch (priv->ieee->freq_band) {
10854 case IEEE80211_52GHZ_BAND:
10855 rates->ieee_mode = IPW_A_MODE;
10856 rates->purpose = IPW_RATE_CAPABILITIES;
10857 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10858 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10859 break;
10861 default: /* Mixed or 2.4Ghz */
10862 rates->ieee_mode = IPW_G_MODE;
10863 rates->purpose = IPW_RATE_CAPABILITIES;
10864 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10865 IEEE80211_CCK_DEFAULT_RATES_MASK);
10866 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10867 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10868 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10870 break;
10873 return 0;
10876 static int ipw_config(struct ipw_priv *priv)
10878 /* This is only called from ipw_up, which resets/reloads the firmware
10879 so, we don't need to first disable the card before we configure
10880 it */
10881 if (ipw_set_tx_power(priv))
10882 goto error;
10884 /* initialize adapter address */
10885 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10886 goto error;
10888 /* set basic system config settings */
10889 init_sys_config(&priv->sys_config);
10891 /* Support Bluetooth if we have BT h/w on board, and user wants to.
10892 * Does not support BT priority yet (don't abort or defer our Tx) */
10893 if (bt_coexist) {
10894 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10896 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10897 priv->sys_config.bt_coexistence
10898 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10899 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10900 priv->sys_config.bt_coexistence
10901 |= CFG_BT_COEXISTENCE_OOB;
10904 #ifdef CONFIG_IPW2200_PROMISCUOUS
10905 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10906 priv->sys_config.accept_all_data_frames = 1;
10907 priv->sys_config.accept_non_directed_frames = 1;
10908 priv->sys_config.accept_all_mgmt_bcpr = 1;
10909 priv->sys_config.accept_all_mgmt_frames = 1;
10911 #endif
10913 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10914 priv->sys_config.answer_broadcast_ssid_probe = 1;
10915 else
10916 priv->sys_config.answer_broadcast_ssid_probe = 0;
10918 if (ipw_send_system_config(priv))
10919 goto error;
10921 init_supported_rates(priv, &priv->rates);
10922 if (ipw_send_supported_rates(priv, &priv->rates))
10923 goto error;
10925 /* Set request-to-send threshold */
10926 if (priv->rts_threshold) {
10927 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10928 goto error;
10930 #ifdef CONFIG_IPW2200_QOS
10931 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10932 ipw_qos_activate(priv, NULL);
10933 #endif /* CONFIG_IPW2200_QOS */
10935 if (ipw_set_random_seed(priv))
10936 goto error;
10938 /* final state transition to the RUN state */
10939 if (ipw_send_host_complete(priv))
10940 goto error;
10942 priv->status |= STATUS_INIT;
10944 ipw_led_init(priv);
10945 ipw_led_radio_on(priv);
10946 priv->notif_missed_beacons = 0;
10948 /* Set hardware WEP key if it is configured. */
10949 if ((priv->capability & CAP_PRIVACY_ON) &&
10950 (priv->ieee->sec.level == SEC_LEVEL_1) &&
10951 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10952 ipw_set_hwcrypto_keys(priv);
10954 return 0;
10956 error:
10957 return -EIO;
10961 * NOTE:
10963 * These tables have been tested in conjunction with the
10964 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10966 * Altering this values, using it on other hardware, or in geographies
10967 * not intended for resale of the above mentioned Intel adapters has
10968 * not been tested.
10970 * Remember to update the table in README.ipw2200 when changing this
10971 * table.
10974 static const struct ieee80211_geo ipw_geos[] = {
10975 { /* Restricted */
10976 "---",
10977 .bg_channels = 11,
10978 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10979 {2427, 4}, {2432, 5}, {2437, 6},
10980 {2442, 7}, {2447, 8}, {2452, 9},
10981 {2457, 10}, {2462, 11}},
10984 { /* Custom US/Canada */
10985 "ZZF",
10986 .bg_channels = 11,
10987 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10988 {2427, 4}, {2432, 5}, {2437, 6},
10989 {2442, 7}, {2447, 8}, {2452, 9},
10990 {2457, 10}, {2462, 11}},
10991 .a_channels = 8,
10992 .a = {{5180, 36},
10993 {5200, 40},
10994 {5220, 44},
10995 {5240, 48},
10996 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10997 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10998 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10999 {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
11002 { /* Rest of World */
11003 "ZZD",
11004 .bg_channels = 13,
11005 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11006 {2427, 4}, {2432, 5}, {2437, 6},
11007 {2442, 7}, {2447, 8}, {2452, 9},
11008 {2457, 10}, {2462, 11}, {2467, 12},
11009 {2472, 13}},
11012 { /* Custom USA & Europe & High */
11013 "ZZA",
11014 .bg_channels = 11,
11015 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11016 {2427, 4}, {2432, 5}, {2437, 6},
11017 {2442, 7}, {2447, 8}, {2452, 9},
11018 {2457, 10}, {2462, 11}},
11019 .a_channels = 13,
11020 .a = {{5180, 36},
11021 {5200, 40},
11022 {5220, 44},
11023 {5240, 48},
11024 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11025 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11026 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11027 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11028 {5745, 149},
11029 {5765, 153},
11030 {5785, 157},
11031 {5805, 161},
11032 {5825, 165}},
11035 { /* Custom NA & Europe */
11036 "ZZB",
11037 .bg_channels = 11,
11038 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11039 {2427, 4}, {2432, 5}, {2437, 6},
11040 {2442, 7}, {2447, 8}, {2452, 9},
11041 {2457, 10}, {2462, 11}},
11042 .a_channels = 13,
11043 .a = {{5180, 36},
11044 {5200, 40},
11045 {5220, 44},
11046 {5240, 48},
11047 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11048 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11049 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11050 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11051 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11052 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11053 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11054 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11055 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11058 { /* Custom Japan */
11059 "ZZC",
11060 .bg_channels = 11,
11061 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11062 {2427, 4}, {2432, 5}, {2437, 6},
11063 {2442, 7}, {2447, 8}, {2452, 9},
11064 {2457, 10}, {2462, 11}},
11065 .a_channels = 4,
11066 .a = {{5170, 34}, {5190, 38},
11067 {5210, 42}, {5230, 46}},
11070 { /* Custom */
11071 "ZZM",
11072 .bg_channels = 11,
11073 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11074 {2427, 4}, {2432, 5}, {2437, 6},
11075 {2442, 7}, {2447, 8}, {2452, 9},
11076 {2457, 10}, {2462, 11}},
11079 { /* Europe */
11080 "ZZE",
11081 .bg_channels = 13,
11082 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11083 {2427, 4}, {2432, 5}, {2437, 6},
11084 {2442, 7}, {2447, 8}, {2452, 9},
11085 {2457, 10}, {2462, 11}, {2467, 12},
11086 {2472, 13}},
11087 .a_channels = 19,
11088 .a = {{5180, 36},
11089 {5200, 40},
11090 {5220, 44},
11091 {5240, 48},
11092 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11093 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11094 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11095 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11096 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11097 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11098 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11099 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11100 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11101 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11102 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11103 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11104 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11105 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11106 {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
11109 { /* Custom Japan */
11110 "ZZJ",
11111 .bg_channels = 14,
11112 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11113 {2427, 4}, {2432, 5}, {2437, 6},
11114 {2442, 7}, {2447, 8}, {2452, 9},
11115 {2457, 10}, {2462, 11}, {2467, 12},
11116 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
11117 .a_channels = 4,
11118 .a = {{5170, 34}, {5190, 38},
11119 {5210, 42}, {5230, 46}},
11122 { /* Rest of World */
11123 "ZZR",
11124 .bg_channels = 14,
11125 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11126 {2427, 4}, {2432, 5}, {2437, 6},
11127 {2442, 7}, {2447, 8}, {2452, 9},
11128 {2457, 10}, {2462, 11}, {2467, 12},
11129 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11130 IEEE80211_CH_PASSIVE_ONLY}},
11133 { /* High Band */
11134 "ZZH",
11135 .bg_channels = 13,
11136 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11137 {2427, 4}, {2432, 5}, {2437, 6},
11138 {2442, 7}, {2447, 8}, {2452, 9},
11139 {2457, 10}, {2462, 11},
11140 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11141 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11142 .a_channels = 4,
11143 .a = {{5745, 149}, {5765, 153},
11144 {5785, 157}, {5805, 161}},
11147 { /* Custom Europe */
11148 "ZZG",
11149 .bg_channels = 13,
11150 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11151 {2427, 4}, {2432, 5}, {2437, 6},
11152 {2442, 7}, {2447, 8}, {2452, 9},
11153 {2457, 10}, {2462, 11},
11154 {2467, 12}, {2472, 13}},
11155 .a_channels = 4,
11156 .a = {{5180, 36}, {5200, 40},
11157 {5220, 44}, {5240, 48}},
11160 { /* Europe */
11161 "ZZK",
11162 .bg_channels = 13,
11163 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11164 {2427, 4}, {2432, 5}, {2437, 6},
11165 {2442, 7}, {2447, 8}, {2452, 9},
11166 {2457, 10}, {2462, 11},
11167 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11168 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11169 .a_channels = 24,
11170 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11171 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11172 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11173 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11174 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11175 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11176 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11177 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11178 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11179 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11180 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11181 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11182 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11183 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11184 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11185 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11186 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11187 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11188 {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11189 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11190 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11191 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11192 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11193 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11196 { /* Europe */
11197 "ZZL",
11198 .bg_channels = 11,
11199 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11200 {2427, 4}, {2432, 5}, {2437, 6},
11201 {2442, 7}, {2447, 8}, {2452, 9},
11202 {2457, 10}, {2462, 11}},
11203 .a_channels = 13,
11204 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11205 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11206 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11207 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11208 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11209 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11210 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11211 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11212 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11213 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11214 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11215 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11216 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11220 #define MAX_HW_RESTARTS 5
11221 static int ipw_up(struct ipw_priv *priv)
11223 int rc, i, j;
11225 if (priv->status & STATUS_EXIT_PENDING)
11226 return -EIO;
11228 if (cmdlog && !priv->cmdlog) {
11229 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11230 GFP_KERNEL);
11231 if (priv->cmdlog == NULL) {
11232 IPW_ERROR("Error allocating %d command log entries.\n",
11233 cmdlog);
11234 return -ENOMEM;
11235 } else {
11236 priv->cmdlog_len = cmdlog;
11240 for (i = 0; i < MAX_HW_RESTARTS; i++) {
11241 /* Load the microcode, firmware, and eeprom.
11242 * Also start the clocks. */
11243 rc = ipw_load(priv);
11244 if (rc) {
11245 IPW_ERROR("Unable to load firmware: %d\n", rc);
11246 return rc;
11249 ipw_init_ordinals(priv);
11250 if (!(priv->config & CFG_CUSTOM_MAC))
11251 eeprom_parse_mac(priv, priv->mac_addr);
11252 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11254 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11255 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11256 ipw_geos[j].name, 3))
11257 break;
11259 if (j == ARRAY_SIZE(ipw_geos)) {
11260 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11261 priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11262 priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11263 priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11264 j = 0;
11266 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11267 IPW_WARNING("Could not set geography.");
11268 return 0;
11271 if (priv->status & STATUS_RF_KILL_SW) {
11272 IPW_WARNING("Radio disabled by module parameter.\n");
11273 return 0;
11274 } else if (rf_kill_active(priv)) {
11275 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11276 "Kill switch must be turned off for "
11277 "wireless networking to work.\n");
11278 queue_delayed_work(priv->workqueue, &priv->rf_kill,
11279 2 * HZ);
11280 return 0;
11283 rc = ipw_config(priv);
11284 if (!rc) {
11285 IPW_DEBUG_INFO("Configured device on count %i\n", i);
11287 /* If configure to try and auto-associate, kick
11288 * off a scan. */
11289 queue_delayed_work(priv->workqueue,
11290 &priv->request_scan, 0);
11292 return 0;
11295 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11296 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11297 i, MAX_HW_RESTARTS);
11299 /* We had an error bringing up the hardware, so take it
11300 * all the way back down so we can try again */
11301 ipw_down(priv);
11304 /* tried to restart and config the device for as long as our
11305 * patience could withstand */
11306 IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11308 return -EIO;
11311 static void ipw_bg_up(struct work_struct *work)
11313 struct ipw_priv *priv =
11314 container_of(work, struct ipw_priv, up);
11315 mutex_lock(&priv->mutex);
11316 ipw_up(priv);
11317 mutex_unlock(&priv->mutex);
11320 static void ipw_deinit(struct ipw_priv *priv)
11322 int i;
11324 if (priv->status & STATUS_SCANNING) {
11325 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11326 ipw_abort_scan(priv);
11329 if (priv->status & STATUS_ASSOCIATED) {
11330 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11331 ipw_disassociate(priv);
11334 ipw_led_shutdown(priv);
11336 /* Wait up to 1s for status to change to not scanning and not
11337 * associated (disassociation can take a while for a ful 802.11
11338 * exchange */
11339 for (i = 1000; i && (priv->status &
11340 (STATUS_DISASSOCIATING |
11341 STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11342 udelay(10);
11344 if (priv->status & (STATUS_DISASSOCIATING |
11345 STATUS_ASSOCIATED | STATUS_SCANNING))
11346 IPW_DEBUG_INFO("Still associated or scanning...\n");
11347 else
11348 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11350 /* Attempt to disable the card */
11351 ipw_send_card_disable(priv, 0);
11353 priv->status &= ~STATUS_INIT;
11356 static void ipw_down(struct ipw_priv *priv)
11358 int exit_pending = priv->status & STATUS_EXIT_PENDING;
11360 priv->status |= STATUS_EXIT_PENDING;
11362 if (ipw_is_init(priv))
11363 ipw_deinit(priv);
11365 /* Wipe out the EXIT_PENDING status bit if we are not actually
11366 * exiting the module */
11367 if (!exit_pending)
11368 priv->status &= ~STATUS_EXIT_PENDING;
11370 /* tell the device to stop sending interrupts */
11371 ipw_disable_interrupts(priv);
11373 /* Clear all bits but the RF Kill */
11374 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11375 netif_carrier_off(priv->net_dev);
11377 ipw_stop_nic(priv);
11379 ipw_led_radio_off(priv);
11382 static void ipw_bg_down(struct work_struct *work)
11384 struct ipw_priv *priv =
11385 container_of(work, struct ipw_priv, down);
11386 mutex_lock(&priv->mutex);
11387 ipw_down(priv);
11388 mutex_unlock(&priv->mutex);
11391 /* Called by register_netdev() */
11392 static int ipw_net_init(struct net_device *dev)
11394 struct ipw_priv *priv = ieee80211_priv(dev);
11395 mutex_lock(&priv->mutex);
11397 if (ipw_up(priv)) {
11398 mutex_unlock(&priv->mutex);
11399 return -EIO;
11402 mutex_unlock(&priv->mutex);
11403 return 0;
11406 /* PCI driver stuff */
11407 static struct pci_device_id card_ids[] = {
11408 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11409 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11410 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11411 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11412 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11413 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11414 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11415 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11416 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11417 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11418 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11419 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11420 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11421 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11422 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11423 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11424 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11425 {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11426 {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11427 {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11428 {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11429 {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11431 /* required last entry */
11432 {0,}
11435 MODULE_DEVICE_TABLE(pci, card_ids);
11437 static struct attribute *ipw_sysfs_entries[] = {
11438 &dev_attr_rf_kill.attr,
11439 &dev_attr_direct_dword.attr,
11440 &dev_attr_indirect_byte.attr,
11441 &dev_attr_indirect_dword.attr,
11442 &dev_attr_mem_gpio_reg.attr,
11443 &dev_attr_command_event_reg.attr,
11444 &dev_attr_nic_type.attr,
11445 &dev_attr_status.attr,
11446 &dev_attr_cfg.attr,
11447 &dev_attr_error.attr,
11448 &dev_attr_event_log.attr,
11449 &dev_attr_cmd_log.attr,
11450 &dev_attr_eeprom_delay.attr,
11451 &dev_attr_ucode_version.attr,
11452 &dev_attr_rtc.attr,
11453 &dev_attr_scan_age.attr,
11454 &dev_attr_led.attr,
11455 &dev_attr_speed_scan.attr,
11456 &dev_attr_net_stats.attr,
11457 &dev_attr_channels.attr,
11458 #ifdef CONFIG_IPW2200_PROMISCUOUS
11459 &dev_attr_rtap_iface.attr,
11460 &dev_attr_rtap_filter.attr,
11461 #endif
11462 NULL
11465 static struct attribute_group ipw_attribute_group = {
11466 .name = NULL, /* put in device directory */
11467 .attrs = ipw_sysfs_entries,
11470 #ifdef CONFIG_IPW2200_PROMISCUOUS
11471 static int ipw_prom_open(struct net_device *dev)
11473 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11474 struct ipw_priv *priv = prom_priv->priv;
11476 IPW_DEBUG_INFO("prom dev->open\n");
11477 netif_carrier_off(dev);
11479 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11480 priv->sys_config.accept_all_data_frames = 1;
11481 priv->sys_config.accept_non_directed_frames = 1;
11482 priv->sys_config.accept_all_mgmt_bcpr = 1;
11483 priv->sys_config.accept_all_mgmt_frames = 1;
11485 ipw_send_system_config(priv);
11488 return 0;
11491 static int ipw_prom_stop(struct net_device *dev)
11493 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11494 struct ipw_priv *priv = prom_priv->priv;
11496 IPW_DEBUG_INFO("prom dev->stop\n");
11498 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11499 priv->sys_config.accept_all_data_frames = 0;
11500 priv->sys_config.accept_non_directed_frames = 0;
11501 priv->sys_config.accept_all_mgmt_bcpr = 0;
11502 priv->sys_config.accept_all_mgmt_frames = 0;
11504 ipw_send_system_config(priv);
11507 return 0;
11510 static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11512 IPW_DEBUG_INFO("prom dev->xmit\n");
11513 return -EOPNOTSUPP;
11516 static struct net_device_stats *ipw_prom_get_stats(struct net_device *dev)
11518 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11519 return &prom_priv->ieee->stats;
11522 static int ipw_prom_alloc(struct ipw_priv *priv)
11524 int rc = 0;
11526 if (priv->prom_net_dev)
11527 return -EPERM;
11529 priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11530 if (priv->prom_net_dev == NULL)
11531 return -ENOMEM;
11533 priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11534 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11535 priv->prom_priv->priv = priv;
11537 strcpy(priv->prom_net_dev->name, "rtap%d");
11538 memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11540 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11541 priv->prom_net_dev->open = ipw_prom_open;
11542 priv->prom_net_dev->stop = ipw_prom_stop;
11543 priv->prom_net_dev->get_stats = ipw_prom_get_stats;
11544 priv->prom_net_dev->hard_start_xmit = ipw_prom_hard_start_xmit;
11546 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11547 SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11549 rc = register_netdev(priv->prom_net_dev);
11550 if (rc) {
11551 free_ieee80211(priv->prom_net_dev);
11552 priv->prom_net_dev = NULL;
11553 return rc;
11556 return 0;
11559 static void ipw_prom_free(struct ipw_priv *priv)
11561 if (!priv->prom_net_dev)
11562 return;
11564 unregister_netdev(priv->prom_net_dev);
11565 free_ieee80211(priv->prom_net_dev);
11567 priv->prom_net_dev = NULL;
11570 #endif
11573 static int __devinit ipw_pci_probe(struct pci_dev *pdev,
11574 const struct pci_device_id *ent)
11576 int err = 0;
11577 struct net_device *net_dev;
11578 void __iomem *base;
11579 u32 length, val;
11580 struct ipw_priv *priv;
11581 int i;
11583 net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11584 if (net_dev == NULL) {
11585 err = -ENOMEM;
11586 goto out;
11589 priv = ieee80211_priv(net_dev);
11590 priv->ieee = netdev_priv(net_dev);
11592 priv->net_dev = net_dev;
11593 priv->pci_dev = pdev;
11594 ipw_debug_level = debug;
11595 spin_lock_init(&priv->irq_lock);
11596 spin_lock_init(&priv->lock);
11597 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11598 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11600 mutex_init(&priv->mutex);
11601 if (pci_enable_device(pdev)) {
11602 err = -ENODEV;
11603 goto out_free_ieee80211;
11606 pci_set_master(pdev);
11608 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
11609 if (!err)
11610 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
11611 if (err) {
11612 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11613 goto out_pci_disable_device;
11616 pci_set_drvdata(pdev, priv);
11618 err = pci_request_regions(pdev, DRV_NAME);
11619 if (err)
11620 goto out_pci_disable_device;
11622 /* We disable the RETRY_TIMEOUT register (0x41) to keep
11623 * PCI Tx retries from interfering with C3 CPU state */
11624 pci_read_config_dword(pdev, 0x40, &val);
11625 if ((val & 0x0000ff00) != 0)
11626 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11628 length = pci_resource_len(pdev, 0);
11629 priv->hw_len = length;
11631 base = pci_ioremap_bar(pdev, 0);
11632 if (!base) {
11633 err = -ENODEV;
11634 goto out_pci_release_regions;
11637 priv->hw_base = base;
11638 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11639 IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11641 err = ipw_setup_deferred_work(priv);
11642 if (err) {
11643 IPW_ERROR("Unable to setup deferred work\n");
11644 goto out_iounmap;
11647 ipw_sw_reset(priv, 1);
11649 err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11650 if (err) {
11651 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11652 goto out_destroy_workqueue;
11655 SET_NETDEV_DEV(net_dev, &pdev->dev);
11657 mutex_lock(&priv->mutex);
11659 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11660 priv->ieee->set_security = shim__set_security;
11661 priv->ieee->is_queue_full = ipw_net_is_queue_full;
11663 #ifdef CONFIG_IPW2200_QOS
11664 priv->ieee->is_qos_active = ipw_is_qos_active;
11665 priv->ieee->handle_probe_response = ipw_handle_beacon;
11666 priv->ieee->handle_beacon = ipw_handle_probe_response;
11667 priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11668 #endif /* CONFIG_IPW2200_QOS */
11670 priv->ieee->perfect_rssi = -20;
11671 priv->ieee->worst_rssi = -85;
11673 net_dev->open = ipw_net_open;
11674 net_dev->stop = ipw_net_stop;
11675 net_dev->init = ipw_net_init;
11676 net_dev->get_stats = ipw_net_get_stats;
11677 net_dev->set_multicast_list = ipw_net_set_multicast_list;
11678 net_dev->set_mac_address = ipw_net_set_mac_address;
11679 priv->wireless_data.spy_data = &priv->ieee->spy_data;
11680 net_dev->wireless_data = &priv->wireless_data;
11681 net_dev->wireless_handlers = &ipw_wx_handler_def;
11682 net_dev->ethtool_ops = &ipw_ethtool_ops;
11683 net_dev->irq = pdev->irq;
11684 net_dev->base_addr = (unsigned long)priv->hw_base;
11685 net_dev->mem_start = pci_resource_start(pdev, 0);
11686 net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11688 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11689 if (err) {
11690 IPW_ERROR("failed to create sysfs device attributes\n");
11691 mutex_unlock(&priv->mutex);
11692 goto out_release_irq;
11695 mutex_unlock(&priv->mutex);
11696 err = register_netdev(net_dev);
11697 if (err) {
11698 IPW_ERROR("failed to register network device\n");
11699 goto out_remove_sysfs;
11702 #ifdef CONFIG_IPW2200_PROMISCUOUS
11703 if (rtap_iface) {
11704 err = ipw_prom_alloc(priv);
11705 if (err) {
11706 IPW_ERROR("Failed to register promiscuous network "
11707 "device (error %d).\n", err);
11708 unregister_netdev(priv->net_dev);
11709 goto out_remove_sysfs;
11712 #endif
11714 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11715 "channels, %d 802.11a channels)\n",
11716 priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11717 priv->ieee->geo.a_channels);
11719 return 0;
11721 out_remove_sysfs:
11722 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11723 out_release_irq:
11724 free_irq(pdev->irq, priv);
11725 out_destroy_workqueue:
11726 destroy_workqueue(priv->workqueue);
11727 priv->workqueue = NULL;
11728 out_iounmap:
11729 iounmap(priv->hw_base);
11730 out_pci_release_regions:
11731 pci_release_regions(pdev);
11732 out_pci_disable_device:
11733 pci_disable_device(pdev);
11734 pci_set_drvdata(pdev, NULL);
11735 out_free_ieee80211:
11736 free_ieee80211(priv->net_dev);
11737 out:
11738 return err;
11741 static void __devexit ipw_pci_remove(struct pci_dev *pdev)
11743 struct ipw_priv *priv = pci_get_drvdata(pdev);
11744 struct list_head *p, *q;
11745 int i;
11747 if (!priv)
11748 return;
11750 mutex_lock(&priv->mutex);
11752 priv->status |= STATUS_EXIT_PENDING;
11753 ipw_down(priv);
11754 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11756 mutex_unlock(&priv->mutex);
11758 unregister_netdev(priv->net_dev);
11760 if (priv->rxq) {
11761 ipw_rx_queue_free(priv, priv->rxq);
11762 priv->rxq = NULL;
11764 ipw_tx_queue_free(priv);
11766 if (priv->cmdlog) {
11767 kfree(priv->cmdlog);
11768 priv->cmdlog = NULL;
11770 /* ipw_down will ensure that there is no more pending work
11771 * in the workqueue's, so we can safely remove them now. */
11772 cancel_delayed_work(&priv->adhoc_check);
11773 cancel_delayed_work(&priv->gather_stats);
11774 cancel_delayed_work(&priv->request_scan);
11775 cancel_delayed_work(&priv->request_direct_scan);
11776 cancel_delayed_work(&priv->request_passive_scan);
11777 cancel_delayed_work(&priv->scan_event);
11778 cancel_delayed_work(&priv->rf_kill);
11779 cancel_delayed_work(&priv->scan_check);
11780 destroy_workqueue(priv->workqueue);
11781 priv->workqueue = NULL;
11783 /* Free MAC hash list for ADHOC */
11784 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11785 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11786 list_del(p);
11787 kfree(list_entry(p, struct ipw_ibss_seq, list));
11791 kfree(priv->error);
11792 priv->error = NULL;
11794 #ifdef CONFIG_IPW2200_PROMISCUOUS
11795 ipw_prom_free(priv);
11796 #endif
11798 free_irq(pdev->irq, priv);
11799 iounmap(priv->hw_base);
11800 pci_release_regions(pdev);
11801 pci_disable_device(pdev);
11802 pci_set_drvdata(pdev, NULL);
11803 free_ieee80211(priv->net_dev);
11804 free_firmware();
11807 #ifdef CONFIG_PM
11808 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11810 struct ipw_priv *priv = pci_get_drvdata(pdev);
11811 struct net_device *dev = priv->net_dev;
11813 printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11815 /* Take down the device; powers it off, etc. */
11816 ipw_down(priv);
11818 /* Remove the PRESENT state of the device */
11819 netif_device_detach(dev);
11821 pci_save_state(pdev);
11822 pci_disable_device(pdev);
11823 pci_set_power_state(pdev, pci_choose_state(pdev, state));
11825 return 0;
11828 static int ipw_pci_resume(struct pci_dev *pdev)
11830 struct ipw_priv *priv = pci_get_drvdata(pdev);
11831 struct net_device *dev = priv->net_dev;
11832 int err;
11833 u32 val;
11835 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11837 pci_set_power_state(pdev, PCI_D0);
11838 err = pci_enable_device(pdev);
11839 if (err) {
11840 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11841 dev->name);
11842 return err;
11844 pci_restore_state(pdev);
11847 * Suspend/Resume resets the PCI configuration space, so we have to
11848 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11849 * from interfering with C3 CPU state. pci_restore_state won't help
11850 * here since it only restores the first 64 bytes pci config header.
11852 pci_read_config_dword(pdev, 0x40, &val);
11853 if ((val & 0x0000ff00) != 0)
11854 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11856 /* Set the device back into the PRESENT state; this will also wake
11857 * the queue of needed */
11858 netif_device_attach(dev);
11860 /* Bring the device back up */
11861 queue_work(priv->workqueue, &priv->up);
11863 return 0;
11865 #endif
11867 static void ipw_pci_shutdown(struct pci_dev *pdev)
11869 struct ipw_priv *priv = pci_get_drvdata(pdev);
11871 /* Take down the device; powers it off, etc. */
11872 ipw_down(priv);
11874 pci_disable_device(pdev);
11877 /* driver initialization stuff */
11878 static struct pci_driver ipw_driver = {
11879 .name = DRV_NAME,
11880 .id_table = card_ids,
11881 .probe = ipw_pci_probe,
11882 .remove = __devexit_p(ipw_pci_remove),
11883 #ifdef CONFIG_PM
11884 .suspend = ipw_pci_suspend,
11885 .resume = ipw_pci_resume,
11886 #endif
11887 .shutdown = ipw_pci_shutdown,
11890 static int __init ipw_init(void)
11892 int ret;
11894 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11895 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11897 ret = pci_register_driver(&ipw_driver);
11898 if (ret) {
11899 IPW_ERROR("Unable to initialize PCI module\n");
11900 return ret;
11903 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11904 if (ret) {
11905 IPW_ERROR("Unable to create driver sysfs file\n");
11906 pci_unregister_driver(&ipw_driver);
11907 return ret;
11910 return ret;
11913 static void __exit ipw_exit(void)
11915 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11916 pci_unregister_driver(&ipw_driver);
11919 module_param(disable, int, 0444);
11920 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11922 module_param(associate, int, 0444);
11923 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
11925 module_param(auto_create, int, 0444);
11926 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11928 module_param(led, int, 0444);
11929 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)");
11931 module_param(debug, int, 0444);
11932 MODULE_PARM_DESC(debug, "debug output mask");
11934 module_param(channel, int, 0444);
11935 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11937 #ifdef CONFIG_IPW2200_PROMISCUOUS
11938 module_param(rtap_iface, int, 0444);
11939 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11940 #endif
11942 #ifdef CONFIG_IPW2200_QOS
11943 module_param(qos_enable, int, 0444);
11944 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11946 module_param(qos_burst_enable, int, 0444);
11947 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11949 module_param(qos_no_ack_mask, int, 0444);
11950 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11952 module_param(burst_duration_CCK, int, 0444);
11953 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11955 module_param(burst_duration_OFDM, int, 0444);
11956 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11957 #endif /* CONFIG_IPW2200_QOS */
11959 #ifdef CONFIG_IPW2200_MONITOR
11960 module_param(mode, int, 0444);
11961 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11962 #else
11963 module_param(mode, int, 0444);
11964 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11965 #endif
11967 module_param(bt_coexist, int, 0444);
11968 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11970 module_param(hwcrypto, int, 0444);
11971 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11973 module_param(cmdlog, int, 0444);
11974 MODULE_PARM_DESC(cmdlog,
11975 "allocate a ring buffer for logging firmware commands");
11977 module_param(roaming, int, 0444);
11978 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
11980 module_param(antenna, int, 0444);
11981 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
11983 module_exit(ipw_exit);
11984 module_init(ipw_init);